XML: Some Papers in a Haystack

Mirella M. Moro
Univ. Fed. Minas Gerais, UFMG
mirella@dcc.ufmg.br

Denio Duarte
Univ. do Estado de Santa Catarina
denio@unochapeco.edu.br

ABSTRACT

XML has been explored by both research and industry com-
munities. More than 5500 papers were published on different
aspects of XML. With so many publications, it is hard for
someone to decide where to start. Hence, this paper presents
some of the research topics on XML, namely: XML on re-
lational databases, query processing, views, data matching,
and schema evolution. It then summarizes some (some!) of
the most relevant or traditional papers on those subjects.

1. INTRODUCTION

XML is a language for specifying semi or completely struc-
tured data. It has been explored over and over by both re-
search and industry communities. More than ten years after
its proposal, its initial expectation of “solving all the prob-
lems in the world” has not been fulfilled. However, we can-
not say XML failed, since it solved some really important
problems very efficiently. Some of those problems include
data integration, data interoperability, and data publish-
ing on the Web. Moreover, XML is adopted as a standard
language by many industries (from retail to healthcare) for
exchanging data. For those and other reasons, XML is the
most successful, ubiquous technology for the Web, at the
same level as URI, HTTP, and HTML [98].

If someone wants to start a research on XML, the first
questions that come to mind are “what papers one must
read” and “what part of the XML literature one needs”.
There is one problem though with such questions. Much
research has already been done, and a considerable amount
of papers have already been published about XML. If a per-
son needs to start any study on XML, s/he will probably
start reading the W3C documents, but that is not enough.

Specifically, the DBLP Computer Science Bibliography!
Faceted Search points out XML as the 10* most popular
keyword?, appearing in 1250 publications. Using the DBLP
CompleteSearch with XML as search word returns 5529 pub-
lications. How does one find the desired publication over so
many? One solution is to specify a second search word such
as query. In this case (search words XML and query), the
CompleteSearch returns 604 publications, which is still a lot.

This paper is intended to people who would like to start
a research on XML or simply start studying XML from the

"http://www.informatik.uni-trier.de/~ley/db access on 02/23/09

2http: //dblp.13s.de/browse.php?browse=mostPopularKeywords
access on 02/23/09

SIGMOD Record, June 2009 (Vol. 38, No. 2)

Vanessa Braganholo
Univ. Fed. Rio de Janeiro, UFRJ
braganholo@dcc.ufrj.br

Renata Galante
Univ. Fed. Rio Grande Sul, UFRGS
galante@inf.ufrgs.br

Carina F. Dorneles
Universidade de Passo Fundo, UPF
dornelesQupf.br

Ronaldo S. Mello
Univ. Fed. Santa Catarina, UFSC
ronaldo@inf.ufsc.br

research point-of-view. It summarizes some of the research
topics on XML: XML on relational databases (Section 2),
views (Section 3), query processing (Section 4), data match-
ing (Section 5), and schema evolution (Section 6). It then
presents some of the most relevant or traditional papers on
those subjects. By “relevant or traditional papers”, we mean
those that are more frequently cited or that considerably
changed the way XML research was done.

Note that this paper is not intended to cover the whole
vast literature on XML. For example, there are papers about
the three major commercial DBMSs (i.e. IBM DB2, Mi-
crosoft SQL Server, Oracle) that discuss many practical
aspects of supporting XML management, for example [12,
62, 81, 82]. Other industrial papers discuss specific topics,
such as schema evolution [11]. Furthermore, some research
groups and companies have also their own XML engines [14,
42, 43, 54]. We do not plan to detail those solutions. In-
stead, we focus on a very selected set of papers on some
XML research areas. Nevertheless, this paper intends to be
a starting point for any person who decided to study this
wonderful, versatile, powerful language, called XML.

2. XML ON RELATIONAL DATABASES

The hierarchical nature of XML brought several challenges
to the database community. One of the first ones was sim-
ple, but very tricky: How to store XML data? Relational
databases seemed to be a good alternative, since most of
the data (both in academia and industry) was/is stored in
RDBMS (Relational Database Management Systems).

The first paper to suggest the use of relational database
engines for managing data in files was [1]. The file contents
should then be stored in the relational database using some
mapping schema. For this to be possible, the file should
have a “strict inner structure”. This requirement resembles
XML documents that have a DTD or schema.

2.1 Storage

Based on such observation, many publications followed
with the goal of storing [24, 25, 35, 44, 57, 83] and querying
[32, 83, 85, 89] XML documents using relational databases.

XML-based approaches. The first proposals to store
generic XML documents (schemaless) appeared in [44]. The
FEdge and Attribute approaches are able to store any XML
document (regardless of a schema) in relations. Later, a
different solution, based on dynamic intervals, introduced
both storage and query translation algorithms [32].

DTD-based approaches. Then, the pioneer propos-
als to store XML documents in relations by exploring their

29



schema (DTD) are in [83]. It proposes Basic, Shared, and
Hybrid Inlining and discusses their pros and cons. However,
query translation is not discussed.

Constraint-based approaches. Some approaches con-
struct the relational schema based on constraints of the XML
documents. For example, [57] explores DTD constraints
such as cardinalities and referential integrity. On the other
hand, [24] uses XML key and keyref, while [25] explores
XML functional dependencies (XFDs) to generate a rela-
tional schema that has as few redundancy as possible.

Discussion. It is very important to notice that query-
ing depends on the method for storing XML data in the
relations. The Edge and Attribute approaches require many
joins to recompute the document. The dynamic interval
uses sub-queries and the union all operator to reproduce
the original XML instance.

All of those publications have influenced the native and
hybrid storage alternatives currently in use.

2.2 Updates

Once the storage problem was handled, it was necessary
to update the documents stored in the RDBMS. There are
three main proposals for updating XML documents stored
in relational databases [88, 89, 91]. All of them assume a
default mapping of the XML document to relations, such as
the shared inlining method [83] and the approach of [57].

Tatarinov et al. [88] propose an extension to XQuery to
support updates. This extension comprises primitives such
as UPDATE, DELETE, INSERT, REPLACE, and RENAME. They also
discuss how to translate those updates to the underlying
RDBMS for updating XML documents using the shared in-
lining method. In [89], Tatarinov et al. use the XQuery
extension proposed in [88] to deal with ordered XML doc-
uments. They propose a storage method for ordered XML
documents in relations, and show how updates that affect
order can be translated. Finally, [91] provides an updatabil-
ity study for XML documents stored in RDBMS.

It is important to notice that [88] presented the first pro-
posal of an update language for XML. Many of the concerns
risen on that paper served as starting points to the study of
update-related problems regarding XML [8].

3. XML VIEWS

A natural follow-up to store XML data as relations is to
generate XML from relational data. The literature deals
with this problem by using the concept of views. Many
approaches explore building and querying XML views over
relational databases [6, 13, 23, 41, 61, 84, 86]. Most of them
tackle the problem by building a default XML view from the
relational source, and then using an XML query language to
query the default view [13, 23, 41, 86]. Their concerns are
basically the following: (i) how to compose queries with view
definitions, in order to get a single resulting expression that
represents both the query and the view; (%) how to use the
relational engine to execute the query resulting from step ¢;
and (417) how to use the relational tuples resulting from step
44 to build the resulting XML document.

Each approach has a different technique to construct the
XML view using the relational engine to retrieve data. Some
transform the XML view definition into extended SQL [23,
84, 86], others use internal representations to map the XML
view to several SQL queries [13, 41] or to map the rela-
tional schema to an XML Schema [61]. For speeding-up

30

queries, some approaches maintain materialized views [6].
The classical papers on this subject are SilkRoute [41] and
XPERANTO [86]. The SQL language has also been ex-
tended to support generating XML documents from rela-
tional data. The extensions include SQL/XML, FOR XML,
SQLX, and are supported by most database vendors.

Once a view is defined, there are also the problems of up-
dating it, and translating it back to the underlying relational
database. The pioneer work is [19], where the solutions is
based on the Nested Relational Algebra to define the XML
views. Later, the idea was extended to support an XQuery-
based view definition language [20, 21]. The main idea of
those works is to map XML view updates to Relational View
updates, and then map the updates back to the database by
using existing View Update work for relational databases.

Then, the approach in [92] presents an updatability study
of XQuery views published over relational databases. Their
results are analogous to the results of [19]. However, nei-
ther of those papers discusses how updates are translated to
the underlying relational database. Recently, a two step ap-
proach to the problem was proposed in [95]: the first step is
schema checking, which uses schema information to decide
if the update is translatable to the database. In some cases,
a second step may be required to make the decision: data
checking, which is an expensive operation, and thus must be
avoided whenever possible.

4. XML QUERY PROCESSING

The success of XML databases depends heavily on efficient
methods for manipulating XML data. XML requires effi-
cient query processing techniques over tree-structured data.
Given the many differences between that type of data and
relational data, the well known and efficient algorithms from
relational databases cannot be (directly) employed to pro-
cess XML data efficiently.

There are many algorithms for XML query processing,
which can be divided in two categories: (i) the ones that em-
ploy the infra-structure of a relational database (i.e., based
on the mapping from XML to relational tables/columns) [32,
83, 85, 89, 90], and (i) the ones that employ a native XML
engine (i.e., data is handled in its original tree format; access
methods consider the native tree structure of the data; new,
XML-structure-aware indexes may be employed) [3, 22, 27,
28, 55, 60, 70, 79, 94, 99, 102]. This section focuses on XML
query processing using a native engine. Moreover, there are
different semantics for XML queries. Here, we consider the
basic structural constraints: structural join and tree-pattern
query (or twig). Other semantics, such as keyword search
and document filtering, are not covered due to space con-
straints. Finally, we present some other very specific topics
related to query processing.

Structural Joins. This type of join is the simplest pos-
sible structure and considers only ancestor//descendant and
parent/child pairs. The query result may be the pair or one
of its components. The first native approach to implement
structural joins is the MPMGJN algorithm [102]. Then,
StackTree [3] is the state-of-the-art algorithm for structural
joins, since it defined the problem and presented a very nice
initial solution. Different nuances of structural joins use par-
titioning techniques, which include the work on [60], first
partition-based technique for structural joins. Finally, there
is also some work on processing structural joins when the
document suffers insertions [31].

SIGMOD Record, June 2009 (Vol. 38, No. 2)



Tree-Pattern Query, or Twig. This type of query
considers path and subtree structures, i.e., combinations of
the basic axis (ancestor//descendant and parent/child) with
predicates. The query result may be an element, a path, or
a subtree of the document that satisfies the constraints. The
XML twig algorithms may be divided into four very distinct
categories (see [70] for definition of the categories and an
experimental comparison). Note that those categories do
not consider optimizations according to the query workload.
The only optimizations allowed are those based on the data,
and the data alone (i.e., clustering, indexes, and so on).

The simplest (possibly the most naive) way to process
twigs is by merging the results of structural joins. Both
StackTree [3] and MPMGJN [102] (from structural joins) are
binary join algorithms, i.e., they join only a pair of inverted
lists (or only one edge in the query twig). Since a complete
twig query consists of a series of binary joins, the problem
of join order selection has to be considered seriously.

A dynamic programming method to select an optimal or
sub-optimal order of binary structural joins for XML twig
queries is proposed in [99]. The StackTree binary join algo-
rithm and the corresponding dynamic-programming-based
join order selection algorithm have been integrated into Tim-
ber [54] (the native XML database prototype from the Uni-
versity of Michigan). Other techniques followed those by
aggregating indexes to the lists to be merged, e.g., [27, 55].

The state-of-the art algorithm for processing twigs is a
holistic approach, the TwigStack [22]. It performs a pipelin-
ing join by joining multiple inverted lists at one time without
generating intermediate results. That paper also introduces
XB-Tuwigstack, a TwigStack with indexes.

Other algorithms followed by proposing optimizations for
different nuances (restrictions, requirements, and profiles),
specialized numbering schemes such as Dewey (e.g., [63]), or
using different holistics, such as subsequence matching (e.g.,
[79, 94]). Other techniques consider the query workload,
such as APEX [28], which defines an index and considers the
query workload in order to compact even more the index.

A third way to process twigs is through a finite state ma-
chine (FSM). Each XML element is processed only once
through sequential access. For example, an extension to
FSM with stacks (similar to TwigStack) is proposed on [70].

Other XML Query-related Topics. It is very impor-
tant to notice that it is impossible to cover 604 papers on
XML query processing. Besides the work aforementioned,
we could also cite other punctual papers, which deal with
very specific, query-related topics. Examples include: in-
dex advisors [39], unordered XQuery processing [48], query
unnesting [65], evolving queries [69], structural summaries
[71], among many others.

5. XML DATA MATCHING

The central problem on data matching is to find out het-
erogeneous data that represent the same real world object.
Solutions to this matter are required by several applications,
like data integration, database design, and querying hetero-
geneous data sources [37]. XML data matching is a complex
task, and involves at least two levels: schema and instance.

5.1 Schema Matching

Schema matching is an active research area since the
Eighties, but with more theoretical than effective propos-
als until today. Two approaches are usually considered for

SIGMOD Record, June 2009 (Vol. 38, No. 2)

schema matching [40]: (i) to define a global schema that
maintains mappings to a set of local schemas; or (i) to de-
fine, for each pair of schemas, a set of mappings among their
components. The first one is classified into two main cat-
egories [59]: (i.1) Global-as-View (GAV), and (i.2) Local-
as-View (LAV). A GAV approach builds a global schema
from the semantic matching of the local schemas, i.e., the
global schema is a unified view of the local schemas. The
LAV approach builds a global schema from scratch, and
then defines a set of mappings to the local schemas, i.e.,
the local schemas are views of the global schema. Despite
of being initially proposed for databases, these approaches
have been applied to XML schema matching, with adapta-
tions that consider the semistructured nature of XML data.
Nonetheless, this is still an active research area, since most
of the existing work do not deliver satisfactory results [45].

Initial work on XML schema matching focused on defining
a global schema for XML data. This happened because XML
data sources are usually on the Web and have no associated
schemas. Therefore, mediator-based architectures have been
developed [97]. There are two layers in this kind of archi-
tecture: wrapping and mediation. The wrapping layer is
responsible for extracting a schema for each XML source,
or providing mappings from a predefined global schema to
the XML data sources. The mediaton layer is responsible
for managing a global schema according to a GAV [67, 73,
75, 80, 101] or LAV [34, 36] approach. For example, in the
Enosys data integration platform [73], the mediator module
allows the user to define XML views from the global schema.
A drawback on some architectures is that the matching pro-
cess is manual, i.e., the mediators act as a tool that helps
the user to define global schema or mappings among XML
local sources [29, 66, 73, 80]. This limitation has been solved
by semi-automatic approaches [33, 34, 36, 67, 75, 101].

Another idea is to adopt a canonical model, i.e., a data
model on which the XML global schema is defined. Some
proprosals consider the proper XML model to define the
canonical schema, which is useful for applications that need
to persist and/or to manage unified data in XML format [34,
36, 66, 73, 101]. Others define the global schema based on
a conceptual model, which is more suitable to capture data
semantics, and useful for applications that query heteroge-
neous XML data sources [33, 64, 67, 75, 80].

Regarding the XML schema matching process, differences
among the proposals are mainly on their XML model con-
structs. For example, most approaches do not deal with the
matching of mixed elements or an element content model
specified as a choice among several nested elements [29, 34,
36, 64, 66, 75, 80]. Others try to overcome such limita-
tion, e.g. BInXS [67]. Regarding the comparison strategy
for defining schema components to be matched, there are
usually dictionaries or Thesauri (linguistic strategy) [34,
64, 67], and/or metrics (functions and/or algorithms) ap-
plied on structural and/or constraint properties of the XML
schema, like data types and cardinality constraints [64, 67].

Few approaches define binary schema mappings among
XML local schemas instead of creating a global schema, e.g.
HDM [66], Xere [33], and YAT system [29]. In the first
two, XML schema, of local sources are converted to schemas
in an intermediate conceptual model. Semantic mappings
are further defined between conceptual and XML schemas.
YAT supports the manual definition of mappings between
XML schemas represented through a graph-based model.

31



These proposals illustrate that schema mapping approaches
for XML can be provided at a conceptual or logical level.

Different from those traditional schema matching ap-
proaches, other systems consider information about XML
instances and machine learning techniques to deduce se-
mantic correspondences between heterogeneous schemas’ el-
ements [36]. Despite of the additional analysis of XML data
contents (besides schema information, which can contribute
to more exact schemas component matchings) approaches
like that are criticized by their complexity.

5.2 Instance Matching

Due to the hierarchical nature of XML data, most ap-
proaches on instance matching consider both structure and
content aspects. The techniques are very different from each
other. Some employ diff algorithm [30, 93] or a TF/IDF
weighting scheme [76], while others use a tree-edit distance-
based metric [4, 51, 52, 58], or a similarity function [96].

Regarding diff algorithms, the XyDiff algorithm [30] de-
tects changes in XML documents that are stored in a data
warehouse, and uses signatures to match (large) subtrees
that were left unchanged between the old and the new ver-
sions. Then, it propagates those matches to ancestors and
descendants to obtain more matches. It also uses XML spe-
cific information such as ID attributes. Another diff al-
gorithm is the XDiff algorithm [93], which integrates key
XML structure characteristics with standard tree-to-tree
correction techniques. Such algorithms focus on identify-
ing changes in versions of a document and introduce cost
models to quantify those changes.

Likewise, the tree-edit distance metric is widely used to
match XML documents [4, 51, 52, 58]. Specifically, in [51,
52], the approximate matching is quantified in terms of dis-
tance notions. The central idea is to incorporate the tree-
edit distance in a join framework, which is used in XML
integration processes. In [4], the authors propose the con-
cept of approximate tree join, which intuitively assesses that
two objects are the same if they have (almost) the same
tree. They propose the pg-grams distance to approximately
match hierarchical information. Such measure is defined as
the distance between ordered labeled trees using the tree-
edit distance and similarity functions. In [100], the authors
propose to transform tree-structured data into an approxi-
mate numerical multidimensional vector, which encodes the
original structure information. The algorithm embeds the
proposed distance into a filter-and-refine framework to pro-
cess similarity search on tree-structured data.

Some work consider both content and structure during the
instance matching [74, 77]. For example, in [77], the authors
extend the classical approach to duplicate detection in flat
relational data, that is the sorted neighborhood method to
be applied in nested XML elements, detecting duplicates at
each level of the XML hierarchy. In addition, the framework
proposed in [96] characterizes duplicates in a matching pro-
cess by considering the description of data instances, and a
similarity score using a similarity measure.

The choice of an appropriated similarity function is an
important task in a matching process, since it defines the
result quality. A problem related to the use of disparate
similarity functions appears when the similarities scores of
the XML nodes are combined. As the individual functions
usually generate scores that are not comparable, there is
no general straightforward way for combining independent

32

distinct functions into a single measure. Other recent work
has addressed such a problem [38, 53].

6. XML SCHEMA EVOLUTION

Schema evolution deals with updating a schema when it
no longer meets the user or the application requirements.
The main problem is how to allow schemas to change while
maintaining the access to the existing XML data.

The approach employed to allow schemas to evolve de-
pends on the XML schema language. The two most used
schema languages are DTD and XML Schema (XSD) [10,
68]. However, XSD is more powerful than DTD because
XSD, unlike DTD, permits decoupling an element tag from
its type (or content model), and an element may have dif-
ferent types depending on the context [72, 78, 56].

The structure employed to represent XML documents and
schemas is important to implement an evolution framework.
XML documents are mostly represented as unranked labeled
trees (i.e., their nodes have no priory bound on the num-
ber of children). Each tree node represents an element (or
an attribute). XML schemas, on the other hand, do not
have a standard representation (as XML documents have).
Thus, the representations found in the literature are: regu-
lar tree grammars (RTG) [17, 26, 72], direct graphs (DG) [2,
87], and mixed representation (e.g., based on applying more
than one structure to model a schema) [50, 78]. Although
XML schemas may have different representations, the prim-
itives for evolving them follow, as expected, the same basis:
objects may be inserted, deleted and/or updated.

Update Primitives. Update primitives for XML
schemas are slightly different from those to update schemas
on traditional databases (e.g., relational databases). XML
schema objects may still be inserted, deleted, and/or re-
placed. However, XML schemas have their own character-
istics: (i) objects have cardinality, for example, an element
may repeat n times (n > 0 or n > 1); (ii) objects may be
moved, for example, a sub-tree may be moved from a parent
node to another one; and, (%ii) objects may be complex and
may have their complex type changed.

Non-conservative Primitives. Non-conservative
schema updates define a set of operations that, when ap-
plied to a schema, may lead to an inconsistent state. In this
case, revalidation and adaptation processes are necessary.
The revalidation of an XML document identifies whether an
initially valid document is still valid with respect to the up-
dated schema definitions (e.g., [5, 7, 15]). The adaptation
of an XML document is required if the revalidation process
fails. This process operates on the document structure so it
respects the most up to date schema definitions. Initial ap-
proaches were based on object-oriented databases [2, 87] and
schema versioning [46]. Using information from the DTD,
schema evolution may be triggered by patterns detected on
documents through usage of data mining techniques [9].
MXML [47] is a multidimensional model for representing
the history of XML documents and the evolution of their
schema. Finally, [49] describes a document evolution and
adaptation proposal, and [50] extends it for the incremental
validation of documents upon schema evolution.

Conservative Primitives. This kind of primitives is
important in XML-based applications since: (i) it is not
necessary to revalidate all XML document collections (or
database); (i7) data loss can be avoided because it may
be necessary to delete tags (and their information) from

SIGMOD Record, June 2009 (Vol. 38, No. 2)



initially valid documents; and (%) when documents to be
revalidated are stored in different sites, not only their trans-
fer cost should be considered (in addition to the whole reval-
idation cost) but also problems due to the access control
should be faced. However, conservative primitives are not
complete, that is, some update primitives cannot be mapped
into conservative ones. Several approaches have been pro-
posed to evolve XML schemas. Some of them keep the in-
stances validity without revalidation [16, 18] (e.g., all exist-
ing valid instances are guaranteed to be valid with relation
to updated schema), while others have to test, in some cases,
the validity of all existing valid instances [2, 49, 87].

7. CONCLUDING REMARKS

XML has been explored over and over by both research
and industry communities. This paper summarized some
of the research topics on XML by presenting some of the
most relevant/traditional papers on those subjects. It was
not intended to cover the vast XML literature, but to point
out some directions to those who are interested in learning
this powerful, versatile language called XML. The topics ad-
dressed on this paper were not randomly chosen. They re-
flect the area of expertise of the authors. Overtime, we plan
to expand it to include more XML research areas.

Acknowledgements. The authors thank the reviewers
for their feedback. This work was partially supported by
CNPq, CAPES, FAPERJ, and FAPEMIG, Brazil.

8. REFERENCES
(1] S. Abiteboul, S. Cluet, and T. Milo. Querying and

Updating the File. In VLDB, 1993.

[2] L. Al-Jadir and F. El-Moukaddem. Once Upon a Time a

DTD Evolved into Another DTD... In OOIS, 2003.

S. Al-Khalifa et. al. Structural Joins: A Primitive for

Efficient XML Query Pattern Matching. In ICDE, 2002.

[4] N. Augsten, M. Bohlen, and J. Gamper. Approximate
matching of hierarchical data using pg-grams. In VLDB,
2005.

(5] A. Balmin, Y. Papakonstantinou, and V. Vianu.
Incremental Validation of XML Documents. ACM TODS,
29(4):710-751, 2004.

(6] A. Balmin et. al. A Framework for Using Materialized
XPath Views in XML Query Processing. In VLDB, 2004.

[7] D. Barbosa et. al. Efficient Incremental Validation of XML
Documents. In ICDE, 2004.

[8] M. Benedikt et. al. Adding Updates to XQuery:
Semantics, Optimization, and Static Analysis. In
XIME-P, 2005.

[9] E. Bertino et. al. Evolving a Set of DTDs According to a
Dynamic Set of XML Documents. In EDBT, 2002.

[10] G. J. Bex, F. Neven, and J. V. Bussche. DTDs versus
XML schema: a practical study. In WebDB, 2004.

[11] K. S. Beyer et. al. DB2/XML: Designing for Evolution. In
SIGMOD, 2005.

[12] K. S. Beyer et. al. DB2 Goes Hybrid: Integrating Native
XML and XQuery with Relational Data and SQL. IBM
Systems Journal, 45(2):271-298, 2006.

[13] P. Bohannon et. al. Optimizing View Queries in ROLEX
to Support Navigable Result Trees. In VLDB, 2002.

[14] P. Boncz et. al. MonetDB/XQuery: a fast xquery proces-
sor powered by a relational engine. In SIGMOD, 2006.

[15] B. Bouchou and M. H. F. Alves. Updates and Incremental
Validation of XML Documents. In DBPL, 2003.

[16] B. Bouchou and D. Duarte. Assisting XML Schema
Evolution that Preserves Validity. In Brazilian Symp. on
Data Base (SBBD), 2007.

(3

SIGMOD Record, June 2009 (Vol. 38, No. 2)

[17] B. Bouchou et al. Extending Tree Automata to Model
XML Validation under Element and Attribute
Constraints. In ICEIS, 2003.

(18] B. Bouchou et al. Schema Evolution for XML: A
Consistency-Preserving Approach. In Mathematical
Foundations of Computer Science, 2004.

[19] V. Braganholo, S. B. Davidson, and C. A. Heuser. On the
Updatability of XML Views over Relational Databases. In
WebDB, 2003.

[20] V. Braganholo, S. B. Davidson, and C. A. Heuser. From
XML View Updates to Relational View Updates: Old
Solutions to a New Problem. In VLDB, 2004.

[21] V. Braganholo, S. B. Davidson, and C. A. Heuser.
PATAXO: a Framework to Allow Updates Through XML
Views. ACM TODS, 31(3):839-886, 2006.

[22] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig
Joins: Optimal XML Pattern Matching. In SIGMOD,
2002.

(23] S. Chaudhuri, R. Kaushik, and J. Naughton. On
Relational Support for XML Publishing: Beyond Sorting
and Tagging. In SIGMOD, 2003.

[24] Y. Chen, S. B. Davidson, and Y. Zheng. Constraint
Preserving XML storage in Relations. In WebDB, 2002.

[25] Y. Chen, S. B. Davidson, and Y. Zheng.

RRXS: redundancy reducing XML storage in relations. In
VLDB, 2003.

[26] B. Chidlovskii. Using Regular Tree Automata as XML
Schemas. In Proc. IEEE Advances in Digital Libraries
Conference, May 2000.

[27] S.-Y. Chien et. al. Efficient Structural Joins on Indexed
XML Documents. In VLDB, 2002.

(28] C.-W. Chung, J.-K. Min, and K. Shim. APEX: an
adaptive path index for XML data. In SIGMOD, 2002.

[29] S. Cluet et. al. Your Mediators Need Data Conversion! In
SIGMOD, 1998.

[30] G. Cobéna, S. Abiteboul, and A. Marian. Detecting
Changes in XML Documents. In ICDE, 2002.

[31] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic
XML Trees. In PODS, 2002.

[32] D. DeHaan et.al. A comprehensive XQuery to SQL trans-
lation using dynamic interval encoding. In SIGMOD, 2003.

[33] G. Della Penna et. al. Interoperability Mapping from
XML Schemas to ER Diagrams. Elsevier DKE,
59:166—-188, 2006.

[34] C. Delobel et. al. Semantic Integration in Xyleme: a
Uniform Tree-based Approach. Elsevier DKE,
44(3):267-298, 2003.

[35] A. Deutsch, M. Fernandez, and D. Suciu. Storing
Semistructured Data with STORED. In SIGMOD, 1999.

[36] A. Doan, P. Domingos, and A. Halevy. Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach. In SIGMOD, 2001.

[37] A. Doan and A. Y. Halevy. Semantic Integration Research
in the Database Community: A Brief Survey. Al
Magazine, 26(1):83-94, 2005.

[38] C. F. Dorneles et. al. A Strategy for Allowing Meaningful
and Comparable Scores in Approximate Matching. In
CIKM, 2007.

[39] I. Elghandour et al. An XML Index Advisor for DB2. In
SIGMOD, 2008.

[40] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth.
Management of Heterogeneous and Autonomous Database
Systems. Morgan Kaufmann, San Francisco, CA, 1999.

[41] M. Fernandez et. al. SilkRoute: A framework for
publishing relational data in XML. ACM TODS,
27(4):438-493, 2002.

[42] T. Fiebig and H. Schoning. Software AG’s Tamino
XQuery Processor. In XIME-P, 2004.

[43] T. Fiebig et. al. Natix: A Technology Overview. In NODe
- Web and Database-Related Workshops, 2002.

33



[44]

[45]

[46]

[47)
(48]
[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]

[57)

(58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67)
[68]
[69]
[70]
[71]
[72]

73]

D. Florescu and D. Kossmann. A performance evaluation
of alternative mapping schemes for storing XML data in a
re- lational database. Tech.Report 3684, INRIA, 1999.

A. Gal. The Generation Y of XML Schema Matching
Panel Description. In XSym, 2007.

R. M. Galante et. al. Temporal and versioning model for
schema evolution in object-oriented databases. Data
Knowl. Eng., 53(2):99-128, 2005.

M. Gergatsoulis and Y. Stavrakas. Representing Changes
in XML Documents using Dimensions. In Xsym, 2003.

T. Grust, J. Rittinger, and J. Teubner. eXrQuy: Order
Indifference in XQuery. In ICDE, 2007.

G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML
schema evolution on valid documents. In WIDM, 2005.
G. Guerrini, M. Mesiti, and D. Sorrenti. XML schema
evolution: Incremental validation and efficient document
adaptation. In XSym, 2007.

S. Guha et. al. Approximate XML joins. In SIGMOD,
2002.

S. Guha et. al. Integrating XML Data Sources using
Approximate Joins. ACM TODS, 31(1):161-207, 2006.

S. Guha et.al. Merging the Results of Approximate Match
Operations. In VLDB, 2004.

H. V. Jagadish et.al. TIMBER: A native XML database.
The VLDB Journal, 11(4):274-291, 2002.

H. Jiang et. al. XR-Tree: Indexing XML data for efficient
structural joins. In ICDE, 2003.

A. H. F. Laender et. al. An X-ray on Web-available XML
Schemas. SIGMOD Record, 38(1):37-42, 2009.

D. Lee and W. W. Chu. Constraints-Preserving
Transformation from XML Document Type Definition to
Relational Schema. In ER, 2000.

K.-H. Lee, Y.-C. Choy, and S.-B. Cho. An Efficient
Algorithm to Compute Differences between Structured
Documents. IEEE TKDE, 16(8), 2004.

M. Lenzerini. Data Integration: A Theoretical
Perspective. In PODS, 2002.

Q. Li and B. Moon. Partition Based Path Join Algorithms
for XML Data. In DEXA, 2003.

C. Liu, M. W. Vincent, J. Liu, and M. Guo. A Virtual
XML Database Engine for Relational Databases. In
XSym, 2003.

Z. H. Liu, M. Krishnaprasad, and V. Arora. Native
Xquery Processing in Oracle XMLDB. In SIGMOD, 2005.
J. Lu et al. From Region Encoding to Extended Dewey:
on Efficient Processing of XML Twig Pattern Matching.
In VLDB, 2005.

J. Madhavan, P. Bernstein, and E. Rahm. Generic Schema
Matching with Cupid. In VLDB, 2001.

N. May, S. Helmer, and G. Moerkotte. Strategies for
Query Unnesting in XML Databases. ACM Trans.
Database Syst., 31(3):968-1013, 2006.

P. McBrien and A.Poulovassilis. A semantic approach to
integrating XML and structured data sources. In CAISE,
2001.

R. S. Mello and C. A. Heuser. BInXS: A Process for
Integration of XML Schemata. In CAISE, 2005.

L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a
First Study. In WWW, 2003.

M. M. Moro, S. Malaika, and L. Lim. Preserving XML
queries during schema evolution. In WWW, 2007.

M. M. Moro, Z. Vagena, and V. J. Tsotras. Tree-Pattern
Queries on a Lightweight XML Processor. In VLDB, 2005.
M. M. Moro, Z. Vagena, and V. J. Tsotras. XML
Structural Summaries. PVLDB, 1(2):1524-1525, 2008.
M. Murata et al. Taxonomy of XML Schema Language
using Formal Language Theory. ACM TOIT, 5(4), 2005.
Y. Papakonstantinou and V. Vassalos. Architecture and
implementation of an XQuery-based information integra-
tion platform. IEEE Data Eng. Bull., 25(1):18-26, 2002.

34

[74]

[80]
[81]

[82]

[92]

[93]

94]
[95]
[96]
97]
(98]
99]
[100]

[101]

[102]

U. Park and Y. Seo. An Implementation of XML
Documents Search System based on Similarity in
Structure and Semantics. In Int Workshop on Challenges
in Web Information Retrieval and Integration, pages
97-103. IEEE Computer Society, 2005.

K. Passi et. al. A Model for XML Schema Integration. In
EC-Web, 2002.

E. Popovici, G. Ménier, and P.-F. Marteau. SIRIUS XML
IR System: Approximate Matching Structure and Textual
Content. In INEX, 2006.

S. Puhlmann, M. Weis, and F. Naumann. XML duplicate
detection using sorted neighborhoods. In EDBT, 2006.

M. Raghavachari and O. Shmueli. Efficient Schema-Based
Revalidation of XML. In EDBT, 2004.

P. Rao and B. Moon. Sequencing XML data and query
twigs for fast pattern matching. ACM TODS,
31(1):299-345, 2006.

P. Rodriguez-Gianolli and J. Mylopoulos. A Semantic
Approach to XML-Based Data Integration. In ER, 2001.
M. Rys. XML and relational database management sys-
tems: inside microsoft sql server 2005. In SIGMOD, 2005.
M. Rys, D. D. Chamberlin, and D. Florescu. XML and
Relational Database Management Systems: the Inside
Story. In SIGMOD, 2005.

J. Shanmugasundaram et. al. Relational Databases for
Querying XML Documents: Limitations and
Opportunities. In VLDB, 1999.

J. Shanmugasundaram et. al. Efficiently Publishing
Relational Data as XML Documents. The VLDB Journal,
pages 65—-76, 2000.

J. Shanmugasundaram et. al. A general technique for
querying XML documents using a relational database
system. SIGMOD Record, 30(3):20-26, Sept. 2001.

J. Shanmugasundaram et.al. Querying XML Views of
Relational Data. In VLDB, 2001.

H. Su et al. XEM: Managing the evolution of XML
documents. In RIDE-DM, 2001.

I. Tatarinov et. al. Updating XML. In SIGMOD, 2001.

I. Tatarinov et. al. Storing and Querying Ordered XML
Using a Relational Database System. In SIGMOD, 2002.
A. Vyas, M. F. Ferndndez, and J. Siméon. The Simplest
XML Storage Manager Ever. In XIME-P, 2004.

L. Wang, M. Mulchandani, and E. A. Rundensteiner.
Updating XQuery Views Published over Relational Data:
A Round-trip Case Study. In XSym, 2003.

L. Wang and E. A. Rundensteiner. On the updatability of
XML Views Published over Relational Data. In ER, 2004.
Y. Wang, D. DeWitt, and J. Cai. X-Diff: An Effective
Change Detection Algorithm for XML Documents. In
ICDE, 2003.

H. Wang et. al. ViST: a dynamic index method for
querying XML data by tree structures. In SIGMOD, 2003.
L. Wang et. al. An Optimized Two-Step Solution for
Updating XML Views. In DASFAA, 2008.

M. Weis and F. Naumann. DogmatiX Tracks down
Duplicates in XML. In SIGMOD, 2005.

G. Wiederhold. Mediators in the Architecture of Future
Information Systems. Computer, 25(3):38-49, Mar 1992.
E. Wilde and R. J. Glushko. XML Fever. Commun. ACM,
51(7):40-46, 2008.

Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join or-
der selection for XML query optimization. In ICDE, 2003.
R. Yang, P. Kalnis, and A. K. H. Tung. Similarity
Evaluation on Tree-structured Data. In SIGMOD, 2005.
X. Yang, M. L. Lee, and T. W. Ling. Resolving Structural
Conflicts in the Integration of XML Schemas: A Semantic
Approach. In ER, 2003.

C. Zhang et. al. On Supporting Containment Queries in
Relational Database Management Systems. SIGMOD
Record, 30(2):425-436, 2001.

SIGMOD Record, June 2009 (Vol. 38, No. 2)



