Relational Processing of RDF Queries: A Survey

Sherif Sakr and

Ghazi Al-Naymat

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia
{ssakr,ghazi}@cse.unsw.edu.au

ABSTRACT

The Resource Description Framework (RDF) is a flexible
model for representing information about resources in the
web. With the increasing amount of RDF data which is be-
coming available, efficient and scalable management of RDF
data has become a fundamental challenge to achieve the Se-
mantic Web vision. The RDF model has attracted the atten-
tion of the database community and many researchers have
proposed different solutions to store and query RDF data
efficiently. This survey focuses on using relational query
processors to store and query RDF data. We provide an
overview of the different approaches and classify them ac-
cording to their storage and query evaluation strategies.

1. INTRODUCTION

The goal of the Semantic Web is to provide a common frame-
work for data-sharing across applications, enterprises, and
communities. By giving data semantic meaning (through
metadata), this framework allows machines to consume, un-
derstand, and reason about the structure and purpose of the
data. The core of the Semantic Web is built on the Resource
Description Framework (RDF) data model [17]. RDF de-
scribes a particular resource using a set of RDF statements
of the form (subject, predicate, object) triples, also known
as (subject, property, value). The subject is the resource,
the predicate is the characteristic being described, and the
object is the value for that characteristic.

Efficient and scalable management of RDF data is a funda-
mental challenge at the core of the Semantic Web. Several
research efforts have been proposed to address these chal-
lenges [1, 2, 6, 13, 16, 28]. Relational database management
systems (RDBMSs) have repeatedly shown that they are
very efficient, scalable and successful in hosting types of data
which have formerly not been anticipated to be stored inside
relational databases such as complex objects [27], spatio-
temporal data [5] and XML data [11].

This survey focuses on using relational query processors to

SIGMOD Record, December 2009 (Vol. 38, No. 4)

store and query RDF data. We give an overview of the
different approaches and classifies them according to their
storage and indexing strategy. The rest of the paper is or-
ganized as follows. Section 2 introduces preliminaries of the
RDF data model and the W3C standard RDF query lan-
guage, SPARQL. It also introduce the main alternative re-
lational approaches for storing and querying RDF. Sections
3,4 and 5 provide the details of the different techniques in
each of the alternative relational approaches. Finally, Sec-
tion 6 concludes the paper and provides some suggestions
for possible future research directions on the subject.

2. RDF-SPARQL PRELIMINARIES

The Resource Description Framework (RDF) is a W3C rec-
ommendation that has rapidly gained popularity as a mean
of expressing and exchanging semantic metadata, i.e., data
that specifies semantic information about data. RDF was
originally designed for the representation and processing of
metadata about remote information sources and defines a
model for describing relationships among resources in terms
of uniquely identified attributes and values. The basic build-
ing block in RDF is a simple tuple model, (subject, predi-
cate, object), to express different types of knowledge in the
form of fact statements. The interpretation of each state-
ment is that subject S has property P with value O, where
S and P are resource URIs and O is either a URI or a literal
value. Thus, any object from one triple can play the role of
a subject in another triple which amounts to chaining two
labeled edges in a graph-based structure. Thus, RDF allows
a form of reification in which any RDF statement itself can
be the subject or object of a triple. One of the clear advan-
tage of the RDF data model is its schema-free structure in
comparison to the entity-relationship model where the enti-
ties, their attributes and relationships to other entities are
strictly defined. In RDF, the schema may evolve over the
time which fits well with the modern notion of data man-
agement, dataspaces, and its pay-as-you-go philosophy [14].
Figure 1 illustrates a sample RDF graph.

The SPARQL query language is the official W3C standard
for querying and extracting information from RDF graphs [22].
It represents the counterpart to select-project-join queries
in the relational model. It is based on a powerful graph
matching facility, allows binding variables to components in
the input RDF graph and supports conjunctions and dis-
junctions of triple patterns. In addition, operators akin to
relational joins, unions, left outer joins, selections, and pro-
jections can be combined to build more expressive queries.

23

UNSW |~\ | www.cse.unsw.edu.au/~john] | NICTA || Alice@nicta.com.au
\ 7 X

\ / \
affiliatedBy "\ / webPage affiliatedBy \ Y hasEmail
\ y

hasName \rﬁ/ authoredBy (") editedsy [_% hasName ~
Joh < 1 &2 &1 5 &3 Alice
AN \

/ N \

N N
hasTitle "_publicationType \._roomNo
N N
N\

hasEmail

/ / N N
| John@cse.unsw.edu.au | | Querying RDF Data | | Survey Paper 518

Figure 1: Sample RDF Graph

SELECT ?Z

WHERE { ?X hasTitle “Querying RDF Data”.
?X publicationType “Survey Paper”.
?X authoredBy ?Y.
?Y webPage ?Z.}

Figure 2: Sample SPARQL query

A basic SPARQL query has the form:

select 7variablel ?variable2 ...
where { patternl. pattern2. ... }

where each pattern consists of subject, predicate and object,
and each of these can be either a variable or a literal. The
query specifies the known literals and leaves the unknowns as
variables which can occur in multiple patterns to constitute
join operations. Hence, the query processor needs to find
all possible variable bindings that satisfy the given patterns
and return the bindings from the projection clause to the
application. Figure 2 depicts a sample SPARQL query over
the sample RDF graph of Figure 1 to retrieve the web page
information of the author of a book chapter with the title
"Querying RDF Data’.

Relational database management systems (RDBMSs) have
repeatedly shown that they are very efficient, scalable and
successful in hosting types of data which have formerly not
been anticipated to be stored inside relational databases.
In addition, RDBMSs have shown their ability to handle
vast amounts of data very efficiently using powerful index-
ing mechanisms. The relational RDF stores can be mainly
classified to the following categories:

e Vertical (triple) table stores: where each RDF
triple is stored directly in a three-column table (sub-
ject, predicate, object).

e Property (n-ary) table stores: where multiple RDF
properties are modeled as n-ary table columns for the
same subject.

e Horizontal (binary) table stores: where RDF triples

are modeled as one horizontal table or into a set of
vertically partitioned binary tables (one table for each
RDF property).

Figures 3,4 and 5 illustrate examples of the three alternative
relational representations of the sample RDF graph (Figure
1) and their associated SQL queries for evaluating the sam-
ple SPARQL query (Figure 2).

24

Subject Predicate Object Select T3.0bject
— From Triples as T1, Triples as T2,
ld1 publicationType Survey Paper Triples as T3, Triples as T4
1d1 hasTitle Querying RDF Data Where
T1.Predicate="publicationType” and
1d1 authoredBy 1d2 T1.0bject="Survey Paper”
1d2 hasName John and T2.predicate="hasTitle"
- and T2.0bject="Querying RDF Data”
2 affiiatedsy UNSwW and T3.Predicate="webPage”
1d2 hasEmail John@cse.unsw.edu.au and T1.subject=T2.subject
1d2 webPage www.cse.unsw.edu.au/~john and T4Asubje.ct:T1Asubject
- and T4.Predicate="authoredBy”
d1 editedBy d3 and T4.0bject = T3.Subject
1d3 hasName Alice
1d3 affiliatedBy NICTA
1d3 hasEmail Alice@nicta.com.au
1d3 roomNo 518

Figure 3: Relational Representation of Triple RDF
Stores

Publication
ID publicationType hasTitle authoredBy editedBy
1d1 Survey Paper Querying RDF Data | 1d2 id3
Person
ID hasName affiliatedBy hasEmail webPage roomNo
1d2 John UNSW John@cse.unsw.edu.au | www.cse.unsw.edu.au/~john
1d3 | Alice NICTA Alice@nicta.com.au 518

Select Person.webPage

From Person, Publication

Where Publication.publicationType = “Survey Paper”
and Publication.hasTitle = “Querying RDF Data”

and Publication.authoredBy = Person.ID

Figure 4: Relational Representation of Property Ta-
bles RDF Stores

3. VERTICAL (TRIPLE) STORES

Harris and Gibbins [12] have described the 3store RDF stor-
age system. The storage system of 3Store is based on a
central triple table which holds the hashes for the subject,
predicate, object and graph identifier. The graph identi-
fier is equal to zero if the triple resides in the anonymous
background graph. A symbols table is used to allow reverse
lookups from the hash to the hashed value, for example, to
return results. Furthermore it allows SQL operations to be
performed on pre-computed values in the data types of the
columns without the use of casts. For evaluating SPARQL
queries, the triples table is joined once for each triple in
the graph pattern where variables are bound to their values
when they encounter the slot in which the variable appears.
Subsequent occurrences of variables in the graph pattern
are used to constrain any appropriate joins with their ini-
tial binding. To produce the intermediate results table, the
hashes of any SPARQL variables required to be returned
in the results set are projected and the hashes from the in-
termediate results table are joined to the symbols table to
provide the textual representation of the results.

Neumann and Weikum [20] have presented the RDF-3X
(RDF Triple eXpress) RDF query engine which tries to over-
come the criticism that triples stores incurs too many expen-
sive self-joins by creating the exhaustive set of indexes and
relying on fast processing of merge joins. The physical design
of RDF-3x is workload-independent and eliminates the need

SIGMOD Record, December 2009 (Vol. 38, No. 4)

publicationType hasTitle

| 1d1 | Survey Paper | | Id1 ‘ Querying RDF Data
hasName affiliatedBy

1d2 John 1d2 UNSW
1d3 Alice 1d3 NICTA
hasEmail roomNo
1d2 John@cse.unsw.edu.au 1d3 518
1d3 Alice@nicta.com.au

webPage

| 1d2 | www.cse.unsw.edu.au/~john |
authoredBy editedBy

Select webPage.value
From PublicationType, hasTitle,
authoredBy, webPage
Where publicationType.value = “Survey Paper”
and hasTitle.value = “Querying RDF Data”
and publicationType.ID = hasTitle.ID
and publicationType.ID = authoredBy.ID
and authoredBy.value = webPage.ID

Figure 5: Relational Representation of Binary Ta-
bles RDF Stores

for physical-design tuning by building indexes over all 6 per-
mutations of the three dimensions that constitute an RDF
triple. Additionally, indexes over count-aggregated variants
for all three two-dimensional and all three one-dimensional
projections are created. The query processor follows the
RISC-style design philosophy [7] by using the full set of
indexes on the triple tables to rely mostly on merge joins
over sorted index lists. The query optimizer relies upon
its cost model in finding the lowest-cost execution plan and
mostly focuses on join order and the generation of execu-
tion plans. In principle, selectivity estimation has a huge
impact on plan generation. While this is a standard prob-
lem in database systems, the schema-free nature of RDF
data makes the problem more challenging. RDF-3X em-
ploys dynamic programming for plan enumeration, with a
cost model based on RDF-specific statistical synopses. It
relies on two kinds of statistics: 1) specialized histograms
which are generic and can handle any kind of triple pat-
terns and joins. The disadvantage of histograms is that it
assumes independence between predicates. 2) frequent join
paths in the data which give more accurate estimation. Dur-
ing query optimization, the query optimizer uses the join-
path selectivity information when available and otherwise
assume independence and use the histograms information.
In [21] the authors have extended the work further by in-
troducing a run-time technique for accelerating query exe-
cutions. It uses a light-weight, RDF-specific technique for
sideways information passing across different joins and in-
dex scans within the query execution plans. They have also
enhanced the selectivity estimator of the query optimizer by
using very fast index lookups on specifically designed ag-
gregation indexes, rather than relying on the usual kinds of
coarse-grained histograms. This provides more accurate es-

SIGMOD Record, December 2009 (Vol. 38, No. 4)

timates at compile-time, at a fairly small cost that is easily
amortized by providing better directives for the join-order
optimization.

Weiss, et al. [28] have presented the Hezastore RDF storage
scheme with main focuses on scalability and generality in
its data storage, processing and representation. Hexastore
is based on the idea of indexing the RDF data in a multi-
ple indexing scheme [13]. It does not discriminate against
any RDF element and treats subjects, properties and ob-
jects equally. Each RDF element type have its special index
structures built around it. Moreover, every possible order-
ing of the importance or precedence of the three elements
in an indexing scheme is materialized. Each index structure
in a Hexastore centers around one RDF element and defines
a prioritization between the other two elements. Two vec-
tors are associated with each RDF element (e.g. subject),
one for each of the other two RDF elements (e.g. property
and object). In addition, lists of the third RDF element
are appended to the elements in these vectors. In total, six
distinct indices are used for indexing the RDF data. These
indices materialize all possible orders of precedence of the
three RDF elements. A clear disadvantage of this approach
is that Hexastore features a worst-case five-fold storage in-
crease in comparison to a conventional triples table.

4. PROPERTY TABLE STORES

Due to the proliferations of self-joins involved with the triple-
store, the property table approach was proposed. Jena is a
an open-source toolkit for Semantic Web programmers [19].
It implements persistence for RDF graphs using an SQL
database through a JDBC connection. The schema of the
first version of Jena, Jenal, consisted of a statement table,
a literals table and a resources table. The statement table
(Subject, Predicate, ObjectURI, ObjectLiteral) contained all
statements and referenced the resources and literals tables
for subjects, predicates and objects. To distinguish literal
objects from resource URIs, two columns were used. The
literals table contained all literal values and the resources
table contained all resource URIs in the graph. However,
every query operation required multiple joins between the
statement table and the literals table or the resources table.

To address this problem, the Jena2 schema trades-off space
for time. It uses a denormalized schema in which resource
URIs and simple literal values are stored directly in the
statement table. In order to distinguish database references
from literals and URIs, column values are encoded with a
prefix that indicates the type of the value. A separate literals
table is only used to store literal values whose length exceeds
a threshold, such as blobs. Similarly, a separate resources
table is used to store long URIs. By storing values directly
in the statement table it is possible to perform many queries
without a join. However, a denormalized schema uses more
database space because the same value (literal or URI) is
stored repeatedly. The increase in database space consump-
tion is addressed by using string compression schemes. Both
Jenal and Jena2 permit multiple graphs to be stored in a
single database instance. In Jenal, all graphs were stored
in a single statement. However, Jena2 supports the use of
multiple statement tables in a single database so that appli-
cations can flexibly map graphs to different tables. In this
way, graphs that are often accessed together may be stored

25

together while graphs that are never accessed together may
be stored separately.

In principle, applications typically have access patterns in
which certain subjects and/or properties are accessed to-
gether. For example, a graph of data about persons might
have many occurrences of objects with properties name, ad-
dress, phone, gender that are referenced together. Jena2
uses property table as a general facility for clustering prop-
erties that are commonly accessed together. A property ta-
ble is a separate table that stores the subject-value pairs
related by a particular property. A property table stores
all instances of the property in the graph where that prop-
erty does not appear in any other table used for the graph.
In Jenal, each query is evaluated with a single SQL select
query over the statement table. In Jena2, queries have to
be generalized because there can be multiple statement ta-
bles for a graph. Using the knowledge of the frequent access
patterns to construct the property-tables and influence the
underlying database storage structures can provide a per-
formance benefit and reduce the number of join operations
during the query evaluation process.

Chong et al. [8] have introduced an Oracle-based SQL ta-
ble function RDFMATCH to query RDF data. The results
of RDFMATCH table function can be further processed by
SQL’s rich querying capabilities and seamlessly combined
with queries on traditional relational data. The core im-
plementation of RDFMATCH query translates to a self-join
query on triple-based RDF table store. The resulting query
is executed efficiently by making use of B-tree indexes as well
as creating materialized join views for specialized subject-
property. Subject-Property Matrix materialized join views
are used to minimize the query processing overheads that
are inherent in the canonical triple-based representation of
RDF. The materialized join views are incrementally main-
tained based on user demand and query workloads. A spe-
cial module is provided to analyze the table of RDF triples
and estimate the size of various materialized views, based on
which a user can define a subset of materialized views. For
a group of subjects, the system defines a set of single-valued
properties that occur together. These can be direct proper-
ties of these subjects or nested properties. A property p; is a
direct property of subject x1 if there is a triple (z1,p1, z2).
A property p,, is a nested property of subject z; if there
is a set of triples such as, (z1,p1,22), .., (Tm,Dm, Tm+1),
where m > 1. For example, if there is a set of triples,
(John, address, addrl), (addrl, zip, 03062), then the zip prop-
erty is considered as a nested property of John.

Levandoski and Mokbel [15] have presented another prop-
erty table approach for storing RDF data without any as-
sumption about the query workload statistics. The main
goals of this approach are: (1) reducing the number of join
operations which are required during the RDF query evalu-
ation process by storing related RDF properties together (2)
reducing the need to process extra data by tuning null stor-
age to fall below a given threshold. The approach provides
a tailored schema for each RDF data set which represents
a balance between property tables and binary tables and is
based on two main parameters: 1) Support threshold which
represents a value to measure the strength of correlation be-
tween properties in the RDF data. 2) The null threshold

26

which represents the percentage of null storage tolerated for
each table in the schema. The approach involves two phases:
clustering and partitioning. The clustering phase scans the
RDF data to automatically discover groups of related prop-
erties (i.e., properties that always exist together for a large
number of subjects). Based on the support threshold, each
set of n properties which are grouped together in the same
cluster are good candidates to constitute a single n-ary ta-
ble and the properties which are not grouped in any cluster
are good candidates for storage in binary tables. The parti-
tioning phase goes over the formed clusters and balances the
tradeoff between storing as many RDF properties in clusters
as possible while keeping null storage to a minimum based
on the null threshold. One of the main concerns of the par-
titioning phase is twofold. The first is to ensure that there is
no overlap between the clusters and that each property ex-
ists in a single cluster. The second is to reduce the number
of table accesses and unions necessary in query processing.

Matono, et al. [18] have proposed a path-based relational
RDF database. The main focus of this approach is to im-
prove the performance for path queries by extracting all
reachable path expressions for each resource and store them.
Thus, there is no need to perform join operations unlike the
flat tripe stores or the property tables approach. In this ap-
proach, the RDF graph is divided into subgraphs and then
each subgraph is stored by applicable techniques into dis-
tinct relational tables. More precisely, all classes and prop-
erties are extracted from RDF schema data, and all resources
are also extracted from RDF data. Each extracted item is
assigned an identifier and a path expression and stored in
corresponding relational table.

5. HORIZONTAL STORES

Abadi, et al. [1] have presented SW-Store as a new DBMS
which stores RDF data using a fully decomposed storage
model (DSM) [10]. In this approach, the triples table is
rewritten into n two-column tables where n is the number
of unique properties in the data. In each of these tables,
the first column contains the subjects that define that prop-
erty and the second column contains the object values for
those subjects while the subjects that do not define a par-
ticular property are simply omitted from the table for that
property. Each table is sorted by subject, so that particu-
lar subjects can be located quickly, and that fast merge joins
can be used to reconstruct information about multiple prop-
erties for subsets of subjects. For a multi-valued attribute,
each distinct value is listed in a successive row in the table
for that property. One advantage of this approach is that
while property tables need to be carefully constructed so
that they are wide enough but not too wide to independently
answer queries, the algorithm for creating tables in the ver-
tically partitioned approach is straightforward and need not
change over time. Moreover, in the property-class schema
approach, queries that do not restrict on class tend to have
many union clauses while in the vertically partitioned ap-
proach, all data for a particular property is located in the
same table and thus union clauses in queries are less com-
mon. The implementation of SW-Store relies on a column-
oriented DBMS, C-store [26], to store tables as collections of
columns rather than as collections of rows. In standard row-
oriented databases (e.g., Oracle, DB2, SQLServer, Postgres,
etc.) entire tuples are stored consecutively. The problem

SIGMOD Record, December 2009 (Vol. 38, No. 4)

with this is that if only a few attributes are accessed per
query, entire rows need to be read into memory from disk
before the projection can occur. By storing data in columns
rather than rows, the projection occurs for free only where
those columns that are relevant to a query need to be read.

[3, 9] have argued that storing a sparse data set (like RDF) in
multiple tables can cause problems. They suggested storing
a sparse data set in a single table while the complexities of
sparse data management can be handled inside an RDBMS
with the addition of an interpreted storage format. The
proposed format starts with a header which contains fields
such as relation-id, tuple-id, and a tuple length. When a
tuple has a value for an attribute, the attribute identifier, a
length field (if the type is of variable length), and the value
appear in the tuple. The attribute identifier is the id of the
attribute in the system catalog while the attributes that ap-
pear in the system catalog but not in the tuple are null for
that tuple. Since the interpreted format stores nothing for
null attributes, sparse data sets in a horizontal schema can
in general be stored much more compactly in the format.
While the interpreted format has storage benefits for sparse
data, retrieving the values from attributes in tuples is more
complex. In fact, the format is called interpreted because
the storage system must discover the attributes and values of
a tuple at tuple-access time, rather than using precompiled
position information from a catalog, as the positional for-
mat allows. To tackle this problem, a new operator (called
EXTRACT operator) is introduced to the query plans to
precede any reference to attributes stored in the interpreted
format and returns the offsets to the referenced interpreted
attribute values which is then used to retrieve the values.
Value extraction from an interpreted record is a potentially
expensive operation that is dependent on the number at-
tributes stored in a row or the length of the tuple. Moreover,
if a query evaluation plan fetches each attribute individually
and uses an EXTRACT call per attribute, the record will be
scanned for each attribute and will thus be very slow. Thus,
a batch EXTRACT technique is used to allow for a single
scan of the present values in order to save time.

6. CONCLUDING REMARKS

RDF is a main foundation for processing the semantic of
information stored on the Web. It is the data model behind
the Semantic Web vision whose goal is to enable integration
and sharing of data across different applications and orga-
nizations. The naive way to store a set of RDF statements
is using a relational database with a single table including
columns for subject, property and object. While simple, this
schema quickly hits scalability limitations. Therefore, sev-
eral approaches have been proposed to deal with this limita-
tion by using extensive set of indexes or by using selectivity
estimations to optimize the join ordering [20, 28].

Another approach to reduce the self-join problem is to cre-
ate separate tables (property tables) for subjects that tend
to have common properties defined [8, 15]. Since Seman-
tic Web data is often semi-structured, storing this data in a
row-store can result in very sparse tables as more subjects or
properties are added. Hence, this normalization technique
is typically limited to resources that contain a similar set of
properties and many small tables are usually created. The
problem is that this may result in union and join clauses in

SIGMOD Record, December 2009 (Vol. 38, No. 4)

queries since information about a particular subject may be
located in many different property tables. This may compli-
cate the plan generator and query optimizer and can degrade
performance.

Abadi, et al. [1] have explored the trade-off between triple-
based stores and binary tables-based stores of RDF data.
The main advantages of binary tables are:

e Improved bandwidth utilization: In a column store,
only those attributes that are accessed by a query need
to be read off disk. In a row-store, surrounding at-
tributes also need to be read since an attribute is gen-
erally smaller than the smallest granularity in which
data can be accessed.

e Improved data compression: Storing data from
the same attribute domain together increases local-
ity and thus data compression ratio. Hence, band-
width requirements are further reduced when transfer-
ring compressed data.

On the other side, binary tables do have the following main
disadvantages:

e Increased cost of inserts: Column-stores perform
poorly for insert queries since multiple distinct loca-
tions on disk have to be updated for each inserted tuple
(one for each attribute).

e Increased tuple reconstruction costs: In order
for column-stores to offer a standards-compliant rela-
tional database interface (e.g., ODBC, JDBC, etc.),
they must at some point in a query plan stitch values
from multiple columns together into a row-store style
tuple to be output from the database.

Abadi et al. [1] have reported that the performance of binary
tables is superior to clustered property table while Sidirour-
gos et al. [25] reported that even in column-store database,
the performance of binary tables is not always better than
clustered property table and depends on the characteris-
tics of the data set. Moreover, the experiments of [1] re-
ported that storing RDF data in column-store database is
better than that of row-store database while [25] experi-
ments have shown that the gain of performance in column-
store database depends on the number of predicates in a
data set. Other independent benchmarking projects [4, 23,
24] have shown that no approach is dominant for all queries
and none of these approaches can compete with a purely re-
lational model. Therefore, they are convinced that there is
still room for optimization in the proposed generic relational
RDF storage schemes and thus new techniques for storing
and querying RDF data are still required to bring forward
the Semantic Web vision.

7. REFERENCES

[1] Daniel J. Abadi, Adam Marcus, Samuel Madden, and
Kate Hollenbach. SW-Store: a vertically partitioned
DBMS for Semantic Web data management. VLDB
Journal, 18(2):385-406, 2009.

[2] Sofia Alexaki, Vassilis Christophides, Gregory
Karvounarakis, Dimitris Plexousakis, and Karsten
Tolle. The ICS-FORTH RDFSuite: Managing
Voluminous RDF Description Bases. In Proceedings of
the 2nd International Workshop on the Semantic Web

27

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(SemWeb), 2001.

Jennifer L. Beckmann, Alan Halverson, Rajasekar
Krishnamurthy, and Jeffrey F. Naughton. Extending
RDBMSs To Support Sparse Datasets Using An
Interpreted Attribute Storage Format. In Proceedings
of the 22nd International Conference on Data
Engineering (ICDE), page 58, 2006.

Christian Bizer and Andreas Schultz. Benchmarking
the Performance of Storage Systems that expose
SPARQL Endpoints. In Proceedings of the 4th
International Workshop on Scalable Semantic Web
knowledge Base Systems (SSWS)., 2008.

Viorica Botea, Daniel Mallett, Mario A. Nascimento,
and Jorg Sander. PIST: An Efficient and Practical
Indexing Technique for Historical Spatio-Temporal
Point Data. GeolInformatica, 12(2):143-168, 2008.
Jeen Broekstra, Arjohn Kampman, and Frank van
Harmelen. Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. In Proceedings
of the First International Semantic Web Conference
(ISWC), pages 54-68, 2002.

Surajit Chaudhuri and Gerhard Weikum. Rethinking
Database System Architecture: Towards a Self-Tuning
RISC-Style Database System. In Proceedings of 26th
International Conference on Very Large Data Bases
(VLDB), pages 1-10, 2000.

Eugene Inseok Chong, Souripriya Das, George Eadon,
and Jagannathan Srinivasan. An Efficient SQL-based
RDF Querying Scheme. In Proceedings of the 31st
International Conference on Very Large Data Bases
(VLDB), pages 1216-1227, 2005.

Eric Chu, Jennifer L. Beckmann, and Jeffrey F.
Naughton. The case for a wide-table approach to
manage sparse relational data sets. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 821-832, 2007.

George P. Copeland and Setrag Khoshafian. A
Decomposition Storage Model. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, pages 268-279, 1985.

Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery
on SQL Hosts. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases
(VLDB), pages 252-263, 2004.

Stephen Harris and Nicholas Gibbins. 3store: Efficient
Bulk RDF Storage. In Proceedings of the First
International Workshop on Practical and Scalable
Semantic Systems (PSSS), 2003.

Andreas Harth and Stefan Decker. Optimized Index
Structures for Querying RDF from the Web. In
Proceedings of the Third Latin American Web
Congress (LA-WEB), pages 71-80, 2005.

Shawn R. Jeffery, Michael J. Franklin, and Alon Y.
Halevy. Pay-as-you-go user feedback for dataspace
systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 847-860, 2008.

Justin J. Levandoski and Mohamed F. Mokbel. RDF
Data-Centric Storage. In Proceedings of the IEEE
International Conference on Web Services (ICWS),
20009.

Li Ma, Zhong Su, Yue Pan, Li Zhang, and Tao Liu.

28

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

[26]

27]

(28]

RStar: an RDF storage and query system for
enterprise resource management. In Proceedings of the
ACM International Conference on Information and
Knowledge Management (CIKM), pages 484-491,
2004.

Frank Manola and Eric Miller. RDF Primer, W3C
Recommendation, February 2004.
http://www.w3.org/TR/REC-rdf-syntax/.

Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi
Yoshikawa, and Shunsuke Uemura. A Path-based
Relational RDF Database. In Proceedings of the 16th
Australasian Database Conference (ADC), pages
95-103, 2005.

Brian McBride. Jena: A Semantic Web Toolkit. IEEE
Internet Computing, 6(6):55-59, 2002.

Thomas Neumann and Gerhard Weikum. RDF-3X: a
RISC-style engine for RDF. Proceedings of the VLDB
Endownment (PVLDB), 1(1):647-659, 2008.

Thomas Neumann and Gerhard Weikum. Scalable join
processing on very large RDF graphs. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 627—640, 2009.

Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF, W3C Recommendation,
January 2008.
http://www.w3.org/TR/rdf-sparql-query/.

Michael Schmidt, Thomas Hornung, Norbert Kiichlin,
Georg Lausen, and Christoph Pinkel. An
Experimental Comparison of RDF Data Management
Approaches in a SPARQL Benchmark Scenario. In
Proceedings of the 7th International Semantic Web
Conference (ISWC), pages 82-97, 2008.

Michael Schmidt, Thomas Hornung, Georg Lausen,
and Christoph Pinkel. SP2Bench: A SPARQL
Performance Benchmark. In Proceedings of the 25th
International Conference on Data Engineering
(ICDE), pages 222-233, 2009.

Lefteris Sidirourgos, Romulo Goncalves, Martin L.
Kersten, Niels Nes, and Stefan Manegold.
Column-store support for RDF data management: not
all swans are white. Proceedings of the VLDB
Endownment (PVLDB), 1(2):1553-1563, 2008.
Michael Stonebraker, Daniel J. Abadi, Adam Batkin,
Xuedong Chen, Mitch Cherniack, Miguel Ferreira,
Edmond Lau, Amerson Lin, Samuel Madden,
Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin,
Nga Tran, and Stanley B. Zdonik. C-Store: A
Column-oriented DBMS. In Proceedings of the 31st
International Conference on Very Large Data Bases
(VLDB), pages 553-564, 2005.

Can Tirker and Michael Gertz. Semantic integrity
support in SQL: 1999 and commercial
(object-)relational database management systems.
VLDB Journal, 10(4):241-269, 2001.

Cathrin Weiss, Panagiotis Karras, and Abraham
Bernstein. Hexastore: sextuple indexing for semantic
web data management. Proceedings of the VLDB
Endownment (PVLDB), 1(1):1008-1019, 2008.

SIGMOD Record, December 2009 (Vol. 38, No. 4)

