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Abstract

Similarity query is a frequent subroutine in time series database to
find the similar time series of the given one. In this process, simi-
larity measure plays a very important part. The previous methods
do not consider the relation between point correspondences and the
importance (role) of the points on the content of time series dur-
ing measuring similarity, resulting in their low accuracies in many
real applications. In the paper, we propose a General Hierarchical
Model (GHM), which determines the point correspondences by the
hierarchies of points. It partitions the points of time series into dif-
ferent hierarchies, and then the points are restricted to be compared
with the ones in the same hierarchy. The practical methods can be
implemented based on the model with any real requirements, e.g.
FFT Hierarchical Measures (FHM) given in this paper. And the hi-
erarchical filtering methods of GHM are provided for range and -
NN queries respectively. Finally, two common data sets were used
in k-NN query and clustering experiments to test the effectiveness
of our approach and others. The time performance comparisons of
all the tested methods were performed using the synthetic data set
with various sizes. The experimental results show the superiority
of our approach over the competitors. And we also give the experi-
mental powers of the filtering methods proposed in the queries.

1 Introduction

In the real-world, time series appears in various applications, e.g.
stock market, medicine field, network etc. Unlike exact match in
the traditional database, similarity query is frequent in time series
database to find the similar time series of the given one. It has at-
tracted a lot of interests to design an effective and efficient similarity
measure [1, 2, 3, 4, 5].

Most of the methods compute the sum of the distances between the
values on the points of time series as the measuring result. The most
popular ones are L, norms, especially L, (Euclidean Distance),
which follow the triangle inequality, and have many dimensionality
reduction approximations and index methods for fast query [6, 7, 8].
But they are demonstrated to be very brittle for many applications,
because they do not support local time shifting in the measuring
process. They cannot accommodate the time series that are similar
but out of phase, which exist widely in the real-world applications.
Other methods have been proposed based on different requirements
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Figure 1. The point correspondences of Euclidean Distance,
DTW, LCSS.

to solve the problem, e.g. DTW, LCSS, EDR etc. They allow time
warping in measuring, as shown in Figure 1. They always deter-
mine the point correspondences to minimize the warping cost, only
with different cost calculations. However, they do not consider the
relation between point correspondences and the importance (role)
of the points on the content of time series.

The influences of points on the content of time series, which de-
cides the similarity, are different, so the points in time series should
play different roles in similarity measure. Based on this idea, in this
paper, we propose a General Hierarchical Model (GHM), which de-
termines the point correspondences in measuring similarity by the
hierarchies of points. After giving the hierarchies of points, we put
the comparative restriction into the measuring that the points should
be compared with the ones in the same hierarchy. Any hierarchical
strategies can be adopted based on the actual analysis. In this paper,
two practical measures are also given to realize GHM, termed FFT
Hierarchical Measures (FHM), which use Fast Fourier Transform
(FFT) to partition the points. And the hierarchical filtering methods
of GHM are provided for range and k-NN queries respectively. In
the experimental evaluation, two common synthetic and real data
sets were used in k-NN query and clustering experiments to test the
effectiveness of ours and other major competitors. The time perfor-
mances of all the methods were compared on the synthetic data set
with various sizes. The experimental results show the superiority
of our approach over others in terms of effectiveness and efficiency.
And finally, we also tested the powers of the filtering methods pro-
posed on the real data set with various parameters.

The rest of the paper is organized as follows. Sect 2 provides the
related work. Sect 3 introduces GHM and the instance FHM. In



Sect 4, we give the exhaustive performance tests of ours and other
methods in terms of effectiveness and efficiency. Finally, in Sect 5
we offer some conclusion remarks.

2 Related Work

L, norms are popular [6, 7, 8], but with the precondition of the same
length. They are simple and fast, but they cannot deal with local
time shifting, which is an important evaluation for the feasibilities
of measures in real applications. Berndt et al. [1] adopted DTW
to measure the similarity of time series, which allows an elastic
shifting, but it is sensitive to noise due to its continuous warping
path. LCSS is robust to noise, but inaccurate with different gaps
existing between similar shapes in time series [2]. Recently, Chen
et al. proposed Edit distance with Real Penalty (ERP) and Edit
Distance on Real sequence (EDR) in [4, 5] respectively for multi-
dimensional data. ERP is also sensitive to noise, and EDR follows
a near triangle inequality, which are discussed in [5]. DTW, LCSS,
ERP and EDR release the strict restriction of point correspondences
in Ly norms, but their corresponding strategies, i.e. minimizing the
warping cost, do not take the importance (role) of each point on the
content of time series into account, resulting in low accuracy.

To solve the performance problems of the direct distance functions,
including effectiveness and efficiency, many representation meth-
ods were proposed. Das et al. [9] gave a simple representation
that automatically clusters all the subseries in a fixed-window into
some classes, and then uses the symbols standing for the classes
to replace each subseries. The method may be disabled due to the
inaccuracy of the interval boundaries, e.g. a whole shape (or con-
tent) might be segmented. In [10], Lin et al. proposed the Symbolic
Approximation (SAX) with an approximate distance function that
lower bounds the Euclidean Distance. Clipped representation has
attracted much interest [11], and it has superior space benefit due
to only saving 0 and 1. Recently, in [12], Megalooikonomou et
al. adopted a multiresolution symbolic representation, and Hierar-
chical Histogram Model was used as the distance function. The
multiresolution seems similar to our approach, but actually, we
have the essential difference that we emphasize the hierarchies of
points, and they used the multiresolution segmental windows to
solve the inaccuracy using only one fixed-window. Dimensional-
ity reduction is also one kind of representation, representing the
time series with a multidimensional vectors. In [6], Agrawal el
al. utilized Discrete Fourier Transform (DFT) to perform the di-
mensionality reduction, and other techniques have been suggested,
including Singular Value Decomposition (SVD) [13] and Discrete
Wavelet Transform (DWT) [14]. In [3], Keogh et al. considered
the relative importance of each individual linear segment using the
weight, which seems more corresponding to subjective similarity,
but with difficulties to obtain apriori weighted values. Yi and Keogh
et al. [8, 15] proposed Piecewise Aggregate Approximation (PAA),
which divides time series into k segmentations and uses the mean of
each segment to represent each subseries segmented. And in [16],
Keogh et al. gave a more effective method Adaptive Piecewise Con-
stant Approximation (APCA) with segments of varying lengths of
each time series.

Before measuring similarity, there is a simple but important pre-
process: normalization. It removes the impacts of baseline and scal-

ing factor by going beyond the absolute value of time series. The
standard normalization is done by computing the mean of the time
series and subtracting it from the real value on each point and then
dividing each value by its standard deviation. Gavrilov et al. [17]
studied Euclidean Distance on clustering stock data using various
normalization methods and proposed the piecewise normalization,
which can get much better accuracy, and was implemented in our
experiments.

3 General Hierarchical Model (GHM)

Our approach measures the similarity of time series using a hier-
archical strategy. The intuitional thought can be described as two
following points:

1. The importance of each point in time series will affect their
roles in measuring similarity process;

2. The points should be compared with the ones with the same
(or approximative) roles.

Figure 2. An example to explain the intuitional hierarchical
thought.

Figure 2 gives an example to explain our idea. The points in the two
time series can be partitioned into two hierarchies: the circle ones
are turning, and the triangle ones are interim. They play different
roles on the content of time series. According to our idea, the cir-
cle (triangle) points in time series a should be corresponding to the
circle (triangle) ones in b during the measuring process. For imple-
menting this idea, we design the following three steps to generate
the General Hierarchical Model (GHM):

Step 1: Adopt a hierarchical strategy to partition the points into
several hierarchies;

Step 2: Measuring similarity is executed restricting in each hier-
archy using a distance function selected or designed;

Step 3: The sum of the results in all the hierarchies is the final
measuring distance.

According to the three steps, different hierarchical methods can be
designed. The first step is the most important one in the whole
process. The strategy determines the representation of the points in
each hierarchy and the distance function, which needs selecting or
designing. The design should consider different effects of points on
the content of time series. GHM can be defined as follows:

Definition 1. Given two series X and Y, and their points have been
partition into 4 hierarchies. Ry (i) and Ry (i) stand for the repre-
sentations of points of X and Y in i-th hierarchy respectively, then
GHM distance of them can be obtained by the following formula:

h
GHM(X,Y) = ) D(Rx(i),Ry (i)) (1)
i=1
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Figure 3. Generating process of the representation in FHM-
1: Fourier waves (a), linear combination of waves Xi’ and time
points in first 5 hierarchies (b), and the representations in each
hierarchy Rx (i) (c).

where D is a distance function to compute the distances in each
hierarchy.

3.1 Practical Measures of GHM-FHM

In this subsection, we give two practical hierarchical measures
based on GHM. They adopt FFT to implement the model, termed
FFT Hierarchical Measures (FHM).

Hierarchical Strategy: Given a time series X and a hierarchy pa-
rameter s, we use FFT to generate first 4 waves, as shown in Fig-
ure 3(a). Then the linear combination of the first i Fourier waves
X/ is generated, like the five curves in Figure 3(b). The time points
with extremum in X/ are partitioned into i-th hierarchy, i.e. the
black points in Figure 3(b). Then they form the representation
Rx (i), which is defined as follows:

Definition 2. Unsequential Subseries: An unsequential subseries
is formalized by X (S) where S = S(1),5(2), ...,S(m) is the ordered
subset of natural number with the restriction 1 < (1) < §(2) <
... <8(m) < |X|. Each value in X(S) can be got by the formula
X(S); = X[S(i)]- The unsequential subseries is the representation in
each hierarchy, i.e. Rx (i), as shown in Figure 3(c).

Actually, there are two selections to generate Xl-’ according to the
order of the Fourier waves:

1. increasing frequency of the corresponding Fourier waves, i.e.
the original generating order;

2. decreasing amplitude of the corresponding Fourier waves.

So two methods can be designed, labelled FHM-1 and FHM-2.
Then a distance function need designing to compute the distances
of the unsequential subseries in each hierarchy.

Distance Function: After the hierarchical partition, we can com-
pute the distance between the unsequential subseries in each hierar-
chy using any distance function that can deal with different lengths,
e.g. DTW, LCSS and EDR. We take DTW as D to analysis the time

Input: X,Y,h,D; Output: distance
1. Xy =FFT(X) Yy =FFT(Y)

2. generate the first h waves series of X and Y

3. distance=0

4. for i=l:h

5. X],Y/=combination of the first i waves of
X and Y respectively.

6. construct Ry (i) and Ry (i) with the extremum

points sets of X/ and Y/ respectively
distance=distance+D (Rx (i), Ry (i))
end
9. return distance

Figure 4. FHM (FHM-1 and FHM-2) algorithm.

performance of FHM. Given two time series X with length of n and
Y with m, then DTW(X,Y) consumes O(mn) time complexity, but
FHM combines the “smaller” DTW processes in each hierarchy to
decrease time consumption. After giving D, the complete algorithm
of FHM is illustrated formally in Figure 4.

In addition, there are four important explanations to implement
FHM (FHM-1 and FHM-2) in the real applications: a) The val-
ues of the unsequential subseries is the ones of the original series,
not the generating ones Xi/ . b) FHM does not usually use all of
the points according to the parameter 4. Mostly, it is more accu-
rate with larger 4, but with more time consumption, i.e. there is
always a tradeoff between effectiveness and efficiency. So & can
be selected according to the particular requirements on the perfor-
mances. We performed the experiments to test the performances
of ours and others, given in Sect 4. ¢) If a time point has been in
the higher hierarchy, it will not be added in the lower, even if it is
also the extremum point in any lower hierarchy. d) There might be
the case that the unsequential subseries in i-th hierarchy is not ex-
isted, because the extremum points in i-th hierarchy are also with
extremum in k-th hierarchy (k < i). We use the unsequential sub-
series in the (i — 1)-th hierarchy instead of that of the i-th hierarchy
in this case.

In FHM, we do not use the extremum points of the original time
series directly as the measuring features. Because they may be not
the important points reflecting the content, e.g. some noise points
etc. We emphasize that point correspondences in similarity measure
should be determined by the importance (role) of each point on the
content of time series, which decides the similarity, not to restrict
the warping path, like the method proposed in [18].

3.2 Hierarchical Filtering of GHM in Similar-
ity Queries

Similarity measure is mostly used in similarity queries in time se-
ries database, including range and k-NN queries. The former is to
find the time series whose distance with the query Q is below a
predefined threshold €, and the latter searches the most similar &
matches in database. Filtering the unmatched time series is widely
adopted for better efficiency. In GHM, we use the sum of the dis-
tances in all the hierarchies as the measuring result, so the sum of
distances of any partial hierarchies can be regarded as the lower
bounding of GHM to implement filtering in sequential scan. We



Input: Q,h,D.¢g;
Output: Near(Q)={X |GHM(X,Q) < €}

1. initialize Near(Q)=all time series in database
2. for each time series X in database

3 distance=0

4. for i=1:h

5. distance=distance+D(Rx (i),Ro(i))

6 if ( distance>€)

7 remove X from Near(Q)

8 break

9. end //if, line-6

10. end //for, line-4

11. end //for, line-2
12. return Near(Q)

Figure 5. GHM filtering algorithm for range query.

assume that the database has stored the representations in each hi-
erarchy for each time series. The filtering algorithms of GHM for
range and k-NN queries are shown in Figure 5 and Figure 6 respec-
tively.

4 Experimental Evaluation

In this section, we give the effectiveness tests of ours and others
on both synthetic and real data sets. In the experiments, DTW was
selected as the distance function D in our approach FHM (FHM-1
and FHM-2), because it is widely used. The competitors included
Euclidean Distance, DTW, LCSS and EDR etc. Because EDR is
more robust than ERP analyzed in [5], ERP was not included in
our experiments. Finally, we give the efficiency comparisons and
filtering power tests in Sect 4.3 and Sect 4.4 respectively.

4.1 Experimental Setup of Effectiveness Tests

Two common data sets were used in the experiments. The first
one is Synthetic Control Chart Time Series (SYNDATA) data set
which was downloaded from UCI KDD archive!. Tt contains 600
examples of synthetic control charts belong to 6 different classes,
and each class consists of 100 time series. The length of each time
series is equal to 60. The other real data set is the Standard and Poor
500 index (S&P) historical stock data from Mar. 27, 2004 to Mar
26, 2005%. We chose the opening price as the experimental data.
We only used the stocks whose length is 252 (if the company is
removed from the index, the length is smaller than 252,). Based on
the official S&P clustering information, the stock data were divided
into the classes. Finally, 50 classes contain 442 stock data were
used in the experiments by removing the classes which contain only
one stock.

Two objective tests, including k-NN query and clustering, were im-
plemented on all methods to compare their effectiveness. Given
a query Q, the set of time series which belong to the same class
as Q is taken as the standard set std(Q), and the results by differ-
ent methods are marked knn(Q). The accuracy related to Q can be

IThe UCI KDD Archive, http://kdd.ics.uci.edu
2S&PSOO, http://kumo.swcp.com/stocks/

Input: Q,h,D,k;

Output: GHMKNN(Q)={the nearest k matches of Q}
/* GHMKNN(Q) is an ordered array according to
decreasing the similarity with Q */

1. GHMKNN(Q)={arbitrary k time series }

2. initialize dknn as an array of size k

/* dknn saves the distances between Q and the
elements in  GHMKNN(Q) */

3. for i=l:k

4 dkknli]=GHM (Q, GHMKNN(Q)[i])

5. end //if( i<j), dknn|i] <dknn[]j]

6. for each of other time series X in database

7 distance=0

8 for i=1:h

9. distance=distance+D(Rx (i),Ro(i))

10. if ( distance >dknnlk])

11. break

12. end //if, line-10

13. end //for, line-8

14. if ( distance<dknnlk])

15. remove GHMKNN(Q)[k] from GHMKNN(Q)

16. insert X into GHMKNN(Q)

17. end //if, line-14

18. end //for, line-6

19. return GHMKNN(Q)

/*note that: during the operations in GHMKNN(Q),

the order of its elements must be maintained*/
Figure 6. GHM filtering algorithm for k-NN query.

computed, as [12]:

_ [knn(Q) Nstd(Q)|
= @
In our experiment, we set the number of time series belong to the
same class as the query as the value of k. And each time series is
treated as a query. The average of the accuracies is calculated as the
final result.

Accuracy(Q)

Hierarchical Agglomerative Clustering (HAC) with the complete
distance was used to realize the clustering, as in [5, 15, 12, 17].
We computed the clustering accuracy using the method, which is
adopted in many applications [12, 17]. Given the standard cluster-
ing result C = Cy,C;,...,Cy from the apriori classification informa-
tion and the clustering result using each method C' = C},C}, ...,Cy,
the accuracy can be computed by the following formulas:

Accuracy = (sim(C,C’) +sim(C’,C))/2 3)
sim(C,C’) = (Zmaxsim(C,- C;))/k 4)

i
sim(G;,C}) = 2|G;NCi|/(|Ci| +|C)) ()

sim(C’,C) above can be calculated similarly as sim(C,C’) in Eq 4.
We computed both sim(C’,C) and sim(C,C’), because they are not
symmetric. The clustering numbers used in HAC were set to 6 and
50 on SYNDATA and S&P data sets respectively as same as their
class numbers.

We also realized DTW with various warping window sizes [18] and
the piecewise normalization in Euclidean Distance, which splits
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Figure 7. k-NN query accuracies of the methods.

time series into window, and performs normalization separately
within each window [17]. € in LCSS and EDR were set from 0.2 to
0.5 (one value every 0.05).

4.2 Effectiveness Experimental Results

k-NN query results on the data sets are given in the Figure 7. From
Figure 7(a), we can observe that DTW get the best results on SYN-
DATA, and FHM-1 and FHM-2 are comparable to it. LCSS and
EDR show better capabilities, however, Euclidean Distance has
poor accuracies. So it can concluded that SYNDATA is not sen-
sitive to time warping, and suitable to the methods, which allow
time warping. FHM can be regarded as an “unsequential piece-
wise” time warping algorithm, and it can get better efficiency than
others. The results on S&P in Figure 7(b) are contrary to that on
SYNDATA. But both FHM-1 and FHM-2 also perform the highest
accuracies, as Piecewise Euclidean Distance, which are larger than
the results of DTW, LCSS, EDR and the plain Euclidian Distance.

Clustering results are listed in Figure 8. The results on both two
data sets are similar to that of k-NN query. The superiorities of
Piecewise Euclidean Distance than DTW, LCSS and EDR on S&P
in Figure 7(b) and Figure 8(b) suggest that the stock data is sensitive
to time warping. But the accuracies of FHM with time warping are
the best ones on the data due to its hierarchical strategy. And the
results also show that FHM-1 and FHM-2 are both good choices to
realize the GHM algorithm.

4.3 Time Performance Experiment

In this subsection, we tested time performances of the methods us-
ing 1-NN queries with sequential scan, which is data-independent,
on the assumptive random walk data set with various database sizes
and lengths of time series. We assume that each time series had
been preprocessed for each method. The experiment were con-
ducted on the machine with CPU of Celeron 1.70Ghz and 512 MB
of physical memory, running Microsoft Windows Server 2003. We
only counted the time consumption of distance calculation for ex-
act comparison except accessing the disk. For each query, we tested
100 times and took the sum as the result. In the experiment, the data
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Figure 8. Clustering accuracies of the methods.
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Figure 9. Performance Comparisons of the methods.

size was set from 100000 to 500000 (/ength = 300), and the length
of time series was set from 100 to 500 (database size = 300000).
And FHM-1 and FHM-2 are similar, so we only implemented
FHM-1 as our approach to compare with others. 4 in FHM-1 was
set to 5, 10 and 15, and € in LCSS and EDR were set to 0.5. And
the warping window size in DTW was set to 10.

In Figure 9, we give the results, which show that LCSS, EDR, DTW
are much shower than others. The time consumption of FHM-1
increases linearly along with 4. Though Euclidean Distance is faster
than ours, considering the effectiveness and efficiency as a whole,
our approach is superior to it.

4.4 Filtering Power Tests

Besides the time performance experiment, we also tested the pow-
ers of the filtering methods for range and k-NN queries, shown in
Figure 5 and Figure 6 respectively. Because the filtering power de-
pends on the data itself, so this test was performed on the real data
S&P for approximating the real applications. Each time series in
data set was selected as a query. The filtering power is defined as
the ratio between the time consumption of 442 queries of the fil-
tering methods and that of the sequential scan. And FHM-1 with
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Figure 10. Hierarchical filtering powers in the two kinds of
queries.

h =5, 10, 15 and 20 was implemented as the instance of GHM. In
the range query, the threshold € is difficult to set a suitable one, so
we set the values to make the ratio between the number of the re-
trieval series in 442 queries and the total number in the searching
space (442x442) equal to 1%, 5%, 10%, 15% and 20% respec-
tively. And k was setto 1, 5, 10, 15 and 20 in k-NN query.

The filtering powers in range and k-NN queries on S&P are shown
in Figure 10. The powers of the filtering methods can decrease
about 40%~75% computing time. The results suggest that the ef-
fects of / in our approach is little on the filtering powers. And the
powers in both of the queries decrease along with increasing of the
retrieval number.

5 Conclusions

In this paper, we introduce a new similarity measure model with
better effectiveness and efficiency considering the relation between
point correspondences and the importance (role) of the points on the
content of time series, named General Hierarchical Model (GHM).
The key idea of GHM is that any point should be compared with the
ones of other time series with same importance (role). We give the
general description of GHM and two practical measures based on
the model using FFT, termed FFT Hierarchical Measures (FHM in-
cludes FHM-1 and FHM-2). And the hierarchical filtering methods
of GHM for range and k-NN queries are also proposed to improve
the efficiency in the real applications. Finally, k-NN query and clus-
tering experiments on SYNDATA and S&P data sets were used to
evaluate the effectiveness of our approach comparing with others.
The results demonstrate that ours is more accurate to measure the
similarity of different kinds of data. And the time performance tests
were also performed using the synthetic data set with various sizes.
The results show that ours is slower than Euclidean Distance, but
much faster than DTW etc. And we also tested the powers of the
filtering methods in the queries. The results present their superior
capabilities.
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