Data Management Research at NEC Labs

Data Management Research Group
NEC Laboratories America
http://www.nec-labs.com/dm/
{hakan}@sv.nec-labs.com

1. INTRODUCTION

In 2009, NEC Laboratories of America started a
data management research department to create a
world-class team and a research program with the
dual goal of research excellence and direct contribu-
tions to the company’s global business. Our organi-
zation gives the researchers opportunities to main-
tain a balanced mix of fundamental and applied re-
search as they focus on innovations which are mo-
tivated by the real needs faced by the company’s
large service and product businesses. In this report,
we present an overview of the research program of
the Data Management Research group, which cur-
rently includes Yun Chi, Hakan Hacigiimiiy, Wang-
Pin Hsiung, Bin Liu, Ziyang Liu, Hyun Jin Moon,
Oliver Po, Jagan Sankaranarayanan, Junichi Tate-
mura, and our close collaborators, Michael Carey
from University of California, Irvine, Hector Garcia-
Molina from Stanford University, Jeffrey Naughton
and Jignesh Patel from University of Wisconsin,
Madison. The group is also engaged with numer-
ous academic organizations through our University
Relations program.

The current focus of the group is data manage-
ment in the cloud. Cloud computing has emerged as
a promising computing and business model. By pro-
viding on-demand scaling capabilities without any
large upfront investment or long-term commitment,
it is attracting a wide range of users. It is obvi-
ous that cloud computing presents challenges and
opportunities for data management services. For
instance, database service providers may face het-
erogeneous customer workloads with widely vary-
ing characteristics. To serve such workloads, they
may have to use a diverse set of specialized database
products and technologies in an elastic manner to
ensure that customers observe the benefits of those
products specifically tailored for their needs. The
goal of our group is to understand and analyze those
challenges and opportunities by identifying and solv-
ing the relevant research problems.

38

2. THE CLOUDDB PLATFORM

Our current research projects are built around
a large platform, called CloudDB, which is envi-
sioned as a comprehensive data management plat-
form in the cloud [2, 10]. CloudDB would pro-
vide data management capabilities as a service to
transparently and efficiently support diverse appli-
cation workloads with identifiable SLA guarantees
and end-to-end system management functions. The
system would be able to employ heterogeneous un-
derlying storage models to effectively meet appli-
cations query and scalability requirements. The
CloudDB platform has the following guiding prin-
cipals in its design:

e One size does not fit all, hence the platform
should embrace the heterogeneity by leverag-
ing specialized database technologies to serve
diverse business needs and workloads.

e The profit (money) and the customer Service
Level Agreements (SLAs) should be the main
metrics for all system management and opti-
mization decisions.

e The system should maintain the declarative
nature of data processing while leveraging di-
verse set of specialized database technologies
underneath.

The effort to build the CloudDB platform with
these guiding principles has enabled us to identify
numerous challenging, exciting, and relevant research
and system problems in data management. Our
progress in building the CloudDB platform has al-
ready generated various significant technologies, which
are being evaluated, further developed, and deployed
in real business settings. As the CloudDB platform
includes a large number of projects, here we only
report on the selected subset, which is a good repre-
sentative of major areas including query processing
and optimization over heterogeneous data stores,
intelligent resource and workload management for

SIGMOD Record, September 2011 (Vol. 40, No. 3)

cloud database services, and application areas that
leverage the cloud data management capabilities.

3. MICROSHARDING: ELASTICITY FOR

OLTP WORKLOADS

The goal of our Microsharding project is to estab-
lish a declarative approach to support OLTP type of
workloads elastically based on the relational model
and to claim that developers do not have to aban-
don SQL and relational models just because existing
RDBMSs are not as elastic as key-value stores [14].
Cloud computing is expected to enable an appli-
cation to dynamically adapt to growing workloads
by increasing the number of servers. Such an ap-
proach is often called scaling in/out, and the prop-
erty of systems that enables this is called elasticity.
Elasticity is an important property for hosting web
applications since workloads from web users are of-
ten unpredictable, and can change dynamically over
short periods of time. However, it remains chal-
lenging to deliver elasticity to interactive and data-
intensive applications that handle a large number
of read and write operations on shared data.

An approach to deliver elasticity to OLTP work-
loads is to use a family of key-value stores, which en-

able seamless scaling out (e.g., live data re-partitioning).

However, these data stores provide limited query
and data manipulation APIs that are much simpler
than SQL. Whereas SQL provides a declarative way
to query and manipulate data, those APIs require
an application developer to code data manipulation
logic in a more procedural manner. Such an ap-
proach lacks data independence: Change in data
organization on a data store (e.g., introducing sec-
ondary index objects) involves change in the appli-
cation code that access the data.

The Microsharding proposes a relational alterna-
tive to the industrial state-of-the-art approaches.
We believe that the idea of entity groups [3] is prac-
tical and effective to achieve elastic OLTP work-
loads. If the workload and entity groups are de-
signed appropriately, the system can mostly avoid
distributed transactions, and scaling out could be
made easier. However, the code that accesses data
is written in a proprietary and procedural way, mak-
ing it difficult to take a principled approach to de-
sign elastic workloads. Developing such a declara-
tive and principled solution is the main focus and
the novel contribution of microsharding.

To realize a relational approach as an alternative
for the existing procedural approaches, we identify
the following key questions: 1) How can we define
constraints on transactions similar to entity groups
in the relational model? 2) How can we benefit from

SIGMOD Record, September 2011 (Vol. 40, No. 3)

the relational model to design and analyze elastic
OLTP workloads? 3) How can we implement it?

For the first question, we propose to extend the
concept of transaction class [5], which is a descrip-
tion of the behavior of transactions. Our vision is to
introduce transaction description language (TDL)
to describe various restrictions on ACID properties
in the form of transaction classes. We first intro-
duce a primitive transaction class, which is a build-
ing block of complex transaction classes. A prim-
itive transaction class defines the smallest unit of
logical data partitioning, which is a relational ver-
sion of entity groups. We call this logical partition
a microshard and the entire scheme microsharding.

For the second question, we examined how TDL
enables a principled approach to design databases
and application workloads. The physical design (data
layout) of the database takes not only schema into
account but also transaction classes.

For the third question, we have implemented mi-
crosharding methodology as a relational middleware,
called Partigle, on top of open source distributed
data stores, HBase [1] and Vodemort [4], which demon-
strates the benefits of the data independence.

Transaction Class is a key concept in microshard-
ing. We introduce a transaction class as a way
of declaratively specifying the constraints on the
ACID properties of a transaction. The concept of
transaction classes was introduced to a distributed
database system SDD-1 [5], where a transaction
class is to specify data set accessed by a transac-
tion. A transaction class was used as an input of
static conflict analysis to optimize transaction pro-
tocols without sacrificing global consistency. Here,
we use a similar specification to restrict the power of
transactions the application can use. Our transac-
tion class is a tool for the developer to design trade-
off between consistency and elasticity. Here, we
only discuss a basic transaction class, called primi-
tive transaction class. More detailed discussion on
transaction classes can be found in [14].

A primitive transaction class defines a logical scope
of the data where serializability must be maintained.
Its specification looks similar to specification of en-
tity groups. Let us take an example from TPC-W
benchmark data. Consider supporting a transaction
that updates a purchase order, which consists of one
record in ORDERS table and records in ORDER_LINE
table, which have parent-child (foreign key) rela-
tionship. A transaction class for this transaction
can be stated by specifying as follows:

CREATE TRANSACTION CLASS t1 AS
ORDERS BY 0_ID, ORDER_LINE BY OL_O_ID

This statement classifies records of ORDERS and

39

ORDER_LINE together into groups by the values of
0-ID (the primary key) and OL_0_ID (the foreign
key to ORDERS), respectively.

We call columns of a table specified in a primitive
transaction class transaction keys. A value of this
key identifies a specific group of data.

This specification is similar to data partitioning
in RDBMSs based on reference [7]. The objective of
traditional data partitioning is to provide physically
partitioned but logically seamless (consistent) data.
However, our partitioning defines logical boundaries
that have an impact on the data consistency se-
mantics. In addition, this logical partitioning is in-
dependent from physical partitioning (or layout on
distributed data stores). To distinguish this differ-
ence, we refer to the logical partitioning as sharding.
We call the unit of transaction scope a microshard
and our approach microsharding, since the granu-
larity of shards is very small relative to the entire
database 1.

4. MAESTRO: RESOURCE AND WORK-

LOAD MANAGEMENT FOR CLOUDDB

The Maestro project aims at developing a fam-
ily of technologies to manage very large heteroge-
neous database clusters that are deployed in cloud
service delivery infrastructures. More specifically
we look into resource and workload management
and optimization based on the key metrics that are
relevant for cloud service delivery. Obviously man-
aging the resources and the workloads in a cloud
service delivery infrastructure in an optimal man-
ner involves a number of decisions that have to be
made in the lifecycles of the systems. The key is-
sue is the identification of the metric on which the
system optimizes. The metric should be relevant to
database systems characteristics and the cloud com-
puting model. We choose to use SLA-based profit
as the metric, which is the ultimate goal of ser-
vice providers, rather than low-level system met-
rics, such as average query response time. SLA-
based profit is identified by two parts: i) the rev-
enues (money) and ii) the operational costs. The
revenue is what service clients pay to the service
provider based on the delivery of the services ac-
cording to the SLAs in the contract between the
service provider and the customer. The revenue is
not fixed and it may change with potential reduc-
tion in payments or even penalties; depending on

We do not use the term entity group either in order
to avoid confusion between logical schema design and
transaction design: For instance, we also plan to intro-
duce vertical sharding, making a logical entity no longer
an atomic unit of transaction scope.

40

the service quality, e.g, too high query latency. Op-
erational cost is the cost of resources used to run
the service. Hence, the research question in Mae-
stro is how to manage resources and workloads in
the system to maximize SLA-based profit, which
is SLA-based revenue minus operational cost. We
believe applying SLA-based profit optimization to
all system components opens up many interesting
research challenges and opportunities.

In the Maestro project, we have been developing
techniques to achieve our goal of SLA-based profit
optimization in key areas such as query dispatching,
query scheduling, admission control, capacity plan-
ning, provisioning, and multitenant database man-
agement. There have been many proposals to these
problems in the literature. However, most of them
addressed the problems by considering lower level
system-oriented metrics, such as minimizing aver-
age response time or minimizing average slow down.
That is, they do not explicitly consider profit opti-
mization. It may seem like average response time
minimization will implicitly lead to profit optimiza-
tion, but it is not the case in general: some jobs may
have more expensive SLAs to violate than others,
so the cloud provider would want to give a higher
priority to those jobs for better overall profit. Our
approach, in contrast, explicitly considers SLA rev-
enue function of each job at the core of those listed
problems to achieve an overall profit optimization.
We experienced that distinctively optimizing the
individual system components that correspond to
those key areas with a global objective in mind
gave us a greater degree of freedom to customize
our methods. This approach yielded higher degrees
of performance, customizability based on variable
business requirements, and end-to-end profit opti-
mization.

The Profit and the SLA Models: The total
profit, P, of the cloud service provider is defined as
P = Zl r; — C, where r; is the revenue that can
be generated by delivering the service for a partic-
ular job ¢ and C' is the operational cost of running
the service delivery infrastructure. We define the
revenue, R, for each job class in the system. Each
client may have multiple job classes based on the
contract. We use piecewise linear functions to char-
acterize the SLA revenue as discussed in [6]. In-
tuitively, the clients agree to pay varying fee lev-
els for corresponding service levels delivered for a
particular class of requests, i.e., job classes in their
contracts. For example, the client may be will-
ing to pay a higher rate for lower response times.
This characterization allows more intuitive interpre-
tation of SLAs with respect to revenue generation.

SIGMOD Record, September 2011 (Vol. 40, No. 3)

The intuition is that, if the level of services changes,
the amount that the provider can charge the client
also changes according to the contract. Due to the
limitations on the availability of infrastructure re-
sources, the cloud service provider may not be able
or choose to attend to all client requests at the high-
est possible service levels. Dropping/Increasing ser-
vice levels cause loss/increase in the revenue. The
loss of potential revenue corresponds to SLA func-
tion. Likewise, increasing the amount of infrastruc-
ture resources to increase service levels results in
increased operational cost. As a result, the key
problem for the provider is to come up with optimal
service levels that will maximize its profits based on
the agreed upon SLAs.

We note that the quantile-based SLAs are more
commonly used in practice — especially for avail-
ability measures. If this is preferred, there exist
techniques (e.g., [9]) that directly map quantile-
based SLAs to per-query SLAs. However, based on
our extensive interactions with numerous business
organizations that provide services to real clients,
they desire to be able to manage SLAs at the finest
granularity level (i.e., per query) with multiple lev-
els of delivery defined in the SLAs (i.e., step func-
tions). The observation is that currently majority
of the service providers only give availability SLAs
to their clients represented in the quantile form but
not other types of SLAs such as latency, through-
put etc. Also, lack of formal models and tooling
to enable finer granularity level SLA management
is a major inhibitor for businesses to adopt various
types of SLAs and also varying levels. Our research
aims at advancing the state-of-the art in that area
and helping service providers by working with them.

4.1 iCBS: Efficient Cost-Based Scheduling

In the cloud computing environment, service providers

offer vast IT resources to large sets of customers
with diverse service requirements. Obviously the
service provider may derive different revenues from
different clients as the clients may have varying SLA
and price agreements. Then one of the key ques-
tions the service provider has to answer is: “How
should I prioritize the queries in the system for
execution in way that will maximize the profits?”
Naturally, the answer to this question should con-
sider the constraints, such as available resources,
and other inputs, such as customer SLAs etc. The
prioritization of queries can be defined as a query
scheduling problem, which is our focus in efficient
cost-based scheduling project.

The scheduling is a mature problem and has long
been extensively studied in various areas such as

SIGMOD Record, September 2011 (Vol. 40, No. 3)

compute networks, database systems, and Web ser-
vices. There exist many different scheduling policies
and there is a vast amount of theoretical results
and practical analysis on various scheduling poli-
cies. However, in the majority of existing work on
scheduling, the performance metrics are low-level
performance metrics (e.g., average query response
time or stretch). More recently, researchers and
practitioners have paid more and more attention to
metrics other than the system-level ones. One such
new metric is the cost-based metric. For example,
instead of optimizing query response time, the main
target of a scheduling policy can be to reduce the to-
tal query cost, while for each query there is a certain
mapping between its response time and the corre-
sponding query cost. Such a cost-based metric is
well suited for cloud computing where profit plays
a central role and so we believe it is worth investi-
gating the cost-based scheduling problems in cloud
services. We mainly focus on two requirement areas
while designing a scheduling algorithm for this pur-
pose. First, we need a competitive computational
complexity as we expect a cloud service delivery sys-
tem has to manage very large query queues, where
efficiency is crucial. Second, the scheduling algo-
rithm should be capable of handling comprehensive
set of SLA functions that are representative of typ-
ically business contact cases. With those require-
ments in mind, we developed an efficient cost-based
scheduling algorithm, called i{CBS [6] by building on
the foundation of a previous work in this area [11,
12]. iCBS has the following main characteristics and
advantages: 1) It has a competitive time complexity
of O(log® N) over other SLA-aware scheduling algo-
rithms. The competitive complexity is achieved by
using certain techniques in computational geome-
try thereby making the cost based scheduling fea-
sible for query scheduling in the cloud-based sys-
tems. 2) It can handle wide range of SLA function
families.We study cost-based scheduling for a spe-
cial family of cost functions; namely piecewise linear
SLAs. Piecewise linear SLAs are easy to describe in
natural language and so preferred for business con-
tracts. We implemented and demonstrated that for
many special types of piecewise linear SLAs, iCBS
can achieve O(log N) time complexity. Other than
capturing various rich semantics, piecewise linear
SLAs also make many computations in cost-aware
scheduling more tractable, which is a key to our
work.

4.2 SmartSLA: Virtualized Resource Man-
agement for Cloud Databases

In a cloud computing environment, multi tenancy

41

is a common practice where resources are shared
among different clients. SmartSLA? project [16] fo-
cuses on intelligently managing and allocating re-
sources among various clients in a multi tenanted
cloud database environment. SmartSLA consists of
two main components: the system modeling module
and the resource allocation decision module. The
system modeling module uses machine learning tech-
niques to learn a model that describes the poten-
tial profit margins for each client under different
resource allocations. Based on the learned model,
the resource allocation decision module dynamically
adjusts the resource allocations in order to achieve
the optimum profits.

More specifically the problem is that he service

provider should intelligently allocate limited resources,

such as CPU and memory, among competing clients.
On the other hand, some other resources, although
not strictly limited, have an associated cost. Database
replication is such an example. It is known that
adding additional database replicas not only involves
direct cost (e.g., adding more nodes), but also has
initiation cost (e.g., data migration) and mainte-
nance cost (e.g., synchronization). We view the suc-
cessful management of resources as follows:

Local Analysis : The first issue is to identify the
right configuration of system resources (e.g., CPU,
memory etc.) for a client to meet the SLAs while
optimizing the revenue. Answers to such a question
are not straightforward as they depend on many
factors such as the current workload from the client,
the client-specific SLAs, and the type of resources.

Global Analysis : The second issue that a service
provider has to address is the decision on how to al-
locate resources among clients based on the current
system status. For example, how much CPU shares
or memory should be given to the gold clients ver-
sus the silver ones and when a new database replica
should be started, etc.

In the SmartSLA system architecture the system
modeling module mainly answers the Local Anal-
ysis questions, and the resource allocation decision
module is responsible for the Global Analysis ques-
tions.

4.3 ActiveSLA: Profit-Oriented Admission
Control

Compared to traditional database systems, the
databases systems hosted in the cloud usually serve
more diverse clients (e.g., through multi-tenancy)
and therefore face more unpredictable workloads.

2SmartSLA stands for “Resource Management for
Resource-Sharing Clients based on Service Level
Agreements”.

42

Due to economic considerations, cloud database providers

try to avoid resource overprovisioning while account-
ing for simultaneous peak workloads from a large
number of clients. Consolidating multiple clients
in shared infrastructures is a very commonly used
approach by the cloud providers. Such a consoli-
dation affords greater economies of scale and fixed
cost distribution. However, managing the overload-
ing becomes a much more crucial problem in such
environments.

The admission control has been proposed to re-
solve the system overloading problem. With admis-
sion control, when the system is near an overloading
condition, new queries are either throttled (e.g., [8])
or rejected (e.g., [15]) until the system condition im-
proves. Although existing admission control tech-
niques are helpful to alleviate system overloading,
they do not work directly toward the main goal of
cloud service providers—namely to maximize their
profits by satisfying different SLAs.

We have designed and implemented an admission
control framework, called ActiveSLA3, for making
prediction-based and profit-oriented admission con-
trol decisions, with a target of maximizing the ex-
pected profit of the database service providers [17].
The ActiveSLA framework is an end-to-end solu-
tion that consists of two main modules: a prediction
module and a decision module. When a new query
arrives, the query first enters the prediction mod-
ule. The prediction module uses machine learning
techniques and considers both the characteristics of
the query and the current system conditions. The
prediction module outputs the probability of the
query meeting its deadline. The calculated proba-
bility and the query’s SLA are sent to the decision
module. The decision module decides either to ad-
mit the query or to reject the query up-front. Fi-
nally, the result of each admitted query is returned
to the client and the actual execution time is piggy-
backed to the prediction module in real time. This
piggybacked information can further help the pre-
diction module to improve the accuracy of its future
predictions by introducing new training data. Fur-
ther details can be found in [17]. We believe the
consideration of profit maximization in admission
control presents new challenges that we address in
our solution.

5. COSMOS: SEAMLESS MOBILITY BY
CLOUDDB

The mobility of today is defined by the multi-
tude of apps, which while working in isolation, can

3ActiveSLA stands for: Admission Control for Profit
Improving under Service Level Agreements.

SIGMOD Record, September 2011 (Vol. 40, No. 3)

achieve a variety of tasks for the mobile user. The
mobility of tomorrow is envisioned as one where mo-
bile apps work together by sharing information to
create a seamless mobile experience, where the fo-
cus is the mobility of the user but not the device.

In the COSMOS (stands for Clouddb fOr Seam-
less MObile Services) project, we are developing a
multitenant, SLA-aware, cloud-based PaaS on top
of CloudDB to provide the necessary support for
seamless mobility [13]. The core component of COS-
MOS is the Sharing MIddLEware (SMILE), which
provides the infrastructure for mobile apps resid-
ing on COSMOS to share data actively with one
another. SMILE allows for management of SLAs
on the shared data, which means that some seri-
ous technical challenges will have to be overcome
in order to guarantee the desired level of access on
the shared data to all those who access it. The
key challenge is in ensuring that SLA guarantees
are provided in the face of multiple users with di-
verse workloads and SLA requirements, while pro-
viding performance guarantees for the data owners
in sharing data with others using performance iso-
lation policies.

The ultimate goal of mobility is to ensure that
the experience of a mobile user is a rich one. This
means that individual apps (i.e., mobile services)
should interact with the mobile user as if they ex-
ist in an ecosystem whose collective objective is to
ensure that the mobile user can interact with the
digital world in a seamless fashion. Mobile users
frequently change their context as they navigate in
their fast-paced daily lives. The desire is to en-
sure that mobile users stay connected to the digital
world through mobile services as they move forth
from one context to another — regardless of the kind
of mobile device and sometimes even without a mo-
bile device, which is largely irrelevant here. In this
environment, the main constraints of mobility are
the limited time, patience, and attentive span of
the mobile user who is on the go. Although there
have been recent efforts to significantly advance the
capabilities of mobile devices to improve the user
experience, more substantial improvements in user
experience can be achieved if individual apps are
cognizant to the limitations of the mobile user. In
some sense, we want to move beyond traditional ar-
guments that solely attribute the challenges of mo-
bility to the limitations of the mobile device, but
instead focus on how apps can provide a much bet-
ter user experience. Apps that constantly adapt to
the current context of the mobile users are said to
exhibit “seamless mobility.”

The seamless mobility can be achieved by apps

SIGMOD Record, September 2011 (Vol. 40, No. 3)

working together to help the mobile user achieve
tasks on the go. In that case the apps could greatly
benefit from sharing information with one another.
The mobility as we envision is far from what cur-
rently exists. Even though there is a rich variety
of apps on mobile devices, they generally do not
talk to one another or they try to do it an ad-
hoc manner let alone share information to create
a seamless mobile experience. The problem with
most of todays connections among the mobile apps
is that it is unidirectional and not scalable in the
sense that every app needs to implement the API
individually. In general, APIs are expensive to cre-
ate and maintain, not to mention that they may
not be expressive enough for most sharing needs be-
tween apps. Moreover, as apps are often hosted in
the same cloud infrastructure or on different cloud
infrastructures that can communicate in standard
ways, there are other less expensive ways of enabling
communications between apps hosted in the cloud.
COSMOS PaaS System: Mobile apps can be viewed
as front ends driven from remote services, which
are typically hosted on the cloud. For example, a
weather app on a mobile device is essentially a front
end that queries a data store on the cloud infras-
tructure for the weather conditions at a certain zip
code. PaaS provides hosting, processing and query-
ing of data for any mobile app that wishes to use
its services. A PaaS is the most appropriate place
to build a service for sharing as it typically hosts
data from several other apps. Sharing between the
apps can be provided as a service with little or no
overhead to the apps that use it. Note that one crit-
ical aspect of sharing in this context that we believe
would make sharing successful is the consistent na-
ture in which mobile apps can refer to a mobile user
using a small set of key identifiers (e.g., phone num-
ber, device id, simcard id). Sharing, in our context,
adds value to all the parties involved by providing
access to richer information on the mobile user.
COSMOS would be a PaaS offering for mobile
apps built on NEC CloudDB [10], with the goal
of supporting seamless mobility by enabling wide
scale sharing between apps. We consider a RDBMS
model of data storage, such that access to the hosted
data is typically using SQL. In the PaaS setting,
mobile apps that use the PaaS to host their databases
are referred to as tenants. Usually a PaaS provider
hosts several tenants in the same cloud infrastruc-
ture. In other words, the PaaS provider usually
resorts to multitenancy for good resource usage and
spreading of the operation cost among several ten-
ants. To ensure that all the tenants get an accept-
able level of service, in spite of sharing the infras-

43

tructure with several others, tenants negotiate SLA
with the PaaS provider. SLA is a contract that de-
scribes the level of service a tenant requires on the
data hosted with the PaaS. For example, an SLA
could specify that the tenant would pay 10 cents
for queries responded within 300ms, while the ten-
ant would penalize the PaaS $1 if the execution time
for the query exceeds 300ms. The PaaS provider,
whose objective is to maximize profits, ensures that
sufficient resources are available so that tenants do
not miss their SLA deadlines too often as that re-
sults in a loss of revenue.

SMILE: Data Sharing in the Cloud: The
key component of COSMOS is a middleware for
sharing data. The Sharing MIddLEware, known as
SMILE, enables sharing between a tenant ¢, who
is the owner of the data and another tenant, re-
ferred to as a consumer, who wants access to t’s
data. Consider a scenario of two apps, say App-
A and App-B, hosted on COSMOS that agree to
share data. In particular, let us only consider the
case of App-A, who is the data owner, agreeing to
share data with App-B who is the consumer. For
instance, App-A could be a calendar service, while
App-B could be an airline ticket booking service
that wants to query calendar appointments to de-
termine if the user is traveling in the near future. If
App-A wants to share some of its data with App-
B, in a traditional scenario, App-A would create an
API and share the details of the API with App-B.
Now, App-B would use the API to access App-A’s
data. The advantage of this model is that App-A is
loosely coupled with App-B in the sense that App-
A is free to change its data layout without really
affecting App-B as long as the API is suitably up-
dated. However, App-A must setup the necessary
infrastructure to create the API as well as keep up-
dating it whenever its data layout changes. In our
context, an API is an inefficient way to access App-
A’s data, especially if both App-A and App-B reside
in the COSMOS system.

An extreme solution would be if App-A allows
App-B to access its data directly. As App-A and
App-B are both tenants in COSMOS, this can be
trivially achieved. The drawback of this arrange-
ment is that it leads to a tight coupling between
App-A and App-B in the sense that if App-A changes
its data layout, it has to coordinate with App-B.
Other issues with sharing that are specific to a PaaS
system like COSMOS are as follows. Imagine the
scenario that App-B is a hard-hitter (i.e., issues
queries at a high rate) of App-A’s data, which would
lead App-A to frequently miss SLA deadlines on its
own data. Moreover, if App-A extensively shares its

44

data with several other consumers, the access on the
shared data may be exceedingly poor for all the par-
ties involved without the PaaS investing additional
resources to ensure that everyone gets reasonable
access. Sharing may require substantial investment
of resources from the COSMOS provider, where the
COSMOS provider has setup a materialized shared
space for App-B, which ensures that App-B’s access
on the shared space will not significantly affect App-
A’s queries. As materialized shared space takes up
storage and is expensive to maintain so this solu-
tion, while attractive, must be used intelligently.

6 REFERENCES

[1] Apache HBase. http://hbase.apache.org/.

[2] CloudDB:A Data Store for All Sizes in the Cloud.

http://www.nec-labs.com/dm/CloudDBweb.pdf.

[3] Google App Engine.

http://code.google.com/appengine/.

Project Voldemort. http://project-voldemort.com/.

P. A. Bernstein, D. W. Shipman, and J. B. Rothnie,

Jr. Concurrency control in a system for distributed

databases (SDD-1). ACM Trans. Database Syst.,

5(1):18-51, 1980.

[6] Y. Chi, H. J. Moon, and H. Haciglimiis. iCBS:
Incremental cost-based scheduling under piecewise
linear slas. PVLDB, 4(9), 2011.

[7] G. Eadon, E. I. Chong, S. Shankar, A. Raghavan,

J. Srinivasan, and S. Das. Supporting table
partitioning by reference in oracle. In SIGMOD 08,
pages 1111-1122, 2008.

[8] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.
A method for transparent admission control and
request scheduling in e-commerce web sites. In Proc. of
WWW, 2004.

[9] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and
A. Kemper. Adaptive quality of service management
for enterprise services. ACM Trans. Web, 2008.

[10] H. Hacigiimiig, J. Tatemura, W. Hsiung, H. J. Moon,
O. Po, A. Sawires, Y. Chi, and H. Jafarpour.
CloudDB: One size fits all revived. In IEEE World
Congress on Services (SERVICES), 2010.

[11] J. M. Peha and F. A. Tobagi. A cost-based scheduling
algorithm to support integrated services. In
INFOCOM, 1991.

[12] J. M. Peha and F. A. Tobagi. Cost-based scheduling
and dropping algorithms to support integrated
services. IEEE Transactions on Communications,
44(2):192-202, 1996.

[13] J. Sankaranarayanan, H. Hacigiimiig, and J. Tatemura.
COSMOS: A Platform for Seamless Mobile Services in
the Cloud. In IEEE MDM, 2011.

[14] J. Tatemura and H. Hacigiimiis. Microsharding: A
declarative approach to support elastic OLTP
workloads. In The 5th Workshop on Large Scale
Distributed Systems and Middleware (LADIS), 2011.

[15] S. Tozer, T. Brecht, and A. Aboulnaga. Q-cop:
Avoiding bad query mixes to minimize client timeouts
under heavy loads. In Proc. of ICDE, 2010.

[16] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigimiis. Intelligent Management of Virtualized
Resources for Database Systems in Cloud
Environment. In ICDE, 2011.

[17] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and
H. Hacigimiis. ActiveSLA: A profit-oriented admission
control framework for database-as-a-service providers.
In SoCC, 2011.

[4

5

SIGMOD Record, September 2011 (Vol. 40, No. 3)

