Processing and Visualizing the Data in Tweets

Adam Marcus, Michael S. Bernstein, Osama Badar,
David R. Karger, Samuel Madden, Robert C. Miller
MIT CSAIL
{marcua, msbernst, badar, karger, madden, rcm}@csail.mit.edu

ABSTRACT

Microblogs such as Twitter provide a valuable stream
of diverse user-generated data. While the data extracted
from Twitter is generally timely and accurate, the pro-
cess by which developers extract structured data from
the tweet stream is ad-hoc and requires reimplementa-
tion of common data manipulation primitives. In this
paper, we present two systems for querying and extract-
ing structure from Twitter-embedded data. The first,
TweeQL, provides a streaming SQL-like interface to the
Twitter API, making common tweet processing tasks
simpler. The second, TwitInfo, shows how end-users
can interact with and understand aggregated data from
the tweet stream, in addition to showcasing the power of
the TweeQL language. Together these systems show the
richness of content that can be extracted from Twitter.

1. INTRODUCTION

The Twitter messaging service is wildly popular, with
millions of users posting more than 200 million tweets
per day'. This stream of messages from a variety of
users contains information on an array of topics, in-
cluding conventional news stories, events of local inter-
est (e.g., local sports scores), opinions, real-time events
(e.g., earthquakes), and many others.

Unfortuantely, the Twitter interface does not make it
easy to access this information. The majority of useful
information is embedded in unstructured tweet text that
is obfuscated by abbreviations (to overcome the 140-
character text limit), social practices (e.g., prepending
tweets from other users with RT), and references (e.g.,
URLSs of full stories, or the @usernames of other users).
Twitter’s APIs provide access to tweets from a partic-
ular time range, from a particular user, with a particu-
lar keyword, or from a particular geographic region, but
provides no facility to extract structure from tweets, and
does not provide aggregate views of tweets on different
topics (e.g., the frequency of tweets about a particular
topic over time.)

"http://blog.twitter.com/2011/06/200~-
million-tweets—-per-day.html

SIGMOD Record, December 2011 (Vol. 40, No. 4)

In this paper, we describe two approaches we have
devised to help programmers and end-users make sense
of the tweet stream. For programmers, we have built
TweeQL, a SQL-like stream processor that provides
streaming semantics and a collection of user-defined
functions to extract and aggregate tweet-embedded data.
For end-users, we built TwitInfo [7], a timeline-based
visualization of events in the tweetstream, linked to raw
tweet text, sentiment analysis, and maps.

2. TWEEQL

TweeQL provides a SQL-like query interface on top
of the Twitter streaming API. The streaming API allows
users to issue long-running HTTP requests with key-
word, location, or userid filters, and receive tweets that
appear on the stream and match these filters. TweeQL
provides windowed select-project-join-aggregate queries
over this stream, and utilizes user-defined functions for
deeper processing of tweets and tweet text.

We begin by describing the TweeQL data model, and
then illustrate its operation through a series of expam-
ples. We close with a discussion of challenges with
building TweeQL and future directions.

2.1 Data Model and Query Language

TweeQL is based on SQL’s select-project-join-aggregate
syntax. Its data model is relational, with both traditional
table semantics as well as streaming semantics.

2.1.1 Streams

The primary stream that TweeQL provides is twit-
ter_stream. TweeQL users define new streams based
on this base stream using the CREATE STREAM state-
ment, which creates a named substream of the main
twitter stream that satistifies a particular set of filters.
For example, the following statement creates a queriable
stream of tweets containing the term obama generated
from the twitter_stream streaming source:

CREATE STREAM obama_tweets
FROM twitter_stream
WHERE text contains ‘obama’;

21

While twitter_stream offers several fields (e.g., text,
username, userid, location, latitude, longitude), the
Twitter API only allows certain filters to be used as ac-
cess methods for defining a stream. When defining a
new stream on top of twitter_stream, the developer must
provide a key lookup on userid, a text match on text, or a
range lookup on latitude and longitude. If a user tries to
create a stream from a streaming source but omits API-
required filters, TweeQL will raise an error.

Users are not allowed to directly query the raw
twitter_stream because Twitter only provides access to
tweets that contain a filter. If users wish to access an
unrestricted stream, Twitter provides a sampled, unfil-
tered stream that TweeQL wraps as twitter_sample. A
complete, unfiltered stream is not provided by Twitter
for performance and financial reasons.

While our examples show users creating streams from
the rwitter_stream base stream, in principle one could
also wrap other streaming sources, such as RSS feeds, a
Facebook news feed, or a Google+ feed. Once wrapped,
derived streams can be generated using techniques sim-
ilar to the examples we provide.

2.1.2 UDFs

TweeQL also supports user-defined functions (UDFs).
UDFs in TweeQL are designed to provide operations
over unstructured data such as text blobs. To sup-
port such diversity in inputs and outputs, TweeQL
UDFs accept and return array- or table-valued attributes.
TweeQL UDFs also help wrap web APIs for various ser-
vices, such as geocoding services.

Complex Data Types. TweeQL UDFs can accept array-
or table-valued attributes as arguments. This is required
because APIs often allow a variable number of parame-
ters. For example, a geocoding API might allow multi-
ple text locations to be be mapped to latitude/longitude
pairs in a single web service request.

UDFs can also return several values at once. This
behavior is needed both for batched APIs that submit
multiple requests at once, and for many text-processing
tasks that are important in unstructured text processing.
For example, to build an index of words that appear in
tweets, one can issue the following query:

SELECT tweetid, tokenize (text)
FROM obama_tweets;

The fokenize UDF returns an array of words that ap-
pear in the tweet text. For example, fokenize(“Tweet
number one”) = [“Tweet”, “number”, “one”]. While
arrays can be stored or passed to array-valued functions,
users often wish to “relationalize” them. To maintain
the relational model, we provide a FLATTEN operator
(based on the operator of the same name from Olston
et al.’s Pig Latin [8]). Users can wrap an array-valued

22

function found in a SELECT clause with a FLATTEN to
produce a result without arrays. For example, instead of
the above query, the programmer could write:

SELECT tweetid, FLATTEN (tokenize (text))
FROM obama_tweets;

The resulting tuples for a tweet with tweetid = 5 and text
= “Tweet number one” would then be:

(5, “Tweet'’)
(5, ‘number’)
(5, ‘one’)

Web Services as UDFs. Much of TweeQL’s structure-
extraction functionality is provided by third parties as
web APIs. TweeQL allows UDF implementers to make
calls to such web services to access their functional-
ity. One such UDF is geocode, which returns the lat-
itude and longitude for user-reported textual locations
as described in Section 2.1.4. The benefit of wrapping
such functionality in third party services is that often
the functionality requires large datasets—good geocod-
ing datasets can be upward of several gigabytes—that an
implementer can not or does not wish to package with
their UDFE. Wrapping services comes at a cost, however,
as service calls generally incur high latency, and service
providers often limit how frequently a client can make
requests to their service.

Because calls to other web services may be slow or
rate-limited, a TweeQL UDF developer can specify sev-
eral parameters in addition to the UDF implementation.
For example, the developer can add a cache invalida-
tion policy for cacheable UDF invocations, as well as
any rate-limiting policies that the API they are wrap-
ping allows. To ensure quality of service, the developer
can also specify a timeout on wrapped APIs. When
the timeout expires, the return token TIMEOUT is re-
turned, which acts like a NULL value but can explicitly
be fetched at a later time. Similarly, a RATELIMIT token
can be returned for rate-limited UDFs.

2.1.3 Storing Data and Generating Streams

It is often useful for TweeQL developers to break their
workflows into multiple steps and to write final results
into a table. To support both of these operations, we
allow the results of SELECT statements over streams
to write data to named tables. In this way, intermedi-
ate steps can be named to allow subsequent queries in a
workflow to utilize their results.

Output to a table and temporarily naming tuples is
accomplished via the INTO operator. To save results, a
programmer can add an INTO TABLE tablename clause
to their query. To name a set of results that can be loaded
as a stream by another query, the programmer can add an
INTO STREAM streamname clause to their query. For
example, consider the following three queries:

SIGMOD Record, December 2011 (Vol. 40, No. 4)

CREATE STREAM sampled
FROM twitter_sample;

SELECT text, sentiment (text) AS sent
FROM sampled
INTO STREAM text_sentiment;

SELECT text

FROM text_sentiment

WHERE sent > 0

INTO TABLE positive_sentiment;

SELECT text, sent

FROM text_sentiment

WHERE text contains ‘obama’
INTO TABLE obama_sentiment;

The first query creates an unfiltered sampled stream
called sampled. The second query retrieves all tweet
text and its sentiment (described in Section 2.1.4),
and places that text in a stream called fext_sentiment.
The third query stores all positive-sentiment tweet text
from the text_sentiment stream in a table called posi-
tive_sentiment. The final query stores all tweet text from
the text_sentiment stream containing the term obama in
a table called obama_sentiment.

For testing purposes, it is also possible to select a
stream INTO STDOUT, which outputs the contents of
a stream to a user’s console.

2.1.4 Structure Extraction UDFs

One key feature of our TweeQL implementation is
that it provides a library of useful UDFs. One important
class of operators are those that allow programmers to
extract structure from unstructured content. The func-
tions are described below.

String Processing. String functions help extract struc-
ture from text. We have already described one such
UDF, tokenize in Section 2.1.2 that splits strings into a
list of tokens. Other UDFs allow more complex string
extraction, such as regular expressions that return lists
of matches for each string.

Location. Tweets are annotated with location infor-
mation in several ways. GPS-provided coordinates are
most accurate, but only a small fraction of tweets are
annotated with such precision (0.77% in mid-2010 [6]).
More common is a self-reported location field, with
values ranging from the nonsensical “Justin Bieber’s
heart” [6] to a potentially accurate “Boston, MA.”

To extract structure from self-reported location strings,
we offer a geocode UDF. The following query extracts
the sentiment of tweets containing the term obama as
well as the coordinates of the self-reported location:

SIGMOD Record, December 2011 (Vol. 40, No. 4)

SELECT sentiment (text) AS sent,
geocode (loc) .latitude AS lat,
geocode (loc) .longitude AS long

FROM obama_tweets

INTO STREAM obama_sent_loc;

The query also displays another feature of TweeQL
UDFs. In addition to being able to return lists of fields
to be flattened into a resultset, UDFs can return tuples
rather than fields. In the example above, geocode returns
a tuple of coordinates that the query projects into two
fields, lat and long, in the result set.

Classification. Classifiers can be used to identify struc-
ture in unstructured text content. For example, so-
cial science researchers explore various ways to use the
tweet stream as a proxy for public sentiment about vari-
ous topics. TweeQL provides a sentiment UDF for clas-
sifying tweet text as expressing positive or negative sen-
timent. An example of this UDF can be seen in the
obama_sent_loc stream example above. Other classifiers
might identify the topic, language, or veracity of a tweet.

Named entity extraction. So far, we have identified
tweets about President Obama by filtering tweets whose
text contains the term obama. This approach may be un-
acceptable when two people with the same name might
be confused. For example, searching for tweets contain-
ing the term clinton combines tweets such as “Secretary
Clinton accepts Crowley resignation” and ones such as
“Former President Clinton undergoes heart surgery.”

To reduce ambiguity, TweeQL provides a namedEn-
tities UDF that identifies potential entities in context.
For example, namedEntities(“Secretary Clinton accepts
Crowley resignation”) returns a list of fields [“Hillary
Clinton”, “P.J. Crowley”] that can be filtered.

With the namedEntities UDF, we can refine our orig-
inal obama_tweets example to identify tweets specifi-
cally involving Barack Obama.

CREATE STREAM obama_tweets
FROM twitter_stream
WHERE text contains ‘obama’;

SELECT text,

FLATTEN (namedEntities (text)) AS entity

FROM obama_tweets
INTO STREAM obama_entities;

SELECT text

FROM obama_entities

WHERE entity = "Barack Obama"
INTO STREAM barack_obama_tweets;

The current implementation of namedEntities is an
API wrapper around OpenCalais 2, a web service for

nttp://www.opencalais.com/

23

performing named entity extraction and topic identifi-
cation. OpenCalais was designed to handle longer text
blobs (e.g., a newspaper article) for better contextual
named entity extraction. One area of future work is to
develop named entity extractors for tweets, which are
significantly shorter.

2.1.5 Windowed Operators

Like other stream processing engines, TweeQL sup-
ports aggregates and joins on streams. Because streams
are infinite, we attach sliding window semantics to them,
as in other streaming systems [2, 1]. Windows are
defined by a WINDOW parameter specifying the time-
frame during which to calculate an aggregate or join.

Any streaming source must include a __created_at
timestamp field. By default, tuples are timestamped
with their creation time. On aggregates, an EVERY
parameter specifies how frequently to emit WINDOW-
sized aggregates. If an EVERY parameter is smaller
than the WINDOW parameter, overlapping windows are
emitted. The __created_at field of a tuple emitted from
an aggregate is the time that the window begins.

The query below provides an example of the WIN-
DOW and EVERY parameters for aggregates:

SELECT AVG(sent) AS sent,
floor(lat) AS lat,
floor (long) AS long

FROM obama_sent_loc

GROUP BY lat, long

WINDOW 3 hours

EVERY 1 hour

INTO STREAM obama_sent_by_area;

The query converts the obama_sent_loc stream of sen-
timent, latitude, and longitude into an average sentiment
expressed in a 1°x 1°area. This average is computed
over the course of three hours, and is emitted every hour.

2.1.6 Event Detection

As we explore with TwitInfo in Section 3, the number
of tweets per minute mentioning a topic is a good signal
of peaking interest in the topic. If the number of tweets
per minute is significantly higher than recent history, it
might suggest that an event of interest has just occurred.

To support event detection, we provide a meanDevi-
ation UDF. The UDF takes a floating-point value as an
argument. It returns the difference between the value
and an exponentially weighted moving mean (EWMA)
of recent values. This difference is called the mean de-
viation. Before returning the EWMA, it updates the
EWMA with the floating-point value for future calls.
The details of this algorithm are spelled out in [7]. The
following example illustrates its use:

24

Optimizer
| sampler | |
Executor

{ Results (STDOUT)}

[1
Stream Manager UDF Manager
tokenize I geocode |

—l
I Relational Manager |

sample| 0bama|

Rate Limiter
Latency Enforcer

PRSP FS—
H

Streaming APIs |

............. -
i
'

i Service APIs

Figure 1: TweeQL architectural components.

SELECT COUNT (text) as count,
__created_at as time

FROM obama_tweets

WINDOW 1 minute

EVERY 1 minute

INTO STREAM obama_counts;

SELECT meanDeviation (count) AS dev,
time

FROM obama_counts

WHERE dev > 2

INTO TABLE obama_peaks;

The first query uses windowed aggregates, described
in Section 2.1.5, to calculate the tweets per minute men-
tioning the term obama. The second query calculates
the mean deviation of each tweets-per-minute value,
and stores the time of deviations above 2 in a table
obama_peaks.

The meanDeviation UDF is unique in that it stores
state that is updated between calls. This makes the se-
mantics of the UDF difficult to define, as calling mean-
Deviation(count) on the same count value with different
histories will result in a different return value. In prac-
tice we found that the simple interface to the meanDevi-
ation UDF makes it usable for event detection.

2.2 System Design

Figure 1 illustrates the key architectural components
of the TweeQL stream processor.

TweeQL offers its SQL-like query language through a
traditional query prompt or in batched query mode. All
of the queries that make up a workflow (e.g., sampled,
text_sentiment, positive_sentiment, and obama_sentiment
in Section 2.1.3) are handled together and sent to the
Query Parser to be processed at the same time.

The parser generates batches of dependent query
trees, some of which store records in tables while others
generate streams that other query trees depend on. The

SIGMOD Record, December 2011 (Vol. 40, No. 4)

Optimizer reorders operators as informed by selectiv-
ity and latency statistics collected by the Sampler. In
addition to reordering operators, the optimizer also de-
cides which filters to send to streaming APIs such as
Twitter’s to reduce the number of tuples returned. The
sampler keeps statistics on all APIs and tables known to
the database.

Optimized query tree batches are sent to the Execu-
tor. The query executor is iterator-based. As streaming
sources asynchronously generate tuples, the streams are
buffered by streaming access method operators that al-
low iterator access. Streamed tuples appear as tuples
with a fixed schema to the rest of the query tree. As we
see in Section 2.1.3, a stream (such as text_sentiment)
can be used by multiple downstream query trees. Down-
stream query trees register themselves as listeners to
named streams that send batches of tuples generated at
their root to the streaming buffer of each query tree.

There are three data source managers from which the
executor retrieves data: a stream manager, a UDF man-
ager, and a relational manager.

The Stream Manager manages all streams generated
with CREATE STREAM or INTO STREAM. It communi-
cates with streaming APIs such as Twitter’s, and informs
streaming access method operators in query trees when
new batches of tuples arrive from streaming sources.

The UDF Manager manages all UDF invocations.
While traditional UDFs are executed as they are in tra-
ditional RDBMSs, the UDF Manager has special logic
for handling UDFs which wrap web services. In addi-
tion to providing adapters that generate relational data
from nonrelational services, it contains components that
apply to all requests. The Cacher ensures that fre-
quent service requests are cached, and supports age-
and frequency-based cache eviction policies. The Rate
Limiter enforces service-based rate limiting policies.
These policies generally limit the number of requests
per minute, hour, or day. Finally, the Latency Enforcer
ensures that requests that run for too long are returned
with TIMEOUT as discussed in Section 2.1.2. The la-
tency enforcer still allows requests returned after a time-
out to be cached for future performance benefits.

The Relational Manager simply wraps traditional
relational data sources for querying, and stores tables
generated with INTO TABLE syntax.

2.3 Current Status

TweeQL is implemented in Python, using about 2500
lines of code. The implementation is available as an
open source distribution®. The distribution includes
most of the features described in this paper. We are
working to add the rate-limiting and latency-enforcing
logic to web service UDF wrappers. The CREATE

*https://github.com/marcua/tweeql

SIGMOD Record, December 2011 (Vol. 40, No. 4)

STREAM and INTO STREAM statements, which we re-
alized were necessary as we wrapped streams for ser-
vices other than Twitter, are available in experimental
versions of TweeQL. Finally, we intend to add FLAT-
TEN syntax in the next TweeQL release.

2.4 Challenges

In this section, we describe a number of challenges
and open issues we encountered when building TweeQL.

Uncertain Selectivities. When creating a stream, TweeQL
users may issue multiple filters that can be passed to the
streaming API. Only one filter type can be submitted to
the API, and selecting the most efficient one to send is
difficult. For example, consider a user issuing the query:

CREATE STREAM obama_nyc
FROM twitter_stream
WHERE text contains ‘obama’;
AND location in [bounding box for NYC];

The user wants to see all tweets containing the word
obama that are tweeted from the New York City area.
TweeQL must select between requesting all obama
tweets, or all NYC tweets.

We benefit from having access to Twitter’s histori-
cal API in this case. We can issue two requests for
recent tweets with both filters applied, and determine
which stream is less frequent. We are also exploring
Eddies-style [3] dynamic operator reodering to adjust to
changes in operator selectivity over time.

High-latency Operators. As discussed in Section 2.1.2,
TweeQL UDFs can return TIMEOUT and RATELIMIT
for long-running or rate-limited web services. Still, the
high latency of operations is in tension with the tradi-
tional blocking iterator model of query execution.

Web service API requests such as geolocation can
take hundreds of milliseconds apiece, but incur little
processing cost on the query executor. Though the oper-
ations incur little computational cost, they often bottle-
neck blocking iterators. Caching responses and batching
multiple requests when an API allows can reduce some
request overhead.

We are exploring modifying iterators to operate asyn-
chronously as described by Goldman and Widom [5].
This, in combination with a data model that allows par-
tial results as described by Raman and Hellerstein [9],
might be a sufficient solution.

Aggregate Classifiers are Misleading. In the develop-
ment of TwitInfo, described in Section 3, we ran into an
issue with running aggregates over the output of classi-
fiers such as the sentiment UDF. We describe the prob-
lem and one solution in detail in [7].

One such example can be seen in the obama_sent_by_area
stream in Section 2.1.5. Consider the case where the

25

sentiment UDF simply outputs 1 for postive text and —1
for negative text. It is possible that the classifier power-
ing sentiment has different recall (e.g., the fraction of
text identified as positive in situations where the text
is actually positive) for positive and negative classifica-
tions. In this case, AVG(sent) will be biased toward the
class with higher recall. The solution described in [7]
is to adjust for this bias by learning the positive and
negative recall values (recallpositive and recallyegative)
on training data. With these values, we can return
P — for positive text, and m for neg-
ative text. These values, when summed or averaged, ad-
just for overall recall differences.

3. TWITINFO

TwitInfo [7] is an application written on top of the
TweeQL stream processor. Twitlnfo is a user interface
that summarizes events and people in the news by fol-
lowing what Twitter users say about those topics over
time*. TwitInfo offers an example of how aggregate data
extracted from tweets can be used in a user interface.
Other systems, such as Vox Civitas [4], allow similar ex-
ploration, but TwitInfo focuses on the streaming nature
of tweet data and uses event detection to relay a story.

3.1 Creating an Event

TwitInfo users define an event by specifying a Twitter
keyword query. For example, for a soccer game, users
might enter search keywords soccer, football, premier-
league, and team names like manchester and liverpool.
Users give the event a human-readable name like “Soc-
cer: Manchester City vs. Liverpool” as well as an op-
tional time window. When users are done entering the
information, TwitInfo saves the event and begins log-
ging tweets containing the keywords using a TweeQL
query like the following:

CREATE STREAM twitinfo
FROM twitter_stream
WHERE text contains ‘soccer’
OR text contains ‘football’
OR text contains ‘premierleague’
OR text contains ‘manchester’
OR text contains ‘liverpool’;

This query results in some irrelevant tweets (e.g.,
tweets about American Football). In [7], we discuss how
to remove noisy terms and rank tweets by relevance.

3.2 Timeline and Tweets

Once a user has created an event, Twitlnfo creates a
page on which the user can monitor the event. The Twit-
Info interface (Figure 2) is a dashboard summarizing

4The TwitInfo website with interactive visualizations is acces-
sibleat http://twitinfo.csail.mit.edu/

26

the event over time. The dashboard displays a timeline
for the event, raw tweet text sampled from the event,
an overview graph of tweet sentiment, and a map view
displaying tweet sentiment and locations.

The event timeline (Figure 2.2) reports tweet activity
by volume. The more tweets that match the query dur-
ing a period of time, the higher the y-axis value on the
timeline for that period. When many users are tweet-
ing about a topic (e.g., a goal by Manchester City), the
timeline spikes. Twitlnfo’s peak detection algorithm is
implemented in a stateful TweeQL UDF described in
Section 2.1.6. The algorithm identifies these spikes and
flags them as peaks in the interface.

Peaks appear as flags in the timeline. TwitInfo auto-
matically generates key terms that frequently appeared
in tweets during a peak, and displays them to the right
of the timeline. For example, in Figure 2.2, TwitInfo au-
tomatically tags one of the goals in the soccer game as
peak “F” and annotates it on the right with representative
terms in the tweets like ‘3-0’ (the new score) and ‘Tevez’
(the soccer player who scored). Users can perform text
search on this list of key terms to locate a specific peak.

As users click on peaks, the map, tweet list, links, and
sentiment graph update to reflect tweets in the period
covered by the peak.

The Relevant Tweets panel (Figure 2.4) contains the
tweets that have the highest overlap with the event peak
keywords. These tweets expand on the reason for the
peak. The relevant tweets are color-coded red, blue, or
white depending on whether the sentiment they display
is negative, positive, or neutral.

3.3 Aggregate Metadata Views

A user may wish to see the general sentiment on Twit-
ter about a given topic. The Overall Sentiment panel
(Figure 2.6) displays a pie chart with the proportion of
positive and negative tweets during an event.

Twitter users share links as a story unfolds. The Pop-
ular Links panel (Figure 2.5) aggregates the top URLSs
extracted from tweets in the timeframe being explored.

Often, opinion on an event differs by geographic re-
gion. The Tweet Map (Figure 2.3) displays tweets that
provide geolocation metadata. The marker for each
tweet is colored according to its sentiment, and clicking
on a pin reveals the associated tweet.

3.4 Uses and Study

As we developed Twitlnfo, we tested its ability to
identify meaningful events and its effectiveness at re-
laying extracted information to users.

We have tracked events of different duration and con-
tent using Twitlnfo. In soccer matches, Twitlnfo suc-
cessfully identifies goals, half-time, the end of a game,
and some penalties. The system successfully identified

SIGMOD Record, December 2011 (Vol. 40, No. 4)

twitlnfo

august 23 manchester city vs. liverpool 1
Keywords: footbal, soccer, epl, premicr_leaguc, premierlcague, manchester city, mancity, liverpool
Event dares: Aug. 23, 2010, 6:50 p.m. - Aug. 23, 2010, 9:10 pm

Message Frequency

Relevant Tweets 4

- J S

= FREQUENCY 304 21:10 August 23, 2010

I'm getting ready for the liverpool game. I'm so
xited
G.| liverpool, city, 3-0,
kalah, tevez

) @ footbal Love Sheikh Mansour bin Zayed
ManCity - Liverpool magini izlemek icin U

400

]

Iiverpool, city, tevez. tribiinde. Tk kez maca geliyor!

B JAJ o mancity, 3-0
J / S 200 . avier Mascherano refuses to face Manchester
y A J . A V. 2y E, Izi\'v:rm,cny, mancity, ity as Balcqlona make Liverpool £12m offer -
report hitp:/tinyurl.com/267fthq
o ¢ o o o D. 'ﬂ"’:;‘:f‘”“m’»"‘a"- - £ online football gambling sites?
F F - " 5 gt hupisortus/zedtTr
———— e ST | 6] liverpool, city,

mancity, man, barry

I luit ni diambil ga? RT @rwisnuwardhana: '
‘atching man city vs liverpool (@ +

Tweet Map 3

Popular Links 5

j ‘ Map

Atiantic
Ocean)

Satellite

South
America
FowEReD ot

Gougle

Pacinc
Ocean

Indian
Ocesn ;

$*;

Hybrid Terrain

hitp://bit.ly/cPBOVa (cited by 4)
htp:/tinyurl.com/2d4s46d (cited by 4)

Overall Sentiment 6

M positive
M nagative

Figure 2: The TwitInfo user interface summarizing a soccer game.

all major earthquakes over a 1-month timespan. Finally,
we visualized sixteen days in Barack Obama’s life and
policymaking, and identified most newsmaking events
in the interface. Examples of these visualizations can be
found on the TwitInfo website.

We tested the TwitInfo interface with twelve users.
We asked them to reconstruct either a soccer game or
sixteen days in Barack Obama’s life based solely on the
TwitInfo user interface. Participants found the interface
useful for such summaries, with one participant recount-
ing in detail Obama’s every activity over the timespan
without having read any other news on the topic [7].

While users explained that Twitlnfo provides them
with a good summary of an event, they often described
the summary as shallow. This is in part due to the short,
fact-oriented nature of tweets.

A Pulitzer Prize-winning former Washington Post in-
vestigative reporter thought of two use-cases for Twit-
Info in journalism. The first was in backgrounding:
when a journalist starts researching a topic, it helps to
have an overview of recent events of note. The sec-
ond use was in finding eyewitnesses. While reporters
are generally averse to trusting tweets at face value, a
location-based view of tweets can help identify Twitter
users that may have been at or near an event to follow
up with in more detail.

4. CONCLUSION

Twitter offers a diverse source of timely facts and
opinions. In order for the information in unstructured
tweets to be useful, however, it must be tamed. We de-
scribed two tools, TweeQL for programmers and Twit-

SIGMOD Record, December 2011 (Vol. 40, No. 4)

Info for end-users, to make this information more acces-
sible. More broadly, social streams offer the database
community an opportunity to build systems for stream-
ing, unstructured data, and social networks in the wild.

5. ACKNOWLEDGEMENTS

We thank Eugene Wu, who discussed the mechanics
of stream creation and wrapping syntax.

6.
(1]

REFERENCES

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new
model and architecture for data stream management. The VLDB
Journal, 2003.

A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: Semantic foundations and query execution. Technical
Report 2003-67, Stanford InfoLab, 2003.

R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive
query processing. In In SIGMOD 2000.

N. Diakopoulos, M. Naaman, and F. Kivran-Swaine. Diamonds
in the rough: Social media visual analytics for journalistic
inquiry. In VAST, 2010.

R. Goldman and J. Widom. WSQ/DSQ: a practical approach for
combined querying of databases and the web. SIGMOD Record,
2000.

B. Hecht, L. Hong, B. Suh, and E. H. Chi. Tweets from justin
bieber’s heart: the dynamics of the location field in user profiles.
CHL, 2011.

A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden,
and R. C. Miller. Twitinfo: aggregating and visualizing
microblogs for event exploration. CHI, 2011.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing.
SIGMOD, 2008.

V. Raman and J. M. Hellerstein. Partial results for online query
processing. In SIGMOD, 2002.

[2

—

(4]

[5

—_

[6

—_

(71

[8

—_

(9]

27

