Analytical Processing of XML Documents: Opportunities
and Challenges

Rajesh R. Bordawekar

Christian A. Lang

IBM T. J. Watson Research Center, Hawthorne, NY 10532

{bordaw,langc}@us.ibm.com

ABSTRACT

Online Analytical Processing (OLAP) has been a valuable
tool for analyzing trends in business information. While the
multi-dimensional cube model used by OLAP is ideal for
analyzing structured business data, it is not suitable for rep-
resenting and analyzing complex semi-structured data, such
as XML documents. Need for analyzing XML documents is
gaining urgency as XML has become the language of choice
for data representation across a wide range of application
domains. This paper describes a proposal for analyzing
XML documents using the abstract XML tree model. We
argue that OLAP’s multi-dimensional aggregation operators
can not express structurally complex analytical operations
on XML documents. Hence, we outline new extensions to
XQuery for supporting such complex analytical operations.
Finally, we discuss various challenges in implementing XML
analysis in a real system.

1. INTRODUCTION

Since its inception as a language for large-scale electronic
publishing, Extensible Markup Language (XML) has emerged
as the lingua franca for portable data representation. As a
derivative of SGML, XML has been designed to represent
both structured and semi-structured data. XML’s ability
to succinctly describe complex information can also be used
for specifying application meta-data. XML’s popularity is
evident from its use in a wide spectrum of application do-
mains: from document publication, to computational chem-
istry, health care and life sciences, multimedia encoding, ge-
ology, and e-commerce. Increasing popularity of web-based
business processes and the emergence of web services has led
to further acceptance of XML.

In spite of XML’s wide-spread use, currently there are
very few tools for analyzing XML data. XML data can be
analyzed in two ways: (1) as semantically-rich text doc-
uments, and (2) as domain-specific data formulated using
XML’s semi-structured data model. Current efforts in XML
analysis belong to the first category and use information re-
trieval techniques (e.g., keyword text searching) for knowl-
edge discovery from XML documents [3, 18, 10]. To the
best of our knowledge, there is no known work that ana-
lyzes XML data using domain-specific information. This is
the focus of our current work.

An example of domain-specific analysis is Online Analyt-
ical Processing (OLAP) [8, 5], which has been extensively
used by decision support systems. Such analysis is used to
detect and predict trends in non-volatile time-varying busi-
ness data. An OLAP system models the input data as a log-

SIGMOD Record, Vol. 34, No. 2, June 2005

ical multidimensional cube with multiple dimensions which
provide the context for analyzing measures of interest. Tra-
ditionally, measures are numeric values (e.g., units of sales or
total sale amount) associated with the business data. Data
analysis usually involves dimensional reduction of the in-
put data using various aggregation functions, e.g., statisti-
cal (median, variance, etc.), physical (center of mass), and
financial (volatility). Most database vendors support simi-
lar aggregation functions along with dimensional operators
such as, ROLLUP, GROUPBY, and CUBE.

While OLAP is an effective tool for evaluating hierarchi-
cal relationships in structured data, its applicability is cur-
rently restricted to well-formulated business data that can
be mapped to the multi-dimensional OLAP model. This
prevents application of several useful OLAP features, e.g.,
grouping based on common data properties, structured ag-
gregation, and trend analysis to XML data. There are three
possible ways of using XML data in a data analysis system:

1. In the first approach, XML is used simply for exter-
nal presentation of the OLAP results [20, 24]. The
raw data is stored using either the relational (ROLAP)
or the multi-dimensional (MOLAP) storage. Various
data analysis operations (e.g., CUBE queries) are exe-
cuted using the traditional multi-dimensional OLAP
model.

2. In the second approach, input data is stored as XML
documents. Relevant data is first extracted from the
input XML documents using a XML processing lan-
guage (e.g., XSLT, XQuery, or SQL/XML) and ex-
ported to the OLAP engine. The data analysis is still
implemented using the multi-dimensional model. The
results from the OLAP analysis may also be exported
as XML documents.

3. The third approach uses XML both for data repre-
sentation and processing. The data analysis engine
represents the XML documents as trees using the tree-
based (hierarchical) XML model and analyzes both the
structure and the data values using an XML processing
language.

In this paper, we examine analysis of an XML document
using the tree-based XML model. In Section 2, we first
review the XML data model and discuss why the multi-
dimensional OLAP model is not suitable for analyzing XML
documents. We then propose a new approach for analyzing
XML documents using the XML data model and describe
new operators for supporting structured aggregation over

27

XML data. Section 3.2 discusses various challenges in im-
plementing the proposed XML analysis model in a real sys-
tem. Section 4 discusses the related work. We present our
conclusions and outline future work in Section 5.

2. ISSUESIN XML ANALYSIS

Traditional OLAP uses a regular multi-dimensional model

where multiple independent attributes called dimensions jointly

define the context for the corresponding numeric measures.
Measures are those attributes of the data model that are
used as input to the aggregation operations. Dimensions can
have sub-attributes called, members, that exhibit hierarchi-
cal non-recursive containment relationships (e.g., the time
dimension can have the following hierarchy! with members:
year, quarter, month, days, and hours). Multi-dimensional
OLAP is characterized by the following key features: (1)
Input data organized into independent dimensions and nu-
merical measures (e.g., using the star or snowflake schema
on relational base tables), (2) Multi-dimensional array-like
addressing of numeric measures and (3) Computations dom-
inated by structured aggregation operations over numerical
measures: (a) across levels of individual dimensions and (b)
across dimensions.

Online analytical processing of XML documents raises
issues that are substantially different from the traditional
multi-dimensional OLAP. XML analysis differs both in the
underlying data model and the prospective query patterns.
We discuss these differences below:

Differences in the Data Model:

1. Semantically rich contents: XML is a flexible text
format derived from SGML. An XML document is a
text document whose textual entities are scoped in a
hierarchy of self-descriptive markup tags. XML can
be used to develop different domain-specific vocabu-
laries that can encode the domain content via seman-
tic markups and encode inherent relationships among
the content entities via markup hierarchies. The XML
data model views an XML document as a tree in which
the internal nodes correspond to elements (denoting
the markup), the leaves correspond to the textual con-
tent, and the tree edges correspond to the relationships
among the content entities. Different axes in XML
data can represent various relationships, e.g., contain-
ment (HAS-A) and subclass (IS-A) relationships.

For analytical purposes, internal nodes of an XML tree
(i.e., elements) can be viewed as members of scoped di-
mensions, where the dimension scope is determined
by their parent elements, and values of the leaves can
be viewed as the corresponding measures. In this
model, dimension members are related to each other
via XML’s hierarchical structure. However, not all
dimensions are mutually dependent, e.g., dimensions
defined by unique siblings (and their subtrees) are
independent within the scope of their parent dimen-
sion. Further, unlike traditional OLAP, classification
between dimensions and measures is not rigid. Any
XML element can be associated with a set of attributes
that provide additional information on that element.
Such information could also be used for analysis pur-
poses. In other words, some dimensions could also

LA dimension can have more than one hierarchy.

28

be analyzed as measures. The push and pull opera-
tors [22] provide similar functionalities for relational
OLAP systems.

2. Semi-structured Data Model: Unlike relational
data, XML data (or documents) does not adhere to
a rigid schema and can exhibit irregular structure. At
the same time, all well-formed XML documents con-
form to an abstract XML tree whose nodes are ordered
in an in-order, depth-first manner (called the docu-
ment order). XML documents can have recursive hi-
erarchies or hierarchies with different members. Thus,
XML is an ideal representation of semi-structured data.
The flexible structure of an XML document can be
specified using a strongly-typed XML schema [7]. Po-
tentially, more than one XML instance document can
map to an XML schema. Unlike the multi-dimensional
OLAP, the context of a measure is defined by the hi-
erarchy in which it is scoped. In an XML document,
a measure attribute can appear in more than one con-
texts (or hierarchies). Therefore, an analytical opera-
tion over a measure in one context may not be applica-
ble for the same measure in another context. Finally,
since XML nodes are ordered in the document order,
measures themselves could be semantically related by
the order relationship.

3. Navigational addressing: The abstract tree to rep-
resent the XML document is addressed using the XPath
navigational language [7]. XPath navigates the ab-
stract XML tree via five distinct axes. These axes
support navigation on the tree over explicit parent-
child edges and implicit edges such as sibling edges.
Hence, any node of an XML tree can be addressed in
a multitude of ways. This is in contrast to the rigid
array-based addressing in the OLAP data model.

4. Non-numeric measures: Traditional OLAP involves
analyzing only numeric measures (e.g., sales) of busi-
ness data using aggregation functions. Since XML is
also used for specifying non-business data (e.g., genome
databases), it can have both numeric and non-numeric
data (e.g., ATCG strings representing amino acid se-
quences) that need to be analyzed.

Differences in the Query Patterns:

1. Order-dependent queries: The XML data model
enforces a strict document ordering of the XML nodes.
The XML node ordering is exploited by XPath to sup-
port position-based queries on the XML tree, e.g., iden-
tify the first child of a node. Similar position-based
queries could be used for analyzing ordered data sets
whose ordering carries certain semantics. For exam-
ple, consider an XML document that stores effects of
a drug on a bio-metric parameter (e.g., white blood
cell count) in a clinical drug study [13]. Figure 1 rep-
resents the corresponding abstract XML tree. Typ-
ical order-dependent analytical queries on this docu-
ment can include: (1) For each asthma drug, compare
the blood cell count after every usage with the cor-
responding count for the healthy case, (2) Determine
those drugs whose second usage results in the maxi-
mum change in the white blood cell count, or (3) For

SIGMOD Record, Vol. 34, No. 2, June 2005

all asthma drugs, find the maximum variation in the
white blood cell count after the second usage.

. Generalized grouping: Typical relational OLAP
operations such as GROUPBY, ROLLUP or CUBE group tu-
ples of a relation based on walues of its column at-
tributes. In XML analysis, one can also group XML
entities based on their path attributes that encode en-
tity relationships. Path attributes can be specified via
XPath expressions or can use generalized tree patterns
specified using regular path expressions. Section 3
presents a proposal of incorporating structural group-
ing features into XQuery.

. Queries on non-numeric measures: Non-numeric

(textual) measures could be used in two types of queries:

(1) Structured queries which involve aggregation op-
erations over strings, e.g., find the maximum or av-
erage length of the string measures, and (2) approxi-
mate queries which involve substring or string pattern
matching. An example application is searching for sim-
ilar images in MPEG-7 [9]. The MPEG-7 standard is
based on XML and allows the storage of image and
video features as strings. Similarity searching on im-
ages and videos is thereby transformed into similarity
searching on strings.

. Approximate hierarchical queries: Due to the
semi-structured nature of XML documents, analyses
based on tag names and path specifications are af-
fected by structure changes, misspellings, or renam-
ings. Consider, for example, the use of surname rather
than lastName in an XPath expression. Similarly, the
tag order in a path specification may be inverted, as
in //order/customer/address versus
//customer/order/address. In such cases, approxi-
mate tag and path matching based on semantic sim-
ilarity [23] and sequence similarity [11] become a ne-
cessity.

. Hierarchical slice&dice: In a traditional OLAP sys-
tem, slicing involves reducing dimensions of a data
cube and then projecting the data cube using the re-
duced dimension. Equivalently, an XML tree could be
sliced over its independent dimensions by selectively
eliminating the subtrees in those dimensions. Simi-
larly, the dicing operation identifies and removes sub-
trees based on values derived from structural proper-
ties (e.g., depth of an XML node) or node values.

. Structural analytics: In the traditional OLAP sys-
tem, what-next analysis has been extensively used to
predict future trends. The what-next analysis involves
modifying values of certain measures and studying its
impact on the overall data trends by using different
aggregation functions. In XML analysis, one can eval-
uate the impact of relationships by modifying struc-
tures of the XML data. For example, consider an XML
document describing the structure of an organization
where the organization has many divisions, each di-
vision has many departments, each department has
many groups, and each group consists of several em-
ployees. Each division has a fixed budget which gets
percolated down the organization hierarchy according
to a certain formula. Consider an analyst who wants

SIGMOD Record, Vol. 34, No. 2, June 2005

Asthma

por) fod oA [omd e

(o] (o (o) vz (o] [orand

Figure 1: An Example of Order-dependent OLAP
Query from a clinical-study application.

to find out the impact of the organization hierarchy on
a group’s budget. She can rerun the budget compu-
tation by moving the group to another departmental
hierarchy. FExisting OLAP systems can not support
such structural analytics.

3. AMODEL FOR XML ANALYSIS

As described in Section 2, key requirements of an XML
analysis system are: (1) ability to represent semi-structured
data, (2) ability to support order-oriented queries, and (3)
ability to support value and structural queries over numeric
and non-numeric measures. The abstract tree model pro-
posed by the XML standard [7] satisfies the first two require-
ments easily. Further, any XML document can be mapped
to the abstract model without any additional formulations.
Hence, we base our logical analytical model on XML’s ab-
stract tree model. Any XML document that is being ana-
lyzed is first parsed and translated into a logical tree-based
representation (note that the actual physical representation
of the document can vary). This logical tree can then be
traversed using existing XML languages, e.g., XPath, XSLT,
and XQuery. It is interesting to note that many XML anal-
ysis queries can be specified using these languages. For ex-
ample, hierarchical slice & dice can be easily implemented
using an XQuery application. XQuery could also be used
for implementing structural analytics. Useful analytical fea-
tures missing from XQuery are structured grouping and ag-
gregation. We now propose simple yet powerful extensions
to XQuery to support these features. We then discuss vari-
ous challenges in implementing our analysis model in a real
system.

3.1 Structured Aggregation Operators

As in traditional OLAP, we refer to the components of
XML analysis as analysis dimensions. Our model comprises
two types of analysis dimensions: value-based and structure-
based dimensions. The former specify text contents in an
XML document (which can be values of XML attribute or
text nodes), while the latter specify tree patterns in an XML
document (and therefore represent a set of valid pattern
matches).

As an example, consider a human resources XML docu-
ment storing the employee data (Figure 2). The organiza-
tion consists of divisions (highest level), departments, and
groups (lowest level). Each group again consists of employ-
ees that are members of this group. As indicated, each em-

29

Division

’ Employee ‘ ’ Employee ‘ ’ Employee ‘

//\\ /A\ //\\\
R . - > R . o —
i_sdlary 1 dob' «salary) dob salary ; dob

Figure 2: Human resources XML Document

ployee has attributes salary and dob (date of birth). For
this example, a value-based analysis dimension would be
//employee/dob which represents the set of all dates of birth
of all employees. Similarly, a structure-based analysis di-

mension could be specified as //division/{$x | $x/$y}/group.

This pattern (among others) matches to the following tree
patterns:

/division/department/group and
/division/department/department/group. The first match
binds the variable $x to the department nodes and the sec-
ond match binds both variables $x and $y to department.
Note that the pattern specification syntax is presented for
illustrative purposes only. We envision the use of a notation
that allows the specification of more general tree patterns
as discussed by Chen et al. [6].

3.1.1 Structured XML Group-By

Consider an analytical query, What is the average income
per dob range? over the human resources XML document.
Consider that dob is already reported as ranges in the XML
document. Then an XML query to answer this question
could look like this (for simplicity, we use a slightly modified
FLWOR [7] syntax.):

for $e in //employee
GROUP BY(//employee/dob)
let $s := avg($e/salary)
return
<ageGroup>
<dob_range> $e/dob </dob_range>
<avgSalary> $s </avgSalary>
</ageGroup>

In this example, //employee/dob is a value-based analy-
sis dimension. Note that one could also answer the ques-
tion, What is the average dob per salary range?, by using
//employee/salary as the analysis dimension. This is in
contrast with the traditional OLAP where usually the set of
measure attributes and dimensions is predefined and cannot
be changed easily.

Consider another question, What is the average salary
per department level?. This question requires the use of a
structure-based analysis dimension:

var d,dl,d2=department

30

for $e in //employee
GROUP BY (//division/{$d | $d1/$d2}/employee)
let $s := avg($e/salary),
$1 := ($a1 == NULL 7 1 : 2)
return

<levelGroup>
<level> $1 </level>
<avgSalary> $s </avgSalary>
</levelGroup>

In this case, the averaging in the let-clause is done over
the employee nodes with the same number of department
nodes on the path. Similarly, the following group-by

GROUP BY (//division/{$d | $d1/$d2}/employee,
//employee/dob),

averages salaries over different age ranges in different de-
partment levels. Note that one can also use a Dewey-1D
based numbering scheme [10] to encode the element level.

While simpler versions of the value-based grouping oper-
ations can be implemented using a nested XQuery (see Ap-
pendix G.2, XQuery Working Draft, 12 November 2003 [7]
and [19]), current XQuery proposal can not express struc-
tural grouping operations.

3.1.2 Structured XML Roll-Up and Cube

‘We now describe structured roll-up and cube operations in
the XML analysis model. As an example, assume that each
group node in our example document (Figure 2), stores the
corresponding budget information. An analyst may be in-
terested in viewing the budgets per group but also at higher
levels. This is similar to a traditional OLAP roll-up opera-
tion and could be written as follows:

var d, dl=department
for $b in //budget
GROUP BY ROLLUP(//division//group,
//division/$d//group, //division/$d/$d1/group)
let $s := sum($b/value()),
$n := $b/../name()
return
<levelGroup>
<name> $n </name>
<overallBudget> $s </overallBudget>
</levelGroup>

As in the traditional OLAP, the ROLLUP clause specifies
the order in which the roll-up occurs. In this example, the
roll-up sequence is

(//division//group, //division/$d//group,
//division/$d/$d2/group)

(//division//group, //division/$d//group)

(//division//group)

The result of this ROLLUP would therefore be the sum of
budgets of the groups on the lowest level, followed by the
sum of budgets of the groups on the second-highest level, fol-
lowed by highest level groups. Note that the ROLLUP clause
in the example uses the same variable $d in the last two di-
mensions. This ensures that the roll-up operation correctly
uses the department hierarchy for aggregation.

We note here that the ROLLUP operator does not require
the dimensions to be dependent as in this example. One can
equally well imagine a roll-up such as

SIGMOD Record, Vol. 34, No. 2, June 2005

GROUP BY ROLLUP({//division/{$d | $d1/$d2}/employeel,
//employee/dob)

which will compute aggregates first over employees in the
same age-group within the same level and then over employ-
ees in the same group level.

Drill-down and cube operators can be defined similarly
and will therefore be skipped for brevity. The interested
reader is referred to Gray et al. [8] who discuss the gener-
alization of group-by to roll-up and cube in more detail for
the traditional OLAP setting.

Finally, we propose a special operator, called topological
roll-up for performing roll-up aggregation along an XML
hierarchy. Instead of specifying

GROUP BY ROLLUP(//division//group,
//division/$d//group, //division/$d/$d2/group)

one can use the topological specifier as follows:
GROUP BY TOPOLOGICAL ROLLUP(//division/$d/$d2/group)

The complete roll-up as discussed above could then be
generated automatically by topological sorting of the XML
structures. Similarly, drill-down and cube operators could
be extended with the “topological” keyword to indicate
automatic expansion or contraction of the XML structure.
Thus the precise schema of the XML documents need not
be known to the user. The simple expression

GROUP BY TOPOLOGICAL CUBE(//division/$d1/$d2/employee,
//division/$d1/$d2/budget)

would then correspond to the much longer expression

GROUP BY CUBE(//division/employee,
//division/$d1/employee, //division/$d1/$d2/employee,
//division/budget, //division/$d1/budget,
//division/$d1/$d2/budget)

3.2 Implementation Challenges

We now discuss various challenges in implementing a real-
life analysis system based on the proposed hierarchical XML
analysis model.

1. Supporting new XML analytics operators: The
XML analysis model proposed in Section 3 introduces
several new aggregation operators such as the struc-
tural group by, topological roll-ups, and cubes. Effi-
cient implementation of these operators in the XQuery
framework would be challenging. Another area that
needs further investigation is support for approximate
structural and value queries.

2. Supporting large XML documents: Decision sup-
port systems traditionally deal with large datasets stored
in data warehouses. In practice, terabyte-sized OLAP
cubes are not uncommon. Similarly, data sources such
as the Protein Data Bank (PDB) can generate XML
documents with sizes of 100 GByte and more. There-
fore, it is imperative that any XML analysis system
is able to load and process large complex XML doc-
uments efficiently. Current XML processing systems
tend to materialize an entire document in memory,
which is clearly impractical. Techniques such as XML
projection [17] are needed to materialize XML docu-
ments with smaller memory footprints.

SIGMOD Record, Vol. 34, No. 2, June 2005

3. Creating complex XML views: Until now, we have
considered analysis of a single large XML document.
In practice, there might be a large number of XML
documents, potentially with different schemas. In such
cases, one may need to compute XML views using mul-
tiple base XML documents. In theory, XQuery can
be used for generating XML views from multiple base
documents, but in reality, most current XQuery im-
plementations can work on only one or two XML doc-
uments.

4. Support for visualizing complex hierarchical data:
Visualization forms an important aspect of decision
support systems. Visualizing large hierarchical datasets
poses new challenges, e.g., how to view a large tree in
real time with limited memory resources?, how to sup-
port zoom-in and zoom-out on the data tree?, how to
support context-directed navigation?, or how to sup-
port XPath-based slice-and-dice?

5. Integrating with a traditional OLAP system: It
is imperative that any XML analysis system should be
integrated with a traditional OLAP system. The base
XML data can be stored either in a relational database
or as text documents. The former approach (ROLAP)
allows easier integration with a traditional OLAP pro-
cessor, while the latter, which can be termed XOLAP,
allows flexibility of using existing XML processing lan-
guages (e.g., XQuery or XSLT) directly.

4. RELATED WORK

Over the years, Online Analytical Processing (OLAP) has
been studied extensively. We report here a few related ef-
forts. Vassiliadis and Sellis [25] present a survey of logical
models for OLAP databases. Gray et al. [8] first introduced
the OLAP CUBE operator. Chaudhuri and Dayal [5] present
an overview of relevant concepts in data warehousing and
decision support systems. Most database vendors support
OLAP in their database systems. The OLAP Report [21]
presents a detailed study of current industrial OLAP offer-
ings. Current work in using XML for OLAP applications
involves using XML for representing external data. To the
best of our knowledge, no one has investigated exploiting
XML’s tree model for analytical purposes. Recently, Ped-
ersen et al. have been exploring the integration of XML
data with the traditional OLAP processing [20]. Jensen et
al. describe how to specify multi-dimensional OLAP cubes
over source XML data [15].

Recently, several researchers have proposed extensions to
relational databases for supporting complex OLAP function-
alities. Hurtado and Mendelzon [12] and Jagadish et al. [14]
have investigated OLAP processing over heterogeneous hier-
archies defined over relational data. Chaudhuri et al. [4] and
Babcock et al. [1] have studied approximate query process-
ing in the context of aggregation queries. Barbara and Sulli-
van have proposed Quasi-Cubes, for computing approximate
answers in multidimensional cubes [2]. These approaches
use approximation to reduce computation time over precise
data. In our case, the source XML data is inherently im-
precise. Lerner and Shasha recently proposed extensions to
SQL for supporting order-dependent queries (AQuery) [16].
Carmel et al. have investigated approximate searching of
XML documents using structural templates (called XML

31

fragments) [3]. Navarro and Baeza-Yates have proposed
a model to query documents by their content and struc-
ture [18].

5. CONCLUSIONSAND FUTURE WORK

In this paper, we investigated various issues in analyzing
XML documents. We showed that the traditional multi-
dimensional OLAP model is unsuitable for XML analysis
due to its weakness in representing semantically-rich, semi-
structured XML data. We proposed a new logical model for
XML analysis based on the abstract tree-structured XML
representation. We demonstrated the practicality of the new
model model by proposing new structural aggregation exten-
sions for XQuery.

We are developing a prototype XML analysis engine to in-
vestigate various tradeoffs in data mapping and query trans-
lation schemes. In particular, we are evaluating relational-
based and XML-based backend engines for functionality,
space usage, and execution costs.

6. REFERENCES

[1] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample
selection for approximate query processing. In Proceedings
of the 2003 ACM SIGMOD international conference on on
Management of data, pages 539-550. ACM Press, 2003.

[2] D. Barbara and M. Sullivan. Quasi-Cubes: Exploiting
Approximations in Multidimensional Databases. ACM
SIGMOD Record, 26(3):12-17, 1997.

[3] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and
A. Soffer. Searching XML documents via XML fragments.
In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 151-158. ACM Press, 2003.

S. Chaudhuri, G. Das, and V. Narasayya. A robust,

optimization-based approach for approximate answering of

aggregate queries. In Proceedings of the 2001 ACM

SIGMOD international conference on Management of

data, pages 295-306. ACM Press, 2001.

[5] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. Data Mining and
Knowledge Discovery, 26(1):65-74, 1997.

[6] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and

S. Paparizos. From Tree Patterns to Generalized Tree

Patterns: On Efficient Evaluation of XQuery. In

Proceedings of the 29th International Conference on Very

Large Data Bases (VLDB), pages 237-248, September

2003.

World Wide Web Consortium. W3C Architecture Domain:

XML. www.w3c.org/xml. Online Documents.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.

Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab and Sub-Totals. Data

Mining and Knowledge Discovery, 1(1):29-53, March 1997.

Moving Pictures Experts Group. MPEG Standards.

www.chiariglione.org/mpeg.

[10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked keyword search over XML documents. In
Proceedings of the 2003 ACM SIGMOD international
conference on on Management of data, pages 16-27. ACM
Press, 2003.

[11] D. Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, January 1997.

[12] C. A. Hurtado and A. O. Mendelzon. Reasoning about
Summarizability in Heterogeneous Multidimensional
Schemas. In Proceedings of the International Conference on
Database Theory, pages 375-389, 2001.

[4

[7

8

[9

32

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

(24]

[25]

N. Huyn. Data Analysis and Mining in the Life Sciences.
ACM SIGMOD Record, 30(3):76-85, 2001.

H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava.
What can Hierarchies do for Data Warehouses? In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 530-541, September 1999.

M. R. Jensen, T. H. Moller, and T. B. Pedersen. Specifying
OLAP Cubes on XML Data. In Proceedings of the 13th
International Conference on Scientific and Statistical
Database Management, pages 18-20, July 2001.

A. Lerner and D. Shasha. Aquery: Query language for
ordered data, optimization techniques, and experiments. In
Proceedings of the 29th International Conference on Very
Large Data Bases (VLDB), pages 345-356, September
2003.

A. Marian and J. Simeon. Projecting XML Documents. In
Proceedings of the 29th International Conference on Very
Large Data Bases (VLDB), pages 213-224, September
2003.

G. Navarro and R. Baeza-Yates. Proximal nodes: a model
to query document databases by content and structure.
ACM Trans. Inf. Syst., 15(4):400-435, 1997.

S. Paparizos, S. Al-Khalifa, H. V. Jagadish, L. V. S.
Lakshmanan, A. Nierman, D. Srivastava, and Y. Wu.
Grouping in XML. In EDBT Workshops 2002, pages
128-147, 2002.

D. Pedersen, K. Riis, and T. B. Pedersen. Query
Optimization for OLAP-XML Federations. In Proceedings
of DOLAP 2002, ACM Fifth International Workshop on
Data Warehousing and OLAP, pages 57-64, November
2002.

N. Pendse. The OLAP Report. Online Document.
www.olapreport.com.

E. Pourabbas and M. Rafanelli. Hierarchies and Relative
Operators in the OLAP Environment. ACM SIGMOD
Record, 29(1):33-37, 2000.

P. Resnik. Using information content to evaluate semantic
similarity in a taxonomy. In In Proceedings of IJCAI, pages
448-453, 1995.

J. Trujillo, S. Lujan-Mora, and I. Song. Applying UML and
XML for designing and interchanging information for data
warehouses and OLAP. Journal of Database Management,
15(1):41-72, 2004,

P. Vassiliadis and T. Sellis. A Survey of Logical Models for
OLAP Databases. ACM SIGMOD Record, 28(4):64-49,
1999.

SIGMOD Record, Vol. 34, No. 2, June 2005

