
Goetz	Graefe	Speaks	Out	on	(Not	Only)	
Query	Optimization

	
Marianne	Winslett	and	Vanessa	Braganholo	

Goetz Graefe

https://dblp.org/pers/hd/g/Graefe:Goetz

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community.
I’m Marianne Winslett, and today we are at the 2017 SIGMOD and PODS conference in Chicago. I have here with
me Goetz Graefe, who is the recipient of the SIGMOD Innovations Award, the SIGMOD Test of Time Award, the
ICDE Distinguished Paper Award, and the ACM Software System Award, all for his work on query processing. His
Ph.D. is from the University of Wisconsin ̶ Madison. Goetz was an HP Fellow and he currently works for Google.
So, Goetz, welcome!

30 SIGMOD Record, September 2020 (Vol. 49, No. 3)

Thank you.

You’ve worked at a lot of different places but always
on query processing. Everybody wants to know what
it’s like to work on the same topic for 30 years.

I’ve worked at multiple places. I’ve taught at Oregon
Graduate Institute and then at the University of
Colorado at Boulder, and then at the Portland State
University. Since then, I worked for 12 years at
Microsoft and then for ten years at HP. So, I wouldn’t
say I worked at a lot of places in the last 20 years.

I also didn’t always work on query processing. I
worked on query processing as a graduate student, and
then as a professor, and then for a while at Microsoft.
But then I switched to working on indexing within the
SQL Server product. And at HP, I worked on query
execution again. And then, I also worked on
concurrency control and on write-ahead logging and
recovery. So, I’ve always worked within the database
engine, but not exactly on one topic only.

Okay. So, why does everyone think you’ve been
working on the same thing for 30 years? Is it because
you’re Mr. Query Optimization?

Actually, I don’t know whether that is even true
because, in Germany, I’m actually often known as Mr.
B-Tree. Obviously, Rudy Bayer invented B-trees, but I
have published probably more than half a dozen papers
and surveys on B-Trees. So, in Germany, people think
I’m Mr. B-Tree.

Okay, we’re correcting that misperception then of 30
years of the same thing.

I like to believe I’m neither one. I’m neither only query
processing nor only B-Trees. And I think there are a
couple of pieces of research hopefully coming out soon
on concurrency control, and there actually are several
pieces out already on logging and recovery1. So,
hopefully, that perception will vanish over time.

1 The interested reader can refer to these publications:
Goetz Graefe: On transactional concurrency control.

Synthesis Lectures on Data Management, Morgan &
Claypool Publishers 2019.

Goetz Graefe, Wey Guy, Caetano Sauer: Instant recovery
with write-ahead logging: page repair, system restart,
media restore, and system failover, Second Edition.
Synthesis Lectures on Data Management, Morgan &
Claypool Publishers 2016.

It sounds like you’re a full-stack guy for the database
engine itself.

Perhaps something like that.

People would like to know, are there still open
problems in query optimization?

There most certainly are. Plenty of them. But they all
boil down to fairly few topics. So, the way I think
about query processing is No. 1; people expand the
functionality of query processing. People put more and
more analytic functions into query processing. People
want to put all kinds of clever machine learning into
the query processor. So, expanding the functionality is
one thing.

The other thing (No. 2) is most people when they think
query processing, they think about traditional relational
query processing, and then they think about
performance. And performance, I really divide into
three things: (i) efficiency, meaning clever algorithms
that process data fast; (ii) scalability, clever ways of
using many, many computers (or at least many, many
cores). And the third one (iii) is really robustness of
performance, and with robustness, I mean more than
predictability. If I have a car that never starts when it’s
wet but always starts when it’s dry, it’s a predictable
car, but it’s not a useful car. So, what I want is more
than predictability. I want robustness, something I can
rely on. I want the good performance every day. I’m
okay if I don’t get best performance. Maybe I don’t get
best performance ever.

And my standard analogy for that is if you own a
house, every year you pay good money yet you hope
you will never get anything back for it. It’s called fire
insurance, right? You pay it, and you pay it willingly
as long as it’s a small fraction of the value of the
house. And as long as you can count on if you lose the
house due to fire, it’ll get replaced. So, then similarly
with robust performance, you’re probably willing to
forego some small amount of efficiency, if, in return,
you get robust performance, predictable performance,
reliable performance, which among other things,
permits you to load your service much higher.

If you get random load spikes and you never know
when, you end up running a service at 20 percent
utilization. But if your performance is very steady and
utilization is very steady, it’s perfectly reasonable to
run at 60 percent utilization. And suddenly, the ten
percent overhead – or maybe even the factor two
overhead – comes back and more, if you can load your
service substantially higher.

SIGMOD Record, September 2020 (Vol. 49, No. 3) 31

That’s a great lead-in for something else I wanted to
ask you about. There’s this recent work from Rick
Snodgrass’s group that suggests that there’s an
inherent hard limit on how well top-down rule-based
optimizers can do. And the kind of behavior that
they’re seeing in their experiments with commercial
engines is exactly what you describe as the key thing to
avoid if you wanna have robust performance.

It’s like the system somehow ends up with too many
options to consider, and it does worse and worse on an
average random query. Not the ones it was tuned for,
but just something that’s slightly different. Do you
think there is a wall there and that rule-based query
optimizers have hit that wall or will hit that wall?

Well, I don’t think it has anything to do with what kind
of query optimizer you have. Whether it’s top-down,
bottom-up, rule-based, transformation-based, dynamic
programming – they all have the same problem. I think
the key issue here is also not how many logical
operators you have like join and select. I think the
bigger issue is how many physical operators you have.
So, not how many algebra operations you have in your
specification algebra, but in your execution algebra.
And so, if you have 17 join algorithms in your system,
chances are you’ll hardly ever pick the optimal one. In
fact, you should be happy if you always pick a good
one. And it’s unlikely to be the case.

So, the fewer algorithms you have – ideally, if you
only have one – you can never choose a wrong one.
So, yes, there is a practical limit, and I think the
practical limit comes from two things. No. 1, choice is
confusion. If you have too many choices, you get
confused. No. 2, cardinality estimation will always be
inaccurate. No matter how sophisticated your model is
to describe the distribution of data values, there will
always be perhaps an adversarial case – as a test case –
where the model that you have chosen to implement
does not capture the distribution you truly have.

And so, I don’t believe that the solution for the lack of
robustness in query performance will come from the
planning part of query processing. I actually believe it
will come from the execution part from query
processing.

So, what do you mean?

Well, I think plans will often be right and good. And
there will always be cases where, in particular, the
compile-time planner will choose a bad plan. And what
we really need is execution engines that are much more
forgiving. So, the word that I choose here is graceful
degradation. It’s very important. The problem in
products is that the customer complains about a bad
plan having been chosen for a query. Now, a bad plan
chosen sounds of course like a defect, a bug, a
complaint that should go to the query optimization
team. So, the query optimization team will do what
they can to have a different plan chosen or a better plan
chosen.

Maybe they make the cardinality estimation or the cost
calculation more sophisticated. But I think in some
sense, it’s a futile battle. I think that in many cases, the
solution will come from the query execution engine
being more forgiving about what plan actually got
handed to the query execution. So, can the query
execution engine somehow avoid performance
deterioration that is not graceful? And can the query
execution engine execute the plan in a way that doesn’t
show the mistake as badly as a naïve query execution
engine would?

So, what exactly should be done differently at runtime?

So, the algorithms executing at runtime have to be
implemented in such a way that they transition from an
execution mode optimized for small data to an
execution mode optimized for large data in a graceful
way and in an incremental way, as opposed to having a
big switch. For a simple example but something that’s
nonetheless used heavily by systems and customers,
imagine you want to sort data. If the sort input fits in
memory, you’ll probably use an in-memory sort, like
quicksort, and the data gets loaded into the sort
workspace and then gets scanned out of the sort
workspace. If you have one record more than fits in
memory, how much data gets written to temporary
storage?

It seems it should only be one record or one page. But
in the naïve implementation that might have been done
under time pressure – “Let’s get the release out” –
there might actually be a sort that spills the entire
memory content. Now, if you have a gigabyte sort
space, and you spill at 100 megabytes per second, and
you load it back in at 100 megabytes per second, that’s
20 seconds right there. So, for one extra record, we
have 20 seconds extra runtime. And customers are
guaranteed to come back and say, “Bad plan chosen.”

Can you give another example? That was a great
example.

	
[…]	choice	is	confusion.		

32 SIGMOD Record, September 2020 (Vol. 49, No. 3)

Well, let’s take hash join. There are different versions
of hash join, different versions of hybrid hash join. In
particular, in terms of when you need to know how big
the inputs are. And if you implement hybrid hash join
from the get-go, from the start, anticipating unknown
input sizes (inputs that are smaller or larger than the
optimizer might have said), then the hybrid hash join
should spill incrementally. So, it should start running
as an in-memory join and then spill a little bit, and if
necessary, spill a little bit more. So, that would be a
graceful behavior.

Can hardcore database engine internals research still
be done in academia?

Absolutely. Yes. And lots of people do. In fact, in
every SIGMOD, every VLDB, you see a number of
papers where somebody has done maybe only a twist
on something previously or something fundamental.
And yes, there’s a lot of interesting work coming out
of academia. Not everybody who can get a program to
run necessarily and implicitly and immediately has
interesting work. But I think there is absolutely
interesting work to be done in academia but also in
industrial research.

Are there any hardcore database engine internal
problems where the research really needs to be done in
industry rather than in academia?

I don’t think so. Much of it can be done either place.
When you say industry, you also have to distinguish
between product groups and research groups. I think
they really have different roles. But academia has yet
another role. The way I see it, it’s clear what a product
group does. A product group produces product and
either provides it as a software product on a DVD or as
download, or also as a cloud service. Academics do
research. They create IP and of course pass it on to the
next generation. Industrial research labs have a very
different role from both of them. Industrial research
labs, in my opinion, should enable informed decisions.

This is something that the product groups don’t do.
The product groups have to execute. The product
groups adopt technologies that they can adopt with a
predictable effort (say in software development and
testing) and with a predictable result (say in
performance, efficiency, scalability, or robustness),
whereas industrial research labs should take promising
intellectual property and promising techniques and
technologies and develop them to the point that leaders
in product groups can make informed decisions about
whether to adopt a technology, how to adopt a
technology, or whether to skip a technology.

That’s very interesting. But isn’t it the product groups
who have the most insight into what the pain points are
for the customers, in other words, what IP needs to be
developed?

Yes. But understanding the pain points, that can easily
be transferred from a product group into an industrial
research lab. I totally agree that the product groups
should somewhat guide the industrial research labs. On
the other hand, only “somewhat” because I think there
is this famous quote attributed to Henry Ford: “If I had
done what my customers wanted me to do, I would
have produced faster horses.” And I’m sure there are
variants to that one.

But I think what industrial research groups also ought
to do is prevent the product groups from getting
scooped. So, explore outside technology that may or
may not disrupt the products in some form. So, I think
there too, the research labs should help the product
leaders to make informed decisions, what to prototype,
what to adopt, what to skip.

 I like what you’re saying. But isn’t it true that if the
industrial research lab came back and said, “You guys
should really take a serious look at this disruptive
technology,” wouldn’t the product groups not be very
happy to hear that since it would disrupt their entire
income stream?

Well, let’s take an example. A traditional database
product has a product group and a research lab. The
research lab says “in-memory databases are going to
be there”, what the product leader might want to know
is when. Also, what do we know about what the
competition is already doing in terms of what public
material is out there in websites or conference papers
or something. And also, the next question that the
product leader will ask is: what actually works? Just
saying, “in-memory databases are coming, in-memory
databases are coming,” is not sufficient. It doesn’t
enable informed development decisions. It doesn’t
enable informed investment decisions.

[…]	if	you	have	17	join	
algorithms	in	your	system,	
chances	are	you’ll	hardly	

ever	pick	the	optimal	one.	In	
fact,	you	should	be	happy	if	
you	always	pick	a	good	one.	
And	it’s	unlikely	to	be	the	

case.		

SIGMOD Record, September 2020 (Vol. 49, No. 3) 33

At some point, the product leader has to say, “I’m not
going to have five people work on a faster backup. But
I’m gonna take three of them and have them work on
in-memory transactions,” or something like that. And
that’s a decision. And making that decision an
informed decision, that’s where the industrial research
lab can create tremendous value for the industry, but
also for the progress of the customers and of the
applications and of whatever benefits they will
provide.

Great. Young researchers would like to know what
long-term hard systems problems you see. Not the hot
topics but the long-term issues.

Well, that’s a difficult one. And given that you are
asking about long-term questions, I have a high
probability of being wrong. So, I think scalability and
robustness in scalability is going to be a big issue. I
think we are going to reinvent a number of systems
issues repeatedly. So, for example, today, we achieve
robustness in scalable systems by mirroring like crazy.
Every data page is written in multiple places. And if
one of those places breaks down, we’ll rely on the
multiple copies. Now that is very expensive.

And if data keeps exploding in size in an exponential
growth curve, and hardware is not growing as fast in
storage capacity and processing capacity, then we
might actually find that we can’t have as many copies
anymore. We have to do something with fewer copies.
And I think that probably is going to be with us for a
while.

Another problem that will be with us for a while is the
problem we already talked about briefly: robust
performance. I think designing efficient algorithms,
making things parallel and scalable, those are trickier
at times, but more manageable. Robustness is much
harder, partially because it’s much harder to measure.
And if we don’t have a clear agreed-upon metric, it’s
very hard to prove that my technique is better than
your technique or the technique published last year.

You traditionally work on very intricate details of
relational database engine internals. And this isn’t an
obvious match with your current employer, Google.
Although of course, Google also cares about issues
like fast recovery from failures. Can your results also
be applied in some kind of way to Google’s kind of
massively parallel infrastructure?

I believe very much so. So, let’s look at the query
processing work that I’ve done and that I’m still doing.
Google actually has multiple SQL engines. So, Google
has multiple query optimizers and multiple query
execution engines. All of them of course, designed and

implemented from the get-go to be very scalable. So,
efficiency, scalability, and robust performance are
issues on all of these engines.

If you look at the indexing things I’ve worked on in the
past, Google, like everybody else, will store more and
more data in memory, meaning with very low latency.
And in the past, a go-to on disk, a random access on
disk, was considered very expensive. On a traditional
disk drive, you can scan a megabyte in the time to read
one byte in a random place. So, therefore, there are a
number of systems that are optimized for fast scanning.
And the principle optimizations for fast scannings are
column stores and compression. So, in my mind, I
think of column stores as optimized for disk-based data
centers, disk-based data collections (traditionally,
historical data collections have been disk-based). But
when it comes to transaction processing or shorter
history – not years of history but shorter history – and
in particular looking into the future, I think more and
more data will be in memory, where random accesses
are much cheaper.

So, I think indexing and index-based query processing,
and that means index maintenance techniques, index
concurrency control, index recovery, index
compression, all those things will definitely be used at
Google, but also elsewhere. And I think whatever
companies that are out there that Google competes on a
business level, it also competes on a technology level,
what internal technology is used. Google is clearly
interested in in-memory processing, in-memory
indexing, SQL query processing, and so on.

Think about concurrency control with many-core
processors. Concurrency is an issue because there are
multiple threads, multiple transactions running in any
sphere of control, in any operating system instance.
Concurrency control is a big issue, and I think the
work I have been doing recently on precision in
concurrency control – lock sizes and lock durations –
can very much have an impact on Google.

Thinking about recovery and availability, obviously,
Google very much depends on continuous processing
of its logs. Google collects a lot of logs from online
activity. And those logs need to be processed. One
day’s worth of log needs to be processed in less than a
day, otherwise, we fall behind. Keeping that log
processing pipeline and all its components up and
running is very important too, You can think of all of
those things as invented and designed and perhaps
publicly described in the context of traditional
relational databases. But many or all of those things
are very much transferable into other environments.

Today’s commercial query optimizers are all based on
Cascades, the top-down rule-based approach to query

34 SIGMOD Record, September 2020 (Vol. 49, No. 3)

optimization that you put together 25 years ago. Does
it surprise you that even new optimizers like Orca still
use the Cascades framework?

Very much. Yes, it does. Orca actually not only uses
the approach, but I think Orca is somewhat of a
reimplementation of the Cascades paper2. And I just
heard today at the SIGMOD conference here in
Chicago that somebody had as a student semester
project a reimplementation of Cascades. And that is
now an open-source piece of software, apparently.
Yes, it surprises me very much that people still follow
this approach. I think this approach is very good with
respect to extensibility. So, if you want to bring in a
new operation into your specification algebra or into
your execution algebra, then yes. Cascades is very nice
because it’s very extensible.

On the other hand, Cascades doesn’t do anything for
anybody with respect to cardinality estimation, which
is really the Achilles’ heel of compile-time query
planning.

The other thing is I think if you look at the core of
most relational queries, it is still joins. And I think the
group around Pat Selinger at IBM Almaden, and their
paper from 1979 is still a foundation3. I think Thomas
Neumann has done excellent work with his advisor
Guido Moerkotte and then since on extending that to
more complex join predicates, for example.

If I were to build a query optimizer today from scratch,
I would use dynamic programming for join
optimization. And I would use a Cascades-style
transformation approach for extensibility. But as I said

2 Goetz Graefe: The Cascades Framework for Query

Optimization. IEEE Data Eng. Bull. 18(3): 19-29 (1995).
3 Patricia G. Selinger, Morton M. Astrahan, Donald D.

Chamberlin, Raymond A. Lorie, Thomas G. Price: Access
Path Selection in a Relational Database Management
System. SIGMOD Conference 1979: 23-34.

earlier in this conversation, I would also build a query
execution engine to complement my optimizer, in a
way that it is very forgiving of poor plan choices.

What do you think of key-value stores?

I think key-value stores have their place in the scheme
of things. Key-value stores come in a wide variety of
scalability, capability, and so on. At some places, they
are the right tool. And that’s what it’s all about,
choosing the right tool. At some other places, they are
not. Personally, I am very convinced that application
programmers want serializable transactions, meaning
application programmers have the freedom, the liberty,
the simplicity of thinking whatever transaction they
run is the only thing going. I think that’s a powerful
paradigm. Some people strongly agree with me. Some
people strongly disagree with me. And that’s okay. I
happen to have one belief. There you have it.

Some key-value stores are better about it than others.
And I think some people trade performance for
concurrency, for cleanliness of transactions. As I said,
I usually would forego performance and scalability if I
can get cleanliness of the application model. But then I
think we, as data engine experts, should try to make
the clean application programming model highly
efficient in the engine.

So, I mentioned earlier concurrency control, the
granularity of concurrency control, the duration of
locks, how many false conflicts do we detect and treat
them as if they are conflicts. In my concurrency
control work that is basically the theme: avoiding false
conflicts. And I think there is probably a factor 100 in
that.

Wow. Okay. You teach a one-week course on – we
won’t pigeonhole it. We’ll just say database engines –
every year at Dagstuhl. In this day and age of
education over the internet, why don’t you just record
your class and leave it on the web for posterity?

Well, there are many reasons for that. I think the
students, typically fresh masters graduates, get much
more out of it if it’s interactive. Even when I was
teaching undergraduates, I always was trying to learn
names, basically have conversations rather than
lectures. So, I think it’s much better for the students if
it’s interactive. I think it’s also much better for the
students if they in some sense experience, what for
many, is the first international event.

And Dagstuhl is a very nice and protective
environment. For many of the participants, that’s a
very positive experience. Personally, I enjoy it very
much. Yes, I miss teaching. I used to like it very much.

I	don’t	believe	that	the	
solution	for	the	lack	of	
robustness	in	query	

performance	will	come	from	
the	planning	part	of	query	
processing.	I	actually	believe	

it	will	come	from	the	
execution	part	from	query	

processing.	

SIGMOD Record, September 2020 (Vol. 49, No. 3) 35

And so, this is my outlet. And I love Dagstuhl. In fact,
I’m on one of their boards, so I have to go there for
their board meetings at least once a year.

Do you have any other words of advice for fledgling or
midcareer database researchers?

Well, what advice? Never give up. That’s really the
advice I have because there have been a number of
times where things have not gone well in my career. I
had to leave a university because clearly my tenure
was going down the drain. In retrospect, they probably
would be happy to have had me. I think other things
have not gone my way. You just keep plugging away,
and you show them. And that would be my advice.

Work on real problems. Solve problems that you know
exist. And then have confidence that you can solve
them and keep working on them.

Work on problems nobody cares about because in
particular, if you don’t have a large group, that’s the
best way to make progress without fierce competition.
For example, at Hewlett-Packard, I felt at times I was
the only database expert in Hewlett-Packard Labs. And
so, I worked on stuff like concurrency control and join
algorithms. And I knew there wouldn’t be competition.
If I get it published this year, get it published next year,
nobody cares. Nobody will scoop me because nobody
was working on concurrency control and join
algorithms. So, just keep plugging away, and you’ll get
there.

If you magically had enough extra time to do one
additional thing at work that you’re not doing now,
what would it be?

I would really, really love to have a team to implement
a new system that actually is innovative by simplicity.
Simple is absolutely important because if it’s not
simple, I don’t understand it. And every system I know
has gotten so unbelievably complex. And people revel
in the complexity, it feels to me. Building something
really simple, that would be fun. But it would require a
small team to build something that is still robust say,
against data loss, but also robust in terms of query
performance.

If you could change one thing about yourself as a
computer science researcher, what would it be?

Perhaps I would have stayed an extra year in graduate
school and had learned about artificial intelligence and
basically had done more with it. I mean, I went
through graduate school in four years, which was fast.
And I think maybe if I had stayed an extra year, that
could have been fun.

Thank you very much for talking with us today.

It’s been my pleasure.

36 SIGMOD Record, September 2020 (Vol. 49, No. 3)

