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Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community. 
I’m Marianne Winslett, and today we are at the 2017 SIGMOD and PODS conference in Chicago. I have here with 
me Goetz Graefe, who is the recipient of the SIGMOD Innovations Award, the SIGMOD Test of Time Award, the 
ICDE Distinguished Paper Award, and the ACM Software System Award, all for his work on query processing. His 
Ph.D. is from the University of Wisconsin  ̶  Madison. Goetz was an HP Fellow and he currently works for Google. 
So, Goetz, welcome! 
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Thank you.  

You’ve worked at a lot of different places but always 
on query processing. Everybody wants to know what 
it’s like to work on the same topic for 30 years. 

I’ve worked at multiple places. I’ve taught at Oregon 
Graduate Institute and then at the University of 
Colorado at Boulder, and then at the Portland State 
University. Since then, I worked for 12 years at 
Microsoft and then for ten years at HP. So, I wouldn’t 
say I worked at a lot of places in the last 20 years.  

I also didn’t always work on query processing. I 
worked on query processing as a graduate student, and 
then as a professor, and then for a while at Microsoft. 
But then I switched to working on indexing within the 
SQL Server product. And at HP, I worked on query 
execution again. And then, I also worked on 
concurrency control and on write-ahead logging and 
recovery. So, I’ve always worked within the database 
engine, but not exactly on one topic only. 

Okay. So, why does everyone think you’ve been 
working on the same thing for 30 years? Is it because 
you’re Mr. Query Optimization? 

Actually, I don’t know whether that is even true 
because, in Germany, I’m actually often known as Mr. 
B-Tree. Obviously, Rudy Bayer invented B-trees, but I 
have published probably more than half a dozen papers 
and surveys on B-Trees. So, in Germany, people think 
I’m Mr. B-Tree. 

Okay, we’re correcting that misperception then of 30 
years of the same thing. 

I like to believe I’m neither one. I’m neither only query 
processing nor only B-Trees. And I think there are a 
couple of pieces of research hopefully coming out soon 
on concurrency control, and there actually are several 
pieces out already on logging and recovery1. So, 
hopefully, that perception will vanish over time. 

 
1 The interested reader can refer to these publications:  
Goetz Graefe: On transactional concurrency control. 

Synthesis Lectures on Data Management, Morgan & 
Claypool Publishers 2019. 

Goetz Graefe, Wey Guy, Caetano Sauer: Instant recovery 
with write-ahead logging: page repair, system restart, 
media restore, and system failover, Second Edition. 
Synthesis Lectures on Data Management, Morgan & 
Claypool Publishers 2016. 

It sounds like you’re a full-stack guy for the database 
engine itself. 

Perhaps something like that. 

People would like to know, are there still open 
problems in query optimization? 

There most certainly are. Plenty of them. But they all 
boil down to fairly few topics. So, the way I think 
about query processing is No. 1; people expand the 
functionality of query processing. People put more and 
more analytic functions into query processing. People 
want to put all kinds of clever machine learning into 
the query processor. So, expanding the functionality is 
one thing.  

The other thing (No. 2) is most people when they think 
query processing, they think about traditional relational 
query processing, and then they think about 
performance. And performance, I really divide into 
three things: (i) efficiency, meaning clever algorithms 
that process data fast; (ii) scalability, clever ways of 
using many, many computers (or at least many, many 
cores). And the third one (iii) is really robustness of 
performance, and with robustness, I mean more than 
predictability. If I have a car that never starts when it’s 
wet but always starts when it’s dry, it’s a predictable 
car, but it’s not a useful car. So, what I want is more 
than predictability. I want robustness, something I can 
rely on. I want the good performance every day. I’m 
okay if I don’t get best performance. Maybe I don’t get 
best performance ever.  

And my standard analogy for that is if you own a 
house, every year you pay good money yet you hope 
you will never get anything back for it. It’s called fire 
insurance, right? You pay it, and you pay it willingly 
as long as it’s a small fraction of the value of the 
house. And as long as you can count on if you lose the 
house due to fire, it’ll get replaced. So, then similarly 
with robust performance, you’re probably willing to 
forego some small amount of efficiency, if, in return, 
you get robust performance, predictable performance, 
reliable performance, which among other things, 
permits you to load your service much higher.  

If you get random load spikes and you never know 
when, you end up running a service at 20 percent 
utilization. But if your performance is very steady and 
utilization is very steady, it’s perfectly reasonable to 
run at 60 percent utilization. And suddenly, the ten 
percent overhead – or maybe even the factor two 
overhead – comes back and more, if you can load your 
service substantially higher. 
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That’s a great lead-in for something else I wanted to 
ask you about. There’s this recent work from Rick 
Snodgrass’s group that suggests that there’s an 
inherent hard limit on how well top-down rule-based 
optimizers can do. And the kind of behavior that 
they’re seeing in their experiments with commercial 
engines is exactly what you describe as the key thing to 
avoid if you wanna have robust performance.  

It’s like the system somehow ends up with too many 
options to consider, and it does worse and worse on an 
average random query. Not the ones it was tuned for, 
but just something that’s slightly different. Do you 
think there is a wall there and that rule-based query 
optimizers have hit that wall or will hit that wall? 

Well, I don’t think it has anything to do with what kind 
of query optimizer you have. Whether it’s top-down, 
bottom-up, rule-based, transformation-based, dynamic 
programming – they all have the same problem. I think 
the key issue here is also not how many logical 
operators you have like join and select. I think the 
bigger issue is how many physical operators you have. 
So, not how many algebra operations you have in your 
specification algebra, but in your execution algebra. 
And so, if you have 17 join algorithms in your system, 
chances are you’ll hardly ever pick the optimal one. In 
fact, you should be happy if you always pick a good 
one. And it’s unlikely to be the case.  

So, the fewer algorithms you have – ideally, if you 
only have one – you can never choose a wrong one. 
So, yes, there is a practical limit, and I think the 
practical limit comes from two things. No. 1, choice is 
confusion. If you have too many choices, you get 
confused. No. 2, cardinality estimation will always be 
inaccurate. No matter how sophisticated your model is 
to describe the distribution of data values, there will 
always be perhaps an adversarial case – as a test case – 
where the model that you have chosen to implement 
does not capture the distribution you truly have.  

And so, I don’t believe that the solution for the lack of 
robustness in query performance will come from the 
planning part of query processing. I actually believe it 
will come from the execution part from query 
processing. 

So, what do you mean? 

Well, I think plans will often be right and good. And 
there will always be cases where, in particular, the 
compile-time planner will choose a bad plan. And what 
we really need is execution engines that are much more 
forgiving. So, the word that I choose here is graceful 
degradation. It’s very important. The problem in 
products is that the customer complains about a bad 
plan having been chosen for a query. Now, a bad plan 
chosen sounds of course like a defect, a bug, a 
complaint that should go to the query optimization 
team. So, the query optimization team will do what 
they can to have a different plan chosen or a better plan 
chosen.  

Maybe they make the cardinality estimation or the cost 
calculation more sophisticated. But I think in some 
sense, it’s a futile battle. I think that in many cases, the 
solution will come from the query execution engine 
being more forgiving about what plan actually got 
handed to the query execution. So, can the query 
execution engine somehow avoid performance 
deterioration that is not graceful? And can the query 
execution engine execute the plan in a way that doesn’t 
show the mistake as badly as a naïve query execution 
engine would? 

So, what exactly should be done differently at runtime? 

So, the algorithms executing at runtime have to be 
implemented in such a way that they transition from an 
execution mode optimized for small data to an 
execution mode optimized for large data in a graceful 
way and in an incremental way, as opposed to having a 
big switch. For a simple example but something that’s 
nonetheless used heavily by systems and customers, 
imagine you want to sort data. If the sort input fits in 
memory, you’ll probably use an in-memory sort, like 
quicksort, and the data gets loaded into the sort 
workspace and then gets scanned out of the sort 
workspace. If you have one record more than fits in 
memory, how much data gets written to temporary 
storage?  

It seems it should only be one record or one page. But 
in the naïve implementation that might have been done 
under time pressure – “Let’s get the release out” – 
there might actually be a sort that spills the entire 
memory content. Now, if you have a gigabyte sort 
space, and you spill at 100 megabytes per second, and 
you load it back in at 100 megabytes per second, that’s 
20 seconds right there. So, for one extra record, we 
have 20 seconds extra runtime. And customers are 
guaranteed to come back and say, “Bad plan chosen.” 

Can you give another example? That was a great 
example. 

	
[…]	choice	is	confusion.		
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Well, let’s take hash join. There are different versions 
of hash join, different versions of hybrid hash join. In 
particular, in terms of when you need to know how big 
the inputs are. And if you implement hybrid hash join 
from the get-go, from the start, anticipating unknown 
input sizes (inputs that are smaller or larger than the 
optimizer might have said), then the hybrid hash join 
should spill incrementally. So, it should start running 
as an in-memory join and then spill a little bit, and if 
necessary, spill a little bit more. So, that would be a 
graceful behavior. 

Can hardcore database engine internals research still 
be done in academia? 

Absolutely. Yes. And lots of people do. In fact, in 
every SIGMOD, every VLDB, you see a number of 
papers where somebody has done maybe only a twist 
on something previously or something fundamental. 
And yes, there’s a lot of interesting work coming out 
of academia. Not everybody who can get a program to 
run necessarily and implicitly and immediately has 
interesting work. But I think there is absolutely 
interesting work to be done in academia but also in 
industrial research. 

Are there any hardcore database engine internal 
problems where the research really needs to be done in 
industry rather than in academia? 

I don’t think so. Much of it can be done either place. 
When you say industry, you also have to distinguish 
between product groups and research groups. I think 
they really have different roles. But academia has yet 
another role. The way I see it, it’s clear what a product 
group does. A product group produces product and 
either provides it as a software product on a DVD or as 
download, or also as a cloud service. Academics do 
research. They create IP and of course pass it on to the 
next generation. Industrial research labs have a very 
different role from both of them. Industrial research 
labs, in my opinion, should enable informed decisions.  

This is something that the product groups don’t do. 
The product groups have to execute. The product 
groups adopt technologies that they can adopt with a 
predictable effort (say in software development and 
testing) and with a predictable result (say in 
performance, efficiency, scalability, or robustness), 
whereas industrial research labs should take promising 
intellectual property and promising techniques and 
technologies and develop them to the point that leaders 
in product groups can make informed decisions about 
whether to adopt a technology, how to adopt a 
technology, or whether to skip a technology. 

That’s very interesting. But isn’t it the product groups 
who have the most insight into what the pain points are 
for the customers, in other words, what IP needs to be 
developed? 

Yes. But understanding the pain points, that can easily 
be transferred from a product group into an industrial 
research lab. I totally agree that the product groups 
should somewhat guide the industrial research labs. On 
the other hand, only “somewhat” because I think there 
is this famous quote attributed to Henry Ford: “If I had 
done what my customers wanted me to do, I would 
have produced faster horses.” And I’m sure there are 
variants to that one.  

But I think what industrial research groups also ought 
to do is prevent the product groups from getting 
scooped. So, explore outside technology that may or 
may not disrupt the products in some form. So, I think 
there too, the research labs should help the product 
leaders to make informed decisions, what to prototype, 
what to adopt, what to skip. 

 I like what you’re saying. But isn’t it true that if the 
industrial research lab came back and said, “You guys 
should really take a serious look at this disruptive 
technology,” wouldn’t the product groups not be very 
happy to hear that since it would disrupt their entire 
income stream? 

Well, let’s take an example. A traditional database 
product has a product group and a research lab. The 
research lab says “in-memory databases are going to 
be there”, what the product leader might want to know 
is when. Also, what do we know about what the 
competition is already doing in terms of what public 
material is out there in websites or conference papers 
or something. And also, the next question that the 
product leader will ask is: what actually works? Just 
saying, “in-memory databases are coming, in-memory 
databases are coming,” is not sufficient. It doesn’t 
enable informed development decisions. It doesn’t 
enable informed investment decisions.  

[…]	if	you	have	17	join	
algorithms	in	your	system,	
chances	are	you’ll	hardly	

ever	pick	the	optimal	one.	In	
fact,	you	should	be	happy	if	
you	always	pick	a	good	one.	
And	it’s	unlikely	to	be	the	

case.		
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At some point, the product leader has to say, “I’m not 
going to have five people work on a faster backup. But 
I’m gonna take three of them and have them work on 
in-memory transactions,” or something like that. And 
that’s a decision. And making that decision an 
informed decision, that’s where the industrial research 
lab can create tremendous value for the industry, but 
also for the progress of the customers and of the 
applications and of whatever benefits they will 
provide. 

Great. Young researchers would like to know what 
long-term hard systems problems you see. Not the hot 
topics but the long-term issues. 

Well, that’s a difficult one. And given that you are 
asking about long-term questions, I have a high 
probability of being wrong. So, I think scalability and 
robustness in scalability is going to be a big issue. I 
think we are going to reinvent a number of systems 
issues repeatedly. So, for example, today, we achieve 
robustness in scalable systems by mirroring like crazy. 
Every data page is written in multiple places. And if 
one of those places breaks down, we’ll rely on the 
multiple copies. Now that is very expensive.  

And if data keeps exploding in size in an exponential 
growth curve, and hardware is not growing as fast in 
storage capacity and processing capacity, then we 
might actually find that we can’t have as many copies 
anymore. We have to do something with fewer copies. 
And I think that probably is going to be with us for a 
while.  

Another problem that will be with us for a while is the 
problem we already talked about briefly: robust 
performance. I think designing efficient algorithms, 
making things parallel and scalable, those are trickier 
at times, but more manageable. Robustness is much 
harder, partially because it’s much harder to measure. 
And if we don’t have a clear agreed-upon metric, it’s 
very hard to prove that my technique is better than 
your technique or the technique published last year. 

You traditionally work on very intricate details of 
relational database engine internals. And this isn’t an 
obvious match with your current employer, Google. 
Although of course, Google also cares about issues 
like fast recovery from failures. Can your results also 
be applied in some kind of way to Google’s kind of 
massively parallel infrastructure? 

I believe very much so. So, let’s look at the query 
processing work that I’ve done and that I’m still doing. 
Google actually has multiple SQL engines. So, Google 
has multiple query optimizers and multiple query 
execution engines. All of them of course, designed and 

implemented from the get-go to be very scalable. So, 
efficiency, scalability, and robust performance are 
issues on all of these engines.  

If you look at the indexing things I’ve worked on in the 
past, Google, like everybody else, will store more and 
more data in memory, meaning with very low latency. 
And in the past, a go-to on disk, a random access on 
disk, was considered very expensive. On a traditional 
disk drive, you can scan a megabyte in the time to read 
one byte in a random place. So, therefore, there are a 
number of systems that are optimized for fast scanning. 
And the principle optimizations for fast scannings are 
column stores and compression. So, in my mind, I 
think of column stores as optimized for disk-based data 
centers, disk-based data collections (traditionally, 
historical data collections have been disk-based). But 
when it comes to transaction processing or shorter 
history – not years of history but shorter history – and 
in particular looking into the future, I think more and 
more data will be in memory, where random accesses 
are much cheaper.  

So, I think indexing and index-based query processing, 
and that means index maintenance techniques, index 
concurrency control, index recovery, index 
compression, all those things will definitely be used at 
Google, but also elsewhere. And I think whatever 
companies that are out there that Google competes on a 
business level, it also competes on a technology level, 
what internal technology is used. Google is clearly 
interested in in-memory processing, in-memory 
indexing, SQL query processing, and so on.  

Think about concurrency control with many-core 
processors. Concurrency is an issue because there are 
multiple threads, multiple transactions running in any 
sphere of control, in any operating system instance. 
Concurrency control is a big issue, and I think the 
work I have been doing recently on precision in 
concurrency control – lock sizes and lock durations – 
can very much have an impact on Google.  

Thinking about recovery and availability, obviously, 
Google very much depends on continuous processing 
of its logs. Google collects a lot of logs from online 
activity. And those logs need to be processed. One 
day’s worth of log needs to be processed in less than a 
day, otherwise, we fall behind. Keeping that log 
processing pipeline and all its components up and 
running is very important too, You can think of all of 
those things as invented and designed and perhaps 
publicly described in the context of traditional 
relational databases. But many or all of those things 
are very much transferable into other environments. 

Today’s commercial query optimizers are all based on 
Cascades, the top-down rule-based approach to query 
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optimization that you put together 25 years ago. Does 
it surprise you that even new optimizers like Orca still 
use the Cascades framework? 

Very much. Yes, it does. Orca actually not only uses 
the approach, but I think Orca is somewhat of a 
reimplementation of the Cascades paper2. And I just 
heard today at the SIGMOD conference here in 
Chicago that somebody had as a student semester 
project a reimplementation of Cascades. And that is 
now an open-source piece of software, apparently. 
Yes, it surprises me very much that people still follow 
this approach. I think this approach is very good with 
respect to extensibility. So, if you want to bring in a 
new operation into your specification algebra or into 
your execution algebra, then yes. Cascades is very nice 
because it’s very extensible.  

On the other hand, Cascades doesn’t do anything for 
anybody with respect to cardinality estimation, which 
is really the Achilles’ heel of compile-time query 
planning.  

The other thing is I think if you look at the core of 
most relational queries, it is still joins. And I think the 
group around Pat Selinger at IBM Almaden, and their 
paper from 1979 is still a foundation3. I think Thomas 
Neumann has done excellent work with his advisor 
Guido Moerkotte and then since on extending that to 
more complex join predicates, for example.  

If I were to build a query optimizer today from scratch, 
I would use dynamic programming for join 
optimization. And I would use a Cascades-style 
transformation approach for extensibility. But as I said 

 
2 Goetz Graefe: The Cascades Framework for Query 

Optimization. IEEE Data Eng. Bull. 18(3): 19-29 (1995). 
3 Patricia G. Selinger, Morton M. Astrahan, Donald D. 

Chamberlin, Raymond A. Lorie, Thomas G. Price: Access 
Path Selection in a Relational Database Management 
System. SIGMOD Conference 1979: 23-34. 

earlier in this conversation, I would also build a query 
execution engine to complement my optimizer, in a 
way that it is very forgiving of poor plan choices. 

What do you think of key-value stores? 

I think key-value stores have their place in the scheme 
of things. Key-value stores come in a wide variety of 
scalability, capability, and so on. At some places, they 
are the right tool. And that’s what it’s all about, 
choosing the right tool. At some other places, they are 
not. Personally, I am very convinced that application 
programmers want serializable transactions, meaning 
application programmers have the freedom, the liberty, 
the simplicity of thinking whatever transaction they 
run is the only thing going. I think that’s a powerful 
paradigm. Some people strongly agree with me. Some 
people strongly disagree with me. And that’s okay. I 
happen to have one belief. There you have it.  

Some key-value stores are better about it than others. 
And I think some people trade performance for 
concurrency, for cleanliness of transactions. As I said, 
I usually would forego performance and scalability if I 
can get cleanliness of the application model. But then I 
think we, as data engine experts, should try to make 
the clean application programming model highly 
efficient in the engine.  

So, I mentioned earlier concurrency control, the 
granularity of concurrency control, the duration of 
locks, how many false conflicts do we detect and treat 
them as if they are conflicts. In my concurrency 
control work that is basically the theme: avoiding false 
conflicts. And I think there is probably a factor 100 in 
that. 

Wow. Okay. You teach a one-week course on – we 
won’t pigeonhole it. We’ll just say database engines – 
every year at Dagstuhl. In this day and age of 
education over the internet, why don’t you just record 
your class and leave it on the web for posterity? 

Well, there are many reasons for that. I think the 
students, typically fresh masters graduates, get much 
more out of it if it’s interactive. Even when I was 
teaching undergraduates, I always was trying to learn 
names, basically have conversations rather than 
lectures. So, I think it’s much better for the students if 
it’s interactive. I think it’s also much better for the 
students if they in some sense experience, what for 
many, is the first international event.  

And Dagstuhl is a very nice and protective 
environment. For many of the participants, that’s a 
very positive experience. Personally, I enjoy it very 
much. Yes, I miss teaching. I used to like it very much. 

I	don’t	believe	that	the	
solution	for	the	lack	of	
robustness	in	query	

performance	will	come	from	
the	planning	part	of	query	
processing.	I	actually	believe	

it	will	come	from	the	
execution	part	from	query	

processing.	
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And so, this is my outlet. And I love Dagstuhl. In fact, 
I’m on one of their boards, so I have to go there for 
their board meetings at least once a year. 

Do you have any other words of advice for fledgling or 
midcareer database researchers? 

Well, what advice? Never give up. That’s really the 
advice I have because there have been a number of 
times where things have not gone well in my career. I 
had to leave a university because clearly my tenure 
was going down the drain. In retrospect, they probably 
would be happy to have had me. I think other things 
have not gone my way. You just keep plugging away, 
and you show them. And that would be my advice.  

Work on real problems. Solve problems that you know 
exist. And then have confidence that you can solve 
them and keep working on them.  

Work on problems nobody cares about because in 
particular, if you don’t have a large group, that’s the 
best way to make progress without fierce competition. 
For example, at Hewlett-Packard, I felt at times I was 
the only database expert in Hewlett-Packard Labs. And 
so, I worked on stuff like concurrency control and join 
algorithms. And I knew there wouldn’t be competition. 
If I get it published this year, get it published next year, 
nobody cares. Nobody will scoop me because nobody 
was working on concurrency control and join 
algorithms. So, just keep plugging away, and you’ll get 
there. 

If you magically had enough extra time to do one 
additional thing at work that you’re not doing now, 
what would it be? 

I would really, really love to have a team to implement 
a new system that actually is innovative by simplicity. 
Simple is absolutely important because if it’s not 
simple, I don’t understand it. And every system I know 
has gotten so unbelievably complex. And people revel 
in the complexity, it feels to me. Building something 
really simple, that would be fun. But it would require a 
small team to build something that is still robust say, 
against data loss, but also robust in terms of query 
performance. 

If you could change one thing about yourself as a 
computer science researcher, what would it be? 

Perhaps I would have stayed an extra year in graduate 
school and had learned about artificial intelligence and 
basically had done more with it. I mean, I went 
through graduate school in four years, which was fast. 
And I think maybe if I had stayed an extra year, that 
could have been fun. 

Thank you very much for talking with us today. 

It’s been my pleasure.  
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