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ABSTRACT
The problem of projected clustering was first proposed
in the ACM SIGMOD Conference in 1999, and the Prob-
abilistic Latent Semantic Indexing (PLSI) technique
was independently proposed in the ACM SIGIR Confer-
ence in the same year. Since then, more than two thou-
sand papers have been written on these problems by the
database, data mining and information retrieval commu-
nities, along completely independent lines of work. In
this paper, we show that these two problems are essen-
tially equivalent, under a probabilistic interpretation to
the projected clustering problem. We will show that the
EM-algorithm, when applied to the probabilistic version
of the projected clustering problem, can be almost iden-
tically interpreted as the PLSI technique. The implica-
tions of this equivalence are significant, in that they im-
ply the cross-usability of many of the techniques which
have been developed for these problems over the last
decade. We hope that our observations about the equiv-
alence of these problems will stimulate further research
which can significantly improve the currently available
solutions for either of these problems.

1. INTRODUCTION
The problem of projected clustering (and the closely

related problem of subspace clustering) were pro-
posed over a decade ago for clustering high dimen-
sional data [8, 1]. The main motivation of this prob-
lem formulation was to effectively solve the cluster-
ing problem in very high dimensional scenarios in
which the data becomes increasingly sparse. Since
then, this problem has been explored extensively
by the database and data mining community in the
context of a wide variety of scenarios and prob-
lem domains [6]. The projected clustering problem
was first proposed in the database community, and
much of the initial work in this area was performed
within the core database conferences such as SIG-
MOD [1, 2, 5, 8].

At approximately the same time as the publica-
tion of the projected clustering work [1], the PLSI

technique was independently proposed in the infor-
mation retrieval community [15] for clustering and
dimensionality reduction of text. This also led to a
larger interest in the newly defined problem of topic
modeling. A variety of subsequent methods for topic
modeling such as LDA [10] have found very wide
popularity and success for soft text clustering. We
would like to emphasize that PLSI is a technique,
whereas topic modeling is a problem. However, the
interest and awareness of this very important prob-
lem arose out of the original PLSI paper [15]. Most
of the work on PLSI and its variants has remained
restricted to the information retrieval community,
with a primary focus on text data. In fact, the origi-
nal paper on PLSI was positioned [15] as an alterna-
tive to the latent-semantic indexing approach [11]
for dimensionality reduction of documents, rather
than providing a clustering solution. Subsequently,
the importance of the broader problem formulation
has been extensively exploited for soft clustering by
the information retrieval community [10].

The differences between PLSI and projected clus-
tering would seem to be significant at first sight.
Most projected clustering problems are naturally
defined as deterministic problems, in which clus-
ter membership and dimension membership is ab-
solute. On the other hand, PLSI is a soft varia-
tion, which allows soft membership of documents
and words within the different clusters. Further-
more, the EM approach of PLSI implicitly uses the
fact that most documents contain a small fraction
of the lexicon, and have small non-negative frequen-
cies. On the other hand, projected clustering is gen-
erally defined for highly ordered and quantitative
attributes, which may be either positive or negative
and the clusters are defined by the wide variations
and correlations across these different attribute val-
ues. Straightforward applications of probabilistic
methods to projected clustering do not necessarily
yield PLSI. In fact, some probabilistic methods [17]
have been proposed for projected clustering, but
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are largely unrelated to PLSI, because of significant
differences in the underlying data representations.
This is because there are a variety of different ways
to formulate projected clustering with a probabilis-
tic approach. Finally, the two problems have largely
been explored by two completely disjoint communi-
ties of researchers, and this has also lead to an arti-
ficial separation between these different problems.

On the other hand, the two problems also share
a number of common characteristics. For exam-
ple, both formulations explore the duality of points
and dimensional clustering behavior simultaneously
in order to determine the underlying patterns. As
we will see later, a careful probabilistic modeling of
the projected clustering problem, and an EM-based
solution naturally leads to an algorithm which is
essentially equivalent to PLSI, with an appropri-
ate mapping between the feature space of the two
problems. Furthermore, we will also explore the
co-clustering model [13], the matrix factorization
model [20], and the relationships of these models
to both problems. Co-clustering and matrix factor-
ization can essentially be considered deterministic
versions of topic modeling, in that they provide a
simultaneous understanding of the duality between
documents and words, though not necessarily prob-
abilistically. In this context, it is somewhat surpris-
ing that most of the work on these different cluster-
ing models are generally performed independently
of one another, with little exploration and under-
standing of the relationships between the different
variants.

The implications of this equivalence are signif-
icant for all these different models for clustering.
Most projected clustering methods have been de-
signed in an absolute sense, with a hard definition of
the data points and the underlying dimensions. On
the other hand, a probabilistic version of the prob-
lem lends itself to immediate use of a decade of work
in the information retrieval community. Similarly,
there is significant amount of work on pattern-based
variations of projected clustering, which can be al-
most directly used by the information retrieval com-
munity for deterministic versions of topic modeling.
Of course, significant effort may also be required in
order to cross-test these methods across domains,
though it is very likely that many of the methods
in either domain will be useful for the other. A
detailed cross-testing of the (decade of) methods
across the two domains is beyond the scope of this
position paper. The main purpose of this position
paper is not to propose a specific algorithm for ei-
ther problem, but to show the equivalence between
the two problems. This is likely to stimulate a fur-

ther direction of exploration for both communities.
This paper is organized as follows. In the next

section, we will study the probabilistic version of
the projected clustering problem. We will propose
a probabilistic EM-algorithm for this problem. In
section 3, we will interpret this solution in the con-
text of the PLSI technique. We will also explore
other variations of the PLSI method, which are re-
lated to this technique. In section 4, we will provide
a discussion of the implications of the relationship
between these different problems.

2. PROJECTED CLUSTERING: DEFINI-
TION AND PROBABILISTIC VARIA-
TION

We start off with the notations and definitions.
We assume that we have a data set D with N records,
and a dimensionality of d. We assume that the
records in D are denoted by X1 . . . XN . The val-
ues on the individual dimensions of the j-th data
point Xj are denoted by (xj1 . . . xjd).

The core idea in projected clustering is that the
underlying data is sparse because of the curse of
dimensionality [7, 9, 14]. In such cases, distance
functions lose their discriminative behavior [5] in
full dimensionality, and therefore meaningful clus-
ters cannot always be defined in full dimensional-
ity. Therefore, the problem of projected cluster-
ing is defined in order to simultaneously determine
the clusters and the cluster-specific dimensions from
the underlying data. The idea is that locally rele-
vant dimensions can be helpful in defining clusters,
because of the differential nature of the dimension
relevance in different data localities. The output of
a projected clustering algorithm is twofold:

• a (k+1)-way partition {C1, ..., Ck} of the data,
such that the points in each partition element
form a cluster.

• a possibly different orthogonal set Ei of dimen-
sions for each cluster Ci, 1 ≤ i ≤ k, such that
the points in Ci cluster well in the subspace
defined by the dimensions in Ei.

In order to define the probabilistic variation of the
projected clustering problem, we will use kernel den-
sity estimation in order to define dimension-specific
data localities. These dimension-specific localities
are useful for defining the influence of each data
point in different dimension-specific localities of the
data in terms of a kernel density value.

Let µi and σi be the mean and standard devia-
tion of the data along each dimension i. For each
dimension i, we define (m + 1) equally spaced an-

chor points located at µi − 3·m·σi

m , µi − 3·(m−2)·σi

m
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. . . µi + 3·(m−2)·σi

m , µi + 3·m·σi

m . In general, for the
ith dimension, and rth dimension-specific locality,
we define Z(i, r) as follows:

Z(i, r) = µi +
3 · (m − 2 · r) · σi

m
r ∈ {0 . . . m}

(1)
We note that the choice of the location of these
anchor points ensures that the most relevant data
space in [µi − 3 · σi, µi + 3 · σi] (where most of the
data is likely to be statistically located) also has
well spaced anchor points in it. Correspondingly,
we define the kernel density estimate K(j, i, r) of
the jth data point Xj along the rth locality in the
ith dimension (denoted by Z(i, r)) as follows:

K(j, i, r) = max{e
− 2·(xji−Z(i,r))2

(6·σi/m)2 − ε, 0} (2)

We note that the exponential term in the afore-
mentioned expression is an un-normalized variation
on the standard kernel density estimation technique
[18], which is commonly used for density analysis.
We have not used the constant multiplicative fac-
tors in the density expression for simplicity, and also
because these factors do not affect the underlying
computations or the result of the approach. The
specific choice of the denominator in the exponent
term (un-normalized bandwidth) is picked to ensure
that the values of K(j, i, r) will be significantly pos-
itive (in a given dimension and record Xj) for only
one or two anchors Z(i, r). Specifically, two consec-
utive anchor points are 6 · σi/m units apart along
dimension i, and therefore the square of this is used
in the denominator of the value in the exponent.
This ensures that the exponential term in the ker-
nel density K(j, i, r) is significant only for one or
two neighboring anchor points of Xj along dimen-
sion i. The density values drop off exponentially for
the other anchor points with increasing distance to
that record. Therefore, by using a small value ε as
a minimum threshold, it is possible to ignore very
small values on the density and explicitly set them
to 0. This is achieved in Equation 2, by subtract-
ing the small value ε from every density, and setting
any negative value to 0.

Next, we will define the probabilistic version of
the projected clustering problem in terms of the di-
mension specific localities Z and the corresponding
kernel function K.

Definition 1 (Prob. Proj. Clustering).
Given a data set D, which is expressed in terms of
dimension specific localities Z, and corresponding
kernel densities K, determine a generative model
for the data set with k partitions, in terms of the
following parameters:

• Each data point Xj is associated with a par-
tition with a probability that is learned in a
data-driven manner. The sum of the probabil-
ities over different partitions is 1.

• Each dimension-specific locality Z(i, j) is asso-
ciated with a partition with a probability that
is learned in a data-driven manner. The sum
of the probabilities over different partitions is
1.

We note that this is a soft version of the projected
clustering problem in which probabilities are as-
sociated with point-specific and dimension-specific
membership. Furthermore, the probabilities are as-
sociated with dimension-specific localities rather than
the dimensions themselves. If desired, it is possi-
ble to assign each data point to the partition with
the highest probability of membership in order to
create a strict partition. Similarly, it is possible
to use a threshold on the probabilities which as-
sociate clusters with dimension locality. This will
provide a set of the most relevant dimensions of
projection together with the corresponding locali-
ties. In practice, the localities included for a par-
ticular partition are likely to be contiguous to one
another (because of the natural smoothness of data
distributions within cluster partitions). Further-
more, localities from many dimensions will not be
included at all, when strong thresholds are used for
picking cluster-specific dimension localities. This is
almost identically a solution to deterministic pro-
jected clustering. Thus, by using thresholding, it
is also possible to convert a solution to the proba-
bilistic projected clustering problem into a complete
solution of the deterministic version of the problem.
Furthermore, we note that the probabilistic model
allows for different levels of overlap and partition-
ing between clusters, depending upon how the soft
clustering is converted into a hard one. For exam-
ple, by using thresholds on the assignment proba-
bility (instead of assignment by largest probability
value), it is possible to allow point overlaps among
the different clusters. Similarly, it is also possible
to force strict partitioning on the sets of dimension
localities.

The afore-mentioned formulation requires us to
learn point- and dimension-specific probabilities in
a data-driven manner. This can be naturally solved
with the use of the EM algorithm. In order to per-
form the modeling, a generative model is assumed
for the different records in the database. We define
random variables Q1 . . . Qk corresponding to the k
different partitions, and each partition has its own
set of generative probabilities for the dimension-
specific localities. The probability P (Z(i, r)|Qs)
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represents the probability that the dimension-specific
locality Z(i, r) is included in the s-th partition. From
an intuitive perspective, a high value of P (Z(i, r)|Qs)
implies that data points which are close to this
dimension-specific locality are very relevant to the
partition Qs. Correspondingly, such data points
will have high non-zero density value of K(j, i, r).

Similarly, the expression P (Qs|Xj) represents the
probability that the s-th partition is most relevant,
when the generated record happens to be Xj . Clearly,
these are the probabilities that need to be learned
in a data-driven manner. These will also directly
yield the probability distribution parameters which
define the solution to the projected clustering prob-
lem.

Then, we can also express the probability of a
dimension-specific locality Z(i, r) occurring within
the record Xj as follows with the use of this gener-
ative model:

P (Z(i, r)|Xj) =
k∑

s=1

P (Z(i, r)|Qs) · P (Qs|Xj) (3)

The above relationship is key to the EM algorithm,
because we also have the data, which tells us the
true instantiations of P (Z(i, r)|Xj). Therefore, we
will define matrices for the point- and dimension-
specific probability parameters and attempt to learn
them with the EM algorithm.

Thus, for each term Z(i, r) and record Xj , we can
generate a N × [(m + 1) · d] matrix of probabilities,
which represent the probability that the dimension-
specific locality, Z(i, r) is relevant to (or has a high
kernel density estimate for) record Xj . The rows in
this matrix corresponds to the N different records,
and the number of columns corresponds to the num-
ber of dimension-specific localities (m + 1) · d. The
[i ∗ (m + 1) + r]-th column of this matrix corre-
sponds to the probability for Z(i, r). We also as-
sume that we have a matrix of similar size, which
provides us the actual data about the kernel densi-
ties directly from the underlying database D. We
refer to this as the kernel density matrix Y . For
l = i ∗ (m + 1) + r, the entry Y (j, l) is equal to
the kernel density value K(j, i, r). Thus, the maxi-
mum likelihood estimation process can be used, by
maximizing the product of the dimension-specific
localities (with non-zero kernel density), which are
observed in each record in the database D contain-
ing the different records Xj .

Specifically, the maximum likelihood estimation
algorithm maximizes the product of the generative
probabilities of dimension-specific localities, that are
actually observed to be of non-zero value in the
underlying kernel density matrix. As is the case

Algorithm ProjectedClusteringEM
begin
Initialize matrices P1 and P2;
repeat
(E-Step) Update P1 to correspond to probabilities of
assignment of records to clusters;

Normalize each column of P1 to sum to 1;
(M-Step) Compute P2 based on the weighted frequency
of each dimension-specific locality in each cluster;

Normalize each column of P2 to sum to 1;
until convergence;
end

Figure 1: Application of the EM Framework
for Probabilistic Projected Clustering

for the maximum-likelihood approach in EM algo-
rithms, we would like to maximize the logarithm of
this estimated probability. This can be expressed
as a weighted sum of the logarithm of the terms
on the left hand side in Equation 3. The weight of
the (j, l)th term is the density value Y (j, l). This
is a constrained optimization problem. Specifically,
from the EM framework, we need to optimize the
value of the log likelihood probability

∑
i,j,r Y (j, l) ·

log(P (Z(i, r)|Xj)) subject to the constraints that
the probability values over each of the point-specific
and dimension-specific values must sum to 1:

∑

i,r

P (Z(i, r)|Qs) = 1 ∀Qs (4)

∑

j

P (Qs|Xj) = 1 ∀Xj (5)

The value of P (Z(i, r)|Xj) in the objective func-
tion can be expanded and expressed in terms of the
model parameters with the use of Equation 3. We
note that a Lagrangian method can be used to solve
this constrained problem. The Lagrangian solution
essentially leads to a set of iterative update equa-
tions for the corresponding parameters which need
to be estimated. It can be shown that these param-
eters can be estimated [12] with the iterative update
of two matrices [P1]k×N and [P2]d·(m+1)×k contain-
ing the point-specific probabilities and dimension-
specific probabilities respectively for the clustering
process. We start off by initializing these matri-
ces randomly, and normalize each of them so that
the probability values in their columns sum to one.
Then, we iteratively perform the steps on each of
P1 and P2 respectively, as discussed in Figure 1.
The first step is the E-step, which updates P1 by
computing the expected probabilities of member-
ship of a point in a cluster. This is done by using
the dimension-specific localities in the point, and
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the matrix P2, which provides the probability dis-
tribution of the dimension specific localities in that
cluster. The E-Step may use a variety of probability
models (eg. bernoulli model) for computing clus-
ter assignment probabilities from the dimension-
specific localities present in records. The second
step is the M-step, which optimizes the parame-
ters, assuming the current assignments. This corre-
sponds to computing the probability of the dimension-
specific locality in each cluster. Thus, this iterative
two-step process continuously updates the matrices
P1 and P2, which provides the final output of the
algorithm.

3. INTERPRETATION AS PLSI
Upon examining the iterative update equations of

Figure 1 in more detail, and comparing to the PLSI
algorithm in [15], it becomes evident that the steps
in the two algorithms are virtually identical. The
main difference is that the densities of dimension
specific localities are used to perform the updates
in the EM-algorithm instead of the word-specific
frequencies in the PLSI algorithm. More generally,
the probabilistic projected clustering algorithm be-
comes identical to PLSI when words are interpreted
as dimension-specific localities.

This is quite logical because both algorithms are
derived from an EM-based approach, the kernel density-
based transformation provides a feature representa-
tion which is friendly to PLSI. We note that such an
approach also opens up other possibilities for pro-
jected clustering with the use of other methods such
as co-clustering and matrix-factorization on the rep-
resentation.

• We can apply matrix-factorization [20] to the
kernel density matrix Y in order to yield the k
projected clusters. Specifically, let U be a N ×
k non-negative matrix, and V is a d·(m+1)×k
non-negative matrix. Then, we can factorize
the matrix Y as follows in order to yield the
point- and dimension components U and V :

Y ≈ U · V T (6)

The columns of V provide the k-different basis-
vectors for the dimension-specific localities for
each of the clusters. These can also be re-
garded as k (non-negative) basis vectors which
correspond to the k different clusters. As in
the case of PLSI, one can use thresholding on
these basis vectors to decide which dimension-
specific locality is relevant to which cluster.
Specifically, a basis vector has (m+1) ·d com-
ponents, and the value of each component is
an indicator of its relevance to that cluster.

Therefore, by thresholding out the low values,
the relevant dimensions may be determined.

Similarly, the N × k matrix U provides infor-
mation about the level of relevance of the N
different data points to each of the k clusters.
A strict partition may be obtained by assign-
ing each data point to the cluster for which it
has the highest relevance. Thus, it is possible
to use non-negative matrix factorization for
projected clustering, an approach which has
rarely been used in the literature.

• Co-clustering [13] is defined on sparse non-
negative matrices for clustering both rows and
columns simultaneously. A wide variety of graph-
based and information-theoretic techniques are
available for solving this problem. The kernel-
based representation can be used directly in
conjunction with any co-clustering approach
for this problem. Specifically, co-clustering can
be applied to the N ×d·(m+1) matrix Y in or-
der to provide a simultaneous clustering of the
points and dimension-specific localities. This
can be used in order to re-construct the pro-
jected clusters effectively. Yet, such methods
have been rarely used for projected clustering
of multi-dimensional (quantitative) data, and
have largely been restricted to sparse matrices
such as text.

The work in [19] explores the relationship of ma-
trix factorization models to PLSI. However, it does
not explore the relationship of the projected clus-
tering problem to PLSI. Furthermore, all models
discussed in [19] are implicitly designed for sparse
non-negative matrices.

4. POTENTIAL AND RESEARCH DIREC-
TIONS

The implications of these equivalence observa-
tions are significant for both communities. First
of all, this problems are explored independently by
the different communities over a decade, and a huge
number of algorithms have been constructed for dif-
ferent variations of these problems. For example,
the original PLSI technique has been extended to
more advanced techniques such as LDA [10], or other
dynamic methods for topic modeling in streaming
scenarios [4]. Instead of applying a probabilistic EM
framework for projected clustering, it is possible to
use any of these more advanced methods for the
problem. While EM algorithms can also be directly
applied to projected clustering, the parameter fit-
ting process does not behave well with increasing
dimensionality for general multidimensional data.
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The kernel-density based transformation creates a
representation which enhances the locality specific
behavior of distances between records. This is known
to be effective for the high dimensional case, as sug-
gested in section 4 of [5]. Furthermore, any of these
methods can be made immediately available for dif-
ferent contexts and scenarios such as projected clus-
tering of high dimensional data streams [3]. We also
showed that numerous other techniques such as co-
clustering and matrix-factorization can also be used
in the context of this framework.

On the other hand, numerous variations of pro-
jected clustering such as pattern-based clustering
are closely related to the techniques designed for
co-clustering and matrix factorization. In partic-
ular, probabilistic algorithms for the bi-clustering
problem [16] and for pattern-based clustering can
be adapted to the information retrieval domain, to
achieve similar goals of examining the duality be-
tween words and clusters. The use of these equiva-
lences to further test the potential of these different
problems is likely to be a fruitful direction of work
for both domains.

We also note that many general versions of both
problems are not equivalent to one another, and
therefore cannot be captured by either framework.
For example, the generalized projected clustering
[2] problem defines the relevant dimensions of pro-
jection in arbitrary dimensions in the data space.
Such scenarios cannot be easily modeled with PLSI-
or matrix-factorization models, because the latter
models implicitly work with axis-parallel represen-
tations. Similarly, projected clustering techniques
cannot achieve the same goal as more sophisticated
topic modeling methods such as LDA [10]. Never-
theless, such techniques in either domain also sug-
gest the possibility of developing more generalized
methods in the other domain. Therefore, it is ev-
ident that significant similarities exist between the
problems at the formulation level. These should
therefore, be leveraged for advancement of the tech-
niques in both fields.

5. REFERENCES
[1] C. C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu,

J.-S. Park. Fast Algorithms for Projected
Clustering. ACM SIGMOD Conference, 1999.

[2] C. C. Aggarwal, P. S. Yu. Finding Generalized
Projected Clusters in High Dimensional
Space, ACM SIGMOD Conference, 2000.

[3] C. C. Aggarwal, J. Han, J. Wang, P. Yu. A
Framework for Projected Clustering of High
Dimensional Data Streams, VLDB , 2004.

[4] C. C. Aggarwal, C. Zhai. A Survey of Text

Clustering Algorithms, Mining Text Data,
Springer, 2012.

[5] C. C. Aggarwal. Re-designing Distance
Functions and Distance-based Applications
for High Dimensional Data, ACM SIGMOD
Record, March, 2001.

[6] C. C. Aggarwal, C. Reddy. Data Clustering:
Algorithms and Applications, CRC Press,
2013.

[7] C. C. Aggarwal, A. Hinneburg, D. Keim. On
the Surprising Behavior of Distance Metrics in
High Dimensional Space, ICDT, 2001.

[8] R. Agrawal, J. Gehrke, P. Raghavan, D.
Gunopulos. Automatic Subspace Clustering of
High Dimensional Data for Data Mining
Applications, SIGMOD Conference, 1998.

[9] K. Beyer, J. Goldstein, R. Ramakrishnan, U.
Shaft. When is nearest neighbor meaningful?
ICDT Conference, 1999.

[10] D. Blei, A. Ng, M. Jordan. Latent Dirichlet
allocation, Journal of Machine Learning
Research, 3: pp. 993–1022, 2003.

[11] S. T. Deerwester, S. T. Dumais, G. Furnas, R.
Harshman. Indexing by Latent Semantic
Analysis, JASIS, 1990.

[12] A. P. Dempster, N. M. Laird and D. B.
Rubin. “Maximum Likelihood from
Incomplete Data via the EM Algorithm”,
Journal of the Royal Statistical Society, B,
vol. 39, no. 1, pp. 1–38, 1977.

[13] I. Dhillon. Co-clustering Documents and
Words using bipartite spectral graph
partitioning, ACM KDD Conference, 2001.

[14] A. Hinneburg, C. Aggarwal, D. Keim. What
is the nearest neighbor in high dimensional
space? VLDB Conference, 2000.

[15] T. Hoffman. Probabilistic Latent Semantic
Indexing, ACM SIGIR Conference, 1999.

[16] S. C. Madeira, A. L. Oliveira. Bi-clustering
Algorithms for Biological Data Analysis: A
Survey, IEEE/ACM Transactions on
Computational Biology, 1(1), pp. 24–35, 2004.

[17] G. Moise, J. Sander, M. Ester. P3C: A
Robust Projected Clustering Algorithm,
ICDM Conference, 2006.

[18] B. W. Silverman. Density Estimation for
Statistics and Data Analysis. Chapman and
Hall, 1986.

[19] A. Singh, G. Gordon. A Unified View of
Matrix Factorization Models, ECML/PKDD
Conference, 2008.

[20] W. Xu, X. Liu, Y. Gong. Document
Clustering based on non-negative matrix
factorization, ACM SIGIR Conference, 2003.

50 SIGMOD Record, December 2012 (Vol. 41, No. 4)


