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SIGMOD Officers, Committees, and Awardees (continued)

SIGMOD Edgar F. Codd Innovations Award

For innovative and highly significant contributions of enduring value to the development, understanding, or use of
database systems and databases. Until 2003, this award was known as the "SIGMOD Innovations Award." In 2004,
SIGMOD, with the unanimous approval of ACM Council, decided to rename the award to honor Dr. E. F. (Ted)
Codd (1923 - 2003) who invented the relational data model and was responsible for the significant development of
the database field as a scientific discipline. Recipients of the award are the following:

Michael Stonebraker (1992) Jim Gray (1993) Philip Bernstein (1994)
David DeWitt (1995) C. Mohan (1996) David Maier (1997)

Serge Abiteboul (1998) Hector Garcia-Molina (1999) Rakesh Agrawal (2000)
Rudolf Bayer (2001) Patricia Selinger (2002) Don Chamberlin (2003)
Ronald Fagin (2004) Michael Carey (2005) Jeffrey D. Ullman (2006)
Jennifer Widom (2007) Moshe Y. Vardi (2008) Masaru Kitsuregawa (2009)
Umeshwar Dayal (2010) Surajit Chaudhuri (2011)

SIGMOD Contributions Award

For significant contributions to the field of database systems through research funding, education, and professional
services. Recipients of the award are the following:

Maria Zemankova (1992) Gio Wiederhold (1995) Yahiko Kambayashi (1995)
Jeffrey Ullman (1996) Avi Silberschatz (1997) Won Kim (1998)

Raghu Ramakrishnan (1999) Michael Carey (2000) Laura Haas (2000)

Daniel Rosenkrantz (2001) Richard Snodgrass (2002) Michael Ley (2003)

Surajit Chaudhuri (2004) Hongjun Lu (2005) Tamer Ozsu (2006)
Hans-Jorg Schek (2007) Klaus R. Dittrich (2008) Beng Chin Ooi (2009)
David Lomet (2010) Gerhard Weikum (2011)

SIGMOD Jim Gray Doctoral Dissertation Award

SIGMOD has established the annual SIGMOD Jim Gray Doctoral Dissertation Award to recognize excellent
research by doctoral candidates in the database field. This award, which was previously known as the SIGMOD
Doctoral Dissertation Award, was renamed in 2008 with the unanimous approval of ACM Council in honor of Dr.
Jim Gray. Recipients of the award are the following:

* 2006 Winner: Gerome Miklau, University of Washington. Runners-up: Marcelo Arenas, University of Toronto;
Yanlei Diao, University of California at Berkeley.

* 2007 Winner: Boon Thau Loo, University of California at Berkeley. Honorable Mentions: Xifeng Yan, University
of Indiana at Urbana Champaign; Martin Theobald, Saarland University

* 2008 Winner: Ariel Fuxman, University of Toronto. Honorable Mentions: Cong Yu, University of Michigan;
Nilesh Dalvi, University of Washington.

* 2009 Winner: Daniel Abadi, MIT. Honorable Mentions: Bee-Chung Chen, University of Wisconsin at Madison;
Ashwin Machanavajjhala, Cornell University.

* 2010 Winner: Christopher R¢, University of Washington. Honorable Mentions: Soumyadeb Mitra, University of
[llinois, Urbana-Champaign; Fabian Suchanek, Max-Planck Institute for Informatics.

* 2011 Winner: Stratos Idreos, Centrum Wiskunde & Informatica. Honorable Mentions: Todd Green, University of
Pennsylvania; Karl Schnaitter, University of California in Santa Cruz.

A complete listing of all SIGMOD Awards is available at: http://www.sigmod.org/awards/
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Editor’s Notes

Welcome to the December 2011 issue of the ACM SIGMOD Record! This issue appearing in December
2011 puts us back on the regular publication schedule.

I am glad to start this issue’s notes by congratulating the members of our scientific community which have
been recently named ACM Fellows (http://www.acm.org/press-room/news-releases/2011/fellows-2011):
Serge Abiteboul, Divyakant Agrawal, Christian S. Jensen, Beng Chin Ooi, Margo Seltzer, Divesh
Srivastava, Dan Suciu and Meral Ozsoyoglu. Thanks to them all for representing our community within
the larger computer science family, and many congratulations!

The first article by Lee, Lee and Park studies index scan operations on Flash Memory solid state drives (or
SSDs, in short). The authors investigate the relation between the selectivity of an index scan and the
performance that the operation can attain on an SSD. Index scans turn out to be inefficient for very
selective look-ups, therefore the authors consider as an alternative a sorted index scan, which first sorts the
index entries by record ID. However, the sorted index scan loses the index key order. To mitigate this, the
authors propose a new index-based sort algorithm, which can sort the data in one pass regardless of the
available sort memory size.

The survey by Lee, Lee, Choi, Chung and Moon is a very timely one: it provides an overview of parallel
data processing techniques based on the principles of MapReduce. This is a field in which the state of the
art moves faster than most of us manage to follow! The authors start by describing a generic MapReduce-
based architecture, discuss advantages and pitfalls, before moving on to describe variants and
improvements. Important extensions such as higher-level languages, flexible data flows, schema support,
scheduling, I/O optimizations and others are discussed. An interesting list of applications is also presented,
making the survey a valuable collection of information and pointers.

The system paper by Marcus, Bernstein, Badar, Karger, Madden and Miller is a nice example of how
database technologies and a database-oriented mind set can help make the most out of data sources which
exist today, but would have seemed outlandish in the days when the first bricks of our discipline were laid
out! The authors devise a model (akin to data streams), a query language and elements of interface with a
system that queries and integrates data from microblogs such as Twitter streams. TweeQL, the language
they propose, mixes stream query features with built-in UDFs e.g. for text processing, geo-codes,
classification and more.

Jiawei Han is this issue’s guest in the Distinguished Profiles in Databases. The processing of Jiawei’s
interview transcript, through the meanders of the Record’s editorial process (Marianne’s assistant, Donna
Coleman, does a great job at transcribing the audios gathered by Marianne, before Vanessa makes a
second beautification pass), can be measured in time by the evolution of Jiawei’s H-index: 76 at the time
of the interview, it is 101 by the time of the publication! We are glad to send this issue to print before this
number becomes obsolete. Read Jiawei’s interview for many unique stories and insights: how he was
admitted to an US university long before Chinese students could take GREs, where the border lies
between data mining and databases and how to organize a very active research and supervisor career.

In the Research Centers column, Kersten, Manegold and Mullender summarize the twenty-six years of
history of the CWI database research group from Amsterdam. Longtime a stalwart of the database
community, CWI has recently enjoyed significant visibility in our community, such as, for instance, the
2011 SIGMOD Jim Gray Doctoral Dissertation Award to Stratos Idreos on database cracking. An
important part of the CWI recent successes can be attributed to their longstanding work around MonetDB.
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The paper surveys other areas of the group’s work, including hardware-conscious data management,
scientific databases, graphs and stream processing.

The Industry Perspective column is present with a report on HANA, SAP’s new database, by Férber, Cha,
Primsch, Bornhovd, Sigg and Lehner. HANA is a memory-centric database, built to leverage the
capability of modern hardware (such as multi-core processors and SSDs) for the benefit of analytical and
transactional applications. Interestingly, HANA supports both structured and semi-structured data, as well
as entity extraction, or graph processing — clearly not the seventies’ database! HANA is made to fit within
the complex SAP Business Intelligence product suite. The authors end by discussing various levels of
evolution and integration of HANA within the suite, perspectives for their work.

Three workshop reports are part of this issue.

First, Maurino, Cappiello, Vassiliadis and Sattler outline the proceedings of the 8™ International
Workshop on Quality in Databases (QDB 2010). The workshop focused on issues such as data quality
assessment frameworks, data privacy and visualization, as well as the applications of data quality analysis
to new domains such as the LOD (Linked Open Data) movement.

The report by Bizer, Boncz, Brodie and Erling results from discussions held at 2011 STI Semantic
Summit within a group of twenty-five researchers, on the meaningful use of Big Data. The four authors
each put forward a challenge: multi-disciplinary Big Data integration, the Billion Triple Challenge from
the Semantic Web community, getting value out of government linked open data, and integrating linked
data in regular DBMSs.

Last but not least, the report on the 4™ Workshop on Very Large Digital Libraries, by Candela, Manghi
and Ioannidis, highlights recent works at the confluence of very large digital libraries, and very large data
archives. The workshop proceedings consider topics such as scalable support for digital libraries,
archiving scientific data and data archive federations.

The call for papers of the 5™ International Workshop on Testing Database System closes the issue.
On behalf of the Record’s editorial board, let me wish you pleasant holidays and a Happy New Year!

Your contributions to the Record are welcome via the RECESS submission site
(http://db.cs.pitt.edu/recess). Prior to submitting, be sure to peruse the Editorial Policy on the SIGMOD
Record’s Web site (http://www.sigmod.org/publications/sigmod-record/sigmod-record-editorial-policy).

Toana Manolescu

December 2011

Past SIGMOD Record Editors:

Harrison R. Morse (1969)

Daniel O’Connell (1971 — 1973)
Randall Rustin (1975)

Thomas J. Cook (1981 — 1983)

Jon D. Clark (1984 — 1985)
Margaret H. Dunham (1986 — 1988)
Arie Segev (1989 — 1995)

Jennifer Widom (1995 — 1996)
Michael Franklin (1996 — 2000)
Ling Liu (2000 — 2004)

Mario Nascimento (2005 —2007)
Alexandros Labrinidis (2007 — 2009)
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Optimizing Index Scans on Flash Memory SSDs

Eun-Mi Leet

TSchool of Information & Communications
Engineering
Sungkyunkwan University
Suwon, 440-746, Korea
{pbhammer,swlee}@skku.edu

ABSTRACT

Unlike harddisks, flash memory SSDs have very fast
latency in random reads and thus the relative band-
width gap between sequential and random read is quite
small, though not negligible. For this reason, it has been
believed that index scan would become more attractive
access method in flash memory storage devices. In re-
ality, however, the existing index scan can outperform
the full table scan only in very selective predicates.

In this paper, we investigate how to optimize the in-
dex scan on flash memory SSDs. First, we empirically
show that the index scan underperforms the full table
scan even when the selectivity of selection predicate is
less than 5% and explain its reason. Second, we revisit
the idea of sorted index scan and demonstrate that it
can outperform the full table scan even when the se-
lectivity is larger than 30%. However, one drawback of
the sorted index scan is that it loses the sortedness of
the retrieved records. Third, in order to efficiently re-
sort the result from the sorted index scan, we propose
a new external index-based sort algorithm, partitioned
sort, which exploits the information of key value distri-
bution in the index leaf nodes. It can sort data in one
pass regardless of the available sort memory size.

Keywords-flash memory SSDs; sorted index scan;
partitioned sort

1. INTRODUCTION

Magnetic harddisks have dominated the storage mar-
ket for more than three decades, and most enterprise
database systems assume harddisks as secondary stor-
age. By the way, harddisk has the inevitable mechanical
latency, and the access time for a small data page (e.g.
4KB) is thus dominated by the latency. In contrast, the
bandwidth of sequential access in contemporary enter-
prise class harddisks is enormous (e.g. 200MB per sec-
ond). From the historical perspective, we have witnessed
that the improvement of the access latency in harddisk
is lagging far behind that of the sequential access, and
thus the performance gap between random access and
sequential access is widening [3]. This bandwidth imbal-
ance between random and sequential accesses in hard-
disk had made query optimizers prefer the full table
scan to the index scan, except only when the selectivity
of the given selection predicate is very low (e.g. 1%).
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Meanwhile, flash memory based solid stated drives
(hereafter, SSDs) are becoming popular as alternative
storage to harddisks. In contrast to harddisk, SSD has
very fast latency in random IOs since it has no me-
chanical part, and thus the performance gap between
sequential and random access to all the data pages in
a table is very small, though not negligible. Therefore,
we can anticipate that, on top of SSDs, the index scan
can outperform the full table scan even when the ratio
of randomly accessed data pages in a table is very high
(e.g. more than 50%). In reality, however, the existing
index scan can outperform the full table scan only in
very selective predicates.

In this paper, we investigate how to optimize the in-
dex scan on flash memory SSDs. First, we empirically
demonstrate that the index scan underperforms the full
table scan even when the selectivity of selection predi-
cate is less than 10%, and explain that it is mainly due
to repetitive reads of same data pages during the index
scan with limited size of buffer cache. Second, we revisit
the idea of sorted index scan which first sorts the index
entries in the order of record identifier before fetching
data pages and thus can avoid the repetitive reads of the
same pages. Our experimental result shows that it can
outperform the full table scan when the selectivity is
larger than 30%. However, one drawback of the sorted
index scan is that the retrieved records is not sorted
any more in the index key order. Third, in order to effi-
ciently re-sort the result from the sorted index scan, we
propose a new index-based sort algorithm, partitioned
sort, which exploits the information of key value dis-
tribution in the index leaf nodes while partitioning the
data to be sorted. It can sort data in one pass regard-
less of the available sort memory size. In contrast, the
traditional external sort might require multiple passes
depending on the data size and the sort memory size.

2. BACKGROUND

In this section, we compare the performance charac-
teristics of harddisks and SSDs according to the access
pattern to data, then explain the parallelism adopted by
contemporary SSDs and its implications on the perfor-
mance of access methods, and briefly review two popular
access methods, the full table scan and the index scan.

2.1 Harddisks and SSDs



Table 1: Harddisk vs. Flash SSD

| Media | Harddisk! [ Flash SSD* |
Latency (4KB) 3.5ms 0.2ms
10PS (4KB) 600 35,000
Sequential bandwidth 125MB /sec 200MB/sec
Ratio between random 0.02 0.7
and sequential bandwidth

fSeagate Cheetah 15K.5 ST373455SS
fA Commercial SSD (SLC flash chip)

Table 1 presents the key performance metrics of a
harddisk and an SSD used in our experiment. Because
this paper focuses on read-intensive queries, Table 1 con-
tains only the read-related performance metrics. The
first row represents the access latency (i.e. response time)
when a single process reads a page of 4KB. The second
row shows maximum IOPS (IO per second) when con-
current read requests are made to each storage media.
In other words, the second row represents the random
read bandwidth of each storage media. Please note that
throughput is not inverse of response time because each
product has the native command queuing (NCQ) fea-
ture which can handle multiple requests at a time [3].
To be concrete, harddisks use the well-known elevator
algorithm while SSDs distribute multiple requests to
different flash chips so that each flash chip can han-
dle each request in parallel. The third row represents
the maximum bandwidth of each product when we read
data in a purely sequential way. The fourth row shows
the ratio between random and sequential bandwidth in
each product. The ratio is calculated using the formula,
(mazimum IOPS z 4KB) / sequential bandwidth. Please
note that while there is huge imbalance between sequen-
tial and random access in harddisk, the relative band-
width gap between sequential and random read is quite
small, though not negligible.

2.2 Parallelism inside SSDs

In order to achieve high bandwidth and better IOPS,
every modern SSD adopts multi-channel and multi-way
architecture and flash memory controller can read and
write flash chips in parallel [1]. From the perspective of
query throughput, we need to understand the impact
of this parallelism inside SSDs. For simplicity, let us
assume that the database tables are uniformly striped
across multiple flash memory chips, and also that the
data pages from a table are also evenly distributed over
the chips. In fact, this assumption about the data distri-
bution across multiple flash chips is similar to the RAID-
0 striping. When a single query is accessing a table using
the full table scan, all the flash chips would become ac-
tive because each flash chip contains some data pages
from the table, thus maximizing the bandwidth. In con-
trast, when a single query is accessing the table using
the index scan which is implemented using synchronous
10 call in most DBMS, only one of the flash chips is ac-
tive while the others are idle at a point of time. Namely,
the parallelism inside SSDs is under-utilized.

In order to fairly compare the performance of the full
table scan and the index scan in SSDs, we need to run
multiple queries at least as many as the parallelism de-

gree inside SSDs, that is, the number of channels. We
will illustrate the effect of parallelism in SSDs on query
processing in Section 3.2.

2.3 Full Table Scan and Index Scan

Most DBMS provides two primitive access methods
to tables, the full table scan and the index scan (here-
after, FTS and IDX, respectively) [5]. When harddisk is
used as the database storage, the database query opti-
mizer prefers FTS to IDX as the access method, except
when the selection predicate for the target table is very
selective. This is mainly due to the slow random IO la-
tency, and IDX would, taking into account the widening
performance gap between the sequential and random ac-
cess, remain as the access method only when accessing
a few records. In contrast, SSDs do not have any me-
chanical component and thus the access time in SSDs
is nearly proportional to the data size being accessed.
Therefore, an index based access method is expected to
be promising when SSDs are used as database storage.

Despite using SSDs as database storage, however, there
are two issues which might limit the efficacy of the tra-
ditional IDX: index clusteredness and buffer size. Ac-
cording to the clusteredness, there are clustered index
and non-clustered index. If the physical ordering of data
records of a table is the same or very close to the order-
ing of data entries in an index created on the table, the
index is said to be clustered; otherwise non-clustered [5].
In case of clustered index, IDX would be very efficient
because every data pages is read into buffer only once
during index scan. In case of non-clustered index, IDX
might read the same data pages from the storage into
buffer cache several times because the size of buffer
cache is limited and the data page can contain several
data records to be retrieved by IDX. In fact, as we will
illustrate in Section 3.2, IDX underperforms FTS even
when the predicate selectivity is below 5% on SSDs.

3. SORTED INDEX SCAN
3.1 Sorted Index Scan

To improve the efficiency of the non-clustered index
scan, there have been some approaches to sort the record
identifiers (7id) in index entries in the order of page id
before accessing the data records using the rids [2, 7].
By taking the sorted index scan with a non-clustered
index, each data page is fetched once from the storage
into buffer even with the limited buffer size. In hard-
disk based databases, however, the sorted index scan
(hereafter, SIDX) has not been such popular and will
become less effective because of the ever widening im-
balance between sequential and random access. In case
of SSDs, however, SIDX could be much more effective.
For example, as will be shown later, SIDX outperforms
FTS in the selectivity of 40% while pure IDX outper-
forms FTS in the selectivity of 5%. Therefore, we can
make use of non-clustered indexes in a wider range of
predicate selectivity.

The commercial database server used in our experi-
ment does not directly support SIDX as its access method,
and thus, in order to simulate the logical steps in SIDX
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using the DBMS, we used a query transformation ap-
proach. The two SQL queries in Figure 1 illustrate our
query transformation approach using a sample range
query which retrieves and aggregates tuples from table
tab, each of whose a column value is between min and
max. In the example, we assume that a non-clustered
index exists on column a in table tab.

/* Before transformation */
SELECT *

FROM tab

WHERE a BETWEEN min AND max;

/* After transformation */
SELECT *
FROM (SELECT /* use_nested_loop */ tl.*
FROM (SELECT /* use_index */ rowid
FROM tab
WHERE a BETWEEN min AND max
ORDER BY rowid) t1, tab t2
WHERE t1l.rowid = t2.rowid );

Figure 1: Query transformation for simulating
the sorted index scan

The innermost SELECT statement in the transformed
query finds all the index entries satisfying the predicate
a BETWEEN min AND max, sorts them, and returns the
result as a virtual table to the next outer query. The
second inner SELECT statement accesses all the relevant
data pages in table tab in the order of their page ids,
and returns the records satisfying the given predicate.
And the outermost statement aggregates b values of all
the records. In fact, this approach of query transforma-
tion will have run-time overhead over the natively imple-
mented SIDX, but the overhead is not such big enough
to change the main argument made in this paper.

3.2 Performance Evaluation

For the experiment, we used a commercial DBMS on
Linux 2.6.18 with AMD 3.0GHz hexa-core processor and
8GB RAM. As data tablespace storage, we used the
harddisk and the SSD from Table 1. In order to hide the
interference on the data tablespace by the IOs in tem-
porary tablespace, another harddisk was designated as
the temporary tablespace device. We set database block
size, buffer cache, and sort memory to 8KB, 256MB,
and 1MB, respectively. The sort memory represents the
memory area designated to each process for sorting.
When either harddisk or SSD was used as stable storage,
it was bound as a raw device to minimize the interfer-
ence from data caching by the file system.

The sample table has 2.5 million tuples, and each tu-
ple is 300B long. In order to create a non-clustered index
on the table, we assigned a randomly generated distinct
integer value between 1 and 2,500,000 to column a of
each tuple, and created an index on column a.

For the sample range query in Figure 1 against the
sample table and the non-clustered index, we measured
the query execution time of three access methods, F'TS,
IDX, and SIDX, using harddisk and SSD, respectively,
by varying the query selectivity and the number of con-
current users. When varying the number of concurrent
users, we made 24 copies of both the sample table and
the non-clustered index on column a and allowed each
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session to run the same sample query in Figure 1 against
its own separate table and index. And, the performance
result is plotted in Figure 2.

First, Figure 2(a) compares the performance of FTS
and IDX in harddisk. As expected, FTS always out-
performs IDX, except when the query predicate is very
selective (less than 0.2%). This is mainly because the
number of random reads increases as the query predi-
cate becomes less selective and because the performance
gap between sequential and random read operations in
harddisk, as shown in Table 1, is large. Next, Figure 2(b)
compares the performance of SIDX and FTS in hard-
disk. By comparing the performance of IDX and SIDX in
Figure 2(a) and Figure 2(b), respectively, we know that
SIDX improves IDX considerably. And this is mainly
because SIDX reads each page to be accessed by queries
only once while IDX might read each page several times.
Despite the performance benefit of SIDX, we should
note that SIDX, in case of harddisks, underperforms
FTS except for very selective case (e.g. less than 1%)
at which 6% of total pages in the table is accessed.

Now, let us compare the performance of three access
methods on SSD. Figure 2(c) compares the performance
of FTS and IDX on SSD. From Figure 2(c), we know
that the break-even point between FTS and IDX in SSD
moves to the selectivity of 5% at which 17% of total
blocks in the table is accessed. Nevertheless, it is still
disappointing to observe that the repetitive reads of the
same pages make IDX to underperform FTS in SSD
even when the selectivity is below 10%. In contrast, the
performance of SIDX on SSD can outperform FTS for a
wider range of selectivity. As plotted in Figure 2(d), the
break-even point between SIDX and FTS moves up to
the 40% selectivity when sixteen concurrent queries are
running. In our sample table and non-clustered index,
the number of distinct pages to be accessed by SIDX is
about 60% of total page number in the table.

One interesting observation in Figure 2(d) is that
the break-even selectivity between FTS and SIDX goes
higher as the number of concurrent users increases. In
order to understand this performance phenomenon in
Figure 2(d), we need to remind the effect of parallelism
inside SSD already explained in Section 2.2. When a
single query runs in SIDX, SSD is under-utilized since
only one flash chip is active at any point of time due
to the synchronous IO call in SIDX. In contrast, in case
of FTS, even if a single query is running, almost flash
chips would be active because of the sequential access
pattern in FTS. Therefore, when a single query runs,
SIDX could underperform FTS even at the selectivity
of 5%. Meanwhile, as more concurrent queries are run-
ning in SIDX, more flash chips inside SSD would be ac-
tive because multiple random read operations are issued
by concurrent queries, and thus the query throughput
of SSDs gets higher. In contrast, in case of FTS, be-
cause of its sequential access pattern, the query execu-
tion time would increase in proportion to the number
of concurrent queries. Thus, SIDX outperforms FTS at
the selectivity of 40% when sixteen or more concurrent
queries are running, at which case all flash chips inside
SSD would be active in SIDX.
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Figure 2: The break-even point between FTS, IDX and SIDX

4. INDEX-BASED PARTITIONED SORT

In the previous section, we have shown that SIDX
is an effective access method on SSD. One downside of
SIDX is, however, that the tuples produced by SIDX
is not any more in the order of index key. Because the
interesting order is not preserved [6], the output tuples
from SIDX should be re-sorted to be used for order by
or group by clause or as an input to the sort merge join.

In this case, the sorting overhead would be non-trivial,
although it does not diminish the benefit of SIDX as
an access method. But, fortunately we can efficiently
sort the output of SIDX by exploiting the index itself.
For this, we propose a new index-based sort algorithm,
partitioned sort ( PS ) in this section.

4.1 Partitioned Sort

The key idea of PS is to map the records evenly into
small partitions based on the ranges of values of the
partitioning key so that all the records in each partition
could fit into the available sort memory. Because each
partition can fit in the sort memory, we can sort each
partition using in-memory sort algorithm after reading
it from SSD. And because all the partitions are range
partitioned, we can simply concatenate the sorted out-
put of each partition without any separate merge step
such as in the existing external merge sort.

Then, the remaining key question is how to calculate
the partitioning key values. In SIDX, we can calculate
them just by scanning the relevant index entries in the
leaf nodes because the index entries in the B+-tree leaf
nodes are already sorted in key order. Meanwhile, with-
out index on the key attribute, the only way to calculate
the partitioning key values is, as far as we can imagine,
to sort the whole records.

Below is listed the algorithm of our partitioned sort,

and its overall process is depicted in Figure 3.

1. While scanning the index entries in SIDX, we cal-
culate the partitioning key values so that the whole
records of each partition can fit into the available
sort memory. At the end of this step, we know how
many partitions are necessary and the value range
of each partition.

2. We create the partitions as necessary and specify
the value range of each partition.

3. While retrieving the records using SIDX, we insert
each record to its corresponding partition (parti-
tioning phase).

4. For each partition (in the ascending order of par-
tition range), we read all the records into the sort
memory, sort them, and output the sorted records.
(sorting phase).

data page accesses range-based = read and sort
in rid order : partitions each partition
- O
R I:l —_ —> output
Non Clustered s
|:| sort memory
—
SIDX partitioning sorting
phase phase phase

Figure 3: SIDX and partitioned sort

Please note that the step 3 writes all the records once
and the step 4 reads all the records once, and thus our
PS can, regardless of the size of the available sort mem-
ory, sort the retrieved records in one pass (i.e. one write
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and one read). Also note that this one-pass sort is pos-
sible because the partitions generated in step 3 is skew-
less, that is, the size of each partition is uniform. In
comparison, the existing external merge sort [5] may re-
quire multiple passes depending on the size of the sort
memory, especially when the sort memory is small com-
pared to the size of records to be sorted.

Now let us illustrate the IO pattern generated from
our PS with SIDX, and compare it with the IO pattern
from the traditional external sorting (ES) with the full
table scan (FTS). By the way, the commercial DBMS
used in our experiment does not support either SIDX or
PS, we again take the query transformation approach
to simulate SIDX and PS, as shown in Figure 4. The
first CREATE statement in Figure 4 creates range-based
partitions and inserts the retrieved records using the
transformed SELECT statement simulating SIDX in Fig-
ure 1. In other words, it represents the partitioning
phase of our PS algorithm while retrieving the records
using SIDX. The second SELECT statement in Figure 4
corresponds to the sorting phase of our PS algorithm.
That is, it reads each partition, sorts its records us-
ing the ORDER BY clause, and then merges all the sorted
records using the UNION ALL clause.

/* Before transformation */

SELECT *
FROM tab
WHERE a BETWEEN min AND max
ORDER BY aj;

/* After transformation */
CREATE TABLE partioned PARTITION BY RANGE (a) (
PARTITION p_1 VALUES LESS THAN (vall),

PARTITION p_n VALUES LESS THAN (maxvalue)
) AS
SELECT statement in Figure 2;

SELECT * FROM ( /*+ use_no_merge */
SELECT * FROM part_tab PARTITION (p_1) ORDER BY a
UNION ALL

SELECT * FROM part_tab PARTITION (p_n) ORDER BY a)

Figure 4: Query transformation for simulating
partitioned sort

In order to validate that the query transformation in
Figure 4 works as we intended, we traced the 10 pat-
tern while executing the transformed query and plotted
them in Figure 5(a) [4]. The selectivity of the query
was 30% and the size of the sort memory was set to
2 MB. A clear separation of two phases was observed
in Figure 5(a). When partitions are created and popu-
lated during the partitioning phase, the data pages for
the partitions were written sequentially to the data ta-
blespace. In the second sorting phase, on the other hand,
the data pages of each partition were read in randomly
scattered manner, leading to random reads spread over
the whole region of the time-address space correspond-
ing to each partition. Figure 5(a) confirms that the PS
algorithm, as we intended, can sort the records in one
pass. To better explain the difference between PS and
ES, we also traced the IO operations in the temporary
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Figure 6: Performance of various query plans

tablespace while executing the original ORDER BY query
before the transformation in Figure 4 and plotted them
in Figure 5(b). The table was accessed in FTS and the
selected records were sorted using ES provided by the
commercial DBMS. Figure 5(b) also has two phases.
The first phase generates the initial runs while scan-
ning the table from the data tablespace, and the second
phase merges the runs to generate the final sorted out-
put. In the merge phase, multiple passes are required to
merge the runs, and this is because the sort memory is
too small to merge all the runs at once. From this, we
can observe that our PS can sort the data just in one
pass regardless of the size of the available sort memory
while ES may require multiple passes depending on the
size of sort memory and the data size to be sorted.

The IO pattern of PS consists of sequential writes and
random reads, which is preferable in SSD [4], and thus
PS can provide good performance. In case of harddisk,
however, as we confirmed throughout a separate set of
experiments using the harddisk, the small random reads
in the sort phase makes PS underperform ES.

One interesting point is that our index-based parti-
tioned sort can be used in combination with FTS as
well as with SIDX. Thus, when the selectivity is higher
(e.g. larger than 40%) and an index is available on the
sorting attribute(s), PS combined with FTS (FTS +
PS) can outperform the traditional ES combined with
FTS (FTS + ES).

4.2 Performance Evaluation

The experimental setting here is same as that in Sec-
tion 3.2. In order to compare the performance of var-
ious query execution plans for the ORDER BY query in
Figure 4, we ran the query in five different ways, includ-
ing IDX, SIDX+PS, SIDX+ES, FTS+PS and FTS+ES.
The idea of PS can be, as stated earlier, applied to FTS
as well as SIDX. In this experiment, the query selectiv-
ity was set to 30%, the size of the sort memory was 32
MB;, the buffer caches was 128MB, and the number of
concurrent users was varied from 1 to 24. The perfor-
mance result is presented in Figure 6. In Figure 6, we
also included the performance of SIDX and FTS for the
query without order by clause so as to easily estimate
the sort overhead in each query plan. From Figure 6, we
can make a few important observations. First, although
IDX preserves the sortedness of the result records and
thus the separate sorting phase is not required, it per-
forms much worse than the other four plans. Its over-
head from the repetitive reads for the same pages is too
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large to be compensated by avoiding the explicit sort-
ing step for the order by clause. The second observa-
tion is that our PS algorithms (SIDX+PS and FTS+PS)
outperform the existing ES algorithms (SIDX+ES and
FTS+ES). In particular, taking only the sort time into
account, it can be roughly said that PS can sort the
records two or three times faster than ES.

In order to test whether PS algorithm is effective in
harddisk, we carried out a separate set of experiments
using harddisk, but FTS + ES outperforms both SIDX
+ PS and FTS + PS consistently over almost every ex-
perimental configuration except only when the selectiv-
ity is lower than than 1%. This is because the overhead
of frequent mechanical harddisk head movements for the
random writes to multiple partitions during the parti-
tioning phase in PS algorithm can not be compensated
by the one pass sort.

Table 2: The effect of sort memory size
[ Access [ 2MB | 4MB | 8MB | 16MB [ 32MB |

FTS+ES 340 274 269 269 263
SIDX+PS 122 124 119 122 121
Ratio 2.8 2.2 2.3 2.2 2.2

Now, let us explain the effect of the sort memory size
on the performance of two query plans, SIDX+PS and
FTS+ES. We ran the transformed query in Figure 4 by
varying the size of the sort memory from 2, 4, 8, 16 to
32 MB with the selectivity of 30% with 20 concurrent
users. For comparison, we also ran the query in FTS+ES
mode with the same configuration. The performance re-
sult is presented in Table 2. As expected, while the per-
formance of FTS+ES varies considerably depending on
the sort memory size, the performance of SIDX+PS is
almost consistent regardless of the sort memory size.

S. CONCLUSION

In this paper, we revisited SIDX (sorted index scan)
as a database access method when SSDs are used as
the database storage, and have empirically shown that
the break-even point between SIDX and FTS (full ta-
ble scan) moves to higher selectivity (e.g. 40%) espe-
cially when multiple queries are concurrently running
and thus the intrinsic parallelism inside SSDs are ex-
ploited. And, in order to efficiently re-sort the unsorted
result of SIDX, we proposed an index-based partitioned
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sort algorithm, PS, and have experimentally shown that
it can outperform the existing external merge sort (ES)
and in particular its performance is, in contrast to ES,
not sensitive to the size of available sort memory.

In this paper, we simulated SIDX and PS by mod-
ifying queries in a commercial DBMS because it does
not support those operators directly. In fact, as far as
we know, any commercial or open source DBMS is not
equipped with either algorithm. However, considering
that both SIDX and PS are effective in SSDs and that
SSDs would be more actively adopted in the database
market, both algorithms need to be incorporated into
future DBMSs as first-class citizens; they should be im-
plemented as built-in operators and could be chosen by
query optimizers in a cost-based manner.
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ABSTRACT

A prominent parallel data processing tool MapReduce is gain-
ing significant momentum from both industry and academia
as the volume of data to analyze grows rapidly. While MapRe-
duce is used in many areas where massive data analysis is re-
quired, there are still debates on its performance, efficiency
per node, and simple abstraction. This survey intends to
assist the database and open source communities in under-
standing various technical aspects of the MapReduce frame-
work. In this survey, we characterize the MapReduce frame-
work and discuss its inherent pros and cons. We then intro-
duce its optimization strategies reported in the recent litera-
ture. We also discuss the open issues and challenges raised
on parallel data analysis with MapReduce.

1. INTRODUCTION

In this age of data explosion, parallel processing is
essential to processing a massive volume of data in a
timely manner. MapReduce, which has been popular-
ized by Google, is a scalable and fault-tolerant data
processing tool that enables to process a massive vol-
ume of data in parallel with many low-end computing
nodes[44, 38]. By virtue of its simplicity, scalability,
and fault-tolerance, MapReduce is becoming ubiqui-
tous, gaining significant momentum from both industry
and academia. However, MapReduce has inherent lim-
itations on its performance and efficiency. Therefore,
many studies have endeavored to overcome the limita-
tions of the MapReduce framework[10, 15, 51, 32, 23].

The goal of this survey is to provide a timely remark
on the status of MapReduce studies and related work
focusing on the current research aimed at improving
and enhancing the MapReduce framework. We give an
overview of major approaches and classify them with
respect to their strategies. The rest of the survey is or-
ganized as follows. Section 2 reviews the architecture
and the key concepts of MapReduce. Section 3 dis-
cusses the inherent pros and cons of MapReduce. Sec-
tion 4 presents the classification and details of recent
approaches to improving the MapReduce framework.
In Section 5 and 6, we overview major application do-
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mains where the MapReduce framework is adopted and
discuss open issues and challenges. Finally, Section 7
concludes this survey.

2. ARCHITECTURE

MapReduce is a programming model as well as a
framework that supports the model. The main idea
of the MapReduce model is to hide details of parallel
execution and allow users to focus only on data pro-
cessing strategies. The MapReduce model consists of
two primitive functions: Map and Reduce. The input
for MapReduce is a list of (keyl, valuel) pairs and
Map() is applied to each pair to compute intermedi-
ate key-value pairs, (key2, value2). The intermediate
key-value pairs are then grouped together on the key-
equality basis, i.e. (key2, list(value2)). For each key2,
Reduce () works on the list of all values, then produces
zero or more aggregated results. Users can define the
Map() and Reduce() functions however they want the
MapReduce framework works.

MapReduce utilizes the Google File System(GFS) as
an underlying storage layer to read input and store out-
put[59]. GFS is a chunk-based distributed file system
that supports fault-tolerance by data partitioning and
replication. Apache Hadoop is an open-source Java
implementation of MapReduce[81]. We proceed our
explanation with Hadoop since Google’s MapReduce
code is not available to the public for its proprietary
use. Other implementations (such as DISCO written
in Erlang[6]) are also available, but not as popular as
Hadoop. Like MapReduce, Hadoop consists of two lay-
ers: a data storage layer called Hadoop DFS(HDFS)
and a data processing layer called Hadoop MapReduce
Framework. HDFS is a block-structured file system
managed by a single master node like Google’s GFS.
Each processing job in Hadoop is broken down to as
many Map tasks as input data blocks and one or more
Reduce tasks. Figure 1 illustrates an overview of the
Hadoop architecture.

A single MapReduce(MR) job is performed in two
phases: Map and Reduce stages. The master picks idle
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workers and assigns each one a map or a reduce task
according to the stage. Before starting the Map task,
an input file is loaded on the distributed file system. At
loading, the file is partitioned into multiple data blocks
which have the same size, typically 64MB, and each
block is triplicated to guarantee fault-tolerance. Each
block is then assigned to a mapper, a worker which is
assigned a map task, and the mapper applies Map() to
each record in the data block. The intermediate out-
puts produced by the mappers are then sorted locally
for grouping key-value pairs sharing the same key. After
local sort, Combine () is optionally applied to perform
pre-aggregation on the grouped key-value pairs so that
the communication cost taken to transfer all the inter-
mediate outputs to reducers is minimized. Then the
mapped outputs are stored in local disks of the map-
pers, partitioned into R, where R is the number of Re-
duce tasks in the MR job. This partitioning is basically
done by a hash function e.g., hash(key) mod R.

When all Map tasks are completed, the MapReduce
scheduler assigns Reduce tasks to workers. The inter-
mediate results are shuffled and assigned to reducers via
HTTPS protocol. Since all mapped outputs are already
partitioned and stored in local disks, each reducer per-
forms the shuffling by simply pulling its partition of the
mapped outputs from mappers. Basically, each record
of the mapped outputs is assigned to only a single re-
ducer by one-to-one shuffling strategy. Note that this
data transfer is performed by reducers’ pulling interme-
diate results. A reducer reads the intermediate results
and merge them by the intermediate keys, i.e. key2, so
that all values of the same key are grouped together.
This grouping is done by external merge-sort. Then
each reducer applies Reduce () to the intermediate val-
ues for each key?2 it encounters. The output of reducers
are stored and triplicated in HDFS.

Note that the number of Map tasks does not depend
on the number of nodes, but the number of input blocks.
Each block is assigned to a single Map task. However,
all Map tasks do not need to be executed simultaneously
and neither are Reduce tasks. For example, if an input
is broken down into 400 blocks and there are 40 mappers
in a cluster, the number of map tasks are 400 and the
map tasks are executed through 10 waves of task runs.
This behavior pattern is also reported in [60].

The MapReduce framework executes its tasks based
on runtime scheduling scheme. It means that MapRe-
duce does not build any execution plan that specifies
which tasks will run on which nodes before execution.
While DBMS generates a query plan tree for execution,
a plan for executions in MapReduce is determined en-
tirely at runtime. With the runtime scheduling, MapRe-
duce achieves fault tolerance by detecting failures and
reassigning tasks of failed nodes to other healthy nodes
in the cluster. Nodes which have completed their tasks
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are assigned another input block. This scheme natu-
rally achieves load balancing in that faster nodes will
process more input chunks and slower nodes process
less inputs in the next wave of execution. Furthermore,
MapReduce scheduler utilizes a speculative and redun-
dant execution. Tasks on straggling nodes are redun-
dantly executed on other idle nodes that have finished
their assigned tasks, although the tasks are not guar-
anteed to end earlier on the new assigned nodes than
on the straggling nodes. Map and Reduce tasks are
executed with no communication between other tasks.
Thus, there is no contention arisen by synchronization
and no communication cost between tasks during a MR,
job execution.

3. PROS AND CONS
3.1 Debates

As suggested by many researchers, commercial DBMSs
have adopted “one size fits all” strategy and are not
suited for solving extremely large scale data processing
tasks. There has been a demand for special-purpose
data processing tools that are tailored for such problems
[79, 50, 72]. While MapReduce is referred to as a new
way of processing big data in data-center computing
[77], it is also criticized as a “major step backwards” in
parallel data processing in comparison with DBMS [10,
15]. However, many MapReduce proponents in indus-
try argue that MapReduce is not a DBMS and such
an apple-to-orange comparison is unfair. As the techni-
cal debate continued, ACM recently invited both sides
in January edition of CACM, 2010 [51, 39]. Panels in
DOLAP’10 also discussed pros and cons of MapReduce
and relational DB for data warehousing [23].

Pavlo et al’s comparison show that Hadoop is 2~50
times slower than parallel DBMS except in the case of
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data loading [15]. Anderson et alalso criticize that the
current Hadoop system is scalable, but achieves very
low efficiency per node, less than 5MB/s processing
rates, repeating a mistake that previous studies on high-
performance systems often made by “focusing on scal-
ability but missing efficiency” [32]. This poor efficiency
involves many issues such as performance, total cost
of ownership(TCO) and energy. Although Hadoop won
the 1st position in GraySort benchmark test for 100 TB
sorting(1 trillion 100-byte records) in 2009, its winning
was achieved with over 3,800 nodes [76]. MapReduce
or Hadoop would not be a cheap solution if the cost
for constructing and maintaining a cluster of that size
was considered. Other studies on the performance of
Hadoop are also found in literature [28, 61]. Analysis
of 10-months of MR logs from Yahoo’s M45 Hadoop
cluster and MapReduce usage statistics at Google are
also available [60, 9].

The studies exhibit a clear tradeoff between efficiency
and fault-tolerance. MapReduce increases the fault tol-
erance of long-time analysis by frequent checkpoints of
completed tasks and data replication. However, the fre-
quent I/Os required for fault-tolerance reduce efficiency.
Parallel DBMS aims at efficiency rather than fault tol-
erance. DBMS actively exploits pipelining intermediate
results between query operators. However, it causes a
potential danger that a large amount of operations need
be redone when a failure happens. With this fundamen-
tal difference, we categorize the pros and cons of the
MapReduce framework below.

3.2 Advantages

MapReduce is simple and efficient for computing ag-
gregate. Thus, it is often compared with “filtering then
group-by aggregation” query processing in a DBMS. Here
are major advantages of the MapReduce framework for
data processing.

Simple and easy to use The MapReduce model is sim-
ple but expressive. With MapReduce, a program-
mer defines his job with only Map and Reduce
functions, without having to specify physical dis-
tribution of his job across nodes.

Flexible MapReduce does not have any dependency on
data model and schema. With MapReduce a pro-
grammer can deal with irregular or unstructured
data more easily than they do with DBMS.

Independent of the storage MapReduce is basically
independent from underlying storage layers. Thus,
MapReduce can work with different storage layers
such as BigTable[35] and others.

Fault tolerance MapReduce is highly fault-tolerant.
For example, it is reported that MapReduce can
continue to work in spite of an average of 1.2 fail-
ures per analysis job at Google[44, 38].
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High scalability The best advantage of using MapRe-
duce is high scalability. Yahoo! reported that
their Hadoop gear could scale out more than 4,000
nodes in 2008[4].

3.3 Pitfalls

Despite many advantages, MapReduce lacks some of
the features that have proven paramount to data analy-
sis in DBMS. In this respect, MapReduce is often char-
acterized as an Extract-Transform-Load (ETL) tool[51].
We itemize the pitfalls of the MapReduce framework
below, compared with DBMS.

No high-level language MapReduce itself does not
support any high-level language like SQL in DBMS
and any query optimization technique. Users should
code their operations in Map and Reduce func-
tions.

No schema and no index MapReduce is schema-free
and index-free. An MR job can work right after
its input is loaded into its storage. However, this
impromptu processing throws away the benefits of
data modeling. MapReduce requires to parse each
item at reading input and transform it into data
objects for data processing, causing performance
degradation [15, 11].

A Single fixed dataflow MapReduce provides the ease
of use with a simple abstraction, but in a fixed
dataflow. Therefore, many complex algorithms are
hard to implement with Map and Reduce only in
an MR job. In addition, some algorithms that re-
quire multiple inputs are not well supported since
the dataflow of MapReduce is originally designed
to read a single input and generate a single output.

Low efficiency With fault-tolerance and scalability as
its primary goals, MapReduce operations are not
always optimized for I/O efficiency. (Consider for
example sort-merge based grouping, materializa-
tion of intermediate results and data triplication
on the distributed file system.) In addition, Map
and Reduce are blocking operations. A transi-
tion to the next stage cannot be made until all
the tasks of the current stage are finished. Conse-
quently, pipeline parallelism may not be exploited.
Moreover, block-level restarts, a one-to-one shuf-
fling strategy, and a simple runtime scheduling can
also lower the efficiency per node. MapReduce
does not have specific execution plans and does not
optimize plans like DBMS does to minimize data
transfer across nodes. Therefore, MapReduce of-
ten shows poorer performance than DBMSJ15]. In
addition, the MapReduce framework has a latency
problem that comes from its inherent batch pro-
cessing nature. All of inputs for an MR job should
be prepared in advance for processing.
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Very young MapReduce has been popularized by Google

since 2004. Compared to over 40 years of DBMS,
codes are not mature yet and third-party tools
available are still relatively few.

4. VARIANTS AND IMPROVEMENTS

We present details of approaches to improving the
pitfalls of the MapReduce framework in this section.

4.1 High-level Languages

Microsoft SCOPE[53], Apache Pig[22, 18], and Apache
Hive[16, 17] all aim at supporting declarative query lan-
guages for the MapReduce framework. The declarative
query languages allow query independence from pro-
gram logics, reuse of the queries and automatic query
optimization features like SQL does for DBMS. SCOPE
works on top of the Cosmos system, a Microsoft’s clone
of MapReduce, and provides functionality similar to
SQL views. It is similar to SQL but comes with C# ex-
pressions. Operators in SCOPE are the same as Map,
Reduce and Merge supported in [37].

Pig is an open source project that is intended to sup-
port ad-hoc analysis of very large data, motivated by
Sawzall[55], a scripting language for Google’s MapRe-
duce. Pig consists of a high-level dataflow language
called Pig Latin and its execution framework. Pig Latin
supports a nested data model and a set of pre-defined
UDFs that can be customized [22]. The Pig execution
framework first generates a logical query plan from a Pig
Latin program. Then it compiles the logical plan down
into a series of MR jobs. Some optimization techniques
are adopted to the compilation, but not described in
detail[18]. Pig is built on top of Hadoop framework,
and its usage requires no modification to Hadoop.

Hive is an open-source project that aims at providing
data warehouse solutions on top of Hadoop, supporting
ad-hoc queries with an SQL-like query language called
HiveQL. Hive compiles a HiveQL query into a directed
acyclic graph(DAG) of MR jobs. The HiveQL includes
its own type system and data definition language(DDL)
to manage data integrity. It also contains a system
catalog, containing schema information and statistics,
much like DBMS engines. Hive currently provides only
a simple, naive rule-based optimizer.

Similarly, DryadLINQ[71, 49] is developed to trans-
late LINQ expressions of a program into a distributed
execution plan for Dryad, Microsoft’s parallel data pro-
cessing tool [48].

4.2 Schema Support

As described in Section 3.3, MapReduce does not
provide any schema support. Thus, the MapReduce
framework parses each data record at reading input,
causing performance degradation [15, 51, 11]. Mean-
while, Jiang et alreport that only immutable decoding
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that transforms records into immutable data objects
severely causes performance degradation, rather than
record parsing [28].

While MapReduce itself does not provide any schema
support, data formats such as Google’s Protocol Buffers,
XML, JSON, Apache’s Thrift, or other formats can be
used for checking data integrity [39]. One notable thing
about the formats is that they are self-describing for-
mats that support a nested and irregular data model,
rather than the relational model. A drawback of the use
of the formats is that data size may grow as data con-
tains schema information in itself. Data compression is
considered to address the data size problem [47].

4.3 Flexible Data Flow

There are many algorithms which are hard to directly
map into Map and Reduce functions. For example,
some algorithms require global state information dur-
ing their processing. Loop is a typical example that
requires the state information for execution and ter-
mination. However, MapReduce does not treat state
information during execution. Thus, MapReduce reads
the same data iteratively and materializes intermedi-
ate results in local disks in each iteration, requiring lots
of I/Os and unnecessary computations. HaLoop[66],
Twister[42], and Pregel[36] are examples of systems that
support loop programs in MapReduce.

HaLoop and Twister avoid reading unnecessary data
repeatedly by identifying and keeping invariant data
during iterations. Similarly, Lin et alpropose an in-
mapper combining technique that preserves mapped out-
puts in a memory buffer across multiple map calls, and
emits aggregated outputs at the last iteration [75]. In
addition, Twister avoids instantiating workers repeat-
edly during iterations. Previously instantiated workers
are reused for the next iteration with different inputs
in Twister. HaLoop is similar to Twister, and it also
allows to cache both each stage’s input and output to
save more I/Os during iterations. Vanilla Hadoop also
supports task JVM reuse to avoid the overhead of start-
ing a new JVM for each task [81]. Pregel mainly tar-
gets to process graph data. Graph data processing are
usually known to require lots of iterations. Pregel im-
plements a programming model motivated by the Bulk
Synchronous Parallel(BSP) model. In this model, each
node has each own input and transfers only some mes-
sages which are required for next iteration to other
nodes.

MapReduce reads a single input. However, many im-
portant relational operators are binary operators that
require two inputs. Map-Reduce-Merge addresses the
support of the relational operators by simply adding a
third merge stage after reduce stage [37]. The merge
stage combines two reduced outputs from two different
MR jobs into one.
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Clustera, Dryad and Nephele/PACT allow more flex-
ible dataflow than MapReduce does [31, 48, 30, 26].
Clustera is a cluster management system that is de-
signed to handle a variety of job types including MR-
style jobs [31]. Job scheduler in Clustera handles MapRe-
duce, workflow and SQL-type jobs, and each job can be
connected to form a DAG or a pipeline for complex
computations.

Dryad is a notable example of distributed data-parallel
tool that allows to design and execute a dataflow graph
as users’ wish [48]. The dataflow in Dryad has a form of
DAG that consists of vertices and channels. Each vertex
represents a program and a channel connects the ver-
tices. For execution, a logical dataflow graph is mapped
onto physical resources by a job scheduler at runtime.
A vertex runs when all its inputs are ready and outputs
its results to the neighbor vertices via channels as de-
fined in the dataflow graph. The channels can be either
of files, TCP pipes, or shared-memory. Job executions
are controlled by a central job scheduler. Redundant
executions are also allowed to handle apparently very
slow vertices, like MapReduce. Dryad also allows to
define how to shuffle intermediate data specifically.

Nephele/PACT is another parallel execution engine
and its programming model[30, 26]. The PACT model
extends MapReduce to support more flexible dataflows.
In the model, each mapper can have a separate input
and a user can specify its dataflow with more various
stages including Map and Reduce. Nephele transforms
a PACT program into a physical DAG then executes the
DAG across nodes. Executions in Nephele are scheduled
at runtime, like MapReduce.

4.4 Blocking Operators

Map and Reduce functions are blocking operations in
that all tasks should be completed to move forward to
the next stage or job. The reason is that MapReduce
relies on external merge sort for grouping intermediate
results. This property causes performance degradation
and makes it difficult to support online processing.

Logothetis et al address this problem for the first time
when they build MapReduce abstraction onto their dis-
tributed stream engine for ad-hoc data processing[29].
Their incremental MapReduce framework processes data
like streaming engines. Each task runs continuously
with a sliding window. Their system generates MR
outputs by reading the items within the window. This
stream-based MapReduce processes arriving increments
of update tuples, avoiding recomputation of all the tu-
ples from the beginning.

MapReduce Online is devised to support online ag-
gregation and continuous queries in MapReduce[63]. It
raises an issue that pull-based communication and check-
points of mapped outputs limit pipelined processing. To
promote pipelining between tasks, they modify MapRe-
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duce architecture by making Mappers push their data
temporarily stored in local storage to Reducers period-
ically in the same MR job. Map-side pre-aggregation is
also used to reduce communication volumes further.

Li et aland Jiang et al have found that the merge sort
in MapReduce is I/O intensive and dominantly affects
the performance of MapReduce [21, 28]. This leads to
the use of hash tables for better performance and also
incremental processing [21]. In the study, as soon as
each map task outputs its intermediate results, the re-
sults are hashed and pushed to hash tables held by re-
ducers. Then, reducers perform aggregation on the val-
ues in each bucket. Since each bucket in the hash table
holds all values which correspond to a distinct key, no
grouping is required. In addition, reducers can perform
aggregation on the fly even when all mappers are not
completed yet.

4.5 1/0 Optimization

There are also approaches to reducing 1/O cost in
MapReduce by using index structures, column-oriented
storage, or data compression.

Hadoop++ provides an index-structured file format
to improve the I/O cost of Hadoop [40]. However, as it
needs to build an index for each file partition at data
loading stage, loading time is significantly increased.
If the input data are processed just once, the addi-
tional cost given by building index may not be justified.
HadoopDB also benefits from DB indexes by leveraging
DBMS as a storage in each node [11].

There are many studies that describe how column-
oriented techniques can be leveraged to improve MapRe-
duce’s performance dramatically [35, 62, 68, 12, 69].
Google’s BigTable proposes the concept of column fam-
ily that groups one or more columns as a basic working
unit[35]. Google’s Dremel is a nested column-oriented
storage that is designed to complement MapReduce[62].
The read-only nested data in Dremel are modeled with
Protocol Buffers [47]. The data in Dremel are split into
multiple columns and records are assembled via finite
state machines for record-oriented requests. Dremel is
also known to support ad-hoc queries like Hive [16].

Record Columnar File(RCFile), developed by Face-
book and adopted by Hive and Pig, is a column-oriented
file format on HDFS [68]. Data placement in HDFS is
determined by the master node at runtime. Thus, it is
argued that if each column in a relation is independently
stored in a separate file on HDFS, all related fields in
the same record cannot guarantee to be stored in the
same node. To get around this, a file format that rep-
resents all values of a relation column-wise in a single
file is devised. A RCFile consists of a set of row groups,
which are acquired by partitioning a relation horizon-
tally. Then in each row group, values are enumerated
in column-wise, similar to PAX storage scheme [3].
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Llama shows how column-wise data placement helps
join processing [69]. A column-oriented file in Llama
stores a particular column data with optional index in-
formation. It also witnesses that late materialization
which delays record reconstruction until the column
is necessary during query processing is no better than
early materialization in many cases.

Floratou et al propose a binary column-oriented stor-
age that boosts the performance of Hadoop by an or-
der of magnitude[12]. Their storage format stores each
column in a separate file but co-locate associated col-
umn files in the same node by changing data placement
policy of Hadoop. They also suggest that late mate-
rialization with skiplist shows better performance than
early materialization, contrary to the result of RCFile.
Both Floratou’s work and RCFile also use a column-
wise data compression in each row group, and adopt a
lazy decompression technique to avoid unnecessary de-
compression during query execution. Hadoop also sup-
ports the compression of mapped outputs to save I/Os
during the checkpoints[81].

4.6 Scheduling

MapReduce uses a block-level runtime scheduling with
a speculative execution. A separate Map task is created
to process a single data block. A node which finishes its
task early gets more tasks. Tasks on a straggler node
are redundantly executed on other idle nodes.

Hadoop scheduler implements the speculative task
scheduling with a simple heuristic method which com-
pares the progress of each task to the average progress.
Tasks with the lowest progress compared to the average
are selected for re-execution. However, this heuristic
method is not well suited in a heterogeneous environ-
ment where each node has different computing power.
In this environment, even a node whose task progresses
further than others may be the last if the node’s com-
puting power is inferior to others. Longest Approxi-
mate Time to End(LATE) scheduling is devised to im-
prove the response time of Hadoop in heterogeneous en-
vironments [52]. This scheduling scheme estimates the
task progress with the progress rate, rather than simple
progress score.

Parallax is devised to estimate job progress more pre-
cisely for a series of jobs compiled from a Pig pro-
gram [45]. it pre-runs with sampled data for estimating
the processing speeds of each stage. ParaTimer is an ex-
tended version of Parallax for DAG-style jobs written in
Pig [46]. ParaTimer identifies a critical path that takes
longer than others in a parallel query plan. It makes
the indicator ignore other shorter paths when estimat-
ing progress since the longest path would contribute the
overall execution time. Besides, it is reported that the
more data blocks to be scheduled, the more cost the
scheduler will pay [65]. Thus, a rule of thumb in in-
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dustry — making the size of data block bigger makes
Hadoop work faster — is credible.

We now look into multi-user environment whereby
users simultaneously execute their jobs in a cluster.
Hadoop implements two scheduling schemes: fair schedul-
ing and capacity scheduling. The default fair scheduling
works with a single queue of jobs. It assigns physical
resources to jobs such that all jobs get an equal share
of resources over time on average. In this scheduling
scheme, if there is only a single MR job running in a
cluster, The job solely uses entire resources in the clus-
ter. Capacity sharing supports designing more sophis-
ticated scheduling. It provides multiple queues each of
which is guaranteed to possess a certain capacity of the
cluster.

MRShare is a remarkable work for sharing multiple
query executions in MapReduce [64]. MRShare, in-
spired by multi query optimization techniques in database,
finds an optimal way of grouping a set of queries using
dynamic programming. They suggest three sharing op-
portunities across multiple MR jobs in MapReduce, like
found in Pig [18]: scan sharing, mapped outputs shar-
ing, and Map function sharing. They also introduce
a cost model for MR jobs and validate this with ex-
periments. Their experiments show that intermediate
result sharing improves the execution time significantly.
In addition, they have found that sharing all scans yield
poorer performance as the size of intermediate results
increases, because of the complexity of the merge-sort
operation in MapReduce. Suppose that |D] is the size
of input data that n MR jobs share. When sharing all
scans, the cost of scanning inputs is reduced by |D|,
compared to n - |D| for no sharing scans. However, as a
result, the complexity of sorting the combined mapped
output of all jobs will be O(n - |Dllog(n - |D|)) since
each job can generate its own mapped output with size
O(|D]). This cost can be bigger than the total cost of
sorting n different jobs, O(n - |Dl|log|D|) in some cases.

4.7 Joins

Join is a popular operator that is not so well dealt
with by Map and Reduce functions. Since MapReduce
is designed for processing a single input, the support of
joins that require more than two inputs with MapRe-
duce has been an open issue. We roughly classify join
methods within MapReduce into two groups: Map-side
join and Reduce-side join. We also borrow some of
terms from Blanas et al’s study, which compares many
join techniques for analysis of clickstream logs at Face-
book [57], for explaining join techniques.

Map-side Join

Map-Merge join is a common map-side join that works
similarly to sort-merge join in DBMS. Map-Merge join
performs in two steps. First, two input relations are
partitioned and sorted on the join keys. Second, map-
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pers read the inputs and merge them [81]. Broadcast
join is another map-side join method, which is applica-
ble when the size of one relation is small [57, 7]. The
smaller relation is broadcast to each mapper and kept
in memory. This avoids I/Os for moving and sorting on
both relations. Broadcast join uses in-memory hash ta-
bles to store the smaller relation and to find matches via
table lookup with values from the other input relation.
Reduce-side Join

Repartition join is the most general reduce-side join [81,
57). Each mapper tags each row of two relations to
identify which relation the row come from. After that,
rows of which keys have the same key value are copied
to the same reducer during shuffling. Finally, each re-
ducer joins the rows on the key-equality basis. This way
is akin to hash-join in DBMS. An improved version of
the repartition join is also proposed to fix the buffer-
ing problem that all records for a given key need to be
buffered in memory during the joining process[57].

Lin et alpropose a scheme called ”schimmy” to save
I/0 cost during reduce-side join[75]. The basic concept
of the scheme is to separate messages from graph struc-
ture data, and shuffle only the message to avoid shuf-
fling data, similar to Pregel [36]. In this scheme, map-
pers emit only messages. Reducers read graph structure
data directly from HDF'S and do reduce-side merge join
between the data and the messages.

MapReduce Variants

Map-Reduce-Merge is the first that attempts to address
join problem in the MapReduce framework [37]. To
support binary operations including join, Map-Reduce-
Merge extends MapReduce model by adding Merge stage
after Reduce stage.

Map-Join-Reduce is another variant of MapReduce
framework for one-phase joining [27]. The authors pro-
pose a filtering-join-aggregation model that adds Join
stage before Reduce stage to perform joining within a
single MR job. Each mapper reads tuples from a sep-
arate relation which take part in a join process. After
that, the mapped outputs are shuffled and moved to
joiners for actual joining, then the Reduce() function
is applied. Joiners and reducers are actually run inside
the same reduce task. An alternative that runs Map-
Join-Reduce with two consecutive MR jobs is also pro-
posed to avoid modifying MapReduce framework. For
multi-way join, join chains are represented as a left-deep
tree. Then previous joiners transfer joined tuples to the
next joiner that is the parent operation of the previous
joiners in the tree. For this, Map-Join-Reduce adopts
one-to-many shuffling scheme that shuffles and assigns
each mapped outputs to multiple joiners at a time.
Other Join Types
Joins may have more than two relations. If relations
are simply hash-partitioned and fed to reducers, each
reducer takes a different portion of the relations. How-
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ever, the same relation must be copied to all reducers
to avoid generating incomplete join results in the cases.
For example, given a multi-way join that reads 4 re-
lations and with 4 reducers, we can split only 2 rela-
tions making 4 partitions in total. The other relations
need to be copied to all reducers. If more relations
are involved into less reducers, we spend more commu-
nication costs. Afrati et alfocus on how to minimize
the sum of the communication cost of data that are
transferred to Reducers for multi-way join [2]. They
suggest a method based on Lagrangean multipliers to
properly select which columns and how many of the
columns should be partitioned for minimizing the sum
of the communication costs. Lin et al propose the con-
current join that performs a multi-way join in parallel
with MapReduce [69)].

In addition to binary equal-join, other join types have
been widely studied. Okcan et alpropose how to effi-
ciently perform 6#-join with a single MR job only [14].
Their algorithm uses a Reducer-centered cost model
that calculates the total cost of Cartesian product of
mapped output. With the cost model, they assigns
mapped output to reducers that minimizes job com-
pletion time. The support of Semi-join, e.g. R X S, is
proposed in [57]. Vernica et al propose how to efficiently
parallelize set-similarity joins with Mapreduce [56]. They
utilize prefix filtering to filter out non-candidates before
actual comparison. It requires to extract common pre-
fixes sorted in a global order of frequency from tuples,
each of which consists of a set of items.

4.8 Performance Tuning

Most of MapReduce programs are written for data
analysis and they usually take much time to be finished.
Thus, it is straightforward to provide the feature of au-
tomatic optimization for MapReduce programs. Babu
et alsuggest an automatic tuning approach to finding
optimal system parameters for given input data [5]. It
is based on speculative pre-runs with sampled data.
Jahani et alsuggest a static analysis approach called
MANIMAL for automatic optimization of a single Map-
Reduce job [34]. In their approach, an analyzer exam-
ines program codes before execution without any run-
time information. Based on the rules found during the
analysis, it creates a pre-computed BT-tree index and
slices input data column-wise for later use. In addition,
some semantic-aware compression techniques are used
for reducing 1/0. Its limitation is that the optimiza-
tion considers only selection and projection which are
primarily implemented in Map function.

4.9 Energy Issues

Energy issue is important especially in this data-center
computing era. Since the energy cost of data centers
hits 23% of the total amortized monthly operating ex-
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penses, it is prudent to devise an energy-efficient way
to control nodes in a data center when the nodes are
idle[74]. 1In this respect, two extreme strategies for
energy management in MapReduce clusters are exam-
ined [74, 43]. Covering-Set approach designates in ad-
vance some nodes that should keep at least a replica of
each data block, and the other nodes are powered down
during low-utilization periods [43]. Since the dedicated
nodes always have more than one replica of data, all
data across nodes are accessible in any cases except for
multiple node failures. On the contrary, All-In strat-
egy saves energy in an all-or-nothing fashion [74]. In
the strategy, all MR jobs are queued until it reaches a
threshold predetermined. If it exceeds, all nodes in the
cluster run to finish all MR jobs and then all the nodes
are powered down until new jobs are queued enough.
Lang et alconcluded that All-In strategy is superior
to Covering-Set in that it does not require changing
data placement policy and response time degradation.
However, All-In strategy may not support an instant
execution because of its batch nature. Similarly, Chen
et aldiscuss the computation versus I/O tradeoffs when
using data compressions in a MapReduce cluster in terms
of energy efficiency [67].

4.10 Hybrid Systems

HadoopDB is a hybrid system that connects multi-
ple single-node DBMS with MapReduce for combin-
ing MapReduce-style scalability and the performance
of DBMS [11]. HadoopDB utilizes MapReduce as a dis-
tributing system which controls multiple nodes which
run single-node DBMS engines. Queries are written
in SQL, and distributed via MapReduce across nodes.
Data processing is boosted by the features of single-
node DBMS engines as workload is assigned to the DBMS
engines as much as possible.

SQL/MapReduce is another hybrid framework that
enables to execute UDF functions in SQL queries across
multiple nodes in MapReduce-style [33]. UDF's extend a
DBMS with customizing DB functionality. SQL/Map-
Reduce presents an approach to implementing UDF that
can be executed across multiple nodes in parallel by
virtue of MapReduce. Greenplum also provides the
ability to write MR functions in their parallel DBMS.
Teradata makes its effort to combine Hadoop with their
parallel DBMS [70]. The authors describe their three
efforts toward tight and efficient integration of Hadoop
and Teradata EDW: parallel loading of Hadoop data to
EDW, retrieving EDW data from MR programs, and
accessing Hadoop data from SQL via UDFs.

5. APPLICATIONS AND ADAPTATIONS

5.1 Applications
Mahout is an Apache project that aims at building
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scalable machine learning libraries which are executed
in parallel by virtue of Hadoop [1]. RHIPE and Ricardo
project are tools that integrate R statistical tool and
Hadoop to support parallel data analysis [73, 58]. Chee-
tah is a data warehousing tool built on MapReduce with
virtual view on top of the star or snowflake schemas and
with some optimization techniques like data compres-
sion and columnar store [7]. Osprey is a shared-nothing
database system that supports MapReduce-style fault
tolerance [25]. Osprey does not directly use MapReduce
or GFS. However, the fact table in star schema is parti-
tioned and replicated like GF'S, and tasks are scheduled
by a central runtime scheduler like MapReduce. A dif-
ference is that Osprey does not checkpoint intermedi-
ate outputs. Instead, it uses a technique called chained
declustering which limits data unavailability when node
failures happen.

The use of MapReduce for data intensive scientific
analysis and bioinformatics are well studied in [41, 80].
CloudBLAST parallelizes NCBI BLAST?2 algorithm us-
ing Hadoop [13]. They break their input sequences
down into multiple blocks and run an instance of the
vanilla version of NCBI BLAST2 for each block, us-
ing the Hadoop Streaming utility [81]. CloudBurst is
a parallel read-mapping tool that maps NGS read se-
quencing data to a reference genome for genotyping in
parallel [78].

5.2 Adaptations to Intra-node Parallelism

Some studies use the MapReduce model for simplify-
ing complex multi-thread programming on many-core
systems such as multi-core[24, 65], GPU[20, 19], and
Cell processors[8]. In the studies, mapped outputs are
transferred to reducers via shared-memory rather than
disks. In addition, a task execution is performed by a
single core rather than a node. In this intra-node paral-
lelism, fault-tolerance can be ignored since all cores are
located in a single system. A combination of intra-node
and inter-node parallelism by the MapReduce model is
also suggested [54].

6. DISCUSSION AND CHALLENGES

MapReduce is becoming ubiquitous, even though its
efficiency and performance are controversial. There is
nothing new about principles used in MapReduce [10,
51]. However, MapReduce shows that many problems
can be solved in the model at scale unprecedented be-
fore. Due to frequent checkpoints and runtime schedul-
ing with speculative execution, MapReduce reveals low
efficiency. However, such methods would be necessary
to achieve high scalability and fault tolerance in massive
data processing. Thus, how to increase efficiency guar-
anteeing the same level of scalability and fault tolerance
is a major challenge. The efficiency problem is expected
to be overcome in two ways: improving MapReduce it-
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self and leveraging new hardware. How to utilize the
features of modern hardware has not been answered in
many areas. However, modern computing devices such
as chip-level multiprocessors and Solid State Disk(SSD)
can help reduce computations and I/Os in MapReduce
significantly. The use of SSD in Hadoop with simple
installation is briefly examined, but not in detail [21].
Self-tuning and job scheduling in multi-user environ-
ments are another issues that have not been well address
yvet. The size of MR clusters is continuously increas-
ing. A 4,000-node cluster is not surprising any more.
How to efficiently manage resources in the clusters of
that size in multi-user environment is also challenging.
Yahoo’s M45 cluster reportedly shows only 5~10% re-
source utilization [60]. Energy efficiency in the clusters
and achieving high utilizations of MR clusters are also
important problems that we consider for achieving bet-
ter TCO and return on investments in practice.

7. CONCLUSION

We discussed pros and cons of MapReduce and clas-
sified its improvements. MapReduce is simple but pro-
vides good scalability and fault-tolerance for massive
data processing. However, MapReduce is unlikely to
substitute DBMS even for data warehousing. Instead,
we expect that MapReduce complements DBMS with
scalable and flexible parallel processing for various data
analysis such as scientific data processing. Nonetheless,
efficiency, especially I/O costs of MapReduce still need
to be addressed for successful implications.
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ABSTRACT

Microblogs such as Twitter provide a valuable stream
of diverse user-generated data. While the data extracted
from Twitter is generally timely and accurate, the pro-
cess by which developers extract structured data from
the tweet stream is ad-hoc and requires reimplementa-
tion of common data manipulation primitives. In this
paper, we present two systems for querying and extract-
ing structure from Twitter-embedded data. The first,
TweeQL, provides a streaming SQL-like interface to the
Twitter API, making common tweet processing tasks
simpler. The second, Twitlnfo, shows how end-users
can interact with and understand aggregated data from
the tweet stream, in addition to showcasing the power of
the TweeQL language. Together these systems show the
richness of content that can be extracted from Twitter.

1. INTRODUCTION

The Twitter messaging service is wildly popular, with
millions of users posting more than 200 million tweets
per day'. This stream of messages from a variety of
users contains information on an array of topics, in-
cluding conventional news stories, events of local inter-
est (e.g., local sports scores), opinions, real-time events
(e.g., earthquakes), and many others.

Unfortuantely, the Twitter interface does not make it
easy to access this information. The majority of useful
information is embedded in unstructured tweet text that
is obfuscated by abbreviations (to overcome the 140-
character text limit), social practices (e.g., prepending
tweets from other users with RT), and references (e.g.,
URLs of full stories, or the @usernames of other users).
Twitter’s APIs provide access to tweets from a partic-
ular time range, from a particular user, with a particu-
lar keyword, or from a particular geographic region, but
provides no facility to extract structure from tweets, and
does not provide aggregate views of tweets on different
topics (e.g., the frequency of tweets about a particular
topic over time.)

"http://blog.twitter.com/2011/06/200-
million-tweets-per—-day.html
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In this paper, we describe two approaches we have
devised to help programmers and end-users make sense
of the tweet stream. For programmers, we have built
TweeQL, a SQL-like stream processor that provides
streaming semantics and a collection of user-defined
functions to extract and aggregate tweet-embedded data.
For end-users, we built TwitInfo [7], a timeline-based
visualization of events in the tweetstream, linked to raw
tweet text, sentiment analysis, and maps.

2. TWEEQL

TweeQL provides a SQL-like query interface on top
of the Twitter streaming API. The streaming API allows
users to issue long-running HTTP requests with key-
word, location, or userid filters, and receive tweets that
appear on the stream and match these filters. TweeQL
provides windowed select-project-join-aggregate queries
over this stream, and utilizes user-defined functions for
deeper processing of tweets and tweet text.

We begin by describing the TweeQL data model, and
then illustrate its operation through a series of expam-
ples. We close with a discussion of challenges with
building TweeQL and future directions.

2.1 Data Model and Query Language

TweeQL is based on SQL’s select-project-join-aggregate
syntax. Its data model is relational, with both traditional
table semantics as well as streaming semantics.

2.1.1 Streams

The primary stream that TweeQL provides is twit-
ter_stream. TweeQL users define new streams based
on this base stream using the CREATE STREAM state-
ment, which creates a named substream of the main
twitter stream that satistifies a particular set of filters.
For example, the following statement creates a queriable
stream of tweets containing the term obama generated
from the twitter_stream streaming source:

CREATE STREAM obama_tweets
FROM twitter_stream
WHERE text contains ‘obama’;
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While rwitter_stream offers several fields (e.g., text,
username, userid, location, latitude, longitude), the
Twitter API only allows certain filters to be used as ac-
cess methods for defining a stream. When defining a
new stream on top of twitter_stream, the developer must
provide a key lookup on userid, a text match on text, or a
range lookup on latitude and longitude. If a user tries to
create a stream from a streaming source but omits API-
required filters, TweeQL will raise an error.

Users are not allowed to directly query the raw
twitter_stream because Twitter only provides access to
tweets that contain a filter. If users wish to access an
unrestricted stream, Twitter provides a sampled, unfil-
tered stream that TweeQL wraps as twitter_sample. A
complete, unfiltered stream is not provided by Twitter
for performance and financial reasons.

While our examples show users creating streams from
the twitter_stream base stream, in principle one could
also wrap other streaming sources, such as RSS feeds, a
Facebook news feed, or a Google+ feed. Once wrapped,
derived streams can be generated using techniques sim-
ilar to the examples we provide.

2.1.2 UDFs

TweeQL also supports user-defined functions (UDFs).
UDFs in TweeQL are designed to provide operations
over unstructured data such as text blobs. To sup-
port such diversity in inputs and outputs, TweeQL
UDFs accept and return array- or table-valued attributes.
TweeQL UDFs also help wrap web APIs for various ser-
vices, such as geocoding services.

Complex Data Types. TweeQL UDFs can accept array-
or table-valued attributes as arguments. This is required
because APIs often allow a variable number of parame-
ters. For example, a geocoding API might allow multi-
ple text locations to be be mapped to latitude/longitude
pairs in a single web service request.

UDFs can also return several values at once. This
behavior is needed both for batched APIs that submit
multiple requests at once, and for many text-processing
tasks that are important in unstructured text processing.
For example, to build an index of words that appear in
tweets, one can issue the following query:

SELECT tweetid, tokenize (text)
FROM obama_tweets;

The tokenize UDF returns an array of words that ap-
pear in the tweet text. For example, tokenize(“Tweet
number one”) = [“Tweet”, “number”, “one”]. While
arrays can be stored or passed to array-valued functions,
users often wish to “relationalize” them. To maintain
the relational model, we provide a FLATTEN operator
(based on the operator of the same name from Olston
et al.’s Pig Latin [8]). Users can wrap an array-valued
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function found in a SELECT clause with a FLATTEN to
produce a result without arrays. For example, instead of
the above query, the programmer could write:

SELECT tweetid, FLATTEN (tokenize (text))
FROM obama_tweets;

The resulting tuples for a tweet with tweetid = 5 and text
= “Tweet number one” would then be:

(5, “Tweet'’)
(5, ‘number’)
(5, ‘one’)

Web Services as UDFs. Much of TweeQL’s structure-
extraction functionality is provided by third parties as
web APIs. TweeQL allows UDF implementers to make
calls to such web services to access their functional-
ity. One such UDF is geocode, which returns the lat-
itude and longitude for user-reported textual locations
as described in Section 2.1.4. The benefit of wrapping
such functionality in third party services is that often
the functionality requires large datasets—good geocod-
ing datasets can be upward of several gigabytes—that an
implementer can not or does not wish to package with
their UDF. Wrapping services comes at a cost, however,
as service calls generally incur high latency, and service
providers often limit how frequently a client can make
requests to their service.

Because calls to other web services may be slow or
rate-limited, a TweeQL UDF developer can specify sev-
eral parameters in addition to the UDF implementation.
For example, the developer can add a cache invalida-
tion policy for cacheable UDF invocations, as well as
any rate-limiting policies that the API they are wrap-
ping allows. To ensure quality of service, the developer
can also specify a timeout on wrapped APIs. When
the timeout expires, the return token TIMEOUT is re-
turned, which acts like a NULL value but can explicitly
be fetched at a later time. Similarly, a RATELIMIT token
can be returned for rate-limited UDFs.

2.1.3 Storing Data and Generating Streams

It is often useful for TweeQL developers to break their
workflows into multiple steps and to write final results
into a table. To support both of these operations, we
allow the results of SELECT statements over streams
to write data to named tables. In this way, intermedi-
ate steps can be named to allow subsequent queries in a
workflow to utilize their results.

Output to a table and temporarily naming tuples is
accomplished via the INTO operator. To save results, a
programmer can add an INTO TABLE tablename clause
to their query. To name a set of results that can be loaded
as a stream by another query, the programmer can add an
INTO STREAM streamname clause to their query. For
example, consider the following three queries:
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CREATE STREAM sampled
FROM twitter_sample;

SELECT text, sentiment (text) AS sent
FROM sampled
INTO STREAM text_sentiment;

SELECT text

FROM text_sentiment

WHERE sent > 0

INTO TABLE positive_sentiment;

SELECT text, sent

FROM text_sentiment

WHERE text contains ‘obama’
INTO TABLE obama_sentiment;

The first query creates an unfiltered sampled stream
called sampled. The second query retrieves all tweet
text and its sentiment (described in Section 2.1.4),
and places that text in a stream called fext_sentiment.
The third query stores all positive-sentiment tweet text
from the text_sentiment stream in a table called posi-
tive_sentiment. The final query stores all tweet text from
the text_sentiment stream containing the term obama in
a table called obama_sentiment.

For testing purposes, it is also possible to select a
stream INTO STDOUT, which outputs the contents of
a stream to a user’s console.

2.1.4 Structure Extraction UDFs

One key feature of our TweeQL implementation is
that it provides a library of useful UDFs. One important
class of operators are those that allow programmers to
extract structure from unstructured content. The func-
tions are described below.

String Processing. String functions help extract struc-
ture from text. We have already described one such
UDF, tokenize in Section 2.1.2 that splits strings into a
list of tokens. Other UDFs allow more complex string
extraction, such as regular expressions that return lists
of matches for each string.

Location. Tweets are annotated with location infor-
mation in several ways. GPS-provided coordinates are
most accurate, but only a small fraction of tweets are
annotated with such precision (0.77% in mid-2010 [6]).
More common is a self-reported location field, with
values ranging from the nonsensical “Justin Bieber’s
heart” [6] to a potentially accurate “Boston, MA.”

To extract structure from self-reported location strings,
we offer a geocode UDF. The following query extracts
the sentiment of tweets containing the term obama as
well as the coordinates of the self-reported location:
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SELECT sentiment (text) AS sent,
geocode (loc) .latitude AS lat,
geocode (loc) .longitude AS long

FROM obama_tweets

INTO STREAM obama_sent_loc;

The query also displays another feature of TweeQL
UDFs. In addition to being able to return lists of fields
to be flattened into a resultset, UDFs can return tuples
rather than fields. In the example above, geocode returns
a tuple of coordinates that the query projects into two
fields, lat and long, in the result set.

Classification. Classifiers can be used to identify struc-
ture in unstructured text content. For example, so-
cial science researchers explore various ways to use the
tweet stream as a proxy for public sentiment about vari-
ous topics. TweeQL provides a sentiment UDF for clas-
sifying tweet text as expressing positive or negative sen-
timent. An example of this UDF can be seen in the
obama_sent_loc stream example above. Other classifiers
might identify the topic, language, or veracity of a tweet.

Named entity extraction. So far, we have identified
tweets about President Obama by filtering tweets whose
text contains the term obama. This approach may be un-
acceptable when two people with the same name might
be confused. For example, searching for tweets contain-
ing the term clinton combines tweets such as “Secretary
Clinton accepts Crowley resignation” and ones such as
“Former President Clinton undergoes heart surgery.”

To reduce ambiguity, TweeQL provides a namedEn-
tities UDF that identifies potential entities in context.
For example, namedEntities( “Secretary Clinton accepts
Crowley resignation”) returns a list of fields [ “Hillary
Clinton”, “P.J. Crowley” ] that can be filtered.

With the namedEntities UDF, we can refine our orig-
inal obama_tweets example to identify tweets specifi-
cally involving Barack Obama.

CREATE STREAM obama_tweets
FROM twitter_stream
WHERE text contains ‘obama’;

SELECT text,

FLATTEN (namedEntities (text)) AS entity

FROM obama_tweets
INTO STREAM obama_entities;

SELECT text

FROM obama_entities

WHERE entity = "Barack Obama"
INTO STREAM barack_obama_tweets;

The current implementation of namedEntities is an
API wrapper around OpenCalais 2, a web service for

http://www.opencalais.com/
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performing named entity extraction and topic identifi-
cation. OpenCalais was designed to handle longer text
blobs (e.g., a newspaper article) for better contextual
named entity extraction. One area of future work is to
develop named entity extractors for tweets, which are
significantly shorter.

2.1.5 Windowed Operators

Like other stream processing engines, TweeQL sup-
ports aggregates and joins on streams. Because streams
are infinite, we attach sliding window semantics to them,
as in other streaming systems [2, 1]. Windows are
defined by a WINDOW parameter specifying the time-
frame during which to calculate an aggregate or join.

Any streaming source must include a __created_at
timestamp field. By default, tuples are timestamped
with their creation time. On aggregates, an EVERY
parameter specifies how frequently to emit WINDOW-
sized aggregates. If an EVERY parameter is smaller
than the WINDOW parameter, overlapping windows are
emitted. The __created_at field of a tuple emitted from
an aggregate is the time that the window begins.

The query below provides an example of the WIN-
DOW and EVERY parameters for aggregates:

SELECT AVG(sent) AS sent,
floor (lat) AS lat,
floor (long) AS long
FROM obama_sent_loc
GROUP BY lat, 1long
WINDOW 3 hours
EVERY 1 hour
INTO STREAM obama_sent_by_area;

The query converts the obama_sent_loc stream of sen-
timent, latitude, and longitude into an average sentiment
expressed in a 1°x 1°area. This average is computed
over the course of three hours, and is emitted every hour.

2.1.6 Event Detection

As we explore with TwitInfo in Section 3, the number
of tweets per minute mentioning a topic is a good signal
of peaking interest in the topic. If the number of tweets
per minute is significantly higher than recent history, it
might suggest that an event of interest has just occurred.

To support event detection, we provide a meanDevi-
ation UDF. The UDF takes a floating-point value as an
argument. It returns the difference between the value
and an exponentially weighted moving mean (EWMA)
of recent values. This difference is called the mean de-
viation. Before returning the EWMA, it updates the
EWMA with the floating-point value for future calls.
The details of this algorithm are spelled out in [7]. The
following example illustrates its use:
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Figure 1: TweeQL architectural components.

SELECT COUNT (text) as count,
__Created_at as time

FROM obama_tweets

WINDOW 1 minute

EVERY 1 minute

INTO STREAM obama_counts;

SELECT meanDeviation (count) AS dev,
time

FROM obama_counts

WHERE dev > 2

INTO TABLE obama_peaks;

The first query uses windowed aggregates, described
in Section 2.1.5, to calculate the tweets per minute men-
tioning the term obama. The second query calculates
the mean deviation of each tweets-per-minute value,
and stores the time of deviations above 2 in a table
obama_peaks.

The meanDeviation UDF is unique in that it stores
state that is updated between calls. This makes the se-
mantics of the UDF difficult to define, as calling mean-
Deviation(count) on the same count value with different
histories will result in a different return value. In prac-
tice we found that the simple interface to the meanDevi-
ation UDF makes it usable for event detection.

2.2 System Design

Figure 1 illustrates the key architectural components
of the TweeQL stream processor.

TweeQL offers its SQL-like query language through a
traditional query prompt or in batched query mode. All
of the queries that make up a workflow (e.g., sampled,
text_sentiment, positive_sentiment, and obama_sentiment
in Section 2.1.3) are handled together and sent to the
Query Parser to be processed at the same time.

The parser generates batches of dependent query
trees, some of which store records in tables while others
generate streams that other query trees depend on. The
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Optimizer reorders operators as informed by selectiv-
ity and latency statistics collected by the Sampler. In
addition to reordering operators, the optimizer also de-
cides which filters to send to streaming APIs such as
Twitter’s to reduce the number of tuples returned. The
sampler keeps statistics on all APIs and tables known to
the database.

Optimized query tree batches are sent to the Execu-
tor. The query executor is iterator-based. As streaming
sources asynchronously generate tuples, the streams are
buffered by streaming access method operators that al-
low iterator access. Streamed tuples appear as tuples
with a fixed schema to the rest of the query tree. As we
see in Section 2.1.3, a stream (such as fext_sentiment)
can be used by multiple downstream query trees. Down-
stream query trees register themselves as listeners to
named streams that send batches of tuples generated at
their root to the streaming buffer of each query tree.

There are three data source managers from which the
executor retrieves data: a stream manager, a UDF man-
ager, and a relational manager.

The Stream Manager manages all streams generated
with CREATE STREAM or INTO STREAM. It communi-
cates with streaming APIs such as Twitter’s, and informs
streaming access method operators in query trees when
new batches of tuples arrive from streaming sources.

The UDF Manager manages all UDF invocations.
While traditional UDFs are executed as they are in tra-
ditional RDBMSs, the UDF Manager has special logic
for handling UDFs which wrap web services. In addi-
tion to providing adapters that generate relational data
from nonrelational services, it contains components that
apply to all requests. The Cacher ensures that fre-
quent service requests are cached, and supports age-
and frequency-based cache eviction policies. The Rate
Limiter enforces service-based rate limiting policies.
These policies generally limit the number of requests
per minute, hour, or day. Finally, the Latency Enforcer
ensures that requests that run for too long are returned
with TIMEOUT as discussed in Section 2.1.2. The la-
tency enforcer still allows requests returned after a time-
out to be cached for future performance benefits.

The Relational Manager simply wraps traditional
relational data sources for querying, and stores tables
generated with INTO TABLE syntax.

2.3 Current Status

TweeQL is implemented in Python, using about 2500
lines of code. The implementation is available as an
open source distribution®. The distribution includes
most of the features described in this paper. We are
working to add the rate-limiting and latency-enforcing
logic to web service UDF wrappers. The CREATE

*https://github.com/marcua/tweeql
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STREAM and INTO STREAM statements, which we re-
alized were necessary as we wrapped streams for ser-
vices other than Twitter, are available in experimental
versions of TweeQL. Finally, we intend to add FLAT-
TEN syntax in the next TweeQL release.

2.4 Challenges

In this section, we describe a number of challenges
and open issues we encountered when building TweeQL.

Uncertain Selectivities. When creating a stream, TweeQL
users may issue multiple filters that can be passed to the
streaming API. Only one filter type can be submitted to
the API, and selecting the most efficient one to send is
difficult. For example, consider a user issuing the query:

CREATE STREAM obama_nyc
FROM twitter_stream
WHERE text contains ‘obama’;
AND location in [bounding box for NYC];

The user wants to see all tweets containing the word
obama that are tweeted from the New York City area.
TweeQL must select between requesting all obama
tweets, or all NYC tweets.

We benefit from having access to Twitter’s histori-
cal API in this case. We can issue two requests for
recent tweets with both filters applied, and determine
which stream is less frequent. We are also exploring
Eddies-style [3] dynamic operator reodering to adjust to
changes in operator selectivity over time.

High-latency Operators. As discussed in Section 2.1.2,
TweeQL UDFs can return TIMEOUT and RATELIMIT
for long-running or rate-limited web services. Still, the
high latency of operations is in tension with the tradi-
tional blocking iterator model of query execution.

Web service API requests such as geolocation can
take hundreds of milliseconds apiece, but incur little
processing cost on the query executor. Though the oper-
ations incur little computational cost, they often bottle-
neck blocking iterators. Caching responses and batching
multiple requests when an API allows can reduce some
request overhead.

We are exploring modifying iterators to operate asyn-
chronously as described by Goldman and Widom [5].
This, in combination with a data model that allows par-
tial results as described by Raman and Hellerstein [9],
might be a sufficient solution.

Aggregate Classifiers are Misleading. In the develop-
ment of TwitInfo, described in Section 3, we ran into an
issue with running aggregates over the output of classi-
fiers such as the sentiment UDF. We describe the prob-
lem and one solution in detail in [7].

One such example can be seen in the obama_sent_by_area
stream in Section 2.1.5. Consider the case where the
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sentiment UDF simply outputs 1 for postive text and —1
for negative text. It is possible that the classifier power-
ing sentiment has different recall (e.g., the fraction of
text identified as positive in situations where the text
is actually positive) for positive and negative classifica-
tions. In this case, AVG(sent) will be biased toward the
class with higher recall. The solution described in [7]
is to adjust for this bias by learning the positive and
negative recall values (recallpositive and recallyegative)
on training data. With these values, we can return
e — for positive text, and m for neg-
ative text. These values, when summed or averaged, ad-
just for overall recall differences.

3. TWITINFO

TwitInfo [7] is an application written on top of the
TweeQL stream processor. Twitlnfo is a user interface
that summarizes events and people in the news by fol-
lowing what Twitter users say about those topics over
time*. TwitInfo offers an example of how aggregate data
extracted from tweets can be used in a user interface.
Other systems, such as Vox Civitas [4], allow similar ex-
ploration, but TwitInfo focuses on the streaming nature
of tweet data and uses event detection to relay a story.

3.1 Creating an Event

TwitInfo users define an event by specifying a Twitter
keyword query. For example, for a soccer game, users
might enter search keywords soccer, football, premier-
league, and team names like manchester and liverpool.
Users give the event a human-readable name like “Soc-
cer: Manchester City vs. Liverpool” as well as an op-
tional time window. When users are done entering the
information, Twitlnfo saves the event and begins log-
ging tweets containing the keywords using a TweeQL
query like the following:

CREATE STREAM twitinfo
FROM twitter_stream
WHERE text contains ‘soccer’
OR text contains ‘football’
OR text contains ‘premierleague’
OR text contains ‘manchester’
OR text contains ‘liverpool’;

This query results in some irrelevant tweets (e.g.,
tweets about American Football). In [7], we discuss how
to remove noisy terms and rank tweets by relevance.

3.2 Timeline and Tweets

Once a user has created an event, Twitlnfo creates a
page on which the user can monitor the event. The Twit-
Info interface (Figure 2) is a dashboard summarizing

“The TwitInfo website with interactive visualizations is acces-
sibleat http://twitinfo.csail.mit.edu/
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the event over time. The dashboard displays a timeline
for the event, raw tweet text sampled from the event,
an overview graph of tweet sentiment, and a map view
displaying tweet sentiment and locations.

The event timeline (Figure 2.2) reports tweet activity
by volume. The more tweets that match the query dur-
ing a period of time, the higher the y-axis value on the
timeline for that period. When many users are tweet-
ing about a topic (e.g., a goal by Manchester City), the
timeline spikes. Twitlnfo’s peak detection algorithm is
implemented in a stateful TweeQL UDF described in
Section 2.1.6. The algorithm identifies these spikes and
flags them as peaks in the interface.

Peaks appear as flags in the timeline. TwitInfo auto-
matically generates key terms that frequently appeared
in tweets during a peak, and displays them to the right
of the timeline. For example, in Figure 2.2, TwitInfo au-
tomatically tags one of the goals in the soccer game as
peak “F” and annotates it on the right with representative
terms in the tweets like ‘3-0’ (the new score) and ‘Tevez’
(the soccer player who scored). Users can perform text
search on this list of key terms to locate a specific peak.

As users click on peaks, the map, tweet list, links, and
sentiment graph update to reflect tweets in the period
covered by the peak.

The Relevant Tweets panel (Figure 2.4) contains the
tweets that have the highest overlap with the event peak
keywords. These tweets expand on the reason for the
peak. The relevant tweets are color-coded red, blue, or
white depending on whether the sentiment they display
is negative, positive, or neutral.

3.3 Aggregate Metadata Views

A user may wish to see the general sentiment on Twit-
ter about a given topic. The Overall Sentiment panel
(Figure 2.6) displays a pie chart with the proportion of
positive and negative tweets during an event.

Twitter users share links as a story unfolds. The Pop-
ular Links panel (Figure 2.5) aggregates the top URLs
extracted from tweets in the timeframe being explored.

Often, opinion on an event differs by geographic re-
gion. The Tweet Map (Figure 2.3) displays tweets that
provide geolocation metadata. The marker for each
tweet is colored according to its sentiment, and clicking
on a pin reveals the associated tweet.

3.4 Uses and Study

As we developed Twitlnfo, we tested its ability to
identify meaningful events and its effectiveness at re-
laying extracted information to users.

We have tracked events of different duration and con-
tent using Twitlnfo. In soccer matches, TwitInfo suc-
cessfully identifies goals, half-time, the end of a game,
and some penalties. The system successfully identified
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twitlnfo

august 23 manchester city vs. liverpool 1
Keywords: football, soccer, epl, premier_league, premierleague, manchester city, mancity, liverpool
Event dates: Aug. 23, 2010, 6:30 p.m. - Aug. 23, 2010, 9:10 p.m

Message Frequency

Relevant Tweets 4

ui‘ln getting ready for the liverpool game. I'm so
xited

PBY | @footbal.Love Sheikh Mansour bin Zayed
2l VianCity - Liverpool macini izlemek icin
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S avier Mascherano refuses to face Manchester
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‘atching man city vs liverpool (@ &

mancity, man, barry

Popular Links 5

Zoom:1' 5' 1h 1d 5d 1m 3m6m 1y Max @ FREQUENCY30421:10 August 23, 2010
J G.| liverpool, city, 3-0,
2 kalah, tevez
i [G) 400
€ X F.
f mancity, 3-0
mAE 3] " y
/ 0 200 | =
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Tweet Map 3
Map Satellite Hybrid Terrain
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http:/bit lyicPBOVa (cited by 4)
http://tinyurl.com/2d4s46d (cited by 4)

Overall Sentiment 6

W positive
M negative

Figure 2: The TwitInfo user interface summarizing a soccer game.

all major earthquakes over a 1-month timespan. Finally,
we visualized sixteen days in Barack Obama’s life and
policymaking, and identified most newsmaking events
in the interface. Examples of these visualizations can be
found on the TwitInfo website.

We tested the TwitInfo interface with twelve users.
We asked them to reconstruct either a soccer game or
sixteen days in Barack Obama’s life based solely on the
TwitInfo user interface. Participants found the interface
useful for such summaries, with one participant recount-
ing in detail Obama’s every activity over the timespan
without having read any other news on the topic [7].

While users explained that TwitInfo provides them
with a good summary of an event, they often described
the summary as shallow. This is in part due to the short,
fact-oriented nature of tweets.

A Pulitzer Prize-winning former Washington Post in-
vestigative reporter thought of two use-cases for Twit-
Info in journalism. The first was in backgrounding:
when a journalist starts researching a topic, it helps to
have an overview of recent events of note. The sec-
ond use was in finding eyewitnesses. While reporters
are generally averse to trusting tweets at face value, a
location-based view of tweets can help identify Twitter
users that may have been at or near an event to follow
up with in more detail.

4. CONCLUSION

Twitter offers a diverse source of timely facts and
opinions. In order for the information in unstructured
tweets to be useful, however, it must be tamed. We de-
scribed two tools, TweeQL for programmers and Twit-
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Info for end-users, to make this information more acces-
sible. More broadly, social streams offer the database
community an opportunity to build systems for stream-
ing, unstructured data, and social networks in the wild.
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Jiawei Han Speaks Out
On data mining, privacy issues and managing students

by Marianne Winslett and Vanessa Braganholo

Jiawei Han
http://www.cs.uiuc.edu/~hanj/

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the
database community. I'm Marianne Winslett, and today we are at the University of Illinois at
Urbana-Champaign. I have here with me Jiawei Han, who is a professor of the Computer
Science Department at the University of lllinois. Before joining Illinois, Jiawei was a professor
at Simon Fraser University in Canada for many years, and briefly before that, he was a
professor at Northwestern University. Jiawei’s research interests lie in data mining. He is editor
in chief of ACM Transactions on Knowledge Discovery from Data and he is the coauthor, with
Michelline Kamber, of a popular textbook on data mining. Jiawei is an ACM Fellow and an
IEEFE Fellow. His PhD is from the University of Wisconsin at Madison. So, Jiawei, welcome!

Thank you! Thank you Marianne!

So Jiawei, according to Publish or Perish, you have an H-index of 76, which means that you
have written 76 papers that have been cited 76 or more times. To put that in perspective, Publish
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or Perish lists my own H-index as 27, and I'm pretty happy with that. But of course I’d be even
happier if I were three times as productive and also had an H-index of 76. So tell us, what advice
do you have for those of us who would like to be more influential?

Actually, I myself think this is the first time I have heard about 76'! I remember when somebody
told me there is an H-index... I went down there, I looked at it, it was around 54-55 something. I
never knew I got 76. I think probably the best thing I can say is: if you choose a topic, choose
something pretty exciting. Maybe it is tough, or maybe it may not be that tough, but I think,
choose something which is a little fresh, a little meaningful, a little exciting, and try to find some
good solutions. Probably, that is the best, because usually you get a paper you like people to
read, and that you yourself like to work on. So if you got excited, it’s likely that other people
might get excited as well. Of course, not every paper can do things like that. Of course for me, if
I got more papers published, I’d probably prefer every paper I write, just not write that many, but
just write something more exciting. But since I am also supervising lots of students, you cannot
expect every student here to write every paper not only exciting to the students themselves, but
exciting to everybody. That’s very hard. So we do have some papers, maybe a little incremental,
that may not be so exciting. But I think overall, work with more exciting topics, and also try to
work out some neat and elegant solutions, then probably people will feel more exciting to cite
your paper.

So let’s talk about data mining. Data mining is very important and popular today, but it is a very
young field, with the first paper appearing only around 1992. What led you and the other KDD
founders to start working in that new area?

So a KDD paper... If you say it appeared around 1992, it was probably in a database conference,
like the SIGMOD or VLDB conferences. But even in other conferences, I probably can trace
back to 1989, when Piatetsky-Shapiro organized the First International Workshop on Knowledge
Discovery in Databases. That one I still remember because I sent a paper there, I attended the
workshop. At that time it was a very small group, about 30 people. It was actually attached to
IJCAL that was in Detroit. At that time everybody felt this could be a big fish, a big direction. I
myself also felt this way because I worked, as my PhD thesis, I actually worked on deductive
databases. At that time, logic programming, and database was very hot.

I got a big influence by Randy Katz. Randy at that time was a professor in Wisconsin. He
actually once gave a seminar. At that time, Japan got a 5th generation computer project. That
was 1983 or 1982, I forgot. He actually, in the seminar, he even put a Japanese sword right on
the table. He said it was a Japanese challenge. So he said the Japanese wanted to work out a
Prolog machine, which is highly parallel, that can do a lot of database searching, inferencing. He
said we needed to face the challenge. So I got a deep impression on that. That time also was the

! Editors’ note: at the time this interview was published, his H-index was 101 (we used Publish or Perish with the
search string “Jiawei Han” and area “Engineering, Computer Science, Mathematics”).
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time I selected my research topics. So, I got pretty excited, actually, once I got there. I did my
thesis on that, published quite a few papers, including both database conferences or even logic
programming conferences. So it is a rather different field, you will see resolution, you know,
(Herbrand Universe), recursion, recursive query processing, compilation, all of those things
probably in the other domain. And when I went to Simon Fraser, I was also interested in looking
for good topics to extend the scope, because, I myself feel if we just rely on expert rules to derive
knowledge, or new knowledge, it is far less efficient; you really need tools to dig through the
data to get knowledge rather than just relying on expert rules. So that is the reason I am actually
quite interested in integrating, like machine learning induction into the database as well. That’s
the part where we started.

We got a paper, | actually originally did not really know where to send, because we got the
paper, and there were no such conferences, actually. Of course, we could send it to database
conferences, but I did not really know whether people would like it. At that time, Gregory
Piatetsky-Shapiro organized one. He just sent emails that said he was organizing the first
international workshop on knowledge discovery in databases. I figured this one actually was a
very good match of the algorithm we worked out. At that time we called this as attribute-oriented
induction. It works in our databases going up and down, then you can derive some generalized
knowledge. So we sent the paper down there, it was taken very quickly, because it was a
workshop. That was the first paper we got down there, so then we did lots of improvements, and
extension, and later we got it into VLDB 19927, that is the one you mentioned.

In 1992 the database conferences started taking data mining papers. But the interesting thing is, I
think there were quite a few milestone topics on data mining before the formal, like the KDD
conference formed up. Actually, almost all appeared in database conferences. It was very highly
cited, very excited thing on this. I think the reason could be this: I believe the database people
like to work out the algorithm, really working on very huge amounts of data, scalable algorithms,
and also they really worry if it’s effective, you get all the performance time. That is the reason
you’ll probably see, I can give you a few good examples... Of course, Rakesh Agrawal, their
associational mining paper was probably the most cited paper even in the database conference
history, and Raghu Ramakrishnan, their paper on BIRCH, that one is also on clustering
algorithms... Even Johannes Gehrke, on the Rainforest algorithm. There are lots of very highly
cited papers that actually appeared first in database conferences. So to that extent, I should say,
data mining actually grew, of course, you could say it actually grew out from many different
places, from machine learning, statistics, database, but database conferences really took a lot of
very good papers, those are milestone papers in the KDD history.

What application areas for data mining are just around the corner?

> Jiawei Han, Yandong Cai, Nick Cercone: Knowledge Discovery in Databases: An Attribute-Oriented
Approach. VLDB 1992: 547-559
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Oh, data mining, I should say, can almost apply to anywhere. You probably can see it. For
example on web search, people use, say a PageRank or HITS algorithm. Essentially, PageRank
or HITS is also doing data mining, because if you found a page that was pointed out by other
ones, it really carries semantics, carries importance. That is the reason you finally can find very
interesting, very relevant pages. So, my feeling is, the first thing we should think data mining is
invisible data mining. That probably is the most interesting but most effective mining method.
There are people using it. You think about Amazon.com, they say “People buying this book also
buy other books”. They are using for example collaborative filtering algorithm or some other
data mining algorithms. You think about Google, people search on the web, they are using some
mining results. So those invisible data mining, even if they do not say they are really doing data
mining, actually they are using this methodology. I think this is probably the most interesting
thing to see. There will be many things coming out.

Would you think someday that we will have domain-independent approaches to data mining, like
a unified discriminative ranking model that’s independent of semantic issues, independent of the
particular application? For example, if you see a customer behaving in an unusual manner,
maybe that means fraud, maybe it means that might be a big spender, or maybe it’s just noise.
Do you see domain-independent approaches to basic mining tasks?

Actually, for data mining as a discipline, you want to work out some general principles. To that
extent, you don’t want to stick with very, very concrete, you know, say, my methods are just
working on this particular problem. You want to be a little general, somewhat domain
independent. But on the other hand, because of different kinds of data, you really need different
methods. They are so different. For example, just mining sequences. The sequence on transaction
databases, like shopping sequences, and sequences on biological data, like DNA sequences,
biological sequences. or mining text sequences. could be very, very different, because they are
looking for very different patterns. So if you say, my algorithm works on all kinds of sequences,
probably it is good for nothing, you know, it really cannot find patterns! To that extent, I think
we can say the algorithm is first tailored to this particular application. Then you work out a very
effective algorithm, maybe you try to extend your scope, to work on other applications which
could be somewhat domain independent.

I remember, actually, we worked out one method I think called CloSpan, that’s the one. We first
worked out PrefixSpan by Jian Pei with me at Simon Fraser, and Xifeng worked out this
CloSpan algorithm. I remember one professor in Purdue, he or she took this algorithm, and
actually tried to use it on biodata, and also found something interesting. And I remember in our
CS 591 seminar just a few weeks ago, there were some Japanese researchers, they do, I think it’s
more like web log, or web blog mining. They first used our PrefixSpan. I did not actually even
realized, they first used this, so to that extent, this one can be used in multiple domains. So I like
things to be more domain independent, but I think for particular questions, for particular
problems, we have to first focus to make it more specialized, to make it work, then think how to
generalize it.
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Does that mean, does data mining have any general principles, like databases do?

I think the problem in database and data mining could be a little different, especially if you think
about relational databases. The data is more like really well structured, and for this structured
data, you can work on like selection, join, query processing or transaction management,
reasonably easily. Actually if we just work on highly structured data, there could be some
algorithm you can transfer to different domains . But even that, people are looking for different
patterns. For the same structured data, you may look at different kinds, whether you want to find
clusters, you want to find you know like regression, or evolution. Since people are finding
different things, likely those algorithms will be tailored, or for different applications, they could
be rather different. That’s why, some people dream we have on-the-shelf, data mining tools. You
just download it, and every pattern will be there. At least, at this point, I’d say, it is not realistic.
It may not be quite effective. So you have to know the domain better, and you really know
what’s the pattern you want to find. and what’s the trick you can use your knowledge. I think
that’s, it is far from like just using a very simple language, like SQL or SQL mining, you can
solve all the problems.

Ok! So, two people suggested that I ask you about the ethics of data mining. One person gave me
ChoicePoint as one example. I looked up ChoicePoint on Wikipedia, and it says, “ChoicePoint
[...] is a data aggregation company [...] that acts as a private intelligence service to government
and industry. [...] ChoicePoint combines personal data sourced from multiple public and
private databases for sale to the government and the private sector. The firm maintains more
than 17 billion records of individuals and businesses, which it sells to an estimated 100,000
clients [...] However, this data has not been secured sufficiently to prevent theft of data on at
least one occasion. [...] The company has also been the subject of lawsuits for maintaining
inaccurate data, inquiries whether it allowed political bias to influence its performance of
government contracts and accused of illegally selling the data of overseas citizens to the US
Government.” So of course there will always going to be mistakes and inaccuracies in mined
information, and there will always be some people who are greedy or corruptible. If we look
forward to the future, how can we address these problems for data mining?

Actually, I read a lot of newspapers or some different controversial things on data mining, so the
first thing I should say is, for any research, for example, when you apply for an NSF grant, they
will ask you “are dealing with human subjects or non-human subjects?”. Data mining is actually
dealing with both things. A lot of data mining things are not dealing with human subjects at all.
For example, if you try to mine some astronomy pictures (like what Jim Gray did, it was
astronomy databases), you still need a lot of data mining. You probably will never worry about
disclosing any stars privacy. So to that extent, there’s no real privacy issue. Actually data could
be public to anywhere in the world, anybody can share. So there are lots of such data mining
tasks which we do not have to worry about the privacy.
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But on the other hand, there are human subjects. For example, you mine data related to the
people. So definitely once we get into this one, we have to think about privacy and security, all
those issues. What I feel is, with data mining, usually you can think in two ways to do data
mining. One way is, you got an in-house data mining software, you mine by yourself. For
example, Wal-Mart can have some data miners, they sit in the Wal-Mart database, they do all the
data mining. Then, they may have a choice, what they should publish, what they do not publish.
Even for the in-house data mining, there could be issues whether you could look at any personal
data or not. So as long as you have some appropriate measures for in-house data mining, for
example, you say, I mined a customer record. Even you can take, say a particular credit card
number linked with a previous same credit card number, and you find the shopping sequences.
As long as you say, this employee or this data miner has no way or is not permitted to look for
further links from this number, then you treat this number as a dummy number, like RFID, so
you finally find something. That way, based on my viewpoint, you still haven’t violated
anybody’s privacy yet. But the problem mainly is, what things you can publish? For example, if
you publish things in a more statistic term, for example, you see US Statistic Bureau. They
regularly publish lots of things. You can buy a CD-ROM, and you can have many years of data.
You can go down to zip code, but zip code is still quite big. In most cases, one zip code may
cover say thousand, or tens of thousands of people. If you say K-anonymity, this K could be ten
thousand. And there is no way you could build links, so you publish this kind of data is still safe.

Based on my view, if you do in-house data mining, and then you carefully publish your data,
which make your K or make all these privacy preserving things quite big, you are reasonably
safe. You still can use this data. I think many people are using it, like US Statistic Bureau, they
publish lots of data, lots of people are using it. I believe these things are necessary because an
administrator like Obama wants to know some concrete statistics. Anybody who makes decisions
need to base it on your data. So for those kinds of privacy, if you make this K quite big, you
should not worry too much.

But you can charge more for your products if you make K smaller.

Yes, that is exactly that. You get a little dangerous then. If you make it too small, people start
identifying something sensitive, something that may really violate people’s privacy. That’s
exactly why privacy preserving publishing and data mining actually becomes a very important
topic because people want to do both, want to find deeper information, but in the meantime,
protect people’s privacy, and these two could be conflicting goals. But another very important
thing is (some people discussing about this) out-of-source data mining. I feel this out-of-source
data mining could be a little dangerous.

What is out of source data mining?

That means that you ship your data to other people to mine it. Then, the other people mine it, and
you don’t want this miner to dig up more information than you want. This thing, my feeling is, it
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is very easy to go out of control. There are lots of research papers. My feeling is, some research
papers say you can do k-anonymity, do I-diversity, do t-closeness, doing all these, and there is
one professor from UT Austin who actually showed: if you very secure to guarantee this, then
you do data mining, probably then you cannot really find good patterns. Actually, it could be
even worse than the intruders or something. So I think this could be true. To completely make
your data like have no characteristics, then ship it to other people to mine, you probably won’t
really find very interesting patterns. But on the hand, if you ship the raw data or some data that
really contains sensitive information to a third party to mine, I don’t feel it is a good idea.

One person commented that startups are much easier to do today, and wanted to know when you
plan to start a company, and what your product will be.

The first thing, about the startup and whether it is easy to do or it’s hard to do: different people
may have different opinions or experience. My feeling is this: there are, of course, people
working on database or data mining, a very practical domain. There could be lots of applications.
Those applications may promote lots of startups. Whether researchers need to do startup or some
other people may take the idea to do a startup, that completely, different people may have
different opinions. For me, I actually like to concentrate on research. That’s the reason I’'m not
that interested to set up a startup or something. For research-wise, 1 already think I got quite
exhausted. If I do startup, I probably would have no time to sleep!

Have you found any challenges in your graduate students being distracted by industry or by
startups?

I think for the students, actually being in UIUC at Urbana-Champaign is much better than in a
big company or in a big city. For example, somewhere really in the center of the bay area or in
Seattle or some places. Those places may attract the students in a very easy way because they
just give a phone call, they just ride a bike, or drive a car, you can go there. I believe here, I do
not feel the students here really are distracted by those companies. To a certain extent, it is good
to learn something about a company’s needs, to see the real world. I encourage students to go out
to do summer intern, especially go to a real company, go to research labs, to do summer interns. I
feel this is a very good practice, because you learn something about outside world, about
applications, about industry, about research labs. When you come back, you probably have
different research problems, different ideas, you build up your social network, research network.
I think these all will help students.

With industry and academia working so closely now, what guidelines do you recommend for
young graduates to choose between working in academia and industry?

I think students have different thinking, different preferences. Some students really like to go to
industry. I got one student, Zheng Shao, who is very smart. Unfortunately, he did not finish the
PhD. In the middle, he actually was attracted by Yahoo! first. He left, he went down there, he did
very well, he 1s very successful. He actually came here I believe a few weeks ago doing some
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recruiting. I think the students really liked to go to industry. I still like them to finish PhD,
because once you get better knowledge, and you master the research area, and also you get into
PhD, likely you get into a little more like a research or development, or more invention or some
kind of position where you use your talent better. To that extent, I encourage every student to
finish PhD before going outside.

But on the other hand, I know there are lots of students that really want to do research. I told
them for doing research, basically you have two major choices, one is going to university,
because doing research in a university is not just doing teaching, you actually really dash
forward, by working with graduate students you can do a lot of very interesting research. And
another one is actually is good industry research labs, like IBM Research, Microsoft Research,
Yahoo! Research, Google Research. There are lots of such research institutes or research labs. I
think those research centers are very exciting as well because they got a lot of people, they all
have PhDs, with different talents, and they are usually really good. They work together. And
they also can work with real industry, and work with a lot of professors who may go down there
for sabbatical or for doing some joint work. You really can, to some extent, extend your scope.
For example, like Xifeng Yan. He did probably two or three years at IBM Research as a
researcher, then recently he joined UC Santa Barbara, actually as a Chair Assistant Professor. He
got very good training on both academia and research labs.

You were a young person in China during the Cultural Revolution, and then suddenly you were a
graduate student in computer science at Wisconsin! How did you make that transformation?

I think this could be a pretty heavy topic! So, it is true, at that time it was a very unusual
transition, I should say. Not only I was young when the Cultural Revolution broke out, it was a
pretty dark time, in the sense, my family was intellectual, so I was almost at the bottom of
society to some extent. I labored in the countryside for quite a few years. It was not easy.
Actually, not only me, the whole country, to a certain extent,,the university was closed for almost
12 years: 1966 to 1978. For me, myself, of course, it was not easy.

Probably the really breaking point was in early 1978. China restored the Graduate study,
Graduate School. I was bold enough to try the Chinese Academy of Sciences, and I passed the
exam, and also the English one. So, I probably could say 1979 was the first year China and the
US got diplomatic relationship, and I went to the University of Wisconsin in 1979. So I was very
fortunate, but also it was not easy. It was interesting because those many years, China, I should
say, almost closed doors for 30 years. That was the first time actually people even went to
campuses to see the students from China. Even Wisconsin I think was bold enough to take those
students. The reason was at China at that time there was no TOEFL, no GRE. There was no
exam system at all. But I remember that a University of Wisconsin Professor told me they were
bold enough because they saw China was a very big country, and it is a very big country as well,
and there must be many talented people, Actually, one professor who wrote recommendation
letters for me, got a PhD in UIUC, I should say. But also very unfortunately, he was labeled as a
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rightist and was almost forbidden to do any research work for 25 years. But he did write a letter
for me and for Hongjun Lu. At that time, when we first came, Wisconsin actually first put these
several students as international special. not formal graduate students, because they could not
judge us. But they said, since the professors said these are the very best selected students, got
into the Chinese Academy of Sciences graduate school, so they must be good. So they just
blindly believed that. They took us, and we easily passed the first year, so then finally we got
through that.

Actually, in those several years, there were many such cases. I remember YY’s (Yuanyuan
Zhou) advisor, Kai Li. YY actually invited him to come to give a talk, and she also invited both
me and a few other professors to go down to her house. When Kai met me, he was joking, he
said, “You know, we were classmates together with Ming Li,” he says, “You see, that year, that
two years, probably now only a few Chinese came out. Among probably four or five Chinese
ACM fellows, we 3 are from the same class.” That simply says, even we three people, it was just
a tough competition, I probably should say, when you finally got there. I just say, China opened
up, brought really a lot of changes for China itself, but also for lots of students.

You spent your sabbatical year (2007-8) in your office doing research and writing proposals.
Why not get away and do something different instead?

I think with so many students working with me, it is a little hard—you are out of students’ scope,
going out for a very long time. And also there are so many things waiting for me to get done. I
think for that sabbatical I did a lot of things on not only research but also enhanced my book,
there were lots of other things. So, I just have very little time, hopefully in the future, I may get a
chance.

1 had a question suggestion I found very amusing. Are you ready?

Yes!/

Which of the following would you find the most rewarding: (a) writing a landmark book in the
field; (b) graduating lots of outstanding PhDs, (c) coming up with your own good algorithms; or
(d) winning lots of prestigious awards?

That’s a little hard to say, but I probably should say, training a lot of outstanding graduate
students, that is probably the most exciting thing. The reason is, not only you train a lot of
students, but also they will become the new seed for the whole field. If you don’t train a good
number of students, the whole field problems really cannot be solved by a small number of
people. So I think that is really the most exciting thing.

How many graduate students, postdocs, and visitors do you have right now?

Okay, so, I think I can’t roughly count, maybe. It depends on how we count it. I think I have 17
PhD students, and I have 2 master students, 1 visiting scholar so far, and 1 visiting student.
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So, that’s a great leading for my next question! Someone told me, “I am amazed by Jiawei’s time
management skills and his enthusiasm in research. Even with his large group, he still answers
most students’ emails within hours, no matter whether it is in the morning, noon or midnight.”
So, how do you do that, with so many?

I think, the first thing, for students supervision, with many students, there are disadvantages and
advantages. The challenge could be how could you handle every student because everyone is
different. But from my viewpoint, you should not do everything just by yourself. The students
can work together. Another thing is, the students can organize by themselves as well. So in many
cases, no matter in Canada or in US, I feel there are always, there are some students, who really
have the talent, who can lead, who can be the future, who will probably be a leader or professor,
so they can really organize things. You should really let those students to play some role. In the
meantime, | meet many students actually in groups. To some extent, these groups are dynamic,
in the sense that, once we have some research topic, sometimes I send an email and say “who is
interested in these topics?”. There will always be a few people volunteering, and some are very
enthusiastic. I will ask those enthusiastic students to lead, and then we form research groups. We
finish this, or even before finishing this, there could be some new topics, some student, very
energetic can join 3 or 4 different research groups. I think this probably can really help reduce
my load.

But for answering email so quick, I think the first thing is I try to, sometimes try to forget,
otherwise email will pile up, and I have to read it again and again. It may not be a very good
habit. I think Johannes Gehrke actually, I remember once in SIGMOD Record he wrote an
article, he said he tried not to be distracted by emails. He tried to pile up the email until a certain
time, like 3 o’clock. I think that could be a good habit, because you really can concentrate more
on your research. Sometimes I could be distracted.

Do you have any words of advice for fledgling or midcareer database researchers or
practitioners?

Yeah! I think one thing probably is choosing promising and good research topics. Usually, I
should say the midcareer researcher should be bold enough to challenge some new things. That’s
the one, see, I started working on data mining to some extent to challenge myself. If I feel this is
a very good topic, I would like to jump in. I think for midcareer researcher, especially if you
already got tenure, you really should be bold enough to find something you think is challenging,
is exciting, then you jump in. Of course, in the meantime, if you originally have a very good
background in certain things, you may also like to keep going. Sometimes you make a complete
swap, but sometimes you may swap back, but by doing something new, I think it will always
give you some more credit and also more capability.

Among all your past research, do you have a favorite piece of work?
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Oh, of course, something that got you excited, you feel is interesting even no matter whether
other people got the same excitement or not? For example, in the early days, when I was doing
deductive database, I got this, like a recursion, a very irregular recursion compilation, and I can
solve, for example, the N-Queen problem in a rather declarative way, and I got very excited
about that. But of course, you know, there are lots of new research topics you can work on. Like
the first piece of work we did, this attribute-oriented induction. I also got pretty excited, at least
at the time. Then the later ones... I probably believe we got this pattern growth method to solve
like frequent patterns, sequential patterns, graph patterns, I believe those are pretty exciting
things. And also those things we can see from the citation.

If you magically had enough extra time to do one additional thing at work that you are not doing
now, what would it be?

You mean outside of the research, altogether, or something related to research?
1t could be either way.

Actually, if you say out of research, I actually quite like to travel, or climbing mountains, those
things when I was young, [ was quite energetic on those things.

Oh, I see, so when you said research or not research, I was imagining by not research you meant
like you would volunteer to be the chair of SIGKDD or something, but you meant really outside
the research, outside of work entirely! So you climb mountains!

Yes! But on the other hand, for research, I think you always try to find something exciting to
work on. Quite often, I like to read for example, Scientific American. I always think there are a
lot of different research topics you would love to know, and also you may try it. For example, in
a lot of research, sometimes ideas you get are from those readings. You feel “oh, why this
biologist can do this, why can’t I do something similar?”. I think a lot of research or knowledge
can crossbreed.

If you could change one thing about yourself as a computer science researcher, what would it
be?

Actually, in my early days, of course during the Cultural Revolution, it really broke out my
dream. I actually would like to be a physicist, but I’ve never been able to get a chance. But I
think it is interesting to read those things. But that is a different thing, I think once I got into
computer science, I really love it.

Great! Thank you very much for talking with me today.

Thank you very much!
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1. INTRODUCTION

The Database research group at CWI was estab-
lished in 1985. It has steadily grown from two PhD
students to a group of 17 people ultimo 2011. The
group is supported by a scientific programmer and
a system engineer to keep our machines running.
In this short note, we look back at our past and
highlight the multitude of topics being addressed.

2. THE MONETDB ANTHOLOGY

The workhorse and focal point for our research is
MonetDB, an open-source columnar database sys-
tem. Its development goes back as far as the early
eighties when our first relational kernel, called Troll,
was shipped as an open-source product. It spread to
ca. 1000 sites world-wide and became part of a soft-
ware case-tool until the beginning of the nineties.
None of the code of this system has survived, but
ideas and experiences on how to obtain a fast rela-
tional kernel by simplification and explicit materi-
alization found their origin during this period.

The second half of the eighties was spent on build-
ing the first distributed main-memory database sys-
tem in the context of the national Prisma project.
A fully functional system of 100 processors and a,
for that time, wealthy 1 GB of main memory showed
the road to develop database technology from a dif-
ferent perspective. Design from the processor to the
slow disk, rather than the other way around.

Immediately after the Prisma project, a new ker-
nel based on Binary Association Tables (BATs) was
laid out. This storage engine became accessible
through MIL, a scripting language intended as a
target for compiling SQL queries. The target ap-
plication domain was to better support scientific
databases with their (archaic) file structures. It
quickly shifted to a more urgent and emerging area.

Several datamining projects called for better
database support. It culminated in our first spin-
off company, Data Distilleries, in 1995, which based
their analytical customer relationship suite on the
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power provided by the early MonetDB implementa-
tions. In the years following, many technical inno-
vations were paired with strong industrial maturing
of the software base. Data Distilleries became a sub-
sidiary of SPSS in 2003, which in turn was acquired
by IBM in 2009.

Moving MonetDB Version 4 into the open-source
domain required a large number of extensions to
the code base. It became of the utmost importance
to support a mature implementation of the SQL-
03 standard, and the bulk of application program-
ming interfaces (PHP, JDBC, Python, Perl, ODBC,
RoR). The result of this activity was the first official
open-source release in 2004. A very strong XQuery
front-end was developed with partners and released
in 2005 [1].

MonetDB remains a product well-supported by
the group. All its members carry out part of the
development and maintenance work, handling user
inquiries, or act as guinea pigs of the newly added
features. A thorough daily regression testing infras-
tructure ensures that changes applied to the code
base survive an attack of ca.20 platform configu-
rations, including several Linux flavors, Windows,
FreeBSD, Solaris, and MacOS X. A monthly bugfix
release and ca. 3 feature releases per year support
our ever growing user community. The web por-
tal ! provides access to this treasure chest of modern
database technology. It all helped us to create and
maintain a stable platform for innovative research
directions, as summarized below. The MonetDB
spin-off company was set up to support its market
take-up, to provide a foundation for QA, support,
and development activities that are hard to justify
in a research institute on an ongoing basis.

3. HARDWARE-CONSCIOUS
DATABASE TECHNOLOGY

A key innovation in the MonetDB code base is
its reliance on hardware conscious algorithms. For,

"http://www.monetdb.org/
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advances in speed of commodity CPUs have far out-
paced advances in RAM latency. Main-memory ac-
cess has therefore become a performance bottleneck
for many computer applications, including database
management systems; a phenomenon widely known
as the “memory wall.” A revolutionary redesign of
database architecture was called for in order to take
advantage of modern hardware, and in particular to
avoid hitting this memory wall. Our pioneering re-
search on columnar and hardware-aware database
technology, as materialized in MonetDB, is widely
recognized, as indicated by the VLDB 2009 10-year
Best Paper Award [19, 2] and two DaMoN best pa-
per awards [22, 6]. Here, we briefly highlight im-
portant milestones.

Vertical Storage. Whereas traditionally, rela-
tional database systems store data in a row-wise
fashion (which favors single record lookups), Mon-
etDB uses a columnar storage, which favors analysis
queries by better using CPU cache lines.

Bulk Query Algebra. Much like the CISC vs.
RISC idea applied to CPU design, the MonetDB re-
lational algebra is deliberately simplified compared
to the traditional relational set algebra. Paired
with an operator-at-a-time bulk execution model,
rather than the traditional tuple-at-a-time pipelin-
ing model, this allows for much faster implementa-
tion on modern hardware, as the code requires far
fewer function calls and conditional branches.

Cache-conscious Algorithms. The crucial as-
pect to overcome the memory wall is good use of
CPU caches, for which careful tuning of memory ac-
cess patterns is needed. This led to a new breed of
query processing algorithms. Their key requirement
is to restrict any random data access pattern to data
regions that fit into the CPU caches to avoid cache
misses, and thus, performance degradation. For in-
stance, partitioned hash-join [2] first partitions both
relations into H separate clusters that each fit into
the CPU caches. The join is then performed per
pair of matching clusters, building and probing the
hash-table on the inner relation entirely inside the
CPU cache. With large relations and small CPU
caches, efficiently creating a large number of clus-
ters can become a problem in itself. If H exceeds the
number of TLB entries or cache lines, each memory
reference will trigger a TLB or cache miss, compro-
mising the performance significantly. With radiz-
cluster [17], we prevent that problem by perform-
ing the clustering in multiple passes, such that each
pass creates at most as many new sub-clusters as
there are TLB entries or cache lines. With radiz-
decluster [18], we complement partitioned hash-join
with a projection (tuple reconstruction) algorithm
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with a cache-friendly data access pattern.

Memory Access Cost Modeling. For query
optimization to work in a cache-conscious environ-
ment, and to enable automatic tuning of our cache-
conscious algorithms on different types of hardware,
we developed a methodology for creating cost mod-
els that takes the cost of memory access into ac-
count [16]. The key idea is to abstract data struc-
tures as data regions and model the complex data
access patterns of database algorithms in terms of
simple compounds of a few basic data access pat-
terns. We developed cost functions to estimate the
cache misses for each basic pattern, and rules to
combine basic cost functions and derive the cost
functions of arbitrarily complex patterns. The total
cost is then the number of cache misses multiplied
by their latency. In order to work on diverse com-
puter architectures, these models are parametrized
at run-time using automatic calibration techniques.

Vectorized Execution. In the “X100” project,
we explored a compromise between classical tuple-
at-a-time pipelining and operator-at-a-time bulk
processing [3]. The idea of vectorized execution
is to operate on chunks (vectors) of data that are
large enough to amortize function call overheads,
but small enough to fit in CPU caches to avoid
materialization into main memory. Combined with
just-in-time light-weight compression, it lowers the
memory wall somewhat. The X100 project has been
commercialized into the Actian/VectorWise com-
pany and product line2.

4. DISTRIBUTED PROCESSING

After more than a decade of rest at the frontier of
distributed database processing, we embarked upon
several innovative projects in this area again.

Armada. An adventurous project was called Ar-
mada where we searched for technology to create
a fully autonomous and self regulating distributed
database system [5]. The research hypothesis was
to organize a large collection of database instances
around a dynamically partitioned database. Each
time an instance ran out of resources, it could so-
licit a spare machine and decide autonomously on
what portion to delegate to its peer. The decisions
were reflected in the SQL catalog which triggered
continuous adaptive query modification to hunt af-
ter the portions in the loosely connected network of
workers. It never matured as part of the MonetDB
distribution, because at that time we did not have
all the basic tools to let it fly.

Since, the Merovingian toolkit developed and now
provides the basis for massive distributed process-

*http://www.actian.com/products/vectorwise/

SIGMOD Record, December 2011 (Vol. 40, No. 4)



ing. It provides server administration, server dis-
covery features, client proxying and funneling to
accommodate large numbers of (web) clients, basic
distributed (multiplex) query processing, and fail-
over functionality for a large number of MonetDB
servers in a network. It is the toolkit used by part-
ner companies to build distributed datawarehouse
solutions. With Merovingian we were able to open
two new research tracks: DataCyclotron and Octo-
pus. Our new machine cluster ® provides a basis to
explore both routes in depth.

DataCyclotron. The grand challenge of dis-
tributed query processing is to devise a self-organi-
zing architecture which exploits all hardware re-
sources optimally to manage the database hot-set,
to minimize query response time, and to maxi-
mize throughput without single point global co-
ordination. The Data Cyclotron architecture [4]
addresses this challenge using turbulent data move-
ment through a storage ring built from distributed
main memory and capitalizing on the functionality
offered by modern remote-DMA network facilities.
Queries assigned to individual nodes interact with
the storage ring by picking up data fragments that
are continuously flowing around, i.e., the hot-set.

The storage ring is steered by the level of inter-
est (LOI) attached to each data fragment. The
LOI represents the cumulative query interest as it
passes around the ring multiple times. A fragment
with LOI below a given threshold, inversely pro-
portional to the ring load, is pulled out to free up
resources. This threshold is dynamically adjusted
in a fully distributed manner based on ring charac-
teristics and locally observed query behavior. It op-
timizes resource utilization by keeping the average
data access latency low. The approach is illustrated
using an extensive and validated simulation study.
The results underpin the fragment hot-set manage-
ment robustness in turbulent workload scenarios.

A fully functional prototype of the proposed ar-
chitecture has been implemented using modest ex-
tensions to MonetDB and runs within a multi-rack
cluster equipped with Infiniband. Extensive exper-
imentation using both micro benchmarks and high-
volume workloads based on TPC-H demonstrates
its feasibility. The Data Cyclotron architecture and
experiments open a new vista for modern in-the-
network distributed database architectures with a
plethora of research challenges.

Octopus. In the Octopus project, we deviate
from the predominant approach in distributed data-
base processing, where the data is spread across a
number of machines one way or another before any

3http://www.scilens.org/platform/
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query processing can take place. We start from a
single master node in control of the database, and
with a variable number of worker nodes to be used
for delegated query processing. Data is shipped
just-in-time to the worker nodes using a need-to-
know policy, and reused, if possible, in subsequent
queries. A bidding mechanism among the workers
yields the most efficient reuse of parts of the orig-
inal data, available on the workers from previous
queries.

The adaptive distributed architecture uses the
master/workers paradigm: the master hosts the
database and computes a query by generating dis-
tributed subqueries for as many workers as it has
currently available. The workers recycle the data
they have processed in the past as much as pos-
sible to minimize the data transfer costs. Due to
the just-in-time replication, the system easily har-
vests non-dedicated computational resources, while
supporting full SQL query expressiveness.

Our experiments show that the proposed adap-
tive distributed architecture is a viable and flexible
approach for improving the query performance of
a dedicated database server by using non-dedicated
worker nodes, reaching benefits comparable to tra-
ditional distributed databases.

S. ADAPTIVE INDEXING

Query performance strongly depends on finding
an execution plan that touches as few superfluous
tuples as possible. The access structures deployed
for this purpose, however, are non-discriminative.
They assume every subset of the domain being in-
dexed is equally important, and their structures
cause a high maintenance overhead during updates.
Moreover, while hard in general, the task of finding
the optimal set of indices becomes virtually impos-
sible in scenarios with unpredictable workloads.

With Database Cracking, we take a completely
different approach. Database cracking combines
features of automatic index selection and partial in-
dexes. Instead of requiring a priori workload knowl-
edge to build entire indices prior to query process-
ing, it takes each query predicate as a hint how to
physically reorganize the data. Continuous physical
data reorganization is performed on-the-fly during
query processing, integrated in the query operators.
When a column is queried by a predicate for the first
time, a new cracker index is initialized. As the col-
umn is used in the predicates of further queries, the
cracker index is refined by range partitioning until
sequentially searching a partition is faster than bi-
nary searching in the AVL tree guiding a search to
the appropriate partition.
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Keys in a cracker index are partitioned into dis-
joint key ranges, but left unsorted within each par-
tition. Each range query analyzes the cracker index,
scans key ranges that fall entirely within the query
range, and uses the two end points of the query
range to further partition the appropriate two key
ranges. Thus, in most cases, each partitioning step
creates two new sub-partitions using logic similar
to partitioning in quicksort. A range is partitioned
into 3 sub-partitions if both end points fall into the
same key range. This happens in the first partition-
ing step in a cracker index (because there is only
one key range encompassing all key values) but is
unlikely thereafter [7].

Updates and their efficient integration into the
data structure are covered in [8]. Multi-column in-
dexes to support selections, tuple reconstructions
and general complex queries are covered in [9]. In
addition, [9] supports partial materialization and
adaptive space management via partial cracking.

While database cracking comes with very low
overhead but slow convergence towards a fully opti-
mized index, adaptive merging features faster con-
vergence at the expense of a significantly higher
overhead. Hybrid adaptive indexing aims at
achieving a faster convergence while keeping the
overhead low as with database cracking [10].

With stochastic cracking, we introduce a sig-
nificantly more resilient approach to adaptive in-
dexing. Stochastic cracking does use each query as
advice on how to reorganize data, but not blindly so;
it gains in resilience and avoids performance bottle-
necks by allowing for lax and arbitrary choices in its
decision-making. Thereby, we bring adaptive index-
ing forward to a mature formulation that confers the
workload-robustness previous approaches lacked.

Ongoing work aims at combining adaptive index-
ing techniques with the ideas of physical design and
auto-tuning tools. The goal is to exploit workload
knowledge to steer adaptive indexing where possi-
ble, but keep the flexibility and instant adaptation
to changing workloads of adaptive indexing.

6. SCIENTIFIC DATABASES

After the first open-source release of MonetDB,
we were keen to check its behavior on real-life exam-
ples beyond the classical benchmarks. The largest,
well-documented and publicly available dataware-
house was the Sloan Digital Sky Survey (SDSS)
/ SkyServer. Embarking on its re-implementation
was a challenge. None of the other DBMSs had ac-
complished a working implementation, either due to
its complexity or lack of resources (business drive).

Skyserver. We achieved a fully functional im-
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plementation of SkyServer 4. It proved that the col-
umn store approach of MonetDB has a great poten-
tial in the world of scientific databases. However,
the application also challenged the functionality of
our implementation and revealed that a fully op-
erational SQL environment is needed, e.g., includ-
ing persistent stored modules. Its initial perfor-
mance was competitive to the reference platform,
Microsoft SQL Server 2005, and the analysis of
SDSS query traces hinted at several techniques to
boost performance by utilizing repetitive behavior
and zoom-in/zoom-out access patterns that were
not captured by the system.

Recycler. An immediate follow up project fo-
cused on developing a recycler component to Mon-
etDB. It acts as an intelligent cache of all intermedi-
ate results. Avoiding recomputing of any subquery
as often as possible, within the confines of the stor-
age set aside for the intermediates. The results were
published in 2009 at SIGMOD and received the run-
ner up best paper award [11].

Recycling can be considered an adaptive materi-
alized view scheme. Any subquery can be re-used,
there is no a priori decision needed by a human
DBA. It is also more effective than recycling only
the final query result sets. Integration of the recy-
cler with the SDSS application showed that a few
materialized views had been forgotten in the origi-
nal design, which would have improved throughput
significantly. This was found without human inter-
vention.

SciBORQ). Scientific discovery has shifted from
being an exercise of theory and computation, to be-
come the exploration of an ocean of observational
data. This transformation was identified by Jim
Gray as the 4th paradigm of scientific discovery.
State-of-the-art observatories, digital sensors, and
modern scientific instruments produce Petabytes of
information every day. This scientific data is stored
in massive data centers for later analysis. But even
from the data management viewpoint, the capture,
curating, and analysis of data is not a computa-
tion intensive process any more, but a data inten-
sive one. The explosion in the amount of scientific
data presents a new “stress test” for database de-
sign. Meanwhile, the scientists are confronted with
new questions, how can relevant and compact infor-
mation be found from such a flood of data?

Data warehouses underlying Virtual Observato-
ries stress the capabilities of database management
systems in many ways. They are filled on a daily
basis with gigabytes of factual information, derived
from large data scrubbing and computational in-

4see http://www.scilens.org/
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tensive feature extraction pipelines. The predom-
inant data processing techniques focus on massive
parallel loads and map-reduce algorithms. Such a
brute force approach, albeit effective in many cases,
is costly.

In the SciBORQ project, we explore a different
route [21]. One based on the knowledge that only
a small fraction of the data is of real value for any
specific task. This fraction becomes the focus of sci-
entific reflection through an iterative process of ad-
hoc query refinement. However, querying a multi-
terabyte database requires a sizable computing clus-
ter, while ideally the initial investigation should run
on the scientist’s laptop.

We work on strategies on how to make biased
snapshots of a science warehouse such that data
exploration can be instigated using precise con-
trol over all resources. These snapshots, constructed
with novel sampling techniques, are called impres-
sions. An impression is selected such that either
the statistical error of a query answer remains low,
or an answer can be produced within strict time
bounds. Impressions differ from previous sampling
approaches because of their bias towards the focal
point of the scientist’s data exploration.

7. STREAMING

DataCell. Streaming applications have been en
vogue for over a decade now and continuous query
processing has emerged as a promising paradigm
with numerous applications. A more recent devel-
opment is the need to handle both streaming queries
and typical one-time queries in the same applica-
tion setting, e.g., complex event processing (CEP).
For example, data warehousing can greatly benefit
from the integration of stream semantics, i.e., on-
line analysis of incoming data and combination with
existing data. This is especially useful to provide
low latency in data intensive analysis in big data
warehouses that are augmented with new data on a
daily basis.

However, state-of-the-art database technology
cannot handle streams efficiently due to their “con-
tinuous” nature. At the same time, state-of-the-art
stream technology is purely focused on stream ap-
plications. The research efforts are mostly geared
towards the creation of specialized stream man-
agement systems built with a different philosophy
than a DBMS. The drawback of this approach is
the limited opportunities to exploit successful past
data processing technology, e.g., query optimization
techniques.

For this new problem we combine the best of both
worlds. In the DataCell project [14] we take a dif-
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ferent route by designing a stream engine on top
of an existing relational database kernel [15]. This
includes reuse of both its storage/execution engine
and its optimizer infrastructure. The major chal-
lenge then becomes the efficient support for spe-
cialized stream features.

We focus on incremental window-based process-
ing, arguably the most crucial stream-specific re-
quirement. In order to maintain and reuse the
generic storage and execution model of the DBMS,
we elevate the problem to the query plan level.
Proper optimizer rules, scheduling and intermedi-
ate result caching and reuse, allow us to modify
the DBMS query plans for efficient incremental pro-
cessing. In extensive experiments, DataCell demon-
strates efficient performance even compared to spe-
cialized stream engines, especially when scalability
becomes a crucial factor.

8. GRAPH DATABASES

As database kernel hackers we can not escape
the semantic web wave. RDF and triple stores re-
quirements are also challenging the MonetDB ker-
nel. In a recent paper [20], we showed how exist-
ing database technology can provide a sound basis
for these environments. The base performance of
MonetDB for graph database is superb, but per-
haps we may find novel tricks when a complete
SPARQL front-end emerges on top of it. Most
likely, we can re-use many of the techniques devel-
oped in the context of MonetDB/XQuery, in par-
ticular run-time query optimization [12]. Never-
theless, we did not chicken out and got ourselves
lured into European development projects to pro-
mote Linked-Open-Data. A step towards this goal
is to carve out a benchmark that would shed light
on the requirements in this field.

9. FUTURE

Despite the broad portfolio of topics, there is a
strong drive and interest in pushing the boundaries
of our knowledge by seeking areas hitherto unex-
plored. The mission for the future is to seek so-
lutions where the DBMS interpret queries by their
intent, rather than as a contract carved in stone
for complete and correct answers. The result set
should aid the user in understanding the database’s
content and provide guidance to continue his data
exploration journey. A scientist can stepwise ex-
plore deeper and deeper into the database, and stop
when the result content and quality reaches his sat-
isfaction point. At the same time, response times
should be close to instant such that they allow a sci-
entist to interact with the system and explore the
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data in a contextualized way.

In our recent VLDB 2011 Challenges & Visions
paper [13], we chartered a route for such ground-
breaking database research along five dimensions:

- One-minute DBMS for real-time performance.
- Multi-scale query processing.

- Post processing for conveying meaningful data.
- Query morphing to adjust for proximity results.

- Query alternatives for lack of providence.

Each direction would serve several PhDs and pro-
duce a database system with little resemblance to
what we have built over the last thirty years. We
look forward to seeing members of the database re-
search community join our mission and take up the
challenges expressed.
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ABSTRACT

The SAP HANA database is positioned as the core of
the SAP HANA Appliance to support complex business
analytical processes in combination with transactionally
consistent operational workloads. Within this paper,
we outline the basic characteristics of the SAP HANA
database, emphasizing the distinctive features that dif-
ferentiate the SAP HANA database from other classical
relational database management systems. On the tech-
nical side, the SAP HANA database consists of mul-
tiple data processing engines with a distributed query
processing environment to provide the full spectrum of
data processing — from classical relational data support-
ing both row- and column-oriented physical representa-
tions in a hybrid engine, to graph and text processing
for semi- and unstructured data management within the
same system.

From a more application-oriented perspective, we
outline the specific support provided by the SAP HANA
database of multiple domain-specific languages with a
built-in set of natively implemented business functions.
SQL - as the lingua franca for relational database sys-
tems — can no longer be considered to meet all require-
ments of modern applications, which demand the tight
interaction with the data management layer. Therefore,
the SAP HANA database permits the exchange of ap-
plication semantics with the underlying data manage-
ment platform that can be exploited to increase query
expressiveness and to reduce the number of individual
application-to-database round trips.

1. INTRODUCTION

Data management requirements for enterprise appli-
cations have changed significantly in the past few years.
For example, it is no longer reasonable to continue the
classical distinction between transactional and analyti-
cal access patterns. From a business perspective, queries
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in transactional environments on the one hand are build-
ing the sums of already-delivered orders, or calculat-
ing the overall liabilities per customer. On the other
hand, analytical queries require the immediate avail-
ability of operational data to enable accurate insights
and real-time decision making. Furthermore, applica-
tions demand a holistic, consistent, and detailed view
of its underlying business processes, thus leading to
huge data volumes that have to be kept online, ready
for querying and analytics. Moreover, non-standard ap-
plications like planning or simulations require a flexi-
ble and graph-based data model, e.g., to compute the
maximum throughput of typical business relationship
patterns within a partner network. Finally, text re-
trieval technology is a must-have in state-of-the-art data
management platforms to link unstructured or semi-
structured data or results of information retrieval queries
to structured business-related contents.

In a nutshell, the spectrum of required application
support is tremendously heterogeneous and exhibits a
huge variety of interaction patterns. Since classical
SQL-based data management engines are too narrow
for these application requirements, the SAP HANA
database presents itself as a first step towards a holis-
tic data management platform providing robust and ef-
ficient data management services for the specific needs
of modern business applications [5].

The SAP HANA database is a component of the
overall SAP HANA Appliance that provides the data
management foundation for renovated and newly devel-
oped SAP applications (see Section 4). Figure 1 out-
lines the different components of the SAP HANA Ap-
pliance. The SAP HANA Appliance comprises repli-
cation and data transformation services to easily move
SAP and non-SAP data into the HANA system, model-
ing services to create the business models that can be
deployed and leveraged during runtime, and the SAP
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Figure 1: Components of the SAP HANA Appliance

HANA database as its core. For the rest of this paper,
we specifically focus on the SAP HANA database.

Core Distinctive Features of the SAP HANA
Database

Before diving into the details, we will outline some gen-
eral distinctive features and design guidelines to show
the key differentiators with respect to common rela-
tional, SQL-based database management systems. We
believe that these features represent the cornerstones of
the philosophy behind the SAP HANA database:

o Multi-engine query processing environment: In or-
der to cope with the requirements of managing en-
terprise data with different characteristics in dif-
ferent ways, the SAP HANA database comprises a
multi-engine query processing environment. In or-
der to support the core features of enterprise appli-
cations, the SAP HANA database provides SQL-
based access to relationally structured data with
full transactional support. Since more and more
applications require the enrichment of classically
structured data with semi-structured, unstructured,
or text data, the SAP HANA database provides a
text search engine in addition to its classical rela-
tional query engine. The HANA database engine
supports “joining” semi-structured data to rela-
tions in the classical model, in addition to support-
ing direct entity extraction procedures on semi-
structured data. Finally, a graph engine natively
provides the capability to run graph algorithms on
networks of data entities to support business ap-
plications like production planning, supply chain
optimization, or social network analyses. Section
2 will outline some of the details.

e Representation of application-specific business
objects:  In contrast to classical relational
databases, the SAP HANA database is able to pro-
vide a deep understanding of the business objects
used in the application layer. The SAP HANA
database makes it possible to register “semantic
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models” inside the database engine to push down
more application semantics into the data manage-
ment layer. In addition to registering semantically
richer data structures (e.g., OLAP cubes with mea-
sures and dimensions), SAP HANA also provides
access to specific business logics implemented di-
rectly deep inside the database engine. The SAP
HANA Business Function Library encapsulates
those application procedures. Section 3 will ex-
plain this feature from different perspectives.

e Exploitation of current hardware developments:
Modern data management systems must con-
sider current developments with respect to large
amounts of available main memory, the num-
ber of cores per node, cluster configurations, and
SSD/flash storage characteristics in order to effi-
ciently leverage modern hardware resources and
to guarantee good query performance. The SAP
HANA database is built from the ground up to ex-
ecute in parallel and main-memory-centric envi-
ronments. In particular, providing scalable par-
allelism is the overall design criteria for both
system-level up to application-level algorithms [6,
71.

Efficient communication with the application
layer: In addition to running generic application
modules inside the database, the system is required
to communicate efficiently with the application
layer. To meet this requirement, plans within
SAP HANA development are, on the one hand, to
provide shared-memory communication with SAP
proprietary application servers and more closely
align the data types used within each. On the other
hand, we plan to integrate novel application server
technology directly into the SAP HANA database
cluster infrastructure to enable interweaved execu-
tion of application logic and database management
functionality.

2. ARCHITECTURE OVERVIEW

The SAP HANA database is a memory-centric data
management system that leverages the capabilities of
modern hardware, especially very large amounts of
main memory, multi-core CPUs, and SDD storage, in
order to improve the performance of analytical and
transactional applications. The HANA database pro-
vides the high-performance data storage and processing
engine within the HANA Appliance.

Figure 2 shows the architecture of the HANA
database system. The Connection and Session Man-
agement component creates and manages sessions and
connections for the database clients. Once a session
has been established, database clients can use SQL (via
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JDBC or ODBC), SQL Script, MDX or other domain-
specific languages like SAP’s proprietary language FOX
for planning applications, or WIPE, which combines
graph traversal and manipulation with Bl-like data ag-
gregation to communicate with the HANA database.
SQL Script is a powerful scripting language to describe
application-specific calculations inside the database.

SQL Script is based on side-effect-free functions that
operate on database tables using SQL queries, and it has
been designed to enable optimization and paralleliza-
tion.

As outlined in our introduction, the SAP HANA
database provides full ACID transactions. The Trans-
action Manager coordinates database transactions, con-
trols transactional isolation, and keeps track of run-
ning and closed transactions. For concurrency con-
trol, the SAP HANA database implements the classical
MVCC principle that allows long-running read transac-
tions without blocking update transactions. MVCC, in
combination with a time-travel mechanism, allows tem-
poral queries inside the Relational Engine.

Client requests are parsed and optimized in the Opti-
mizer and Plan Generator layer. Based on the optimized
execution plan, the Execution Engine invokes the differ-
ent In-Memory Processing Engines and routes interme-
diate results between consecutive execution steps.

SQL Script and supported domain-specific languages
are translated by their specific compilers into an inter-
nal representation called the “Calculation Model”. The
execution of these calculation models is performed by
the Calculation Engine. The use of calculation models
facilitates the combination of data stored in different In-
Memory Storage Engines as well as the easy implemen-
tation of application-specific operators in the database
engine.
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The Authorization Manager is invoked by other
HANA database components to check whether a user
has the required privileges to execute the requested op-
erations. A privilege grants the right to perform a spec-
ified operation (such as create, update, select, or exe-
cute). The database also supports analytical privileges
that represent filters or hierarchy drill-down limitations
for analytical queries as well as control access to val-
ues with a certain combination of dimension attributes.
Users are either authenticated by the database itself, or
the authentication is delegated to an external authentica-
tion provider, such as an LDAP directory.

Metadata in the HANA database, such as table defi-
nitions, views, indexes, and the definition of SQL Script
functions, are managed by the Metadata Manager. Such
metadata of different types is stored in one common cat-
alogue for all underlying storage engines.

The center of Figure 2 shows the three In-Memory
Storage Engines of the HANA database, i.e., the Re-
lational Engine, the Graph Engine, and the Text En-
gine. The Relational Engine supports both row- and
column-oriented physical representations of relational
tables. The Relational Engine combines SAP’s P*Time
database engine and SAP’s TREX engine currently be-
ing marketed as SAP BWA to accelerate BI queries in
the context of SAP BW. Column-oriented data is stored
in a highly compressed format in order to improve the
efficiency of memory resource usage and to speed up the
data transfer from storage to memory or from memory
to CPU. A system administrator specifies at definition
time whether a new table is to be stored in a row- or in
a column-oriented format. Row- and column-oriented
database tables can be seamlessly combined into one
SQL statement, and subsequently, tables can be moved
from one representation form to the other [4]. As a
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rule of thumb, user and application data is stored in a
column-oriented format to benefit from the high com-
pression rate and from the highly optimized access for
selection and aggregation queries. Metadata or data with
very few accesses is stored in a row-oriented format.

The Graph Engine supports the efficient representa-
tion and processing of data graphs with a flexible typing
system. A new dedicated storage structure and a set of
optimized base operations are introduced to enable ef-
ficient graph operations via the domain-specific WIPE
query and manipulation language. The Graph Engine is
positioned to optimally support resource planning appli-
cations with huge numbers of individual resources and
complex mash-up interdependencies. The flexible type
system additionally supports the efficient execution of
transformation processes, like data cleansing steps in
data-warehouse scenarios, to adjust the types of the indi-
vidual data entries, and it enables the ad-hoc integration
of data from different sources.

The Text Engine provides text indexing and search
capabilities, such as exact search for words and phrases,
fuzzy search (which tolerates typing errors), and lin-
guistic search (which finds variations of words based
on linguistic rules). In addition, search results can be
ranked and federated search capabilities support search-
ing across multiple tables and views. This functionality
is available to applications via specific SQL extensions.
For text analyses, a separate Preprocessor Server is used
that leverages SAP’s Text Analysis library.

The Persistency Layer, illustrated at the bottom of
Figure 2, is responsible for the durability and atomicity
of transactions. It manages data and log volumes on disk
and provides interfaces for writing and reading data that
are leveraged by all storage engines. This layer is based
on the proven persistency layer of MaxDB, SAP’s com-
mercialized disk-centric relational database. The per-
sistency layer ensures that the database is restored to the
most recent committed state after a restart and that trans-
actions are either completely executed or completely un-
done. To achieve this efficiently, it uses a combination
of write-ahead logs, shadow paging, and savepoints.

To enable scalability in terms of data volumes and
the number of application requests, the SAP HANA
database supports scale-up and scale-out. For scale-
up scalability, all algorithms and data structures are de-
signed to work on large multi-core architectures espe-
cially focusing on cache-aware data structures and code
fragments. For scale-out scalability, the SAP HANA
database is designed to run on a cluster of individual ma-
chines allowing the distribution of data and query pro-
cessing across multiple nodes. The scalability features
of the SAP HANA database are heavily based on the
proven technology of the SAP BWA product.
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3. SAP HANA DATABASE: BEYOND
SQL

As outlined in our introduction, the SAP HANA
database is positioned as a modern data management
and processing layer to support complex enterprise-
scale applications and data-intensive business processes.
In addition to all optimizations and enhancements at the
technical layer (modern hardware exploitation, colum-
nar and row-oriented storage, support for text and irreg-
ularly structured data, etc.), the core benefit of the sys-
tem is its ability to understand and directly work with
business objects stored inside the database. Being able
to exploit the knowledge of complex-structured business
objects and to perform highly SAP application-specific
business logic steps deep inside the engine is an impor-
tant differentiator of the SAP HANA database with re-
spect to classical relational stores.

More specifically, the “Beyond SQL” features of the
SAP HANA database are revealed in multiple ways. On
a smaller scale, specific SQL extensions enable the ex-
posure of the capabilities of the specific query process-
ing engines. For example, an extension in the WHERE
clause allows the expression of fuzzy search queries
against the text engine. An explicit “session” concept
supports the planning of processes and What if? analy-
ses. Furthermore, SQL Script provides a flexible pro-
gramming language environment as a combination of
imperative and functional expressions of SQL snippets.
The imperative part allows one to easily express data
and control flow logic by using DDL, DML, and SQL-
Query statements as well as imperative language con-
structs like loops and conditionals. Functional expres-
sions, on the other hand, are used to express declarative
logics for the efficient execution of data-intensive com-
putations. Such logic is internally represented as data
flows that can be executed in parallel. As a consequence,
operations in a data flow graph must be free of side ef-
fects and must not change any global states, neither in
the database nor in the application. This condition is
enforced by allowing only a limited subset of language
features to express the logic of the procedure.

On a larger scale, domain-specific languages can be
supported by specific compilers to the same logical con-
struct of a “Calculation Model” [2]. For example, MDX
will be natively translated into the internal query pro-
cessing structures by resolving complex dimensional ex-
pressions during the compile step as much as possible
by consulting the registered business object structures
stored in the metadata catalog. In contrast to classical BI
application stacks, there is no need for an extra OLAP
server to generate complex SQL statements. In addition,
the database optimizer is not required to “guess” the se-
mantics of the SQL statements in order to generate the
best plan — the SAP HANA database can directly ex-
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Figure 3: Modeling of currency conversion within SAP HANA

ploit the knowledge of the OLAP models carrying much
more semantics compared to plain relational structures.

As an additional example of this “Beyond SQL” fea-
ture, consider the disaggregation step in financial plan-
ning processes [3]. In order to distribute coarse-grained
planning figures to atomic entries—for example, from
business unit level to department level—different dis-
tribution schemes have to be supported: relative to the
actual values of the previous period, following constant
distribution factors, etc. Since disaggregation is such a
crucial operation in planning, the SAP HANA database
provides a special operator, available within its domain-
specific programming language, for planning scenarios.
Obviously, such an operator is not directly accessible via
SQL. Following this principle, the SAP HANA database
also provides a connector framework to work with “ex-
ternal” language packages like the statistical program-
ming environment R [1].

In addition to specifically tailored operators, the SAP
HANA database also provides a built-in Business Func-
tion Library (BFL) that offers SAP-specific application
code. All business logic modules are natively integrated
into the database kernel with a maximum degree of par-
allelism. Compared to classical stored procedures or
stored functions, the BFL is included in the database
engine using all the technical advantages of deep in-
tegration. A prominent example of an application-
specific algorithm is the procedure of currency conver-
sion. Though supposedly simple in nature—a scalar
multiplication of a monetary figure with the conversion
rate—the actual implementation covering the complete
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application semantics of currency conversion comprises
more than 1,000 lines of code. Figure 3(a) illustrates
the graphical tool to create a “Calculation Model” in the
SAP HANA database by applying a currency conversion
function to an incoming data stream. As can be seen, the
data source itself comprises not only simple columns but
also comprehensive metadata such as type information
with respect to plain, calculated, or derived measures.

The application designer creates a logical view us-
ing the Information Modeler and applies pre-defined ap-
plication logics provided by the BFL. As shown in the
modeling dialog of Figure 3(b), the parameters of the
currency conversion function can be set in multiple ways
to instrument the business logic. In the current example,
the function performs a conversion to the currency with
respect to the specific company code (given in column
AT_COMPANY_CODE .WAERS).

To summarize, the SAP HANA database provides a
classical SQL interface including all transactional prop-
erties required from a classical database management
system. In addition, the SAP HANA database posi-
tions itself as a system “Beyond SQL” by providing an
ecosystem for domain-specific languages with particu-
lar internal support on the level of individual operators.
Moreover, the concept of a BFL to provide a set of com-
plex, performance-critical, and standardized application
logic modules deep inside the database kernel creates
clear benefits for SAP and customer-specific applica-
tions.
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4. THE HANA ROADMAP

Although, from a technology perspective, the SAP
HANA database is based on the SAP BWA system with
its outstanding record of successful installations, the
generally novel approach of a highly distributed system
with an understanding of semantic business models re-
quires time for customers to fully leverage their data
management infrastructure. SAP intends to pursue an
evolutionary, step-wise approach to introduce the tech-
nology to the market.

In a first step, the SAP HANA Appliance is posi-
tioned to support local BI scenarios. During this step,
customers can familiarize themselves with the technol-
ogy exploiting the power of the new solution without
taking any risk for existing mission-critical applications.
SAP data of ERP systems will be replicated to the SAP
HANA Appliance in real-time fashion. Data within the
SAP HANA Appliance can be optionally enhanced by
external non-SAP data sources and consumed using the
SAP BOBI analytical tools. Aside from new analytical
applications on top of HANA, the primary use case here
is the acceleration of operational reporting processes di-
rectly on top of ERP data.

The plan for the second phase of the roadmap, as
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shown in Figure 4(b), comprises supporting the full SAP
BW application stack. Step by step, the customer is
able to move more critical applications (like data ware-
housing) to the SAP HANA Appliance. This phase
also positions the SAP HANA Appliance as the pri-
mary persistent storage layer for managed analytical
data. Switching the data management platform will be
a non-disruptive move from the application’s point of
view. In addition to providing the data management
layer for a centralized data-warehouse infrastructure, the
SAP HANA Appliance is also planned to be used to con-
solidate local BI data marts exploiting a built-in multi-
tenancy feature.

The third step in the current roadmap — introducing
the SAP HANA Appliance to the market in an evolution-
ary way — consists of extending the HANA ecosystem
with new applications using the modeling and program-
ming paradigm of the SAP HANA database in combina-
tion with application servers. Depending on the specific
customer setup, long-term plans are to put HANA also
under the classical SAP ERP software stack.

To summarize, the basic steps behind the HANA
roadmap are designed to integrate with customers’ SAP
installations without disrupting existing software land-
scapes. Starting small with local Bl installations, putting
the complete BW stack on top of HANA in combination
with a framework to consolidate local BI installations, is
considered a cornerstone in the SAP HANA roadmap.

5. SUMMARY

Providing efficient solutions for enterprise-scale ap-
plications requires a robust and efficient data manage-
ment and processing platform with specialized sup-
port for transaction, analytical, graph traversal, and text
retrieval processing. Within the SAP HANA Appli-
ance, the HANA database represents the first step to-
wards a new generation of database systems designed
specifically to provide answers to questions raised by
demanding enterprise applications. The SAP HANA
database, therefore, should not be compared to classical
SQL or typical key-value, document-centric, or graph-
based NoSQL databases. HANA is a flexible data stor-
age, manipulation, and analysis platform, comprehen-
sively exploiting current trends in hardware to achieve
outstanding query performance and throughput at the
same time. The different engines within the distributed
data processing framework provide an adequate solu-
tion for different application requirements. In this pa-
per, we outlined our overall idea of the SAP HANA
database, sketched out its general architecture, and fi-
nally gave some examples to illustrate how an SAP
HANA database positions itself “Beyond SQL” by na-
tively supporting performance-critical application logics
as an integral part of the database engine.
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1. INTRODUCTION

The eighth international workshop on Quality in
Database was held in Singapore, on September 13th,
2010 and co-located with the 36th Conference on
Very Large DataBase (VLDB). The main objective
of the workshop was to address the challenge to de-
tect data anomalies and assess, monitor, improve,
and maintain the quality of information.

The workshop attracted 12 submissions from Asia,
Australia, Europe, and the United States, out of
which the Program Committee finally accepted 9
full papers. The accepted papers focused on impor-
tant issues especially related to Data Quality as-
sessment, Entity Matching, and Information Over-
loading.

2. QUALITY IN DATABASES: OPEN IS-
SUES

QDB 2010 was the eighth workshop addressing
the challenges of quality in databases. Significant
research contributions were presented in this edi-
tion. Anyway, the existing research works in the
area of data and information quality are still far
from maturity and significant room for progress ex-
ists. The participants agreed that many open chal-
lenges still remain. It is possible to classify them
into three general areas:

e Improvement of the comparison of algorithms
and evaluation through DQ standards

e Further investigation of well known DQ issues
(privacy and visualization)
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e Application of DQ in new domains (such as
linked open data, and Data as a Service)

Concerning the first point, discussions with par-
ticipants highlighted the lack of standards for com-
paring different solutions, algorithms and tools. In
fact, a lot of papers create their own homemade
benchmarks or golden rules to demonstrate the ef-
ficiency and the effectiveness of algorithms, but it
is very rare that such data are shared to support
cross comparison analysis. Participants suggested
to organize specific data quality events to create oc-
casions in which data quality researchers can com-
pare and discuss novel ideas such as an international
contest about data quality evaluation similar to the
KDD cup http://www.sigkdd.org/kddcup/ or the

semantic Web service challenge http://sws-challenge.

org/wiki/index.php/Main_Page. One concrete ex-
ample, related to personal data only, is the “name
game” workshop series organized within the APE-
INV project http://www.academicpatenting.eu.

As regards the second open problem, participants
agreed that DQ research should focus more on visu-
alization and privacy issues. In fact, the visualiza-
tion of the results of DQ activities (ranging from as-
sessment to record linkage and data improvement)
is a crucial point for a larger dissemination of DQ
researches. It includes typical problems related to
the visualization of large data sets (as in data min-
ing field), but also it needs more tailored solutions
to underline errors or to interprete the results of
DQ activities. In this field, mashups seem to be a
promising technology for easily integrating DQ re-
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sults and supporting improvement decisions. More-
over, an important aspect when integrating data
from a large number of heterogeneous sources un-
der diverse ownerships is the provenance of data
or parts thereof[2]; provenance denotes the origin
of data and can also include information on pro-
cessing or reasoning operations carried out on the
data. In addition, provenance enables effective sup-
port of trust mechanisms and policies for privacy
and rights management. In the last years many
solutions for provenance models and management
mechanisms have been published[4]. However, ac-
cording to participants a lot of problems are still
opens. For example, there is the need for a trust
management system for improving accountability,
building on provenance, especially in the context of
data aggregation.

Finally, workshop paticipants also agreed that
data quality research should also focus on the def-
inition of methods for the quality assessment and
improvement of data modelled on the basis of new
paradigms for information management. Linked open
data, for example, is a set of principles to share
in the Web environment open data [1]. This can
bring a paradigmatic shift from the classical re-
lational data integration architecture towards new
Web based solutions. In this specific scenario data
are retrieved from heterogeneous data sources (e.g.,
relational, graph and stream-like data) and there
are not appropriate methods to assess, preserve and
improve the quality of such data sets. In fact, while
the requirements for the quality assessment of closed
(mostly corporate) data sources are well understood,
several open issues raise when quality assessment
has to be performed in autonomous and distributed
data sources where quality-related meta-information

steps toward the definition of a new and holistic
theory where data and service are considered as two
faces of the same problem [5].

3. KEYNOTE PRESENTATION

The keynote speech, titled “SOLOMON: Seeking
the Truth Via Copying Detection” was delivered by
Xin Luna Dong, AT&T. In the information era, a
large amount of information sources are available
and easily accessible. However, freely accessible in-
formation is often unreliable: it is often accessed by
data quality problems in terms of relevance, accu-
racy, or authority. Moreover, the information dif-
fusion enabled by Web technologies negatively im-
pacts on data quality issues since errors can be eas-
ily propagated. The identification of copying con-
tent between information sources could be a valu-
able help for the users to filter relevant data. In this
keynote Xin Luna Dong presented the SOLOMON
tool that supports the discovery of copying relation-
ships between structured data source to improve
data integration features. She also explained which
are the research open issues for leveraging redun-
dancy and obtain quality from Web sources. Open
issues in this field are mainly related to source selec-
tion (e.g., how many sources are sufficient for aggre-
gation?), source integration (e.g., source ordering
in online query answering) and data visualization
(e.g., task-driven source exploration).

4. RESEARCH PAPERS

The technical paper session consisted of nine pre-
sentations, whose main points are summarized next.
Together, they give a glimpse to the exciting new
developments on data and information quality.

is typically sparse and the quality of the meta-information The paper titled “Quality Assessment Social Net-

is uncertain.

Another new paradigm for data management that
it is worth to consider is the Data as a Service.
Until now, “data” and “services” have been always
considered two different concepts characterized by
different problems, approaches, models and tools.
Nevertheless in the last years there is a growing in-
terest to the Xaas approach. X as a services, where
X could be software [6] or a platform [3], introduces
the possibility to consider Data as a Service and
consequently data can be managed by means of typ-
ical service oriented solutions. In this context, data
quality could play, for example, a fundamental role
in the selection of services that is commonly based
on other functional and non-functional properties
(e..g., response time, availability). The convergence
of data and service approaches could be the first
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works: A Novel Approach for Assessing the Qual-
ity of Information on the Web” by Tomas Knap,
Irena Mlynkova introduces a Web Quality Assess-
ment model, which is a model for the ranking of
Web resources on the grounds of a quality assess-
ment (QA) score, involving profiles and policies for
the management of the resources. Since people in
social networks might benefit from adopting pro-
file properties from other people with which they
are linked, the paper introduces the concept of QA
social networks and algorithms for the successive
application of relevant QA policies (i.e., policies of
trusted users) to a person’s retrieved resources.
The goal of “Deriving Effectiveness Measures for
Data Quality Rules” by Lei Jiang, Alex Borgida,
Daniele Barone, John Mylopoulos is the evaluation
of data quality rules. Broadly speaking, data qual-
ity rules detect errors and inconsistencies and they
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play an important role in data quality assessment.
Starting from the results of previous research, the
authors propose a quantitative framework for mea-
suring and comparing data quality rules in terms of
their effectiveness. Effectiveness formulas are built
from variables that represent probabilistic assump-
tions about the occurrence of errors in data values,
and earlier work gave examples of how to derive
these formulas in an ad-hoc fashion. The presented
approach involves several steps, including building
Bayesian network graphs, adding (symbolic) prob-
abilities to the nodes in the graph, and deriving ef-
fectiveness formulas. The approach is implemented
in Python, and the paper reports its evaluation re-
sults.

Soumaya Ben Hassine-Guetari, Jérome Darmont,
Jean-Hugues Chauchat with the paper “Aggrega-
tion of data quality metrics using the Choquet inte-
gral” present a solution that uses the Choquet inte-
gral to aggregate different data quality metrics into
a single score. When comparing different (data)
items, many quality dimensions might be used along
with their respective metrics. When two items A
and B have different scores over different dimen-
sions, it is not straightforward to compute a global
qualifying score to facilitate their comparison. In
this perspective, the aggregation of data quality
metrics can be the solution for computing a global
and objective data quality score. The authors con-
tribute to the solution of the problem by suggesting
how the Choquet integral might provide an answer.

The paper “Data Partitioning for Parallel Entity
Matching” written by Toralf Kirsten, Lars Kolb,
Michael Hartung, Anika Grof}, Hanna Képcke, and
Erhard Rahm deals with an important problem of
entity matching, which is an important and diffi-
cult step for integrating Web data. In order to re-
duce the execution time for matching algorithms,
the authors investigate how entity matching can be
performed in parallel on a distributed infrastruc-
ture. The paper proposes different strategies to par-
tition the input data and generate multiple match
tasks that can be independently executed. One of
the suggested strategies supports both blocking to
reduce the search space for matching and paral-
lel matching to improve efficiency. Special atten-
tion is given to the number and size of data par-
titions as they impact the overall communication
overhead and memory requirements of individual
match tasks. The caching of input entities and
affinity-based scheduling of matching tasks is also
considered. The authors also discuss the tool that
they have developed in a service-based, distributed
infrastructure as well as the detailed evaluation of
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their method.

An interesting tool for duplicate detection is pro-
posed in “DuDe: The Duplicate Detection Toolkit”
by Uwe Draisbach and Felix Naumann. Duplicate
detection, also known as entity matching or record
linkage, has been a research topic for several decades.
The challenge is to effectively and efficiently iden-
tify pairs of records that represent the same real
world entity. Researchers have developed and de-
scribed a variety of methods to measure the sim-
ilarity of records and/or to reduce the number of
required comparisons. Comparing these methods
to each other is essential to assess their quality and
efficiency. However, it is still difficult to compare
results, as differences can always be found in the
evaluated data sets, the similarity measures, the im-
plementation of the algorithms, or simply the hard-
ware on which the code is executed. To face this
challenge, the paper discusses the development of
a comprehensive duplicate detection toolkit named
DuDe. DuDe provides multiple methods and data
sets for duplicate detection and consists of several
components with clear interfaces that can be easily
served with individual code.

An original problem is raised by Wolfgang Gottesheim,

Norbert Baumgartner, Stefan Mitsch, Werner Rets-
chitzegger, and Wieland Schwinger with the pa-
per “Improving Situation Awareness” related to in-
formation overloading. Information overload is a
severe problem for operators of large-scale control
systems, as such systems typically provide a vast
amount of information about a large number of real-
world objects. Systems supporting situation aware-
ness have recently gained attention as way to help
operators to grasp the overall meaning of available
information. To fulfill this task, data quality has to
be ensured by assessment and improvement strate-
gies. In this paper, a vision towards a methodology
for data quality assessment and improvement for
situation awareness systems is presented.

The management of conditional functional depen-
dencies is an important topic described in “Extend-
ing Matching Rules with Conditions” by Shaoxu
Song, Lei Chen, and Jeffrey Yu. Matching depen-
dencies (mds) have recently been proposed in order
to make dependencies tolerant to various informa-
tion representations, and proved useful in data qual-
ity applications such as record matching. Instead of
a strict identification function in traditional depen-
dency syntax (e.g., functional dependencies), mds
specify dependencies based on similarity matching
quality. However, in practice, mds may still be
too strict and only hold in a subset of tuples in
a relation. Thereby, the paper proposes conditional

SIGMOD Record, December 2011 (Vol. 40, No. 4)



matching dependencies (cmds), which bind match-
ing dependencies only in a certain part of a ta-
ble. Compared to mds, cmds have more expressive
power that enables them to satisfy wider applica-
tion needs. The paper includes a discussion of both
theoretical and practical issues of cmds, including
inferring cmds, irreducible cmds with less redun-
dancy and, the discovery of cmds from data as well
as the experimental evaluation of cmd discovery al-
gorithms.

Finally, Peter Yeh, and Colin Puri show in “Dis-
covering Conditional Functional Dependencies to
Detect Data Inconsistencies” an approach that ex-
ploits conditional functional dependencies for de-
tecting inconsistencies in data and hence improves
data quality. The approach has been empirically
evaluated on three real-world data sets, and the pa-
per discusses the performance of the proposed ap-
proach in terms of precision, recall, and runtime.
Moreover, a comparison between the presented ap-
proach and an established, state-of-the-art solution
shows that the presented approach outperforms this

solution across the previously mentioned dimensions.

Finally, the paper describes efforts to deploy the
approach as part of an enterprise tool to acceler-
ate data quality efforts such as data profiling and
cleansing.
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Abstract

Twenty-five Semantic Web and Database researchers
met at the 2011 STI Semantic Summit in Riga, Latvia
July 6-8, 2011[1] to discuss the opportunities and
challenges posed by Big Data for the Semantic Web,
Semantic Technologies, and Database communities.
The unanimous conclusion was that the greatest
shared challenge was not only engineering Big Data,
but also doing so meaningfully. The following are
four expressions of that challenge from different
perspectives.

Michael’s Challenge:
Big Data Integration is Multi-disciplinary

The exploding world of Big Data poses, more than
ever, two challenge classes: engineering - efficiently
managing data at unimaginable scale; and semantics
— finding and meaningfully combining information
that is relevant to your concern. Without the
meaningful use of data, data engineering is just a
bunch of cool tricks. Since every computer science
discipline and every application domain has a vested
interest, Big Data becomes a use case for multi-
disciplinary problem solving[2]. The challenge posed
here is of the meaningful use of Big Data regardless
of the implementation technology or the application
domain.

Emerging data-driven approaches in the US
Healthcare Big Data World[3] involves over 50
million patient databases distributed US-wide for
which the US Government defines Meaningful Use
and the medical community has identified challenges
[4] across queries such as: “For every 54-year-old
white, female high school dropout with a baseline
blood pressure of 150 over 80 in the beta blocker
group who had these two concurrent conditions and
took these three mediations. Magid matched her to
another 54-year-old female high school dropout with
a baseline blood pressure of 150 over 80 in the ACE
inhibitor group, who had the same drugs.”[5]

In this Big Data World information is unbelievably
large in scale, scope, distribution, heterogeneity, and
supporting technologies. Regardless of the daunting
engineering challenges, meaningful data integration
takes the following form (step order can vary):
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e Define the concern — the problem to be solved -
the query to be answered, e.g., efficacy of a drug
for 54-year-old hypertensive women.

* Search the Big Data space for candidate data
elements that map to the concern; e.g., all
hypertensive 54-year-old women.

e Transform Extract, Transform, and Load (ETL)
the relevant parts of the candidate data elements
into appropriate formats and stores for
processing for processing.

*  Entity Resolution: Verify that data elements are
unique, relevant, and comprehensive, e.g., all
hypertensive 54-year-old women. Since unique
identification is practically and technically
infeasible, not all candidate data elements will
refer to the entity of concern. More challenging
are data elements that describe aspects of the
entity of concern at different level of abstraction
and from different perspectives, e.g., data
elements on myriad details of hypertensive 54-
year-old women, e.g., physiology, social network
membership, salary, education.

* Answer the query/solve the problem: Having
selected the data elements relevant to the entity
of concern, compute the answer using domain-
specific computations, e.g., efficacy of the drug.

It is hard to conceive of the scope and scale of data
elements in the Big Data World. The above method
has worked amazing well for more than 30 years in
the $27 billion per year relational database world
with blinding efficiency over ever expanding
database sizes from gigabytes, to terabytes, to
petabytes, and now exabytes. Data elements that are
genuinely relational constitute less than 10% of the
Big Data World and that share is falling rapidly.

The rare properties of single value of truth, global
schema, and view wupdate of semantically
homogeneous relational databases are often
underlying assumptions of relational database
integration. However, few relational databases are
semantically homogeneous and like most data stores,
they lack these properties. Hence, meaningful data
integration solutions cannot be based on these
properties without supporting evidence that must be
derived manually. Since the real world involves
multiple truths over every concern, relational data
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integration has semantic  (correctness) and
engineering (efficiency) limits.

My challenge is meaningful data integration in the
real, messy, often schema-less, and complex Big
Data World of databases and the (Semantic) Web
using multi-disciplinary, multi-technology methods.

Chris' Challenge:
The Billion Triple Challenge

Over the past few years, an increasing number of web
sites have started to publish structured data on the
Web according to the Linked Data principles. This
trend has led to the extension of the Web with a
global data space — the Web of Data [6].

Topology of the Web of Data Like the classic
document Web, the Web of Data covers a wide
variety of topics ranging from data describing people,
organizations and events, over products and reviews
to statistical data provided by governments as well as
research data from various scientific disciplines.
W3C Linking Open Data (LOD) community effort
has started to catalog known Linked Data sources in
the CKAN data catalog and regularly generates
statistics about the content of the data space [7].
According to these statistics, the Web of Data
currently contains around 31 billion RDF triples. A
total of 466 million of these triples are RDF links
which connect data between different data sources.
Major topical areas are government data (13 billion
triples), geographic data (6 billion triples),
publication and media (4.6 billion triples), life
science (3 billion triples).

Characteristics of the Web of Data The Web of

Data has several unique characteristics which make it

an interesting use case for research on data

integration as well as the Big Data processing:

*  Widely-used vs. proprietary vocabularies.
Many Linked Data sources reuse terms from
widely-used vocabularies to represent data about
common types of entities such as people,
products, reviews, publications, and other
creative works. In addition, they use their own,
proprietary terms for representing aspects that
are not covered by the widely used vocabularies.
This partial agreement on terms makes it easier
for applications to understand data from different
data sources and is a valuable starting point for
mining additional correspondences.

* Identity and vocabulary links. Many Linked
Data sources set identity links (owl:sameAs)
pointing at data about the same entity within
other data sources. In addition data sources as
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well as vocabulary maintainers publish
vocabulary links that represent correspondences
between terms from different vocabularies
(owl:equivalentClass, owl:equivalentProp-erty,
rdfs:subClassOf, rdfs:subPropertyOf).
Applications can treat these links as integration
hints which help them to translate data into their
target schema as well as to fuse data from
different sources describing the same entity.

e Data Quality: The Web is an open medium in
which everybody can publish data on the Web.
As the classic document Web, the Web of Data
contains data that is outdated, conflicting, or
intentionally wrong (SPAM). Thus, one of the
main challenges that Linked Data applications
need to handle is to assess the quality of Web
data and determine the subset of the available
data that should be treated as trustworthy.

Pre-Crawled Data Sets One approach to obtain a

corpus of Linked Data is to use publicly available

software, such as LDSpider, to crawl the Web of

Data. However, there exist already a number of

publicly available data sets that have been crawled

from the Web of Data and can be promptly used for
evaluation and experimentation.

*« BTC 2011. The Billion Triple Challenge 2011
data set (BTC 2011) has been crawled in
May/June 2011 and consists of 2 billion RDF
triples from Linked Data sources. There are also
two older versions of the data set available which
have been crawled in 2009 and 2010. The BTC
data sets are employed in the Semantic Web
Challenge, an academic competition that is part
of the International Semantic Web Conference.
The BTC data sets can be downloaded from the
Semantic Web Challenge website [8].

* Sindice 2011. The Sindice 2011 data set has
been crawled from the Web by the Sindice
search engine. The data set consists of 11 billion
RDF triples which (1) originate from Linked
Data sources and (2) have been extracted from
230 million Web documents containing RDFa
and Microformats markup. The data set contains
descriptions of about 1.7 billion entities and can
be downloaded from [9].

Now then, the task A concrete task, which touches
all challenges around data integration, large-scale
RDF processing, and data quality assessment that
arise in the context of the Web of Data, is to (1) find
all data that describes people (in whatever role) as
well as creative works produced by these people
(ranging from books, films, musical works to
scientific publications) in the BTC 2011 or the
Sindice 2011 data set; (2) translate this data from the
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different vocabularies that are used on the Web into a
single target vocabulary, (3) discover all resources
that describe the same real-world entity (identity
resolution), and (4) fuse these descriptions into an
integrated representation of all data that is available
about the entity using a general or several domain-
specific trust heuristics.

Success metrics: Success metrics for this task are the
number of people and creative works discovered in
the data set and on the other hand the completeness
and consistency of the integrated data.

Peter’s Challenge:
The LOD Ripper

Motivation. For broader adoption of semantic web
techniques, two main challenges arguably exist: (I)
lack of good use cases (ii) ever existing data
integration troubles that makes creating links so hard.
The LOD Ripper idea originates from the thought
that the best window of opportunity is linked open
government data. If it became easy for people and
companies to earn money and reap value from this
high-quality & free information out there, linked
open data might break through in this domain. If this
fails to catch on soon, linked open government data
investment in the early adaptor countries might drop,
and might altogether fail to take off in the rest. Use
cases outside government or academic data are much
harder to find as one then faces the issue of an
economic model for LOD production. So, better to
succeed here.

Success Metric. A side note on what success could
be. Success is not only achieved when the IT world
switches to semantic-everything technology. Given
the value of installed base, this is unrealistic. Success
is already achieved when people combine multiple
LOD datasets, and link them to their own data, but
then import the result e.g. as a flat relational table
(via CSV, XML, etc.) for wuse in existing
infrastructure and tools. Think of existing enterprise
middleware, business logic, data warehouses, and
OLAP and data mining tools: technology that has
been invested heavily in, and which would profit
from enrichment by linked open government data.
The semantic success will be in the fact that semantic
technology has made data integration easier and
partially automatic. Data integration is one of the
highest cost issues in IT, worth tens of billions of
dollars per year. Therefore, my name for the project,
the “LOD Ripper”: a technology to rip valuable
data out of LOD sources. Admittedly, this is intended
to be provocative to the Semantic Web community
and to emphasize practicality. But, you could also use
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the LOD ripper to extract data in triple form, of
course. The LOD ripper could also search non-LOD
open government datasets, just like CKAN. Mapping
these together may trigger the incremental LOD-
ification of such datasets.

Now then, the proposal: the LOD Ripper is a vision
of a web portal, driven by goals similar to CKAN,
however going way beyond CKAN in its practical
support for an information engineer in finding and
combining useful open government data, and
integrating it with his own. The portal would do the
maximum possible, given a vague information need
on the part of the information engineer, to put him as
quickly as possible into hands-on mode with real data
(snippets) from the entire data collection. This means
among other things that one of the main ways to
interact with the system is keyword search, which
would search in (1) ontologies/schemas (2) the data
itself and (3) mappings/views provided by earlier
users of the portal. The goal of the portal is to assist
the information engineer in obtaining a useful
mapping that allows him to retrieve (“rip”) a derived
dataset that is valuable for his problem space. Point
(3) stresses that this portal should facilitate a pay-as-
yOu-go process.

Mappings. Obtaining a mapping may happen by
finding an existing mapping, by combining multiple
existing ones into a new one, or by fresh
composition. The resulting mapping should be made
available again for future users. Mapping languages
are hence an important aspect, and user interfaces to
compose mappings and mapping systems, as well as
entity resolution algorithms are part of such systems.
Mappings are not only specifications, but in the end
will also take the form of new data, new or better
triples, that add meaning in and between existing
dataset(s). Such new triples may be generated by a
mapping system following a mapping specification
automatically, but should be materializable as triple
sets, because often these need to be manually curated
as well. Note that mappings need provenance
tracking, at least in the form of a simple version
tracking system.

Ranking. As we search schema, mapping and data,
we need also ways to usefully rank these. On the one
hand, ranking could be based on precision of match
with keywords, but on the other, should be based on
usefulness/quality assessment by previous users of
the datasets and dataset elements.

Visualization. To show results of a search, we need

good snippets or summaries of what we find. In the
case of ontologies, one would use dataset
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summarization techniques, to visualize the most
common structures in a dataset and where the
keyword search matched in that. If we look for
multiple types of data, one would also visualize the
structure of any existing mappings between the hits,
leaving out irrelevant details as much as possible.
When searching for views/mappings, these should
similarly be visually summarized. It should be one
click to switch from looking at schema visualizations
to see representative samples of underlying data
occurring in the wild. There should be strong support
for generating tabular data views out of the LOD
sources. The ability to extract tables, using all the
mapping machinery, is the prime output of the LOD
Ripper portal.

Key Matching. The system should allow users to
define keys, and upload possibly a large number of
key values, which typically come from the users' own
environment. Think for instance of a column
containing city names as a potential key column.
One purpose of such a key column in the LOD
Ripper is to measure the overall effectiveness of
finding useful data (“how many of my cities did I
find info for?”). It also provides a concrete starting
point for instance-driven data integration (“find me
matching city properties anywhere!”). Note that this
works on the instance level, and one needs algorithms
to quickly search for similar and overlapping data
distributions.

Snappiness. Visualizing results and creating
mappings interactively is going to be very important.
This means emphasis on cool GUI design as well as
low-latency performance. This requires a solid LOD
warehouse with advanced indexing performed in the
background. A technique probably useful for
instance-level data matching would be NGRAM
indexing (to speed up partial string and distribution
matching) as well as massive pre-computation of
entity resolution methods.

Call to action: Can we organize such a portal? Do
you have ideas and time, or even components
available?

Orri’s Challenge:
Demonstrate the Value of Semantics: Let Data
Integration Drive DBMS Technology

Advances in database technology will continue to
facilitate  dealing with large volumes of
heterogeneous data. Linked data and RDF have a
place in this, as they are a schema-less model with
global identifiers and a certain culture of, or at least
wish for, reuse of modeling.
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Systematic adoption of DBMS innovation into the
semantic data field, backed by systematic
benchmarking, will make the schema-less flexibility
of these technologies increasingly affordable.

These developments set the stage for the real

challenge:

* Demonstrate the benefit of semantics for data
integration. The RDF/data world does not exist
in a bubble, in any real life situation it will be
compared to alternatives.

*  Meaningfully combine DBMS and reasoning
functions. Identify real-world problems where
there is real benefit in having logics more
expressive than SQL or SPARQL close to the
data. We have talked extensively about smarter
databases but the actual requirement remains
vague. We do not think of OWL or RIF as
such answers for data integration even if they
may be a part of it.

* Bring Linked Data and RDF into the regular
data-engineering stack: Use existing query and
visualization  tools against heterogeneous
data. There are many interactive SPARQL
builders but are these performs comparable to
MS Query for SQL? Since data here is schema-
less, data set summarization will have to play the
role that the schema plays with relational
tools. There are many RDF bound Ul widgets
but few bind to Excel for business graphics?

We know how to make DBMS's. To get to the next

level we need use cases that represent real needs, e.g.

data integration. This information is required to

determine what ought to be optimized or in what way
the existing query languages / logics / processing
models fail to measure up to the challenge.

So, users / practitioners, does there exist functionality
that belongs with the data but cannot be expressed in
queries? What about entity resolution frameworks?
What about inference? What kind of inference? What
of the many things people do in map/reduce, is there
a better way? How about Berkeley Orders of
Magnitude (BOOM) work for declarative data centric
engineering for big data? I envision expanding the
Semdata benchmarks activity to include specific use
cases that come from you. What did you always
want to do with a DBMS but never dared ask?

This could result in a set of use cases with model
solutions with different tools and techniques. We are
not talking about fully formalized benchmarks but
about samples of problems motivating DBMS
advances beyond standard query languages.
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This in turn would bring us closer to quantifying the
benefits of semantic technology for real world
problems, which is after all our value proposition. Of
course, this involves also non-RDF approaches, as we
do not believe that there ought to be a separate RDF
enclave but that technologies should be appreciated
according to their merits. It is no wonder the bulk of
database research has been drawn to the performance
aspect, as success in this is fairly unambiguous to
define and the rationale needs no explaining. But
when we move to a more diverse field like data
integration, which indubitably is the core question of
big data, we need more stakeholder involvement.

Tell us what you need and we'll see how this shapes
the future of DBMS.

If you are struggling with doing things that DBMS' s
ought to do but do not support, let us know. Chances
are that these problems could be couched in terms of
open government data even if your application
domain is entirely different, thus alleviating
processes confidentiality problems.
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1. INTRODUCTION

The workshop series on Very Large Digital Libraries (VLDLS)
started in 2008 [12] with the aim of fostering and initiating
systematic and constructive discussions on the specific and
rather novel research area of “very large digital libraries”.
Before this, building on long experience in the field of digital
libraries and data infrastructures, the authors have spent ef-
forts in the definition of the Digital Library Reference Model
[4, 3] and in the definition of the Digital Library Technology
and Methodology Cookbook [1]. Both initiatives had the
common goal of consolidating digital library research as an
independent and well established research field with pecu-
liarities characterized by shared foundations. In line with
this path, the VLDL workshop series has a twofold target.
On the one hand delineating the boundaries of this research
area, in an attempt to motivate its existence as an indepen-
dent avenue of investigation. On the other hand identifying
its foundations and grand challenges, so that research results
could be classified and compared in a constructive confronta-
tion. The long-term and ambitious goal is to discuss the
foundations of VLDLs and establish it as a research field
on its own, with well-defined areas, models, trends, open
problems, and technology.

The main outcome of the workshop series [12, 8, 9, 5], also
published as SIGMOD Record reports [11, 10], was consol-
idation of its mission. The presentations and following dis-
cussions collected in the years clearly promoted VLDLs as a
chapter of their own in computer science research. VLDLs
cannot be simply regarded as very large databases storing
Digital Library (DL) content, as one may be tempted to as-
sess. In fact, as the Reference Model for Digital Libraries
well justifies, DL systems cannot be approached from the
perspective of content management only; the dimensions of
user, functionality, policy, quality, and architecture man-
agement are equally important. Accordingly, DLs become
Very Large DLs (VLDLs) when any one of these aspects
reaches a magnitude that requires specialized technologies
or approaches. Actually, the appellation of “very large” is
acquired whenever one of the following features apply to one
of the dimensions above:

e volume, i.e. the dimension in terms of number of enti-
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ties to be managed or size is huge;

e velocity, i.e. the speed requirements for collecting, pro-
cessing and using entities is demanding; and

e variety, i.e. the heterogeneity in terms of entity types
to be managed and sources to be merged is high.

However, there is not yet any threshold or indicator with re-
spect to these features agreed by the community in the large
that might be used to clearly discriminate very large digi-
tal libraries from digital libraries. Regardless of this, very
large digital libraries have been developed — e.g. the Library
of Congress', the National Science Digital Library?, Euro-
peana®, DRIVER? — and the demand for infrastructures and
services promoting collaboration and knowledge sharing on
large scale is growing [6, 13].

The fourth VLDL workshop has been organized in con-
junction with the 15th edition of the TPDL 2011 confer-
ence [7], which is part of the series of European Conference
on Research and Advanced Technology for Digital Libraries
(ECDL) started in 1997. This year workshop called for top-
ics on theory and practice of VLDLs. More specifically, the-
oretical or foundational topics covered definitional models
and measures (content, functionality, users, and policies),
architectural models, and design methodologies for VLDLs.
Practical or systemic topics covered ideas, experiments, and
practical experiences in system design and implementation.
Of particular interests were: integration and federation of
DLs, user management, security, sustainability, scalability,
distribution, interoperability for content, functionality, qual-
ity of service, storage, indexes, and preservation.

Moreover, unlike previous editions, this year the workshop
proposed the traversal topic “...on the marriage between
Very Large Digital Libraries and Very Large Data Archives

..”7. The idea was to call for contributions proposing re-
search issues and solutions regarding VLDLs in relationship
with research data. Research data is today an “hot” area in
the field of DLs. Scientists are more and more realizing the
need of tools capable of dealing with the so-called “tsunami”

"ttp://www.loc.gov

*nttp://nsdl.org

Shttp://www.europeana.eu
‘http://search.driver.research-infrastructures.eu/
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of data in order to make it accessible, searchable, reusable,
or linked with the research publications it is related with [2].
The digital nature of research data, its requirements for sev-
eral metadata descriptions (e.g. geo-reference, provenance),
efficient-scalable-secure storage/access, advanced visualiza-
tion and management tools, interoperability solutions, show
many overlaps with the main DLs issues and, due to the
multidisciplinary nature and cross-organizational character
of data archives, with the very large nature of DLs.

2.  WORKSHOP PRESENTATIONS

All submitted contributions were peer reviewed by two of
the six members of the Program Committee and six were
accepted. The workshop structure comprised an invited
speakers session followed by the presentation of the six con-
tributions. Each session is analyzed in a separate subsection
below.

2.1 Invited talks

This session featured two invited talks. The first focused
on indexing and search challenges in the area of very large
visual archives. The second focused on interoperability chal-
lenges in the construction of a European data archive infras-
tructure, arising from the EUDAT project.

Amato in the talk entitled “Dealing with Very Large Vi-
sual Document Archives” presented state of the art, issues
and open research directions related to content based re-
trieval in very large datasets of visual documents. Content
based retrieval is typically performed searching by similar-
ity on the visual (vectorial) features extracted from images.
In the last decades researchers have investigated techniques
for executing similarity search efficiently and in a scalable
way, mostly based on extraction of global visual features
[14]. Several techniques were presented, each resulting as
an improvement of the existing ones: tree-based access, ap-
proximate similarity search, and permutation-based meth-
ods. Finally, approaches based on local visual features were
presented. These offer much higher retrieval quality, but in-
troduce efficiency issue which are orders of magnitude more
difficult.

Thiemann in the talk entitled “The EUDAT Initiative: Chal-
lenges and Opportunities” presented EUDAT, a three-year
project starting in October 2011 and funded through FP7 e-
Infrastructure Call 9, Data infrastructure for e-Science. Its
consortium consists of 23 partners from 13 countries and
represents 15 user communities from a wide range of sci-
entific disciplines. Emphasis is on development towards a
Collaborative Data Infrastructure across scientific commu-
nities. The talk highlighted challenges and opportunities as
been seen in the current data infrastructure landscape in
Europe and addressed within EUDAT.

2.2 Presentation of contributions

This session included the presentations from the six contri-
butions, which covered very large issues on digital libraries
in combination with data archives. In particular, the ma-
jority of the accepted papers focused on problems related to
large scale content storage and management.

In reference to large scale content storage, Jurik and Zierau
in the paper entitled “Different Mass Processing Services in
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a Bit Repository”, analyzed the requirements of a general
bit repository mass processing service that should capable
of abstracting over several programming models and plat-
forms. The service is typically needed in large data archives
and libraries, where different ways of doing mass processing
is needed for different digital library tasks. The investiga-
tion shows that the execution environment has an heavy
influence on mass processing requirements, hence a general
purpose approach is only possible with respect to a given
scenario, where common service parameters and organiza-
tional issues can be identified. Thompson, Bainbridge, and
Suleman in the paper entitled “Using TDB in Greenstone
to Support Scalable Digital Libraries”, discussed about the
issues affecting one of the most diffuse digital library soft-
ware when dealing with large collections. In particular, they
evaluated the behavior of the open source Greenstone digital
library software when exploited in parallel tasks, identified
a drawback residing in the database component and pro-
pose some strategies essentially based on the exploitation
of a database supporting parallel access by obtaining sig-
nificant benefits in terms of import time. Finally, Praczyk,
Nogueras-Iso, Kaplun, and Simko in the paper entitled “A
storage model for supporting figures and other artifacts in
scientific libraries, the case study of Invenio”, presented an
extension of the data storage model of Invenio, a software
platform for building a web-based (document) repository de-
veloped at CERN. The extension addresses the requirements
arising while extending INSPIRE, the information resource
in High Energy Physics, to store figures and preserving data
tables on which publications are based. Such requirements
are in line with current digital libraries challenges to facil-
itate discovery and access to digital objects distinct from
the traditional full-text documents, e.g. figures, data sets or
software related to scientific developments.

With regard to large scale content management, Lemire and
Vellino in the paper entitled “FEztracting, Transforming and
Archiving Scientific Data“, proposed a scalable strategy for
automatically addressing research-data problems, ranging
from the extraction of legacy data to its long-term stor-
age. The automation of these tasks faces three major chal-
lenges: (i) research data and data sources are highly het-
erogeneous, (i) future research needs are difficult to antic-
ipate, (éii) data is hard to index. To address these prob-
lems, the authors reviewed existing solutions in the business
world and proposed the Extract, Transform and Archive
(ETA) model for managing and mechanizing the curation
of research data. Freitas and Ramalho in the paper en-
titled “Relational Databases Conceptual Preservation” ad-
dressed the digital preservation of relational databases by
focusing on the conceptual model of the database, hence
considering database semantics as an important aspect of
preservation “property”. This technique enhances previous
approaches, which were based on raw format preservation
of relational database data and structure. The method is
based on Web Ontology Language (OWL) ontologies used
to express database semantics as inferred by special algo-
rithms devised by the authors into a prototype. Finally,
Elbers and Broeder in the paper entitled “Federating Live
Archives” described The Language Archive (TLA) infras-
tructure and its transition towards open federated archive
environment by means of openness to novel metadata for-
mats. In this federated archive environment both data and
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services are synchronized to multiple sites in order to provide
long-term persistency on both levels. The change towards
a new metadata format opens the possibilities for other do-
mains to define their own metadata components and struc-
ture and thus join the infrastructure. However, this increase
in flexibility requires a major update of the archiving and
exploitation tools.

3.  WORKSHOP DISCUSSION

As in the previous edition, the concluding brainstorming
session confirmed the general agreement that a “very-large”
Digital Library can be considered as such if any of the axes
user management, content management, functionality man-
agement, and policy management becomes “very large” with
respect to volume, velocity, or variety. This statement gives
a particular flavour to this research field, which distinguished
it from digital libraries and very large databases. In fact,
a digital library with a small-size content base may be con-
sidered very large because of its large users base or because
of its challenging evolving and unpredictable functional re-
quirements. From this claim, the discussion moved towards
the question “what does very-large mean w.r.t. the four axes
or to any permutation of them?”. Again, the discussion
converged on believing that very-largeness is a matter of
thresholds and hard-challenges which today shape the lim-
its of our solutions and tomorrow will be hopefully tackled
to evolve into newer and harder problems. Very large digi-
tal library foundations are still in an early stage and do not
help in giving a formal specification to these challenges. As
a matter of fact, VLDL limits, hence today’s very-large is-
sues, manifests themselves only in real-case scenarios, which
researchers are still unable to classify w.r.t. a general the-
ory of VLDL. Consequently, the same holds for the solutions
proposed by researchers, which find it hard to confront their
work with that of others. More generally, researchers can-
not decide to tackle a problem of VLDL research starting
from a broader perspective, given clearly stated and agreed
on VLDL problematics.

In order to start this re-organization, the audience suggested
to pursue a pragmatic approach by first trying to identify
common “grand challenges” in the field and subsequently
narrow the scope of research to a list of “focused challenges”,
over which researchers can measure their competences and
compare ideas and solutions. This discussion will continue
during the next year, through collaborative web tools and
based on the volunteering work of researchers. The intention
is for the Fifth Workshop on Very Large Digital Libraries to
bear these grand and focused challenges as list of topics for
article submission.

4. CONCLUSIONS

The main conclusion drawn from all workshop deliberations
was that VLDL research has all the attributes to candidate
as an independent research field. Not only, its DL flavour
rotating around the four dimensions of users, content, func-
tionality and policies, only overlaps in some sense with very
large databases (on the content issues) and makes its partic-
ularly interesting and innovative in terms of challenges. It
was agreed that next year’s workshop questions should move
one step forward. On the one hand into identifying, across
the axes of investigation, a categorization of very large prob-
lems for DLs, and on the other hand to continue the quest
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on solutions to these issues. The LinkedIn group “Open
Forum on Very Large Digital Libraries”® is today open for
researchers willing to cooperate on the first task so as to
pave the way to a more constructive confrontation on com-
mon research avenues next year, in the next edition.
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