Artemis Message Exchange Framework: Semantic
Interoperability of Exchanged Messages in the Healthcare
Domain °

Veli Bicer, Gokce B. Laleci, Asuman Dogac, Yildiray Kabak
Software Research and Development Center
Middle East Technical University (METU)

06531 Ankara Turkiye
email: asuman@srdc.metu.edu.tr

ABSTRACT

One of the most challenging problems in the healthcare domain
is providing interoperability among healthcare information sys-
tems. In order to address this problem, we propose the semantic
mediation of exchanged messages. Given that most of the mes-
sages exchanged in the healthcare domain are in EDI (Electronic
Data Interchange) or XML format, we describe how to transform
these messages into OWL (Web Ontology Language) ontology in-
stances. The OWL message instances are then mediated through
an ontology mapping tool that we developed, namely, OWLmt.
OWLmt uses OWL-QL engine which enables the mapping tool
to reason over the source ontology instances while generating the
target ontology instances according to the mapping patterns de-
fined through a GUIL

Through a prototype implementation, we demonstrate how to
mediate between HL7 Version 2 and HL7 Version 3 messages.
However, the framework proposed is generic enough to mediate
between any incompatible healthcare standards that are currently
in use.

1. INTRODUCTION

Most of the health information systems today are propri-
etary and often only serve one specific department within
a healthcare institute. A number of standardization efforts
are progressing to address this interoperability problem such
as EHRcom [3], openEHR [15] and HL7 Version 3 [6]. Yet, it
is not realistic to expect all the healthcare institutes to con-
form to a single standard. Furthermore, different versions
of the same standard (such as HL7 Version 2 and Version
3) and even the different implementations of the same stan-
dard, for example, some HL7 Version 2 implementations,
do not interoperate. Therefore there is a need to address
the interoperability problem at the semantic level. Seman-
tic interoperability is the ability for information shared by
systems to be understood at the level of formally defined
domain concepts so that the information is computer pro-
cessable by the receiving system [10].

In this paper, we describe an engineering approach de-
veloped within the scope of the Artemis project [1] to pro-
vide the exchange of meaningful clinical information among
healthcare institutes through semantic mediation. The pro-
posed framework, called AMEF (Artemis Message Exchange
Framework) involves first providing the mapping of a source
ontology into a target ontology with the help of a mapping

*This work is supported by the European Commission
through IST-1-002103-STP Artemis project and in part by
the Scientific and Technical Research Council of Turkey

(TUBITAK), Project No: EEEAG 104E013

SIGMOD Record, Vol. 34, No. 3, Sept. 2005

tool which produces a mapping definition. This mapping
definition is then used to automatically transform the source
ontology message instances into target message instances.

Through a prototype implementation, we demonstrate
how to mediate between HL7 Version 2 and HL7 Version
3 messages. However, the framework proposed is generic
enough to mediate between any incompatible healthcare
standards that are currently in use.

_5 g Ontology Mapper g .5
82 | g g|88
o e e S g
£g | = | | EG
HL7 v2.3 S s HL7v2.3 HL7V3 = G HL7 v3
z e z Message
Message [o Ontology Ontology| I Sch
Schema © o chema
Healthcare é Healthcare
Institute A Institute B

Normalization Mapping Definition Normalization
Map Map

Figure 1: Message Schema Mapping Process

c Mapping Engine c

S g g| | S

5‘9 g2 g owy ow| & g

Bes S E e £ B

é 2 £ i 2 E g
HL7v2.3 a3 S S HL7v23 HL7v3 s 5 HL7v3
Message T % Instance Instance o T Message
o fa) Schema

Healthcare T Healthcare
Institute A D D Institute B
Normalization Mapping Definition Normalization
Map Map

Figure 2: Automatic Message Instance Transforma-
tion Process

The semantic mediation between HL7 Version 2 and HL7
Version 3 messages is realized in two phases:

e Message Ontology Mapping Process: In the first phase,
the message ontologies of two healthcare institutes are
mapped one another (Figure 1). Assume that health-
care institute A uses HL7 v2 and healthcare institute
B uses HL7 v3 to provide system interconnection. The
message ontologies of these institutes are mapped one
into other by using an ontology mapping tool. For this

71

purpose we have developed an OWL (Web Ontology
Language) ontology mapping tool, namely, OWLmt
[16]. With the help of a GUI, OWLmt allows to define
semantic mappings between structurally different but
semantically overlapping OWL ontologies, and pro-
duces a “Mapping Definition”.

Since message ontologies for HL7 messages do not
exist yet, we use the HL7 Version 2 and Version 3
XML Schemas (XSDs) [19] to generate OWL ontolo-
gies. This process, called “Conceptual Normalization”
[5] produces a “Normalization map” describing how a
specific message XSD is transformed into the corre-
sponding OWL schema.

The “Mapping Definitions” and the “Normalization
map” produced in the first phase are used during the
second phase to automatically transform the message
instances one into another.

e Message Instance Mapping: In the second phase (Fig-
ure 2), first the XML message instances of healthcare
institute A are transformed into OWL instances by us-
ing the “Data Normalization” engine [5]. Note that if
the message is in EDI (Electronic Data Interchange)
format, it is first converted to XML. Then by using the
Mapping definitions, OWL source (healthcare institute
A) messages instances are transformed into the OWL
target (healthcare institute B) message instances. Fi-
nally the OWL messages are converted to XML again
through the “Data Normalization” engine.

RQC Request Clinical Information RCI Return Clinical Information

MSH Message Header MSH Message Header
QRD Query Definition MSA Message Acknowledgment
[QRF] | QueryFilter [QRF] Query Filter
{
PRD Provider Data PRD Provider Data
[{ CTD}]| Contact Data [{CTD}] Contact Data
}
PID Patient Identification PID Patient Identification
[{ NK1}] | Nextof Kin/Associated Parties | | [{ DG1}] Diagnosis
[{ GT1}] Guarantor [{ DRG}] Diagnosis Related Group
[{ NTE}] | Notesand Comments [{ AL1}] Allergy Information
[
OBR Observation Request
[{ NTE}] Notes and Comments
[(
OBX Observation Result

[{ NTE}] Notesand Comments
}

1
}

]
[{ NTE}] Notes and Comments

Figure 3: The Structures of the RQC/RCI EDI mes-
sages for the HL7 Version 2 event 105

The paper is organized as follows: In Section 2, we briefly
summarize the HL7 standard. Section 3 describes the se-
mantic mediation of HL7 v2 and v3 messages. The details
of OWL mapping tool used in the mediation is presented in
Section 4. Transforming HL7 v2 EDI messages to XML is
briefly introduced in Section 5. Finally Section 6 describes
the “Normalization” tool used and the improvements re-
alised on this tool.

2. HEALTH LEVEL 7 (HL7) STANDARD

72

Mapping
Schema

— — | Panel

Mapping GUI Property Mapping Engine [a;?pi ng
— = Transformations Engine.
Ontology P
Handler

Source vaue .
Transformation

| N
Javascript Query
Engine Engine
| |

Object Property L
Wizard Definition Panel

Ontology

Target [7 ¥ \

Ontology Javascript OWL-QL
Mapping Source Target Interpreter Engine
Definition Instance Instance

Figure 4: Architecture of OWLmt

The primary goal of HL7 is to provide standards for the
exchange of data among healthcare computer applications.
The standard is developed with the assumption that an
event in the healthcare world, called the trigger event, causes
exchange of messages between a pair of applications. When
an event occurs in an HL7 compliant system, an HL7 mes-
sage is prepared by collecting the necessary data from the
underlying systems and it is passed to the requestor, usu-
ally as an EDI message. For example, as a result of a trigger
event, say “I05”, the clinical patient information for a given
patient identifier is passed to the requestor as shown in Fig-
ure 3. Clinical information refers to the data contained in
a patient record such as problem lists, lab results, current
medications, family history, etc. [7].

HL7 version 2 is the most widely implemented healthcare
informatics standard in the world today. Yet being HL7 Ver-
sion 2 compliant does not imply direct interoperability be-
tween healthcare systems. Version 2 messages, contain many
optional data fields. For example every attribute presented
in square brackets in Figure 3, denotes optional information
that may be omitted. This optionality provides great flexi-
bility, but necessitates detailed bilateral agreements among
the healthcare systems to achieve interoperability.

To remedy this problem, HL7 has developed Version 3
[6] which is based on an object-oriented data model, called
Reference Information Model (RIM) [8]. The main objective
of the HL7 Version 3 is to eliminate the optionality. RIM
is used as the source of the content of messages and this
results in a more efficient message development process. The
result of the Version 3 process is the Hierarchical Message
Definition (HMD), which defines the schema of the messages
based on the RIM classes. Note that HL7 Version 3 messages
do not interoperate with HL7 Version 2 messages.

3. SEMANTIC MEDIATION OF HL7 V2
AND V3 MESSAGES

In Artemis Message Exchange Framework (AMEF), the
semantic mediation of HL7 v2 and v3 messages is realized
in two phases:

e Message Schema Mapping Process: In the first phase,
the message schemas of two healthcare institutes are
mapped one another through semantic mediation as
shown in Figure 1. At the heart of this process is
the OWL Mapping tool, OWLmt, transforming OWL
ontologies one into other.

The OWL ontologies corresponding to the message
schemas involved are generated through a set of avail-
able tools. First, for healthcare institute A (Figure
1), the HL7 Version 2 XML Schemas (XSDs) [19] are

SIGMOD Record, Vol. 34, No. 3, Sept. 2005

converted to RDFS (Resource Description Framework
Schema) by using the Conceptual Normalization (C-
Normalization) engine of the Harmonise project [5].
This process uses a set of heuristics as described in
Section 6 and produces a “Normalization map” de-
scribing how a specific HL7 Version 2 message XSD is
transformed into the corresponding RDFS schema and
vice-versa. Then, by using the OWL Wrapper, which
we developed using Jena API [11], RDFS Schemas are
transformed to OWL.

On the other hand, for healthcare institute B (Figure
1), in order to generate the XSDs of HL7 v3 messages,
RoseTree tool of HL7 is used [18]. RoseTree allows the
user to graphically build a HMD (Hierarchical Message
Definition) from the Reference Information Model of
HL7 v3. This generated HMD file describes the struc-
ture of the v3 XML messages, but it is not in XSD
format. In order to translate the HMD file to XSD,
“HL7 v3 Schema Generator” [9] is used.

The next step is to map the source ontology into the
target ontology by using OWLmt. This process is de-
scribed in detail in Section 4.

Sour ce Ontology Target Ontology
rdfs:subClassOf [dfssubCl

Qbservation

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

X Haemoglobin
Complete Blood Haemoglobin g b Observation
Count Result 3 AR A
[~ - ~7 rdfs:subCl
A\ hasQuantity
\ hasVglue CBC
\ . P

N Quantity Value ;)

N T o A 7/
RN ~ =~ — SmilarTo _ - -

- -

- -

~ — — —SmilarTo _ - -~

Figure 5: Mapping between HL7 v2 and HL7 v3
message structures

e Message Instance Mapping: In the second phase (Fig-
ure 2), first the HL7 version 2 EDI messages are con-
verted to XML. The open-source programming library
from HL7, namely, HL7 application programming in-
terface (HAPI) [4] is used for transforming the EDI
messages into their XML representations.

In the next step, as shown in Figure 2, the XML
message instances of healthcare institute A are trans-
formed to OWL instances by the “Data Normalization
(D-Normalization) engine [5] using the “Normalization
map” produced during the first phase.

Then by using the Mapping definitions, OWLmt trans-
forms OWL source (healthcare institute A) messages
instances into the OWL target (healthcare institute
B) message instances. Finally the OWL messages are
converted to the XML format that the healthcare in-
stitute B understands, again through the “Data Nor-
malization” engine as shown in Figure 2.

In the following sections, we describe how these tools re-
alize the described functionality.

SIGMOD Record, Vol. 34, No. 3, Sept. 2005

SmilarTo ~

PID.5.Name h TAa

PID
additiohal Information

hasAddress . AD.11
n PD1.3/rimaryFecility

Target Ontology

z
PatientEnity

Sour ce Ontology

Figure 6: Mapping Object properties

Figure 7: OWL Mapping Schema

4. OWL MAPPING TOOL: OWLMT

We have developed an OWL mapping tool, called
OWLmt, to handle ontology mediation by mapping the
OWL ontologies in different structures and with an overlap-
ping content one into other. The architecture of the system,
as shown in Figure 4, allows mapping patterns to be speci-
fied through a GUI tool based on a Mapping Schema. The
Mapping Schema, as shown in Figure 7, is also defined in
OWL.

Mapping patterns basically involve the following:

e Matching the source ontology classes to target ontology
classes: In order to represent the matching between
the classes of source and target ontologies, we have de-
fined four mapping patterns: EquivalentTo, SimilarTo,
IntersectionOf and UnionOf. Two identical classes are
mapped through FquivalentTo pattern. SimilarTo im-
plies that the involved classes have overlapping con-
tent. How the similar classes are further related is
detailed through their data type properties and ob-
ject properties by using “property mapping patterns”.
As an example, in Figure 5, the “HaemeglobinResult”
class in HL7 v2 ontology is defined to be similar to
“HaemoglobinObservation” class in HL.7 v3 ontology.
The mappings of the “hasQuantity” and “hasValue”
object properties of these classes are handled by defin-
ing an “ObjectProperty Transform” pattern between
these properties.

The IntersectionOf pattern creates the corresponding
instances of the target class as the intersection of the
declared class instances. Similarly, the UnionOf pat-

73

tern implies the union of the source classes’ instances
to create the corresponding instances of the target
class. Furthermore, a class in a source ontology can
be a more general (super class) of a class in the target
ontology. In this case, which instances of the source
ontology makes up the instances of the target ontology
is defined through KIF (Knowledge Interchange For-
mat) [13] conditions to be executed by the OWLmt
mapping engine. When a source ontology class is a
more specific (sub class) of a target ontology class, all
the instances of the source ontology qualify as the in-
stances of the target ontology.

Matching the source ontology Object Properties to tar-
get ontology Object Properties: In addition to match-
ing a single object property in the source ontology
with a single object property in the target ontology,
in some cases, more than one object properties in the
source ontology can be matched with one or more ob-
ject properties in the target ontology. Consider the
example given in Figure 6. According to the HL7 v3
specifications, two entities, “Patient” and “HealthIn-
stitueEntity” are connected by a “Role” class which
is “PatientRole” in this case. On the other hand, in
the target ontology, the “XON” class in HL7 v2.x rep-
resents the healthcare facility that a patient is regis-
tered. “PD1” (Patient Demographics 1) gives the pa-
tient information. “XON” is connected to the “PD1”
by the “PD1.3.PrimaryFacility” object property. As
it is clear from this example, relating a single object
property in source ontology with a single object prop-
erty in the target ontology does not suffice: There may
be paths consisting of object property relations in the
source and target ontologies that need to be mapped.

OWLmt allows defining “ObjectPropertyTransform”
pattern which represents the path of classes connected
through object properties such that whenever a path
defined in the source ontology (inputPath) is encoun-
tered in the source ontology instance, the path defined
for target ontology (outputPath) is created in the tar-
get ontology instance. Paths are defined as triples in
KIF [13] format and executed through the OWL-QL
[17] engine. For example, assuming the path defined
in the source ontology (Figure 6):

(rdf:type 7x PatientEntity) (player 7x 7y)
(rdf:type 7y PatientRole) (scoper 7y 7z)
(rdf:type 7z HealthInstituteEntity).

and assuming that it corresponds to the following path
in the target ontology:

(rdf:type 7x PID) (additionallnformation ?7x ?y)
(rdf:type 7y PD1) (PD1.3.PrimaryFacility 7y 7?z)
(rdf:type 7z XON)

OWLmt constructs the specified paths among the in-
stances of the target ontology in the execution step
based on the paths defined among the instances of the
source ontology.

Matching source ontology Data Properties to target
ontology Data Properties: Specifying the “Datatype-
PropertyTransform” helps to transform data type
properties of an instance in the source ontology to
the corresponding data type properties of instance in

74

the target ontology. Since the data type properties
may be structurally different in source and target on-
tologies, more complex transformation operations may
be necessary than copying the data in source instance
to the target instance. XPath specification [20] de-
fines a set of basic operators and functions which are
used by the OWLmt such as “concat”, “split”, “sub-
string”, “abs”, and “floor”. In some cases, there is
a further need for a programmatic approach to spec-
ify complex functions. For example, the use of condi-
tional branches (e.g. if-then-else, switch-case) or itera-
tions (e.g while, for-next) may be necessary in specify-
ing the transformation functions. Therefore, we have
added JavaScript support to OWLmt. By specifying
the JavaScript to be used in the “DatatypeProperty-
Transform” pattern, the complex functions can also be
applied to the data as well as the basic functions and
the operators provided by XPath.

4.1 OWLmt Mapping Schema

The mapping patterns used in the OWLmt are defined
through an OWL ontology called “Mapping Schema”. Each
mapping pattern is an owl:class in the “Mapping Schema” as
shown in Figure 7. The additional information needed in the
execution of the patterns are provided as KIF [13] expres-
sions such as inputPaths and outputPaths. The inputPath
and outputPath are data type properties of “ObjectProp-
erty Transform Pattern” class and hold the query strings in
the KIF format which are used in the execution to query
the source ontology instances in order to build the target
instances.

FEach mapping relation specified through OWLmt GUI
represents as an instance of these pattern classes, and the
final the mapping definition is stored as an instance of the
“Mapping Scheme” as a collection of pattern class instances.

In Figure 8, a part of the mapping definition of the exam-
ple in Figure 6 is presented. First the SimilarTo relation-
ship between the “Patient” and “PatientEntity” classes are
represented with an instance of SimilarTo pattern. Then
through an “ObjectPropertyTransform” pattern instance,
the relationships between object properties linking the “Pa-
tientEntity” to “HealtInstituteEntity” classes and the ob-
ject property linking the “PID” to “XON” classes are rep-
resented. Further details of the mapping tool are presented
in [2].

This mapping definition is given as an input to the
OWLmt Mapping Engine, which translates source ontology
instances to target ontology instances.

42 OWLmt GUI

OWLmt GUI [16] consists of five components: Ontol-
ogy Handler, Main Panel, Property Transformations Panel,
Value Transformation Wizard and Object Property Defini-
tion Panel. The Ontology Handler is used in parsing and
serializing the ontology documents. The class mapping pat-
terns are defined in the main panel. The property map-
ping patterns are defined in the property transformation
panel. This panel lets the user to create new property map-
ping patterns such as the “ObjectPropertyTransform” and
“DatatypePropertyTransform”. The value transformation
wizard is used to configure a “DatatypeProperty Transform”
pattern. By using this wizard, the functions used in the
value transformation of the data type properties can be spec-

SIGMOD Record, Vol. 34, No. 3, Sept. 2005

<SimilarTo rdf:ID="SimilarTo_1">
<similarToInput>

<relatedTo rdf:resource=#PatientEntity/>
</similarToInput>
<similarToOutput>

<relatedTo rdf:resource=#PID/>
</similarToOutput>
<operationName>PatientEntity_SimilarTo_PID</operationName>
</SimilarTo>

<0ObjectPropertyTransform rdf:ID="0ObjectPropertyTransform_1">
<operationName>ObjectPropertyTransform_1</operationName>
<includedIn rdf:resource=#SimilarTo_1/>
<inputPath>(rdf:type ?x PatientEntity) (player ?7x 7y)
(rdf:type 7y PatientRole) (scoper 7y ?7z)
(rdf:type ?z HealthInstituteEntity)
</ inputPath>
<outputPath>(rdf:type 7x PID) (additionalInformation 7x 7y)
(rdf:type 7y PD1) (PD1.3.PrimaryFacility 7y 7z)
(rdf:type 7z XON)
</ outputPath>
</0bjectPropertyTransform>

Figure 8: An Example Mapping Definition

ified.
4.3 OWLmt Engine

The mapping engine is responsible for creating the target
ontology instances using the mapping patterns given in the
Mapping Definition and the instances of the source ontol-
ogy. It uses OWL Query Language (OWL-QL) to retrieve
required data from the source ontology instances. OWL-QL
is a query language for OWL developed at the Stanford Uni-
versity [17]. While executing the class and property map-
ping patterns, the query strings defined through the map-
ping GUI are send to the OWL-QL engine with the URL of
the source ontology instances. The query engine executes
the query strings and returns the query results.

The OWL-QL engine uses the JTP (Java Theorem
Prover) reasoning engine [12], an object-oriented modular
reasoning system. The modularity of the system enables
it to be extended by adding new reasoners or customizing
existing ones.

The use of the OWL-QL enables OWLmt to have rea-
soning capabilities. When querying the source ontology in-
stances or while executing the KIF [13] patterns, OWL-
QL reasons over the explicitly stated facts to infer new
information. As an example, consider two instances, 11
and 12, which are the members of the classes C1 and C2
respectively. If these two instances are related with the
“owl:sameAs” construct, one of them should be in the ex-
tension of the intersection class, say C3, of the classes C1
and C2. Hence, the IntersectionOf pattern transforms the
instance I1 and I2 to the instance I3 which is a member
of C3 in the target ontology. However, assume that there
is no direct “owl:sameAs” construct but there is a func-
tional property which implies that these two instances are
the same. The reasoning engine can infer from the definition
of the “owl:FunctionalProperty” by using the rule:

(rdf:type ?prop owl:FunctionalProperty)
(?prop 7instance 7I1)

(?prop 7instance 7I2)

->

(owl:sameAs 7I1 7I2)

that the instances I1 and 12 are the same instance result-

SIGMOD Record, Vol. 34, No. 3, Sept. 2005

ing in the instance I3 to be in the target ontology.

After executing the class mapping patterns, the mapping
engine executes the property mapping patterns. Similar to
the class mapping patterns, OWL-QL queries are used to
locate the data. In order to perform value transformations,
the mapping engine uses the JavaScripts in the “Datatype-
PropertyTransform” pattern. To execute the JavaScripts,
an interpreter is used. The engine prepares the JavaScript
by providing the values for the input parameters and sends it
to the interpreter. The interpreter returns the result, which
is then inserted as the value of the data type property in the
target ontology instance.

5. EDI TO XML CONVERSION IN HL7

There are several commercial and open-source program-
ming libraries that implement the HL7 standards. In our
implementation, HAPI [4] (HL7 Application Programming
Interface) Assembler/Disassembler Tool is used to transform
the HL7 v2 EDI messages into their XML representations.
HAPI provides open source libraries for parsing and manip-
ulating both EDI and XML messages that are HL7 confor-
mant. Furthermore the library enables message validation,
that is, enforcement of HL7 data type rules for the values in
the messages.

6. NORMALIZATION TOOL

As previously mentioned, currently the healthcare appli-
cation messages are usually in XML or EDI format (which
can be converted to XML). Hence there is a need for au-
tomatic bidirectional transformation of XML message in-
stances to OWL message instances as well as automatic
generation of OWL Schemas from XML Schema Definitions
(XSDs). Such a transformation, called Normalization, has
been realized within the scope of the Harmonise project [5].

The first step in the “Normalization” process is generating
RDFS schemas from local XSD schemas. This step is called
Conceptual Normalization (C-Normalization) phase where
the C-Normalization engine parses the XML Schema, and
using a set of predefined “Normalization Heuristics”, creates
the corresponding RDFS schema components for each XML
Schema component automatically. Normalization Heuristics
define how specific XML Schema construct can be projected
onto a RDFS construct (entity or set of related entities) [5].
With this process, the complex type, element and attribute
definitions of the XSD are represented as classes, and prop-
erties in the RDFS ontology. One of the “Normalization
Heuristics” called “ComplexType2Class” projects each com-
plex type definition in XSD onto a class definition in RDF'S.
Furthermore, the attribute definitions and the element def-
initions in XSD are converted to the “rdf:Property” by the
“Attribute2Property” and “Element2Property” heuristics,
respectively. After representing the complex types as classes
and elements as properties, the domain and range of the
properties are set. The “ElementParent2PropertyDomain”
heuristic sets the domain of the property to the class which
corresponds to the parent of the element in the XSD. Fur-
thermore, the “ElementType2PropertyRange” heuristic sets
the range of the property to the class which corresponds to
the type of the element in the XSD as illustrated in Figure
9. The C-Normalization process produces a “Normaliza-
tion Map” which defines the associations between the XML
Schema and the re-engineered RDF'S model. Further details

75

of this work are available in [5].

ComplexType2Class rdfs:Class
Message Message

ElementParent2PropertyDomain

rdfs:Domain

Element2Property

teral rdf:Property

controlAct

ElementType2PropertyRange
type
rdfs:Range
ControlAct @
rdfs:Class
ComplexType2Class
XML Schema RDFS
HL7v3

Figure 9: C-Normalization Phase

Datatypes and
enumerations

Normalization v
Heuristics owL

Wrapper

[Jena |

Harmonise
C-Normalization Engine

Normalization Map

XML Harmonise RDE
Ingtance [¢ D-Normalization [¢ Instance
Engine

Figure 10: Normalization process for the bidirec-
tional transformation of XML instances to OWL in-
stances

The second step in “Normalization” is the Data Normal-
ization Process (D-Normalization) which is used for trans-
forming the data instances from XML to OWL or OWL to
XML.

In Artemis architecture, we have used the Harmonise Nor-
malization Engine. However since we need OWL Schemas
instead of RDFS schemas, we developed an OWL wrapper
using Jena API to create OWL schemas from the RDFS
files after the C-Normalization step. Additionally in the
D-Normalization step, through the same wrapper, the gen-
erated RDF instances are further translated in to OWL in-
stances or vice versa as depicted in Figure 10.

Note that in Harmonise C-Normalization step, the enu-
meration of property values or basic data types defined
in XML Schemas cannot be preserved. To handle this,
the OWL Wrapper developed carries the enumeration of
property values and basic data types to the OWL Schema.
The enumerated classes are represented using <owl:oneOf
rdf:parseType=“Collection” > construct in case of enumer-
ated classes, and using <owl:oneOf> and <rdf:List> con-
structs in case of enumerated data types. The data types are
represented by referring to XML Schema data types using
RDF data typing scheme.

7. CONCLUSIONS

One of the most challenging problems in the healthcare
domain today is providing interoperability among health-
care information systems. In order to tackle this problem,

76

we propose an engineering approach to semantic interoper-
ability within the scope of the Artemis project. For this
purpose, the existing applications are wrapped as Web ser-
vices and the messages they exchange are annotated with
OWL ontologies which are then mediated through an ontol-
ogy mapping tool developed, namely, OWLmt. One of the
major contributions of the OWLmt is the use of OWL-QL
engine which enables the mapping tool to reason over the
source ontology instances while generating the target ontol-
ogy instances according to the graphically defined mapping
patterns.

8. REFERENCES

[1] Artemis A Semantic Web Servicebased P2P
Infrastructure for the Interoperability of Medical
Information Systems, http://www.srdc.metu.edu.tr/-
webpage/projects/artemis/.

[2] Bicer, V., “OWLmt: OWL Mapping Tool”, M.Sc.
Thesis, Dept. of Computer Eng., METU, in preparation.

[3] ENV 13606:2000 “Electronic Healthcare Record
Communication”, http://www.centc251.org/TCMeet /-
doclist/TCdoc00/N00048.pdf.

[4] HL7 Application Programming Interface (HAPI),
http://hl7api.sourceforge.net

[5] Harmonise, IST200029329, Tourism Harmonisation
Network, Deliverable 3.2 Semantic mapping and
Reconciliation Engine subsystems.

[6] Health Level 7, http://www.hl7.org.

[7] HL7, Chapter 11 Patient Referral,
http://www.hl7.org/library /General /v231.zip

[8] HL7 Reference Information Model (RIM),
http://www.hl7.org/library /data-model /RIM/-
modelpage_mem.htm.

[9] HL7 v3 Schema Generator, http://www.hl7.org/-
library /data-model/V3Tooling/toolsIndex.htm

[10] ISO/TS Health Informatics - Requirements for an
electronic health record architecture, Technical
Specification, International Organization for
Standardization (ISO), Geneva, Switzerland, 2004.

[11] Jena Framework, http://jena.sourceforge.net/ .

[12] Java Theorem Prover (JTP),
http://www.ksl.stanford.edu/software/JTP/ .

[13] Knowledge Interchange Format (KIF),
http://logic.stanford.edu/kif/kif. html .

[14] A. Maedche, D. Motik, N. Silva, R. Volz, “MAFRA-A
MApping FRAmework for Distributed Ontologies”, In
Proc. of the 13th European Conf. on Knowledge
Engineering and Knowledge Management EKAW-2002,
Madrid, Spain, 2002.

[15] OpenEHR Foundation, http://www.openehr.org/ .

[16] OWL Mapping Tool (OWLmt),
http://www.srdc.metu.edu.tr/artemis/owlmt /

[17] OWL Query Language,
http://ksl.stanford.edu/projects/owlql/

[18] Rose Tree, http://www.hl7.org/library/data-model/-
V3Tooling/toolsIndex.htm

[19] XML encoding rules of HL7 v2 messages - v2.xml,
http://www.hl7.org/Special/Committees/xml/drafts/-
v2xml.html

[20] XML Path Language, http://www.w3.org/TR/xpath .

SIGMOD Record, Vol. 34, No. 3, Sept. 2005

