
Finding Shapes in a Set of Points

Kenneth A. Ross, David Vespe, David Hessing, Pranay Jain
kar@cs.columbia.edu, {djv, djh44, pj2130}@columbia.edu

Columbia University∗

Abstract

We present a tool for querying a set of points
for geometric shapes. This tool was developed as
part of a larger project studying the architecture of
13th century French churches. We present a query
language for specifying shapes. We describe an im-
plementation of the tool that optimizes and executes
shape queries. We describe the performance of the
tool, and show examples of how it can be used to
analyze building floorplans. The tool is available for
download over the internet.

1 Introduction

In 2003, a team of computer scientists and art
historians at Columbia began an interdisciplinary
collaboration. The project aimed to use computers
in novel ways to help historians better understand
the architecture of Romanesque churches in the
Bourbonnais region of central France. The tools
developed during the course of the project could also
be applied to other similar endeavors elsewhere. For
an overview of the churches studied, see [1].

In this article, we describe one of these tools,
called the “Shape Query” tool, whose purpose is
to look for “interesting shapes” in the buildings’
designs. Since written records of the construction of
these 13th century churches have been lost, the only
remaining source of information is the buildings
themselves. During a number of visits to the region,
members of the team carefully measured over one
hundred churches using modern instruments, and
created digital representations of them. The shape
query tool operates on two-dimensional sections of
these representations. A commonly used section is
the horizontal section that describes the floorplan
of the church. Each section is annotated (either by
a domain specialist or by a person posing a query)

∗This work was funded in part by a grant from the Andrew
W. Mellon Foundation.

with architecturally meaningful points, such as the
corners of the building, the centers of the columns
within the building, the apex of a crossing overhead,
etc.

It is sometimes possible to deduce some of the
building practices used by understanding the geo-
metric shapes found in the layout of the building
[2]. For example, consider the rectangle formed
between four columns in a grid-like arrangement. A
rectangle in which the ratio of length to width is

√
2,

is suggestive of the use of a string aligned with the
diagonal of a unit square, with the string rotated
to form the long side of the rectangle. (This was
a commonly used way of reliably obtaining certain
measurements using the technology of the day.)
Other special ratios have analogous interpretations.

The shape recognition tool aims to help iden-
tify the underlying geometric patterns within and
among the various churches. Prior to such tools,
art historians would typically look for patterns by
hand, a process that is not only time consuming,
but subject to possible subjective judgements.

The Shape Query tool required a shape query
language. We describe a language that allows a
user to specify a collection of points with constraints
on distances and angles, to be enforced within a
given tolerance1 level. We then describe how the
Shape Query tool processes shape queries, including
a query optimization phase. We outline how the
query processing engine is packaged so that it can
be used either in a stand-alone manner (with an
appropriate user interface), or as a component of a
larger system. Finally, we describe some initial re-
sults obtained from using our system on the church
datasets.

1A tolerance accounts for building settling, measurement
error in construction, and measurement error in data acqui-
sition.

2 Point Set

Each underlying data set is a set of labeled points
in a two-dimensional plane. Point-sets are transfer-
rred between the shape query engine and external
sources using an XML representation. A pointset
contains various instances of the point entity. Each
point entity stores information about its x and y
coordinates. An optional id associated with the
point is unique in the point dataset and can later be
helpful to interpret the results quickly. A point may
have any number of label values. The label attribute
allows us to provide extra information related to
that point (e.g., that point marks a corner of the
church) that is useful for writing queries.

Example 2.1: A point set containing 2 points.
<pointset name=“two-points”>

<point id=“l1”>
<x>10</x>
<y>20</y>
<label>corner</label>

</point>
<point id=“l2”>

<x>50</x>
<y>100</y>
<label>column</label>

</point>
</pointset>

3 Query Language

A query is specified as follows:

• A number k of points. We denote the points by
P1 through Pk. Each query point is required to
map to a distinct point in the data.

• A list E1 through Em of edges. An edge is
specified as a pair (Pi, Pj) representing the
directed line segment from Pi to Pj .

• A list A1 through Ap of angles. An angle is
specified as a pair (Ei, Ej) representing the
anticlockwise angle (in degrees) from Ei to Ej .2

• A list of constraints on the edges E1, · · · , Em

and angles A1, · · · , Ap expressed in a constraint
language L.

2The angle between edges makes sense even if the edges
do not share a common point.

Note that constraints do not apply to single
points; since the coordinate system used is assumed
to be arbitrary, there is nothing interesting one can
say about single points. All semantically interesting
queries relate points to other points. Edge lengths
and angles are independent of the coordinate sys-
tem.3 Our constraint language L allows equali-
ties and inequalities of mathematical expressions
involving edges (Ei implicitly represents its length),
angles, and numeric constants. Points may also be
constrained to have a certain label. For example,
if we are only interested in shapes whose vertices
are church columns, we would constrain the points
accordingly.

Example 3.1: Square
Points 4
Edges E1 : (P1, P2), E2 : (P2, P3), E3 : (P3, P4)
Angles A1 : (E2, E1), A2 : (E3, E2)

Constraints E1 = E2 = E3, A1 = A2 = 90

There are many equivalent alternative ways to
specify a square. Because of symmetry, a subset of
points may match a query in more than one way.

The following example shows one way to specify a
square in which an absolute tolerance of δ is allowed
for edge lengths, and an absolute tolerance of ε
is allowed for angles. (Both absolute and relative
tolerances are supported by the system.)

Example 3.2: Approximate Square
Points 4
Edges E1 : (P1, P2), E2 : (P2, P3), E3 : (P3, P4)
Angles A1 : (E2, E1), A2 : (E3, E2)

Constraints | E2 − E1 |< δ, | E3 − E1 |< δ,
| A1 − 90 |< ε, | A2 − 90 |< ε

The tolerance parameters in this query are ap-
plied in an asymmetric way. It is possible that the
distance between P4 and P1 is more than δ away
from E1 because it is constrained only indirectly
via the other constraints. Similarly, it is possible
that the angle P3P4P1 is more than ε away from 90
degrees, and that angles A1 and A2 are more than
ε away from each other.

Example 3.3: Rectangle of Columns
Points 4
Edges E1 : (P1, P2), E2 : (P2, P3), E3 : (P3, P4)
Angles A1 : (E2, E1), A2 : (E3, E2)

Constraints E1 = E3, A1 = A2 = 90,
label(P1) = label(P2) = label(P3) =
label(P4) = column

3Some care is needed to avoid artifacts caused by angle
wrapping at 360 degrees.

Queries are accepted by the shape query engine in
an XML representation that implements the query
language described above.

Given a point dataset containing n points, a
k-point query can be answered in time O(nk) by
simply checking all n(n − 1) · · · (n − k + 1) combi-
nations of distinct points to see if the constraints
are satisfied. Some queries have inherently high-
complexity. For example, a k point query with no
constraints has Θ(nk) answers.

Fortunately, such queries are likely to be un-
common in practice, analogous to cartesian product
queries over relational databases. Points are added
to queries typically with a contraint relating the
point to previously defined points. That constraint
is typically quite selective. (For example, a query
for a ninety degree angle with a 1.5 degree toler-
ance would have a selectivity of 3

360 on a uniform
dataset.)

Nevertheless, many queries can take Ω(n2) time
for the following simple reason: Consider the first
two points that are specified in the query. Since
constraints must be independent of the coordinate
system, the only constraint that can be placed
on this pair of points is on the distance between
them. However, we are often querying for shapes
independent of scale, so this distance will, in gen-
eral, be unconstrained. Thus, all possible pairs of
data points are candidates for these first two query
points, requiring Ω(n2) operations.

4 Query Processing

We initially implemented the shape query engine
using a commercially available SQL database to
store the point and edge data, with appropriate in-
dexes created on combinations of point-id, angle and
distance. However, we found that the performance
of the SQL database was poor, and that the plans
chosen by the commercial optimizer did not match
the plans that we believed were optimal. When we
reimplemented the system using a specially tailored
optimizer (described below), we observed an order
of magnitude speedup. For our problem domain, the
point and edge data sets are likely to fit in RAM.
Our cost estimates and query processing algorithms
assume in-memory structures for the source data
and intermediate results.

In preparation for running queries, we build in-
dex structures based on all the edges in the point
set. Since every pair of distinct points defines an
edge in each direction, each index structure contains
n(n − 1) edges, where n is the number of points.

The system assigns each point a unqiue point-id,
that is unrelated to the user-visible id attribute.
We build the following four index structures on the
edge relation. Angle is measured relative to some
arbitrary coordinate system.

1. Index on (first-point-id, angle)

2. Index on (first-point-id, distance)

3. Index on (angle, distance)

4. Index on (distance, angle)

Since the point sets are static, each index is
implemented as an array of pointers to edges. The
order of elements in the index is determined by
the lexicographic order of edges according to the
specified pairs of attributes. To speed up in-memory
access to the indexes, we implemented CSS Trees [3]
that reduce the number of cache misses needed to
search a sorted array.

4.1 Building a Query Plan

The process of building a query plan uses dynamic
programming, and is analogous to the process of
choosing a join ordering for a relational query plan
[4]. Plans for subqueries involving a small number of
query points/edges are initially computed, and their
costs are calculated. For each combination of query
points, the plan with the best cost is retained, and
used to determine candidate plans for larger subsets
of points/edges. The cardinality of the sub-plan,
i.e., the number of solutions, is also estimated.

A subplan can be combined with a new
point/edge using the analog of either a nested-loop
join, or an index-nested-loop join. Where possible,
index-nested-loop joins are preferable because of
their lower selectivity. New points can be added
based on an angle or distance constraint relative to
existing points, using the id/angle or id/distance
indexes respectively. New pairs of points can also
be added using an angle or distance constraint
relative to existing points, using the angle/distance
or distance/angle indexes.

Once new points have been added, there may be
additional constraints that can be simply checked
before finding additional points. Such checks are
performed as soon as possible to reduce the size of
the intermediate results.

The dynamic programming approach allows
query optimization to work in reasonable time for
small queries, but it still becomes expensive for
longer queries. For this reason, when the amount of

work exceeds a certain level, we revert to a greedy
approach in which we look at a fixed number of plan
alternatives for a set of query points. In practice, we
set the maximum number of plans per sub-query at
10, since this gave us a balance of speed in finding
plans and speed in their execution.

We illustrate query optimization by studying the
square query of Example 3.1 and illustrated in Fig-
ure 1. Point P1 corresponds to the lower-left corner,
and points are numbered anticlockwise.

Figure 1: Constraints defining a square

One plan, illustrated in Figure 2 starts out by
taking the set of all possible edges and labeling each
in turn as P1P2. Then, for each candidate edge P1P2

the plan uses the length index to find other edges
that could correspond to P3P4 by virtue of having
the same length (within the required tolerance)
as P1P2. Now that we have all four points, the
remaining contraints may simply be verified in some
order, with non-matches being eliminated from the
result set. In Figure 2, we first check that the
length of P1P2 matches the length of P2P3, then
that angle P1P2P3 is within the specified tolerance
(1.5 degrees) of 90◦, and finally that angle P2P3P4

is within the specified tolerance of 90◦.

Figure 2: Query Plan 1 to identify a square

A second plan, illustrated in Figure 3 starts out
by taking the set of edges and labeling each in
turn as the edge P1P2. For each such candidate
edge, the plan uses the (first-point-id,angle) index
to find other edges (representing the edge P2P3)
whose angle relative to P1P2is within the specified
tolerance of 90◦. At this point, we can verify that
the length of P1P2 is within the specified tolerance
of the length of P2P3. We again use the (first-point-
id,angle) index to find other edges (representing the
edge P3P4) whose angle relative to P2P3 is within
the specified tolerance of 90◦. Finally, we verify that
the length of P3P4 is within the specified tolerance

of the length of P1P2.

Figure 3: Query Plan 2 to identify a square

To obtain cost estimates for query plans, we need
to estimate the work done for one point/edge to look
up the appropriate index structure. We also need to
estimate the cardinality of intermediate results, be-
cause that determines how many index lookups will
be performed on subsequent steps. As for relational
query optimization, it is not essential to get these
estimates exactly right, particularly if very accurate
estimates would require excessive computation time
or sophisticated geometric reasoning.

If n is the number of points, then our initial
point-pair will have work proportional to n2, and
cardinality n(n − 1). We assume all indexes are
accessed in time logarithmic in the number of edges.
Cardinality estimates are based on the selectivities
of the constraints on the edge relation.

For angle constraints, the selectivity is estimated
as 2ε

360 where ε is the tolerance in degrees. For
(point,angle) constraints, the selectivity is 2ε

360n .
These estimates are based on a model in which edge
angles are uniformly distributed.

In some query plans, such as the first plan above,
we use a constraint on distances to allow access to
edges via an index. The distribution of edge lengths
is not uniform on any range. To obtain a selectivity
estimate for a constraint of the form |E1−f(E2)| <
ε we proceed as follows. Three random edges are
chosen from the edge table as candidates for E2. For
each edge, the number of edges with E1 satisfying
|E1 − f(E2)| < ε is determined by consulting the
index on distance; matching edges will be in a single
range within the index. The selectivity estimate is
the average proportion of matching E1 values over
the three random E2 values.

For other selection conditions, the actual selec-
tivities may vary from one query to another. Based
on empirical observations with realistic queries, we
estimate a selectivity of 0.05 for all such constraints.

Comparing the two plans above, our cost model
correctly identifies the second plan as superior to
the first. The primary reason for this superiority is
that more partial solutions are pruned early, before
candidates for P4 are looked up.

#Points #Results Index Plan Exec
Time Time Time

50 0 0.016 0.016 0.062
100 8 0.062 0.016 0.188
250 230 0.328 0.062 1.58
500 3968 1.75 0.078 9.63
750 17505 4.14 0.094 29.9

1000 61103 8.42 0.156 71.1
1250 156972 13.7 0.187 130

Table 1: Query speed versus number of points.

Plans are executed in a pipelined fashion, anal-
ogous to a left-deep plan in a relational system.
In a pipelined plan, at each level, an edge passes
completeley through the pipeline before the next
edge at that level is considered. This is particularly
important in our in-memory setting because inter-
mediate results can be very large, and could exceed
the physical memory capacity.

The result set generated by a query is reported
back to the main system in an XML format. The
final result set may have duplicates because a par-
ticular set of points can match a query in more than
one way; this occurs frequently when the shape that
is the target of the search has any sort of symmetry.
For example, in an equilateral triangle query, three
points that are all mutually equidistant will match
the query in six different ways. Users are given
the option of eliminating duplicates, meaning that
a given set of data points is reported as an answer
exactly once. Duplicate elimination is implemented
as a final step on the computed query result.

5 Query Speed

The system was implemented in Java, and executed
on a 3.4 GHz Pentium 4 system with 3 GB of RAM.
We illustrate the performance of the system using a
square query over a dataset containing a variable
number of points randomly distributed in a unit
square. Figure 4 illustrates a square found in a
collection of 100 random points. For our target
application, any single church would typically be
annotated with fewer than 50 points. Nevertheless,
we investigate how well query time scales with the
number of data points. Table 1 shows the results,
where time is measured in seconds. “Index time”
refers to the time taken to construct the appropriate
indexes, a process that is done once per session with
a given data set. “Plan time” refers to the time
spend in query optimization.

Figure 4: A square found in 100 random points

The run time is increasing at a rate proportional
to approximately n2.7, consistent with our earlier
discussion that the complexity would be Ω(n2) but
less than O(n4), the complexity of trying all possible
combinations of data points.

The benefit of using CSS Trees relative to binary
search amounted to about 4% of the execution time.
This benefit is small probably due to the various
interpreter overheads of Java.

6 Patterns Identified

For our church analysis application, it is not suffi-
cient to simply find all matching shapes and analyze
them. The results must be scanned by the user to
eliminate spurious answers. For example, suppose
that the art historian is attempting to understand
whether there is an overabundance of rectangular
shapes with side ratio of

√
2, in order to deter-

mine whether certain design methods were used in
building the church. The art historian expects that
rectangles whose sides are parallel to the church
walls are likely to reflect active design. On the
other hand, rectangles that diagonally traverse the
church are likely to be coincidental; given enough
marked points and a wide enough tolerance, such
coincidental shape matches will arise just by chance.

Some simple patterns were apparent. For ex-
ample, when looking at the “smallest” rectangles
formed by adjacent columns, the shorter edge was
consistently between 3m and 6m long. See Fig-
ure 7. These bounds probably represent structural
constraints. Columns have to be far enough apart
to define a useful space, but close enough together
to adequately support the arches overhead.

To begin to study the question about design
methods used for these churches, we specified
queries that looked for rectangles, and analyze the
side length ratio of the resulting answers (with
spurious rectangles eliminated). Figure 5 shows a
rectangle found for the church in Besson.

Figure 5: A rectangle found in “Besson”

Figure 6: Longer side by shorter side rectangles for
entire church body.

We further refined the analysis to look only at
rectangles formed by the main body of the church,
in which the corners of the rectangle are the corners
of the church itself. These rectangles are summa-
rized in Figure 6. Some well-known ratios such as√

2 are shown on the diagram for reference.
We also refined the analysis to look only at

rectangles formed by adjacent columns within the
church, in which the corners of the rectangle are
columns of the church.4 These rectangles are sum-
marized in Figure 7.

4This query cannot be expressed in the query language
provided by our system, because there is no way to dis-
tinguish adjacent columns from nonadjacent columns. To
perform this analysis, we used our query engine to find all
rectangles with columns as corners, and in a post-processing
step only retained one rectangle for each church, namely the
rectangle with smallest area.

Figure 7: Longer side by shorter side for rectangles
formed by adjacent columns.

7 Conclusion

We have designed and implemented a system for
finding user-defined shapes among a set of points.
Our application domain focused on finding shapes
among marked points on building floorplans or
cross-sections. Nevertheless, our system could be
useful in other domains, such as finding constella-
tions of stars in the night sky.

Our query language might need to be generalized
for other applications. Derived points that are not
explicitly present in the database might be useful.
For example, the center of a rectangle could be used
to define distance constraints on other points. At
present, there is also no facility for dealing with
curved shapes.

The source code and executable
for the system can be downloaded at
http://www.cs.columbia.edu/~kar/software.html.

References

[1] http://www.learn.columbia.edu/bourbonnais/

[2] F. Bucher, Medieval Architectural Design Meth-
ods, 800–1560, Gesta, 11, 1972, 37-51.

[3] J. Rao and K. A. Ross, Cache Conscious Index-
ing for Decision-Support in Main Memory, Pro-
ceedings of the 1999 VLDB Conference, Septem-
ber 1999.

[4] P. Selinger, M. Astrahan, D. Chamberlin, R.
Lorie, T. Price. Access Path Selection in a Rela-
tional Database Management System. SIGMOD
1979: 23–34.

