
Exploring Schema Repositories with Schemr

Kuang Chen and Akshay Kannan
University of California, Berkeley

kuangc@cs.berkeley.edu,
akannan@cs.berkeley.edu

Jayant Madhavan and Alon Halevy
Google, Inc.

jayant@google.com,
halevy@google.com

ABSTRACT
Schemr is a search engine for users to search for and
visualize schemas in a metadata repository. Users may
search by keywords and by example, using schema frag-
ments as query terms. Schemr uses a novel search al-
gorithm, based on a combination of text search and
schema matching techniques, coupled with a structurally-
aware scoring metric. Schemr presents search results in
a GUI that allows users to explore which elements match
and how well they do. The GUI supports interactions,
including panning, zooming, layout and drilling-in. This
paper introduces Schemr as a new component of the in-
formation integration toolbox and discusses its benefits
in several applications.

1. INTRODUCTION
All around the world, groups of small organizations want
to share structured data with each other. For instance,
consider the Nature Conservancy’s1 efforts in rallying
small conservation organizations to contribute environ-
mental monitoring data. As another example, consider
a rural health system in sub-Saharan Africa, consisting
of community health workers, low-resource health clin-
ics, and district-, regional-, and national-level ministries
of health. Unlike typical data integration scenarios,
where the goal is to provide uniform access to multiple
existing data sets, here organizations are more willing
to share information right from the beginning. In par-
ticular, a database designer working on a new schema
is likely to consult and explore existing schemata, given
access to them. What is needed is a tool for schema
search and visualization to guide the initial database
design.

This paper describes Schemr, a tool for locating, explor-

1The Nature Conservancy http://www.nature.org

ing, and reusing relevant schemas (or schema fragments)
in large schema collections. Schemr leverages the past
experience of a collaborative community and the algo-
rithmic techniques from existing information integration
tools to lower the data sharing barrier-to-entry and nur-
ture schema compatibility – simplifying the task of in-
formation integration during schema design. Beyond
the example scenarios described above, a schema search
tool is a valuable tool to navigate any dataspace of het-
erogeneous information [4].

Schemr’s search algorithm combines schema matching
and text search techniques with a structurally-aware
scoring metric. Designers can use keywords or existing
schema fragments as search terms. Results are returned
in an environment that allows users to visually explore
and compare matching schemata.

Specifically, we make the following contributions:

• Schema search algorithm - Schemr’s search algo-
rithm combines techniques from document search
and schema matching, and employs a holistic tightness-
of-fit measure to find and rank schemas according
to a query’s semantic intent.

• Visualizations of results - Schemr visualizes search
results in an interactive web application, allowing
users to compare multiple results and drill-in to
explore a schema with visually encoded similarity
measures.

• Open source software component - Schemr is part
of the OpenII open-source information integration
framework [8], which any organization may use
and extend for free.

A demonstration of Schemr was first presented at SIG-
MOD 2009 [2].

Example Scenario
We ground our motivation through discussion and ob-
servation of two such organizations, mentioned above:
the Nature Conservancy and a large HIV/AIDS treat-
ment program in Tanzania. We found that data man-
agement in these organizations takes place in an ad-
hoc manner, with ad-hoc tools. Data administrators

SIGMOD Record, March 2011 (Vol. 40, No. 1) 11



face a vicious cycle: they are overloaded with requests
to manually curate data that should be produced by
automated processes. Thus, having no time to tackle
major system improvements, they create stopgap solu-
tions. These data administrators say that they would
gladly collaborate with others to share schemas and ad-
vice, but are hindered by the high-maintenance cost of
the stopgap solutions. They need tools that provide an
immediate productivity gain. For these organizations,
sharing designs through schema search can provide this
bootstrap path, which starts with better data modeling
and leads to better integrated information.

In such a setting, the database administrator begins
by designing a new table. She is unsure of the best
way to model the table, and wants to search for related
schemas and data examples. She opens Schemr in her
web browser and has the option to specify either a sim-
ple keyword search and/or a partially designed schema
fragment. In this case, let us suppose that she performs
a search for existing data models by using the keywords
patient, height, gender, diagnosis. Additionally,
she specifies a partially designed schema to specify re-
sults that include elements semantically equivalent to
ones she has already designed. A partially designed
schema can be specified by uploading a DDL (Data Def-
inition Language) or XSD (XML Schema Definition).

Upon executing this query, the designer is presented
with several relevant schemata to explore in further depth.
The results can come from a variety of sources: refer-
ence schemata within the organization, shared schemata
from partnering organizations, or public sources.

Internally, Schemr parses the input schema and creates
a query graph (Figure 1) out of it, on which the simi-
larity functions are computed. Schemr returns a ranked
list of n results, presented in a tabular format, including
columns for name, score, matches, entities, attributes,
and description. The user can interact with the results
by clicking on a particular entry to visualize its schema
elements, or ask for the next n schemas. On drill-in to
a particular schema, Schemr creates a detailed graph
structure with visual encodings of similarity. Figure 2
shows an example of Schemr’s visualizations.

2. SCHEMR OVERVIEW
In this section, we first describe Schemr’s search algo-
rithm, and then describe our implementation.

Algorithm
Schemr’s search algorithm (Figure 3) consists of three
phases. Prior to executing a search, the query parser
creates a query-graph from the keyword terms and schema
fragments given by user input. In the first phase, Candi-
date Extraction, Schemr flattens the query-graph into a
list of keywords and quickly retrieves the top candidate
schemas from a scalable document index. In the sec-
ond phase, Schema Matching, Schemr evaluates the top
candidate schemas with an ensemble of schema match-
ers [3, 6], scoring the semantic similarity between can-







 









Figure 1: An example query graph consisting of
both (A) a schema fragment and (B) a keyword



















Figure 3: Schema search algorithm data flow

didate schema and the query-graph elements. In the
third phase, Schemr computes a final score by weighing
similarity scores with a Tightness-of-fit Measurement.

Candidate Extraction

The input query-graph Q is a forest of trees consisting of
schema fragments and keywords, as shown in Figure 1.
The example illustrates that Q can represent several
graphs, where each keyword is represented as a graph
of one item. The query-graph abstraction can capture
multiple query formats, including relational and XML.

The system contains a document index of the schema
corpus, which we build offline. Each schema in the index
is represented as a document, for which we store a title,
a summary, an ID, and a flattened representation of
each element in the schema. Our inverted index stores
a term dictionary of frequency data, proximity data,
and normalization factors, providing a fast and scalable
filter for relevant candidate schemas.

When searching the index online, we first create a list
of keywords by flattening the query graph Q and per-
forming keyword matching on the document index. We
use a variant of standard TF/IDF to obtain an initial
coarse-grain matching. To preserve recall, the candidate
extraction algorithm need not match all search terms;
rather, match scores are computed independently for
each search term and summed to produce a coarse-grain
score for returning the top n candidate results. A coor-
dination factor, defined as the number of terms matched

12 SIGMOD Record, March 2011 (Vol. 40, No. 1)
























 











Figure 2: Search results for a keyword + schema fragment query. (1) Search keywords (2) DDL
schema fragment specified as part of query (3) Tabular view of search results allows sorting and
comparison (4) Schema visualizations allow side-by-side schema comparison. Node color corresponds
to schema element types (e.g. entity or attribute). Visualization types include hierarchical tree-view
and radial view (shown). Nodes can be collapsed and expanded to allow drill-in on particular schema
elements in greater detail.

SIGMOD Record, March 2011 (Vol. 40, No. 1) 13



divided by the number of terms in the query, is multi-
plied into the coarse-grain score in order to reward re-
sults which match the most terms in the original query.

Schema Matching
The top candidate schemas are evaluated against the
query-graph and ranked using an ensemble of fine-grained
matchers. We summarize two matchers we found to be
most useful, but note that other matchers may be used
as well.

A name matcher normalizes terms and computes n-
gram overlap between query terms and terms in the
indexed schemas. Each schema element in the query
is parsed into a set of all possible n-grams, ranging in
length from one character to the length of the word.
Each n-gram is then ranked against each element of the
candidate schemas to compute a final match score. We
found this matcher to be particularly helpful for prop-
erly ranking schemas containing abbreviated terms, al-
ternate grammatical forms, and delimiter characters not
in the original query.

A context matcher builds a set of terms from neigh-
boring elements, and tries to capture matches when
neighboring-element sets are similar to each other [6].

Each matcher produces a similarity matrix between query
graph elements and schema elements. Each (query ele-
ment, schema element) pair has a corresponding value
which describes the match quality – a value between 0
and 1, For every candidate schema, the similarity matri-
ces of the different matchers are combined into a single
matrix containing total similarity scores. We combine
the scores from each matcher with a weighting scheme,
which is initially uniform. As Schemr is utilized in prac-
tice, we can record search histories to create a training
set of search-term to schema-fragment matches. With
such a training set, we may then determine an appropri-
ate weighting scheme. For instance, Madhavan et al use
a “meta-learner” to compute a logistic regression over a
training set of schemas [5].

Tightness-of-fit Measurement
Schemr’s task, in this phase, diverges from the tradi-
tional aim of schema matching: rather than generating
mappings between elements, we use the similarity ma-
trix of total similarity scores to create an overall score
that captures the semantic intent of schema search. Our
principle here is to measure the tightness-of-fit by min-
imizing the distance between relevant elements in a re-
sult schema.

We begin by selecting the maximum value of each schema
element’s entry in the matrix as the final match score for
that element. Next, we apply penalties to the scores of
the schema elements based on a relative distance mea-
sure and take the average of the scores to arrive at a
final score for the entire schema.

The intuition behind our distance measure is as follows.

 

 

Figure 4: An example schema showing only
matched schema elements

For elements ei and ej ∈ E:

• If they are in the same entity, no penalty.

• If they are in the same entity neighborhood (tran-
sitive closure on foreign key), then a small penalty
applies.

• If they are in unrelated entities, then a larger penalty
applies.

There can be many configurations by which a set of
query-graph elements match a set of result schema el-
ements. Each such configuration consists of penalties
on elements computed with respect to a particular an-
chor entity. Given an anchor entity, the scores of ele-
ments in other entities are penalized by their distances
to the anchor and averaged. This calculation is repeated
for all possible anchor entities, and the maximum of all
calculations is selected as the final match score for the
schema.

Continuing with our original health clinic example, con-
sider the following simplified candidate schema of matched
elements in Figure 4. First, case is selected as an initial
anchor entity. No penalty is applied to the scores of the
case.doctor, case.patient schema elements, because
they reside in the same entity as the anchor, whereas a
small transitive closure penalty is applied to the scores
of patient.height, patient.gender, doctor.gender.
Finally, the penalized scores of the schema elements are
averaged to produce a score for the case anchor. Next,
patient is selected as an anchor entity. No penalty is
applied to patient.height, patient.gender, the small
transitive closure penalty is applied to the elements in
the case entity, and a larger penalty is applied to the
elements in the unrelated doctor entity. Finally, this
calculation is repeated with doctor as the final anchor
entity, and the maximum value of the three anchored
calculations is returned as the final match score of the
schema.

For a set of similarity scores S, each choice of anchor
element A results in penalties P . A tightness-of-fit score
t can be computed by t =

P

(S · P ). We are interested
in the configuration which maximizes the tightness-of-fit
score:

tmax = arg max
A

X

(S · PA).

We use this total score to rank the final search results.

14 SIGMOD Record, March 2011 (Vol. 40, No. 1)























Figure 5: Schemr system architecture diagram

Architecture and Implementation
Schemr’s architecture (Figure 5) features a web-based
GUI for entering search terms and graphically reviewing
search results. The GUI processes a set of search terms
and delivers them as a request to the Search Service.

On the Schemr server, we use the open-source schema
repository Yggdrasil [8]. At scheduled intervals, an of-
fline Lucene [11] Text Indexer flattens schemas from the
Schema Repository to construct or update the docu-
ment index.

When a request is received by the server, the query is
initially flattened into a collection of keywords and used
to filter candidate schemas from the document index.
These candidate schemas are next passed to the Match
Engine, where fine-grained matchers are used to com-
pute a final relevance score for ranking the candidate
schemas. This list of candidate schemas, along with
their corresponding score, is finally sent as an XML re-
sponse to the client.

When the user clicks on a search result to view the visu-
alization, another request containing the schema ID is
sent to the server. The server performs a lookup of this
ID in the schema repository and returns a graphical rep-
resentation of the schema to the client as a GraphML[10]
response, which is parsed and displayed on the front-
end.

Visualizations
Schemr visualizes result schemas in an interactive GUI,
supporting panning, zooming, auto-layout, and drilling-
in. Our client is implemented using Adobe Flex and the
Flare visualization toolkit. Using Flash ensures cross-
browser compatibility without any additional browser-
handling code. All search requests and visualizations
are dynamically retrieved using asynchronous HTTP re-
quests.

Schemr’s user interface features two panels (Figure 2).
The left-side search panel allows users to supply a query
in the form of a keyword search or a DDL/XSD schema
fragment and lists ranked search results in a tabular for-

mat. The right-side results panel provides a workspace
for users to explore graph visualizations of schemas.
In graph visualizations, element nodes are encoded by
color, and multiple graphs can freely be compared side-
by-side and explored in further depth. Clicking on a
graph node displays detailed information about the schema
element in a toolbox, and double-clicking on a graph
node re-centers the layout of the graph such that the
new node is in the center. We allow for multiple graph
layouts, including a hierarchical tree layout and a radial
layout. To ensure Schemr scales to very large schemas,
we cap the displayed graph depth to 3. To drill in on a
particular branch at a greater depth, users can simply
double click on a node to view its descendants in further
detail. To ensure Schemr scales to very large schemas,
we plan to employ schema visualization and summariza-
tion techniques, such as those proposed in [7, 9].

Applications
Schemr’s search capabilities have been tested on a repos-
itory of over 30,000 public schemas, both relational and
semi-structured, small and large, spanning many do-
mains. These schemas came a collection of 10 million
HTML tables [1], and were filtered by removing schemas
containing non-alphabetical characters, schemas that only
appeared once on the web, and trivial schemas with
three or less elements.

We plan to make Schemr available as a part of an open-
source information integration framework, OpenII [8].
As a module of OpenII, other framework components
enable new schema search applications and scenarios,
magnifying Schemr’s benefit. For example, integrating
Schemr with schema import and export functionality
gives users motivation to build metadata repositories.
As well, integrating Schemr’s search functionality with a
codebook that contains data types like units, date/time,
and geographic location, would encourage a deeper stan-
dardization of data types alongside schema search re-
sults. With an OpenII community of users searching the
repository, collaboration functionality that provides us-
age statistics and comments on schemas would improve
schema search results. Finally, integrating Schemr with
a schema editor would allow for a new model devel-
opment process, in which search results are iteratively
used to augment a schema. In this process, we can also
capture implicit semantic mappings between schema el-
ements, information on schema re-use, and the prove-
nance of new schema entities.

3. SUMMARY
Schemr demonstrates an effective approach to schema
search and visualization. It uses a novel combination of
document based filtering, schema matching, semantics,
and structure-aware scoring to efficiently search and vi-
sualize large schema repositories. Schemr can be inter-
nally deployed as a standalone tool for organizations to
search and share schemas, facilitating the schema design
process and paving the way for information integration.
Additionally, Schemr will play a role as a module of
the OpenII framework, serving to improve the accessi-

SIGMOD Record, March 2011 (Vol. 40, No. 1) 15



bility and benefit of many information integration ap-
plications.

Schemr can also be deployed as a publicly available
web service. To facilitate finding quality schemas in
a large public repository, we plan to incorporate col-
laborative functionality such as mechanisms for users
to leave ratings and comments on schemas. Through
these comments, users can suggest improvements or ad-
ditions that can be made to schemas. Ultimately, we
hope that this will evolve into a general repository for
storing multi-purpose schemas to meet the community’s
needs. In a sense, we are hoping to democratize develop-
ment of standards and consequently improve the quality
of schemas in the data ecosystem.

Acknowledgments
We are grateful to Peter Mork, Arnie Rosenthal, Len
Seligman and Chris Wolf who provided invaluable ad-
vice and the Yggdrasil schema repository. We would like
to thank Kristin Barker, Harr Chen, Tyson Condie, Joe
Hellerstein, Neal Lesh, Jamie Lockwood, Tapan Parikh
and Sanjay Unni.

4. REFERENCES
[1] M. Cafarella, A. Halevy, D. Wang, E. Wu, and

Y. Zhang. Webtables: Exploring the power of
tables on the web. Proceedings of the VLDB
Endowment, 1(1):538–549, 2008.

[2] K. Chen, J. Madhavan, and A. Halevy. Exploring
schema repositories with schemr. In Proceedings
SIGMOD, pages 1095–1098. ACM, 2009.

[3] A. Doan, P. Domingos, and A. Halevy. Learning
to match the schemas of data sources: A
multistrategy approach. Machine Learning, 50(3),
2003.

[4] M. Franklin, A. Halevy, and D. Maier. From
databases to dataspaces: a new abstraction for
information management. ACM Sigmod Record,
34(4):27–33, 2005.

[5] J. Madhavan, P. Bernstein, A. Doan, and
A. Halevy. Corpus-based schema matching. In
Proceedings of ICDE, pages 57–68. IEEE, 2005.

[6] E. Rahm and P. A. Bernstein. A survey of
approaches to automatic schema matching. The
VLDB Journal, 10(4), 2001.

[7] G. G. Robertson, M. P. Czerwinski, and J. E.
Churchill. Visualization of mappings between
schemas. In Proceedings SIGCHI conference on
Human factors in computing systems, 2005.

[8] L. Seligman, P. Mork, A. Halevy, K. Smith,
M. Carey, K. Chen, D. Burdick, C. Wolf,
J. Madhavan, and A. Kannan. Openii: An open
source information integration toolkit. In
Proceedings of SIGMOD, 2010.

[9] C. Yu and H. V. Jagadish. Schema
summarization. In Proceedings VLDB, 2006.

[10] Graphml file format.
http://graphml.graphdrawing.org.

[11] Lucene. http://lucene.apache.org.

16 SIGMOD Record, March 2011 (Vol. 40, No. 1)


