12

A Survey on Querying Encrypted XML Documents
for Databases as a Service

Ozan Unay
Bogazici University
ozan.unay@boun.edu.tr

ABSTRACT

“Database as a service” paradigm has gained a lot
of interest in recent years. This has raised questions
about the security of data in the servers. Firms
outsourcing their XML databases to untrusted
parties started to look for new ways to securely
store data and efficiently query them. In this paper,
encrypted XML documents, their crypto index
structures and query processing using these
structures are investigated. A comparison of
various algorithms in the literature is given.

Categories and Subject Descriptors
A.1 [Introductory and Survey]

General Terms
Querying Encrypted XML Document Algorithms

Keywords
Encryption, XML, Database as a Service

1. INTRODUCTION

Recently a popular trend in business is “to
concentrate on your own business and outsource
the rest”. This trend is also valid in information
technology. Firms outsource their software or
databases. Outsourcing software is known as
“software as a service” and outsourcing the
database is referred to as “database as a service”
[10]. Firms using databases as a service outsource
database management tasks such as back up,
restore, availability and space management [5, 12].
Outsourcing a database provides the advantage of
having reliable storage of large volumes of data,
efficient query processing, and most importantly
savings on the database administration cost for the
data owner. On the other hand, some questions
arise about the security of data due to the fact that
firms share private or confidential information with
third parties. This is not risky if the service
providers are trusted. But what if they are not?

In recent years another popular trend is using XML
databases. XML has already become a standard for
exchanging data and storing semi structured data
[7]. A lot of firms started to store their data in
XML. It is increasingly becoming common to find
sensitive information in XML [21]. Sensitive

Taflan I.Gtindem
Bogazici University
gundem®@boun.edu.tr

information can either be confidential (e.g. for a
bank it is important to hide credit card information
of their customers) or private (e.g. for a hospital it
is important not to disclose its patients’ diseases).

As a result it is important to secure XML data for
most firms that use third parties for database
outsourcing. The data have to be kept securely and
should be visible neither to attackers nor to
database service providers. One of the solutions to
secure data in XML is using “access control
mechanisms” which are out of scope of this survey.
Using access control mechanisms alone may not be
sufficient. The attackers who break into the system
may gain access to private information. Either the
communication channel or the storage itself may be
insecure, e.g. the hard drive may be stolen. Thus,
something more than an access control mechanism
is needed. Encryption plays a key role at this point.
In order for encryption to be reliable, the
encryption key should only be known by the data
owner. The database should be a black box for the
service provider. At this point a serious question
comes to mind. How will the service provider
answer the user queries without knowing the
database content? Some research has been done on
this subject. This survey tries to summarize the
work done in the literature about encrypted XML
query processing. It compares the strengths and
weaknesses of the various approaches and classifies
them according to their properties.

The rest of the paper is organized as follows. In
Section 2, brief information is given on encrypted
query processing and encrypted XML query
processing. In Section 3, classification of existing
methods according to their index structures is
given. Section 4 has the conclusions and some
possible future research suggestions on the subject.

2. PRELIMINARIES

Research on database encryption started with key
management [8]. Later on techniques have been
developed to efficiently search keywords based on
encrypted textual strings by Song, Wagner and
Perrig [4]. Independent of the database type
(relational, XML or text file) the naive way of

SIGMOD Record, March 2008 (Vol. 37, No. 1)

encrypted query processing is sending encrypted
database totally to the data owner [12]. In such a
case, the service provider does not serve as a query
engine and the query processing responsibility is at
the data owner side. This may be acceptable for
only small volumes of data. Other problems with
this approach are expensive cost of data
transportation due to limited bandwidth and
decryption and query processing of the whole
database at the client side that may have limited
processing capability. In [11] a novel bucketization
and partitioning structure is proposed which
influenced many of the papers in literature. An
algebraic framework for query rewriting over
encrypted attributes is described. The main idea is
to map the plaintext values to ciphertext values by
splitting the plaintexts in the domain into some
partitions and giving them bucket ids. The success
of this methodology is due to the mapping function
of the bucket ids that uses order preserving
encryption functions [16]. As a result the range
queries can successfully be supported. In [9]
mathematically well defined order and distance
preserving encryption functions are used rather
than partitioning techniques to encrypt the
database. The proposed computing architecture is
efficient in the sense that for some query types
query processing can be completed at the server
without having to decrypt the database. One future
work proposed in [9] was to handle SQL queries
with arithmetic expressions and aggregate
functions as well as complex SQL queries with
nested subqueries. This is accomplished in [18]. In
[18] the authors present query execution strategies
for the mentioned types of queries. They also
quantify additional costs incurred in executing
these queries. In [6] a hash based method suitable
for selection queries is given. The index is
maintained at the server side. The algorithm given
in [6] provides a balance between efficiency and
security. In [1] an algorithm for determining
optimal bucket size for encrypted query processing
is proposed.

2.1 General Architecture of Encrypted
Query Processing in XML

To speed up query processing most of the work
load should be at the service provider which
usually has more processing capabilities (e.g. better
CPU) and more resources (e.g. memory) than the
client. However since the service provider doesn’t
have the decryption key, some clues for answering
queries should be given to the service provider.
These clues should be just enough for service
provider to return the encrypted tuples but not
sufficient to retrieve the structure (schema) or the

SIGMOD Record, March 2008 (Vol. 37, No. 1)

content (instance) of the XML document. These
clues are usually given by maintaining crypto -
indexes on either the service provider or the data
owner side. The general architecture of encrypted
query processing is as follows. The user creates a
query which is then translated into its encrypted
form by the query translator at the client side. The
rules of encryption are determined by the client and
given to the query translator. After the query
becomes secure enough not to show the structure of
the XML database, the service provider answers the
query by some predefined rules that are at the
server side. The result set returned by the service
provider is not the exact result set that the user
wants. It is a superset of the actual result set. The
client decrypts the results and post filters the results
in order to get the actual result set.

The client should have some processing capability
in order to post process the results. The main
purpose of encrypted XML query processing is to
increase the work done by the service provider and
decrease the work done by the client.

Some papers in literature mention architectures
different from the one explained in the preceding
paragraphs. For example in SemCrypt project (that
will be summarized later) a number of messages
should be exchanged between the server and the
client in order to get the results.

2.2 W3C Encryption Standard

W3C has proposed standards for XML encryption
[19]. The details of XML and its encryption can be
found out in [19, 7, and 20]. According to the
mentioned standards, the tags and the contents that
are going to be encrypted are replaced with a string
called the Encrypted Data element. There are 4 sub
elements of Encrypted Data. (a) Encryption method
indicates the encryption algorithm and the
parameters of the specified algorithm. (b) Key Info
indicates the key name but not the value. (c) Cipher
Data contains cipher value as sub element which
indicates the encrypted element together with its
content. (d) Encryption properties contain
additional information related to generation of
Encrypted Data.

2.3 Attack Types

There are many specific attack types in
cryptanalysis. The fundamental categories of attack
types may be summarized as follows.

Brute force attacks: In this type of attack, the
attacker tries every key until the correct key is
reached to break the encryption.

13

14

Cipher text only attacks: In this attack type, it is
assumed that the attacker has access to the
encrypted message only and does not know what
the original plaintext is.

Known plaintext attacks: In this attack type, the
attacker has samples of both the plaintext and its
encrypted version (cipher text) and makes use of
them to obtain the key.

Chosen plaintext attacks: In this attack type, it is
assumed that the attacker chooses an arbitrary piece
of plaintext and is able to find the corresponding
cipher text.

Adaptive chosen plaintext attacks: In this attack
type, it is assumed that the attacker chooses a piece
of plaintext and is able to determine the
corresponding cipher text iteratively making use of
previous results.

Chosen cipher text attacks: In this attack type, it
is assumed that the attacker chooses an arbitrary
piece of cipher text and is able to find the
corresponding plaintext.

In the papers examined in our survey, also the
following specific attack types are explicitly stated
and used [3].

Frequency based attack: If the attacker can find a
match between the cipher text and the plain text
values, then it is possible for the attacker to
determine the algorithm and the key used in the
encryption. This may be possible by knowing the
exact frequency of domain values (e.g. suppose that
Johnny White has won 10 prizes and there is only
one value in the encrypted database that occurs 10
times. The attacker can infer that Johnny
corresponds to that encrypted value), or by
knowing the query workload (e.g. suppose that, for
an e-product catalog, it is known that the main
query asked is [book/ author/ [year=2007]], then
the attacker can guess which encrypted tag
corresponds to which plaintext tag).

Size-based attack: If the length of the plain text
determines the length of the cipher text, the
attacker may eliminate the candidate databases
whose lengths do not match. This type of attack is
referred to as size based attack.

3. INDEX TYPES

There are basically two types of index structures
used in encrypted XML documents. One of them is
the structural index and the other one is the value

index. Purpose of the structural index is to
determine whether the path in the query matches
any of the paths in the XML documents. Purpose of
the value Index is to check the constraints in range
queries. These indexes can be maintained either at
the server side or client side.

3.1 Maintaining Indexes at the Server
There is a well known index structure in
unencrypted XML documents. In this index
structure every tag is given a sequence number
starting from 1 and incremented by 1. The
sequence number of the opening tag of a node
represents the left bound of the node and the
sequence number of the closing tag represents the
right bound of the node. This enumeration brings
up a general rule that states “for a parent node p
and child node c, p.leftbound < c.leftbound and
p.rightbound > c.rightbound”. Table 1 (b) gives an
example of this index.

Table 1. (a) Sample XML document (b) and its

unencrypted Index

(a) (b)
<Bib> Node LB | RB
<Book> L
<Title>Spring</Title> Bib 1 26
<Author> Book 2 13
<Name>F.WELL</Name> Title 3 4
<Education> Author 5 12
<BS>X School</BS> Name 6 7
<Education> Education | 8 11
<Author> BS 9 10
</Book> Book 14 25
<Book> Title 15 16
<Title>Football</Title> Author 17 24
<Author> Name 18 19
<Name>;.HAND</Name> Education 20 23
<Education> MS 21 22
<MS>?(School</MS> LB : Left Bound
<Education> RB : Right Bound
<Author>
</Book>
</Bib>

In order not to disclose the hierarchical structure of
the XML document, the schema just explained is
modified and is called discontinuous structural
index (DSI) in [12]. In DSI, the interval [0, 1] is
assigned to the root. The children are assigned sub
intervals of the parent’s interval. The intervals of
the children are determined by an algorithm at run
time. The general rule still holds; for a parent p and
a child c, p.leftbound < cleftbound and
p-rightbound > c.rightbound. Table 2 illustrates
DSI for the XML document in Table 1(a). DSI
hides the structure of the XML document from the
server.

Two tables are used for the structural index at the
server side in [12]. One of them is the encryption
block table and the other one is the DSI table. The
structures of these tables are given in Table 3. DSI

SIGMOD Record, March 2008 (Vol. 37, No. 1)

table holds the tags in one column and the
corresponding intervals in the other column. Only
confidential tags are encrypted. This provides
efficient query processing on nodes which are
unencrypted.

Table 2. Representation of the modified schema
in [12] for the XML Document in Table 1 (a).

Node name left right Bound
Bound
Bib 0 1
Book 0.12 0.56
Title 0.23 0.28
Author 0.34 0.54

Table 3. Representation of Structural Index
tables for the sample XML document in Table

1 (a).
Encryption Block Table DSI Table
1D Interval Tag DSI
1 [0.23,0.28] Bib [0,1]
2 [0.34,0.54] Book [0.12,0.56]
UXM45 [0.23,0.28]
WRETS [0.34,0.54]

In [12] the value index has order preserving
encryption with splitting and scaling (OPES). The
value index is maintained at the server side to
support range queries. Splitting and scaling is used
to prevent frequency based attacks. By using
splitting, each plaintext value is encrypted into one
or more ciphertext values. As a result an
unencrypted word is represented by different
encrypted words. Scaling is done after splitting. By
using scaling, target domain size is multiplied.
Number of occurrences of encrypted words is
multiplied by a scale factor. Main purpose of
splitting and scaling is to change frequency
distribution of encrypted data values in the value
index so that they are different from the frequencies
of the original values.

Query processing in [12] is as follows. When a
query is submitted to the server, the query
translator at the client transforms the query into
encrypted form. The query translator replaces every
tag with the corresponding encrypted tags in the
structural index. The DSI of the tags in the query
are found from the DSI table. These intervals are
used to find out the bucket ids in the encryption
block table. The bucket ids returned are the results
of the structural index processing. In the second
phase the client translates the value-based
constraints in the query. Server finds out the bucket
ids satisfying the value index. Finally the server
intersects the bucket ids returned from the
structural index and the value index. The result of

SIGMOD Record, March 2008 (Vol. 37, No. 1)

the intersection is sent to the client for further
decrypting.

The main contribution of the approach in [12] is
allowing the execution of range queries at the
server side by employing order preserving
encryption with splitting and scaling. The proposed
value and structural indexes are provably secure.
Sensitive structural information and value
associations are hidden from attackers who possess
exact knowledge of domain values and their
occurrence frequencies. Splitting and scaling used
in this paper make the encrypted values in the
database nearly uniformly distributed. Thus it
prevents an attacker from making a statistical
analysis. Since value and structural indexes are
maintained at the server side, burden of query
processing is mainly at the server side. In the
proposed approach, the client should have a query
translator and also a simple query engine in order
to post filter the results after decrypting. One of the
limitations of OPES is that security achieved by
scaling encrypted data causes an increase in data
size. Increase in data size implies extra time in
query processing. Another limitation of the
approach in [12] is that it can not provide security
against prior knowledge of tag distribution, query
workload distribution and correlation among data
values. Also this approach is not very efficient in
insertions and updates.

Query processing takes place in three phases in
[14] as shown in Figure 1. The first phase is the
query preparation phase which is offline. This
phase contains encoding the structure and the
instance of the XML document. In this phase, to
encode the structure of the XML document all the
paths are extracted from the encrypted XML
document. Each node is converted to a value using
a predefined rule (e.g. take the first n characters of
a node) and a hash function. Then each path is
converted to a value using the values of the nodes.
Values of paths which have different lengths are
stored in different hash tables. To encode the
instance of the XML document all the attribute and
value pairs are encoded and stored in a hash table.
Details of hashing and encoding can be found in
[14], but mainly a function called Base26ValueOf
(“string”) is used that calculates the Base26 of a
number. To support range queries the authors use
the bucketization technique that we explained in
Section 2.

15

16

1)Queny Preperstion (Of-me)

Enoods XML DTD Excads XML DTD
Exaypted TN, ITD &
XML DTD Encoding Docurert Daabase ‘XML Dorument
Ditdbse

B

i

L

P
T TN
Tty Candidate meypted N ity Coid TML Enyied
EMLDID = Candidate Docunarts foreach Decaypt Candidate
DTD =t - 2 DTD Documernt Documents and Query
I — andidat Set T ‘
o 1 P

QueryReslt

Figure 1. Framework for querying encrypted
data in [14]

The second phase is the query preprocessing phase.
It is the first online phase. In this phase
inappropriate XML document candidates are
filtered by examining query conditions. In the third
phase the selected candidate databases are returned
to the client for further decrypting.

The main contribution of the approach in [14] is
using hashing techniques to compute encodings.
The encodings use order preserving encryption
functions so that range queries are successfully
supported. In [14] indexes are maintained at the
server side so that most of the query processing can
be done at the server side. Security of this approach
is directly related to the security of the hashing
function used.

Another approach that uses indexing at the server is
given in [17]. Main contribution of the approach
given in [17] is that it introduces powerful
encryption primitives. These encryption primitives
help clients specify a rich class of security policies
for XML data. It is possible to selectively hide
sensitive data by using these primitives. There are
mainly three encryption primitives proposed. Ey
(encrypt value) primitive encrypts a subtree and
replaces it by an encrypted node. The subtree
rooted at node “Author” (shown in Figure 2) is
encrypted and replaced with an encrypted node
which is shown on the right in Figure 3. E1 (encrypt
tag) primitive encrypts just the tags of the subtree
rooted at node n (including the tag of node n). Eg
(encrypt structure) primitive hides the relationship
between two specified nodes. When Eg primitive is
applied to the relationship between “Book” and
“Author” in Figure 2, the relationship becomes
hidden as shown on the left in Figure 3. The
encrypted XML storage model proposed takes as
input the XML schema of the unencrypted node
and three encryption primitives and outputs a
server side XML representation. Ey_Eg and Er are
applied sequentially in the given order.

Book E; primitive

P

E, primitive

Title Author <

Name Education

Figure 2. A tree representation of an XML
document with encryption primitives .and g, to

be applied
Book Book
Title Author Title Encrypted
/\ Node
Name Education

Figure 3. Affect of applying E, and E on the
document given in Figure 2 shown on the left
and right hand side, respectively.

Another contribution of [17] is proposing a
multidimensional partitioning strategy. The
information stored at the server is viewed as an N-
dimensional space. This N-dimensional space is
partitioned into a set of partitions. Each partition is
given a random identifier. The partitions cover the
whole domain and do not overlap. Equi-width
partitioning is used when partitioning the domain
which helps prevent frequency based attacks.
Multidimensional partitioning strategy overcomes
the security limitations of single dimensional
techniques. In [17] majority of the query processing
is done at the server side. Another advantage of the
proposed schema is that it allows range queries to
be processed at the server side.

In [13] authors use query aware decryption.
According to the proposed schema in [13] a
relational index file is maintained at the server side
which consists of three columns. The first column
is “key name” column which holds the keys. The
second column is “element type” column which
holds the XML tags. The third column is the
“occurrences” column which holds the Dewey
numbers of elements in “element type” column. All
three fields are encrypted using the keys in “key
name” column. For the sample XML document in
Table 1 (a) Dewey numbering schema is given in
Figure 4 and the resulting encrypted XML
document’s tree representation is given in Figure 5.

SIGMOD Record, March 2008 (Vol. 37, No. 1)

Bib (1)
Book (1.1): k; Book (1.2)
Title (1.1.1) Author Title (1.2.1) Author
(1.1.2) (1.2.2)k,
Education (1.1.3)
Name Education
(1.2.2.1) (1.2.2.2) 1 ka
MS
BS (1.1.3.1) (1.2.2.2.1)

Figure 4. Dewey numbering schema for the
sample document in Table 1 (a).
Bib (1)

/\

Encrypted Data
(1.1): ki

Book (1.2)

/\

Title (1.2.1) Encrypted

Data
(1.2.2)k,

Figure 5. Encrypted XML data for the sample
document in Table 1 (a).

The index file proposed in [17] (maintained at the
server side) for the sample document in Table 1 (a)
is given in Table 4.

Table 1. Encrypted XML Index in [17] for the
sample document in Table 1 (a).

Key Name Element Occurrences
Type

Null Bib 1

Null Book 1.2

Null Title 1.2.1

ki Book 1.1

k Author 1.1.2

ki Education 1.1.3

k BS 1.1.3.1

ks Author 1.2.2

ks Name 1.2.2.1

ka2 k3 Education 1.2.2.2

ko ks MS 1.2.2.2.1

Query processing in [13] is as follows. Suppose
that a user who has keys k;, k, and k; sends the
query “//book//BS” on the sample XML data in
Table 1 (a) to the server. The query processor first
decrypts the “key name” field using the keys ki, k,
and k; It then decrypts the “element type” field
using {k;}, {k.} and {kj, k3}. Then the processor
decrypts the “occurrences” field of the row
associated with element type “BS” which is asked
in the query. Element type “BS” is located at the
node with Dewey number 1.1.3.1 in Figure 4 and
“Encrypted data” element is located at the node
with Dewey number 1.1 in Figure 5. As we

SIGMOD Record, March 2008 (Vol. 37, No. 1)

understand from its Dewey number, “BS” is in
“Encrypted data” node with Dewey number 1.1 in
Figure 5. Thus “Encrypted data” node with Dewey
number 1.1 is decrypted. However “Encrypted
data” node with Dewey number 1.2.2 is not
decrypted. Thereby unnecessary decryption is
avoided.

The main contribution of [13] is to process only the
encrypted blocks that contribute to the result.
Although the proposed schema is efficient and
provides a way to query encrypted XML
documents, it has some flows in security. During
query processing, keys are disclosed to the server.
Also the proposed schema is open to frequency
analysis. Another limitation of the paper is that it
does not allow range queries to be executed without
decrypting the encrypted block.

3.2 Maintaining Indexes at the Client

In [21] XQEnc is used for encrypted XML query
processing. XQEnc uses vectorization and skeleton
compression [2, 3]. In vectorization, an XML
document is partitioned into path vectors which are
composed of nonempty leaf nodes. In skeleton
compression, redundancy of XML documents is
removed by using common sub branch sharing. The
identical and consecutive branches are replaced
with one branch along with a multiplicity
annotation. By this the XML document becomes
much smaller. The experiments in [21] show that
XML documents become small enough to fit into
the main memory. In XQEnc approach, for each
XML document, a compressed skeleton S is
computed and stored at the client side and a set of
corresponding data vectors D is computed and
stored at the server side. In order to access D
efficiently, a Structural Index Tree (SIT) is
constructed at the server side. S is never shared
with the server. Consequently, the structure of the
XML document is hidden from the third parties.

For each item i in D a triple <V;, P;, T> is created.
V; represents the vector ID, Pi represents the
document position and Ti represents the textual
value of i. Then each triple is transformed into the
following representation; <etuple, Vi‘, Pi°, Ti">,
where etuple is the encrypted tuple and the other
entries are the corresponding crypto indexes of the
original triple. According to XQEnc, crypto
indexes can either be bucket ids [11] or the
encrypted values using order preserving encryption
[16]. XQEnc algorithm runs at the client side. This
algorithm generates the following query and then
sends it to the server.

17

18

SELECT etuple FROM R (V) WHERE Vs =
cryptoindex (v) AND Ps = cryptoindex (p) AND Ts
= crptoindex (“Any string”)

The server is treated only as an external storage.
The server starts its job after the client sends the
query. The server retrieves the encrypted result and
sends it back to the client for further decrypting.

The main contribution of the approach in [21] is
storing the schema of the XML document as a
compressed skeleton at the client making it
inaccessible to the server. In this manner the
structural information is hidden from the server.
XQEnc may support range queries if order
preserving encryption is used instead of
bucketization technique as the crypto-indices. For
queries containing highly selective predicates,
XQEnc is very efficient since it only retrieves the
necessary data for the client to decrypt. In [21] the
burden of the query processing is at the client side
which decreases the performance. The client needs
to maintain indexes at its side and in the distributed
environment. This means that every insertion into
the XML database should trigger the client side for
an index update. There is also the possibility of a
problem with space management in [21]. Although
it is claimed that the skeleton compression makes a
document much smaller than the original one, there
may still be a problem if the client has limited
memory and/or the document is big and irregularly
structured.

3.3 A Different Approach: Usage of

Nonces

In [15] encrypted query processing is managed by
both maintaining indexes at the server side and the
client side. We investigate this approach under a
different heading because it uses a novel approach.
Suppose person A is communicating with person B.
A uses key k and the encryption function E in order
to encrypt plaintext p and get ciphertext c.
c=E(p,k) p=D (c, k).

Person A sends c to person B. Person B decrypts
the ciphertext ¢ using key k and the decryption
function D. The problem in this schema is that p is
always encrypted as c. Consequently intruders can
make frequency based attacks. To prevent
intrusion, p is encrypted using k and a number
called nonce which is used only once. Now the
schema becomes as follows.

c=E(p,k, n) p=D(c,k,n)

The nonce used is send to person B together with
message p. By doing so every plaintext p is
encrypted as ciphertext c1, c2 and so on.

Let’s turn back to our discussion of encrypted
XML query processing. In [15] the schema of the
XML document is stored at the client side. The
paths are stored with their unique identifiers which
are called path schema IDs (Table 5). The *
indicates that there can be one or more nodes with
the same tag name. Using * makes the schema
document small so that the client can store it.

Table 2. XML Schema(Stored at the client side)

Path Schema ID

Path Schema

PS1 Bib/Book*/Author

PS2 Bib/Book*/Title

PS3 Bib/Book*/Author/Name
PS4 Bib/Book*/Author/Education

At the server side there are two hash tables. First
hash table (Table 6 (a)) uses path instances as key
and the second one (Table 6 (b)) uses path values

as key.

Table 3. Hash Tables at the server side.
(a) Table used by GetValueForPathInstance

function
Cryptographic Hash(PI) E(value, k, nonce) Nonce
H(PS2-1) E(Spring.k,10) 10
H(PS3-1) E(F.WELLK,11) 11
H(PS3-2) E(J.HAND,k,12) 12
H(PS2-2) E(Football k,13) 13

(b) Table used by GetPathInstanceForValue

function
Cryptographic Hash (PS-V) E(PI*, k , nonce) Nonce
H(PS2-Spring) E({1}.k21) 21
H(PS3-F.WELL) E({1}.k,22) 22
H(PS3-J.HAND) E({2}.k,23) 23
H(PS2-Football) E({2}.k,24) 24

Query processing in SemCrypt project is as
follows. Suppose that the client wants to submit a
query “/book [title="spring’]/author/name”. The
client first looks up the schema stored at its side.
The client finds out that the path schema id of
bib/book*/title is PS2. The client computes the
cryptographic hash function H(PS2-spring). Then
the client revokes the function
getPathInstancesForValue with parameter H(PS2-
spring). The value returned from the server is
E({1}.,k,21). The client decrypts this answer using
the nonce together with the key and finds out that
the answer is at first instance ({1}) of the book in
the XML schema. Then the client filters the title
path and adds the author/name path to the query.
The client knows that author/name path is PS3.
Now the resulting query becomes
bib/book[1]/author/name which is PS3-1. The
client revokes the function
GetValueforPathInstance with parameter H (PS3-

SIGMOD Record, March 2008 (Vol. 37, No. 1)

1)). Finally the server returns the encrypted value
together with its nonce. E(F.WELL, k, 11). The
client decrypts this answer by using nonce 11 and
the key and finds out the answer F.WELL.

The main contribution of the approach in [15] is
that it introduces an encryption technique based on
using nonces. Usage of nonces prevents frequency
based attacks since the same plaintexts are
encrypted as different ciphertexts. One of the
drawbacks of the approach in [15] is that it requires
multiple rounds of communication between the
server and the client which consumes bandwidth
and increases the query processing time. Another
limitation of this approach is that it does not allow
range queries to be executed. It is good only for
selection queries. It is also important to mention
that the clients should have considerable query
processing capability because they continuously
process the encrypted results and compute hash
functions. Thus the burden of query processing is
divided between the server and the client.

4. SUGGESTIONS FOR FUTURE
WORK

Existing methods mostly concentrate on retrieval in
indexing structures in encrypted query processing.
Management of indexes is usually not taken into
account. There should be efficient mechanisms to
handle updates efficiently in index structures. This
is important especially in XML documents which
are frequently updated. Most of the papers (with
few exceptions) in the literature propose index
structures that are applicable to all attributes of the
XML documents. The mechanisms that allow users
to build indexes only on specific attributes of the
encrypted XML document should be improved.
Another improvement can be supporting regular
expression queries. In order to answer a [a-z] b we
need 26 queries (one query for each character in the
alphabet) for encrypted XML documents. A good
indexing mechanism and a query processor in the
future may handle this kind of regular expression
queries. Since encrypted XML query processing is
a time consuming job, distributed and parallel
servers may need to be devised. Multiple
computation nodes may significantly improve the
performance of query evaluation. Another
important future work would be making an
inference control analysis of each proposed
approach to measure how secure they are as far as
inference is concerned. An example of this would
be [9] which contains a detailed inference control
analysis of the paper’s own approach. In general a
well defined measure of security is needed for most

SIGMOD Record, March 2008 (Vol. 37, No. 1)

of the techniques in the literature to show how
secure they are.

5. REFERENCES

[1] B.Hore, S.Mehrotra, G.Tsudik. Privacy
Preserving Index for Range Queries. Proceedings
of the 30th VLDB Conference, 2004. Toronto,
Canada

[2] Buneman, P., Choi, B., Fan, W., Hutchison, R.,
Mann, R., Viglas, S.Vectorizing and querying large
XML repositories.21st International Conference on
Data Engineering. April 5, 8 261-272

[3]Cheng, J., Ng, W. XQzip: Querying
compressed XML using structural indexing. 9th
International Conference on Extending Database
Technology March 14, 18. 2004. 219-236

[4] D.X. Song, D.Wagner, and A.Perrig. Practical
techniques for searches on encrypted data. In Proc.
of the 2000 IEEE Symposium on Security and
Privacy, p: 44-55, Oakland, CA, USA, May 2000.
[5] E. Mykletun and G. Tsudik, On using Secure
Hardware in Outsourced Databases. International
Workshop on Innovative Architecture for Future
Generation High Performance Processors and
Systems January 2005

[6]E.Damiani, S.Jajodia Balancing confidentiality
and efficiency in Untrusted Relational DBMSs.
CCS’03 October 27-30, 2003, Washington, USA.
[7] Extensible Markup Language, XML 1.0
http://www.w3.org/TR/REC-xml, October 2000

[8] G.I. Davida, D.L. Wells, and J.B. Kam. A
database encryption system with subkeys. ACM
Transactions on Database Systems, 6(2)p:312-328,
June 1981.

[9] G.Ozsoyoglu, D.Singer, S.Chung. Anti-tamper
databases: Querying Encrypted Databases In Proc.
of the 17" Annual IFIP WG 11.3 Working
Conferece on Database Applications and Security,
August 2003.

[10] H.Hacigumus, S.Mehrotra, and B.Iyer.
Providing Database as a Service. Proceedings of
the 18th International Conference on Data
Engineering, 26 February - 1 March 2002, p: 29-
40, 2002.

[11]H.Hacigiimiis, B.Iyer, C.Li, and S.Mehrotr.
Executing SQL over encrypted data in the
database-service-provider model. In Proc. of the
ACM SIGMOD’2002,Madison,Wisconsin,USA
June 2002.

[12] H.Wang, L.Lakshmanan.Efficient Secure
Query Evaluation over Encrypted XML Databases.
32nd International Conference on Very Large Data
Bases, 2006 September 12-15.

[13] J. Lee , K. Whang. Secure query processing
against encrypted XML data using Query-Aware

19

20

Decryption. Elsevier, Information Sciences. 2006
p:1928-1947

[14] L. Feng and W. Jonker. Efficient Processing
of Secured XML Metadata. OTM Workshops 2003
p:704-717

[15] M.Schrefl, K.Grun, J. Dorn. SemCrypt —
Ensuring Privacy of Electronic Documents through
Semantic-Based Encrypted Query Processing. 21st
International Conference on Data Engineering
Workshops. April 5, 8 p: 1191

[16] R.Agrawal, J.Kiernan ,R. Srikant, Y. Xu

Order preserving encryption. SIGMOD 2004 June
13-18, Paris, France

[17] R.C.Jammalamadaka, S.Mehrotra. Querying
Encrypted XML documents. IDEAS'06

[18] Sun.S.Chung, G.Ozsoygolu. Anti-tamper
databases: Processing Aggregate Queries over
Encrypted Databases In Proc. of the 22"
International Conference on Data Engineering
Workshops, ICDEW “06.

[19] T. Imamura, B. Dillaway, E.Simon, XML
Encryption Syntax and Processing, W3C
Recommendation, December 2002.
http://www.w3.org/TR/xmlenc-core/ March 2002.
[20]XML Encryption Requirements,
http://www.w3.org/TR/xml-encryption-req ,March
2002.

[21] Y.Yang, W.Ng, H.L.Lau, and J.Cheng. An
Efficient Approach to Support Querying Secure
Outsourced XML Information CAiSE 2006, LNCS
4001, p:157-171, 2006.

SIGMOD Record, March 2008 (Vol. 37, No. 1)

