
SIGMOD Officers, Committees, and Awardees

Chair Vice-Chair Secretary/Treasurer

Yannis Ioannidis Christian S. Jensen Alexandros Labrinidis
University of Athens Department of Computer Science Department of Computer Science
Department of Informatics Aarhus University University of Pittsburgh
Panepistimioupolis, Informatics Bldg Åbogade 34 Pittsburgh, PA 15260-9161
157 84 Ilissia, Athens DK-8200 Århus N PA 15260-9161
HELLAS DENMARK USA
+30 210 727 5224 +45 99 40 89 00 +1 412 624 8843
<yannis AT di.uoa.gr> <csj AT cs.aau.dk > <labrinid AT cs.pitt.edu>

SIGMOD Executive Committee:

Sihem Amer-Yahia, Curtis Dyreson, Christian S. Jensen, Yannis Ioannidis, Alexandros Labrinidis, Maurizio
Lenzerini, Ioana Manolescu, Lisa Singh, Raghu Ramakrishnan, and Jeffrey Xu Yu.

Advisory Board:
 Raghu Ramakrishnan (Chair), Yahoo! Research, <First8CharsOfLastName AT yahoo-inc.com>,
 Amr El Abbadi, Serge Abiteboul, Rakesh Agrawal, Anastasia Ailamaki, Ricardo Baeza-Yates,
 Phil Bernstein, Elisa Bertino, Mike Carey, Surajit Chaudhuri, Christos Faloutsos, Alon Halevy,
 Joe Hellerstein, Masaru Kitsuregawa, Donald Kossmann, Renée Miller, C. Mohan, Beng-Chin Ooi,
 Meral Ozsoyoglu, Sunita Sarawagi, Min Wang, and Gerhard Weikum.

Information Director, SIGMOD DiSC and SIGMOD Anthology Editor:
 Curtis Dyreson, Washington State University, <cdyreson AT eecs.wsu.edu>

Associate Information Directors:
 Ugur Cetintemel, Manfred Jeusfeld, Georgia Koutrika, Alexandros Labrinidis,
 Michael Ley, Wim Martens, Rachel Pottinger, Altigran Soares da Silva, and Jun Yang.

SIGMOD Record Editor-in-Chief:
 Ioana Manolescu, Inria Saclay—Île-de-France, <ioana.manolescu AT inria.fr>

SIGMOD Record Associate Editors:
 Yanif Ahmad, Denilson Barbosa, Pablo Barceló, Vanessa Braganholo, Marco Brambilla, Chee Yong Chan,
 Anish Das Sarma, Glenn Paulley, Alkis Simitsis, Nesime Tatbul and Marianne Winslett.

SIGMOD Conference Coordinator:

Sihem Amer-Yahia, CNRS and LIG, France, <sihemameryahia AT acm.org>

PODS Executive Committee: Rick Hull (chair), <hull AT research.ibm.com>, Michael Benedikt,
 Wenfei Fan, Maurizio Lenzerini, Jan Paradaens and Thomas Schwentick.

Sister Society Liaisons:
 Raghu Ramakhrishnan (SIGKDD), Yannis Ioannidis (EDBT Endowment).

Awards Committee:

Rakesh Agrawal (Chair), Microsoft Research, <rakesh.agrawal AT microsoft.com>, Elisa Bertino,
Peter Buneman, Umesh Dayal and Masaru Kitsuregawa.

Jim Gray Doctoral Dissertation Award Committee:
 Johannes Gehrke (Co-chair), Cornell Univ.; Beng Chin Ooi (Co-chair), National Univ. of Singapore, Alfons
 Kemper, Hank Korth, Alberto Laender, Boon Thau Loo, Timos Sellis, and Kyu-Young Whang.

[Last updated : September 15th, 2012]

SIGMOD Record, September 2012 (Vol. 41, No. 3) 1

 SIGMOD Officers, Committees, and Awardees (continued)

 Alfons Kemper, Hank Korth, Alberto Laender, Boon Thau Loo, Timos Sellis, and Kyu-Young Whang.

SIGMOD Edgar F. Codd Innovations Award

For innovative and highly significant contributions of enduring value to the development, understanding, or use of
database systems and databases. Until 2003, this award was known as the "SIGMOD Innovations Award." In 2004,
SIGMOD, with the unanimous approval of ACM Council, decided to rename the award to honor Dr. E. F. (Ted)
Codd (1923 - 2003) who invented the relational data model and was responsible for the significant development of
the database field as a scientific discipline. Recipients of the award are the following:

Michael Stonebraker (1992) Jim Gray (1993) Philip Bernstein (1994)
David DeWitt (1995) C. Mohan (1996) David Maier (1997)
Serge Abiteboul (1998) Hector Garcia-Molina (1999) Rakesh Agrawal (2000)
Rudolf Bayer (2001) Patricia Selinger (2002) Don Chamberlin (2003)
Ronald Fagin (2004) Michael Carey (2005) Jeffrey D. Ullman (2006)
Jennifer Widom (2007) Moshe Y. Vardi (2008) Masaru Kitsuregawa (2009)
Umeshwar Dayal (2010) Surajit Chaudhuri (2011) Bruce Lindsay (2012)

SIGMOD Contributions Award

For significant contributions to the field of database systems through research funding, education, and professional
services. Recipients of the award are the following:

Maria Zemankova (1992) Gio Wiederhold (1995) Yahiko Kambayashi (1995)
Jeffrey Ullman (1996) Avi Silberschatz (1997) Won Kim (1998)
Raghu Ramakrishnan (1999) Michael Carey (2000) Laura Haas (2000)
Daniel Rosenkrantz (2001) Richard Snodgrass (2002) Michael Ley (2003)
Surajit Chaudhuri (2004) Hongjun Lu (2005) Tamer Özsu (2006)
Hans-Jörg Schek (2007) Klaus R. Dittrich (2008) Beng Chin Ooi (2009)
David Lomet (2010) Gerhard Weikum (2011) Marianne Winslett (2012)

SIGMOD Jim Gray Doctoral Dissertation Award

SIGMOD has established the annual SIGMOD Jim Gray Doctoral Dissertation Award to recognize excellent
research by doctoral candidates in the database field. Recipients of the award are the following:
• 2006 Winner: Gerome Miklau, University of Washington. Runners-up: Marcelo Arenas, University of Toronto;
Yanlei Diao, University of California at Berkeley.
• 2007 Winner: Boon Thau Loo, University of California at Berkeley. Honorable Mentions: Xifeng Yan, University
of Indiana at Urbana Champaign; Martin Theobald, Saarland University
• 2008 Winner: Ariel Fuxman, University of Toronto. Honorable Mentions: Cong Yu, University of Michigan;
Nilesh Dalvi, University of Washington.
• 2009 Winner: Daniel Abadi, MIT. Honorable Mentions: Bee-Chung Chen, University of Wisconsin at Madison;
Ashwin Machanavajjhala, Cornell University.
• 2010 Winner: Christopher Ré, University of Washington. Honorable Mentions: Soumyadeb Mitra, University of
Illinois, Urbana-Champaign; Fabian Suchanek, Max-Planck Institute for Informatics.
• 2011 Winner: Stratos Idreos, Centrum Wiskunde & Informatica. Honorable Mentions: Todd Green, University of
Pennsylvania; Karl Schnaitter, University of California in Santa Cruz.
 • 2012 Winner: Ryan Johnson, Carnegie Mellon University. Honorable Mention: Bogdan Alexe, University of
California in Santa Cruz.
A complete listing of all SIGMOD Awards is available at: http://www.sigmod.org/awards/

[Last updated : June 30th, 2012]

2 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Editor’s Notes

Welcome to the September 2012 issue of the ACM SIGMOD Record!

The issue opens with the Database Principles column, where Karvounarakis and Green survey the recent
literature on querying semiring-annotated data. Annotated data models have been proposed for various
applications, including provenance, probabilistic and incomplete information. An earlier work (PODS
2007) by Karvounarakis, Green and Tannen had proposed the general framework of K-relations, which
captures the querying of such annotated relations, where K is a commutative semiring. The present paper
surveys the literature on querying semiring-annotated data and presents new development of the ideas,
based on semiring of polynomials, applying in particular to provenance representations and to XQuery
views over annotated, unordered XML.

The survey by Manica, Dorneles and Galante focuses on the support for the time dimension within Web
search engines. Users may either issue search queries with explicit time constraints, or query data related
to the “recent past” (what is the latest version of this information?”) or forecast data (what are the
predictions for tomorrow’s weather?) Successive generations of Web search engines have tackled the time
dimension from different angles, from providing the freshest results first, to allowing the user to specify a
time window for their results, and finally to extract and manipulate the temporal information comprised in
Web pages. The authors end with a set of currently open problems and perspectives on further features,
and more efficiency, that could be achieved when answering search queries with a temporal dimension.

Ryan Johnson is the recipient of the SIGMOD 2012 Doctoral Dissertation award (advised by Anastasia
Ailamaki). In the Distinguished Database Profiles column, he talks about the importance of understanding
experimental results, of the secrets and research avenues that lie hidden just behind an unexpected shape
of a curve, and of the benefits of crossing out of one’s immediate thematic community to learn from others
and possibly understand how their results affect our problems. One could moreover congratulate Ryan for
a very relaxed, yet probably very wise, approach for his first job hunt; read the column to find out!

In the Research Centers column, Palpanas and Velegrakis describe their successful database group in
Trento (dbTrento). The group is currently 17-strong, and is working on topics at the intersection of
database and semantics: semantic-based keyword search, approximate query answering, entity resolution,
schema and data mapping, benchmarking and updates within Information Integration systems.
Importantly, this Trento group will host next year’s VLDB conference – an extra good reason to get to
know more about the group through this issue’s column.

The Industrial Perspective column features an article by Kulkarni and Michels on the temporal features in
the new SQL:2011 standard. The fundamental feature introduced in the language is the association of a
period definition attached as metadata to tables. To correctly handle multiple temporal versions of an
information item, information about the application-time period must also be included in declared primary
keys. The paper further discusses referential integrity constraints and querying for tables with application-
time periods and for system-versioned tables, and briefly compares the standard to previous temporal
models. The mapping is not straightforward, thus this short paper is very welcome for those familiar with
temporal databases concepts and seeking to use the new ISO standard.

Two event reports appear in this issue. First, Kissinger, Schlegel, Boehm, Habisch and Lehner provide
insights into their winning solution of the ACM SIGMOD Programming Contest 2011. The challenge was
to build a high-throughput in-memory index, durable on Flash-based storage. Their approach combined
high-throughput for this order-preserving in-memory structure with an optimized logging mechanism to

SIGMOD Record, September 2012 (Vol. 41, No. 3) 3

support the hard durability requirements of the contest. I commend this short report for the very clear
writing style, detailed at just the right level, rich with examples and a compelling motivation for the
problem being targeted. Second, Mazón, Garrigós, Daniel and Castellanos report on the BEWEB
(Business Intelligence and the Web) workshop held next to EDBT 2011. The workshop considered
technical aspects of today’s BI, including handling (highly) heterogeneous data, running BI analysis over
Web data, and engineering Web-based BI applications.

The issue closes with the general call for contributions to the ACM SIGMOD 2013 conference, the more
specific call for Research Papers submission to SIGMOD 2013, introducing a journal-style two-cycle
review process, and the PODS 2013 call for papers. Check out the details and prepare for New York!

Changes to the editorial board The Record has continued the renewal of its editorial board. After several
years of outstanding service editing our columns, four editors have stepped out, after passing over the
tricks of the trade to new recruits replacing them:

• Magdalena Balazinska leaves the Systems and Prototypes column to Marco Brambilla, assistant
professor at Politecnico di Milano, Italy.

• Ugur Cetintemel trusts Alkis Simitsis to handle the Research Centers column all by himself now,
the trust is well placed given the impeccable job Alkis did on this issue’s column!

• Brian Cooper has passed his skills for handling Event Report submissions to Anish Das Sarma.
• Cesar Galindo-Legaria has handed the Survey column responsibility to Nesime alone.

Last but not least, to help us process regular research articles, Yanif Ahmad, assistant professor at Johns
Hopkins University in Baltimore, USA, also joined the editorial board.
Many thanks go to the three outgoing editors for their contributions to the Record, and best wishes for a
long and satisfying tenure to the new editors!

Your contributions to the Record are welcome via the RECESS submission site
(http://db.cs.pitt.edu/recess). Prior to submitting, be sure to peruse the Editorial Policy on the SIGMOD
Record’s Web site (http://www.sigmod.org/publications/sigmod-record/sigmod-record-editorial-policy).

Ioana Manolescu

September 2012

Past SIGMOD Record Editors:

 Harrison R. Morse (1969)
 Daniel O’Connell (1971 – 1973)
 Randall Rustin (1975)
 Thomas J. Cook (1981 – 1983)
 Jon D. Clark (1984 – 1985)
 Margaret H. Dunham (1986 – 1988)
 Arie Segev (1989 – 1995)
 Jennifer Widom (1995 – 1996)
 Michael Franklin (1996 – 2000)

Ling Liu (2000 – 2004)
Mario Nascimento (2005 – 2007)
Alexandros Labrinidis (2007 – 2009)

4 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Semiring-Annotated Data: Queries and Provenance∗

Grigoris Karvounarakis
LogicBlox, Inc

1349 W Peachtree St NW
Atlanta, GA 30309

grigoris.karvounarakis@logicblox.com

Todd J. Green
LogicBlox, Inc

1349 W Peachtree St NW
Atlanta, GA 30309

todd.green@logicblox.com

ABSTRACT
We present an overview of the literature on querying
semiring-annotated data, a notion we introduced five
years ago in a paper with Val Tannen. First, we show
that positive relational algebra calculations for various
forms of annotated relations, as well as provenance mod-
els for such queries, are particular cases of the same gen-
eral algorithm involving commutative semirings. For
this reason, we present a formal framework for answer-
ing queries on data with annotations from commutative
semirings, and propose a comprehensive provenance rep-
resentation based on semirings of polynomials. We ex-
tend these considerations to XQuery views over anno-
tated, unordered XML data, and show that the semir-
ing framework suffices for a large positive fragment of
XQuery applied to such data. Finally, we conclude with
a brief overview of the large body of work that builds
upon these results, including both extensions to the the-
oretical foundations and uses in practical applications.

1. INTRODUCTION
Various forms of annotated data models have appeared

over the years in the database theory literature, ranging
from the study of incomplete [30, 20, 21] and proba-
bilistic [13, 33] databases, to query answering under bag
(multiset) semantics and to various models to record the
provenance of query results in data sharing and ware-
housing settings [10, 6, 9, 18, 8]. In a 2007 paper with
Val Tannen [19], we showed that many of the mecha-
nisms for evaluating queries over such annotated rela-
tions can be unified in a general framework based on
K-relations, which are relations whose tuples are anno-
tated with elements from a commutative semiring K.

The semantics of positive relational algebra (RA+)
queries extends to K-relations via definitions in terms

∗Portions of this column were adapted from joint work with
Val Tannen [19] and Nate Foster and Val Tannen [12].

Database Principles Column. Column editor: Pablo Bar-
celó, Department of Computer Science, University of Chile.
E-mail: pbarcelo@dcc.uchile.cl.

of the abstract “+” and “·” operations of K. Intuitively,
“+” corresponds to alternative use of data in producing
a query result, while “·” corresponds to joint use. For
K = B, the Boolean semiring, this specializes to the
usual set semantics, while for K = N, the semiring of
natural numbers, it is bag semantics.

In fact, it turns out that the laws of commutative semir-
ings are forced by certain expected identities ofRA+. As
additional evidence for the robustness of semiring an-
notations, we showed with Tannen [19] that the frame-
work extends naturally to recursive Datalog queries (for
semirings in which infinite sums are well-defined), and
with Nate Foster [12], we gave an extension to a large
fragment of positive XQuery over annotated unordered
XML data. In each case, we proved a fundamental theo-
rem stating that the semantics of queries commutes with
the application of semiring homomorphisms. This the-
orem provides the formal backbone for applications in
incomplete and probabilistic databases, trust evaluation,
security applications, and others.

A corollary of the fundamental theorem is that, in all
these cases, we can use a symbolic provenance polyno-
mial representation of semiring calculations to record,
document and track the provenance (lineage) of query
answers. Using such “most general” semirings as prove-
nance models has the benefit that annotation computa-
tions on various semirings factor through them. The re-
sulting provenance expressions can be used at any time
to compute result annotations from various semirings as
well as for different assignments of values from those
semirings to source data (e.g., corresponding to differ-
ent beliefs of various users about the trustworthiness or
quality of source data).

Since the publication of these two papers on semiring-
annotated relations and XML, a number of followup stud-
ies have investigated semantics and provenance models
for additional query operators [14, 3, 4, 17] and data
models [31], the interaction of provenance information
with query optimization [15, 26], minimization [2] and
factorization [29] of provenance expressions, and other
topics. Moreover, K-relations have been incorporated

SIGMOD Record, September 2012 (Vol. 41, No. 3) 5

hop

from to
a a ?
a b ?
b a ?
b c ?

(a) The maybe-table hop

a b c?

?

?
?

(b) Graphical rendering of hop

threeHop(from, to) :=
πfrom,to(ρto �→m(hop) �� ρfrom�→m,to�→n(hop) �� ρfrom�→n(hop))

(c) The query threeHop

�
∅, from to

a a
,

from to
a a
a b

,
from to
a a
b a

,
from to
a b
b a

,

from to
a a
a b
a c

,

from to
a b
b a
b c

,

from to
a a
a b
b a
b b

,

from to
a a
a b
a c
b a
b b
b c

�

(d) The query result, a set of possible worlds

Figure 1: Maybe-tables and query result. Table hop represents possible links between nodes in a network. The query
threeHop computes pairs (x, y) of nodes such that y is reachable from x in exactly three hops. Operator ρ is the rename
operator, used in conjunction with the natural join operator �� to express equijoins.

into research systems prototypes to support features in-
cluding provenance-based trust evaluation [18, 25] and
other forms of provenance querying [25], view update
[24], maintenance [18, 16] and adaptation strategies [16].
Finally, they have been incorporated into the LogicBlox
engine [28] (a commercial declarative programming plat-
form supporting applications in retail planning and an-
alytics), where provenance is used to aid Datalog pro-
gram analysis and debugging.

The rest of this column is organized as follows. In
Section 2, we reprise some original motivations of our
work with Tannen [19] by illustrating the similarities of
query answering on annotated relations through an ex-
ample. Next, we define the semantics of RA+ queries
on relations annotated with elements from a semiring K
(Section 3), and propose polynomials, the most general
commutative semiring, as a suitable provenance model
for RA+ queries (Section 4). We sketch the extension
to annotated XML data [12] in Section 5. Finally (Sec-
tion 6), we discuss further extensions to incorporate nega-
tion, aggregation, and other considerations.

2. ANNOTATED RELATIONS
We motivate our study by considering three important

examples of query answering on annotated relations and
highlight the similarities between them.

The first example comes from the study of incomplete
databases, where a simple representation system is the
maybe-table [30, 20], in which optional tuples are anno-
tated with a ‘?’. Such a table represents a set of possi-
ble worlds, capturing the fact that some of the informa-
tion in the database may be missing or incorrect. Table
hop in Figure 1a is a maybe-table representing possible
links between nodes in a network (rendered graphically
in Figure 1b). The answer to a query over such tables
is the set of instances obtained by evaluating the query
over each possible world. For example, the result of the
query threeHop in Figure 1c is the set of possible worlds
shown in Figure 1d. Unfortunately, this set of possible

from to
a a p
a b q
b a r
b c s

a b cp

q

r
s

(a) C-table hop and its graphical rendering
from to
a a (p ∧ p ∧ p) ∨ (p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ≡ p
a b (p ∧ p ∧ q) ∨ (q ∧ q ∧ r) ≡ (p ∧ q) ∨ (q ∧ r)
a c p ∧ q ∧ s
b a (p ∧ r ∧ r) ∨ (q ∧ r ∧ r) ≡ (p ∧ r) ∨ (q ∧ r)
b b p ∧ q ∧ r
b c q ∧ r ∧ s

(b) C-table query result threeHop

Figure 2: Example of data annotated with Boolean vari-
ables, and result of Imielinski-Lipski computation.

worlds cannot itself be represented by a maybe-table.
For instance, observe that whenever the tuple (a, c) ap-
pears in the result, so does (a, b) and (a, a), and maybe-
tables cannot represent such a dependency.

To overcome such limitations, Imielinski and Lipski
[21] introduced c-tables, where tuples are annotated with
Boolean formulas called conditions. A maybe-table is a
simple kind of c-table, where the annotations are distinct
Boolean variables, as shown in Figure 2a. In contrast to
weaker representation systems, c-tables are expressive
enough to be closed under RA queries, and the main
result of Imielinski and Lipski [21] is an algorithm for
answering RA queries on c-tables, producing another c-
table as a result. On our example, this algorithm pro-
duces the c-table threeHop in Figure 2b; this c-table
represents exactly the set of possible worlds shown in
Figure 1d. As shown in Figure 2b, some of the Boolean
formulas in this c-table can be simplified by applying
standard Boolean algebra identities.

Another kind of table with annotations is a multiset
or bag. In this case, the annotations are natural numbers
which represent the multiplicity of the tuple in the mul-
tiset. (A tuple not listed in the table has multiplicity 0.)

6 SIGMOD Record, September 2012 (Vol. 41, No. 3)

from to
a a 1
a b 4
b a 2
b c 3

(a) Bag table hop

from to
a a 1 · 1 · 1 + 1 · 4 · 2 + 1 · 4 · 2=17
a b 1 · 1 · 4 + 4 · 4 · 2 = 36
a c 1 · 4 · 3 = 12
b a 1 · 1 · 2 + 4 · 2 · 2 = 18
b b 1 · 4 · 2 = 8
b c 4 · 2 · 3 = 24

(b) Bag query result threeHop

Figure 3: Bag semantics example

from to
a a x

a b y

b a z

b c u

E Pr
x 0.6
y 0.5
z 0.1
u 0.4

(a) Probabilistic event table hop

from to
a a x

a b (x ∩ y) ∪ (y ∩ z)
a c x ∩ y ∩ u
b a (x ∩ z) ∪ (y ∩ z)
b b x ∩ y ∩ z
b c y ∩ z ∩ u

(b) Event table threeHop

Figure 4: Probabilistic example

Query answering on such tables involves calculating not
just tuples in the output, but also their multiplicities.

For example, consider the multiset shown in Figure 3a.
The result of the query threeHop from Figure 1c is the
multiset shown in Figure 3b. Note that for projection
and union we add multiplicities, while for join we mul-
tiply them. There is a striking similarity between the
arithmetic calculations we do here for multisets, and the
Boolean calculations for the c-table (before the simpli-
fications due to Boolean algebra identities).

A third example comes from the study of probabilis-
tic databases, where tuples are associated with values
from [0, 1] which represent the probability that the tu-
ple is present in the database. Answering queries over
probabilistic tables requires computing the correct prob-
abilities for tuples in the output. To do this, Fuhr and
Röllecke [13] and Zimányi [33] (FRZ) introduced event
tables, where tuples are annotated with probabilistic
events, and they gave a query answering algorithm for
computing the events associated with tuples in the query
output.

Figure 4a shows an example of an event table, with
associated event probabilities (e.g., z represents the event
that the link (b, a) exists). Considering again the same
query threeHop as above, the FRZ query answering al-
gorithm produces the event table shown in Figure 4b.
Note again the similarity between this table and the ex-
ample earlier with c-tables. The probabilities of tuples
in the output of the query can be computed from this ta-
ble using the independence of various events that appear
together in each expression.

3. POSITIVE RELATIONAL ALGEBRA
In this section we attempt to unify the examples above

by considering generalized relations in which the tu-
ples are annotated (tagged) with information of various
kinds. Then, we will define a generalization of the pos-

itive relational algebra (RA+) to such tagged-tuple re-
lations. The examples in Section 2 will turn out to be
particular cases.

We use here the named perspective [1] of the rela-
tional model in which tuples are functions t : U → D
with U a finite set of attributes and D a domain of val-
ues. We fix the domain D for the time being and we
denote the set of all such U-tuples by U-Tup. (Usual)
relations over U are subsets of U-Tup.

A notationally convenient way of working with tagged-
tuple relations is to model tagging by a function on all
possible tuples, with those tuples not considered to be
“in” the relation tagged with a special value. For exam-
ple, the usual set-theoretic relations correspond to func-
tions that map U-Tup to B = {true, false} with the tuples
in the relation tagged by true and those not in the rela-
tion tagged by false.

Definition 3.1. Let K be a set containing a distinguished
element 0. A K-relation over a finite set of attributes U
is a function R :U-Tup→K such that its support defined
by supp(R) def= {t | R(t) � 0} is finite.

In generalizing RA+ we will need to assume more
structure on the set of tags. To deal with selection we
assume that the set K contains two distinct values 0 �
1 which denote “out of” and “in” the relation, respec-
tively. To deal with union and projection and therefore
to combine different tags of the same tuple into one tag
we assume that K is equipped with a binary operation
“+”. To deal with natural join (hence intersection and
selection) and therefore to combine the tags of joinable
tuples we assume that K is equipped with another binary
operation “·”.

Definition 3.2. Let (K,+, ·, 0, 1) be an algebraic struc-
ture with two binary operations and two distinguished
elements. The main operations of the positive algebra
are defined as follows:
union If R1,R2:U-Tup→K then R1∪R2 :U-Tup→K is

defined by: (R1∪R2)(t) def= R1(t) + R2(t)
projection If R : U-Tup → K and V ⊆ U then πVR :

V-Tup→K is defined by:
(πVR)(t) def=

�

t=t� on V and R(t�)�0

R(t�)

natural join If Ri : Ui-Tup → K, (i = 1, 2), then
R1�R2 is the K-relation over U1∪U2 defined by:

(R1�R2)(t) def= R1(t1) · R2(t2)

where t1 = t on U1 and t2 = t on U2

In our paper with Tannen [19] we also provided defi-
nitions for the remaining operators, such as renaming ρ
and selection σ, and showed that the resulting definition
gives us an algebra on K-relations and generalizes the
definitions of RA+ for the examples in Section 2.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 7

Indeed, for (B,∨,∧, false, true) we obtain the usual
RA+ with set semantics. For (N,+, ·, 0, 1) it is RA+ with
bag semantics. For the Imielinski-Lipski algebra on c-
tables we consider the semiring (PosBool(B),∨,∧, false,
true) of positive Boolean expressions over some set B
of variables, i.e., ¬ is disallowed. (We identify those ex-
pressions that yield the same truth-value for all Boolean
assignments of the variables in B.) Applying Defini-
tion 3.2 to the structure produces exactly the Imielinski-
Lipski algebra. Finally, for (P(Ω),∪,∩, ∅,Ω) we obtain
the FRZ RA+ on event tables.

These four structures are examples of commutative
semirings, i.e., algebraic structures (K,+, ·, 0, 1) such that
(K,+, 0) and (K, ·, 1) are commutative monoids, · is dis-
tributive over +, and for all a, we have 0 · a = a · 0 = 0.

Other examples of commutative semirings include:
• (N∞,min,+,∞, 0), the tropical semiring [27], whe-

re we add∞ to the natural numbers. In our running
example, we might annotate the edges of hop with
elements of N∞ representing costs; then, a tuple
(x, y) in threeHop would be annotated by the cost
of the cheapest path of length three from x to y.
• ([0, 1],max,min, 0, 1) which is related to fuzzy sets

[32], and could be called the fuzzy semiring.
• The semiring of confidentiality policies [12] (C,

min,max,P, 0), where the total order C=P<C<
S<T< 0 describes levels of security clearance: P
public, C confidential, S secret, and T top-secret.

Further evidence for requiring K to form such a semir-
ing is given by a result in our paper with Tannen [19]
stating that certain standardRA+ identities (such as com-
mutativity of joins and unions) hold for the positive al-
gebra on K-relations iff (K,+, ·, 0, 1) is a commutative
semiring. The list of relational identities does not in-
clude the idempotence of unions and joins, since these
fail for bag semantics, an important special case in our
treatment.

Any function h : K → K� can be used to transform
K-relations to K�-relations simply by applying h to each
tag (note that the support may shrink but never increase).
Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K�-relations also by h.
We can now state the following fundamental theorem,
showing that theRA+ operations work nicely with semir-
ing structures.

Theorem 3.3 (Fundamental Theorem). Let h: K → K�

and assume that K,K� are commutative semirings. The
transformation given by h from K-relations to K�-rela-
tions commutes with any RA+ query (i.e., q(h(R)) =
h(q(R))) iff h is a semiring homomorphism.

Example 3.4 (Incomplete databases). The c-table hop
of Figure 2a represents the set of possible worlds

{hν(hop) | ν : B→ B}

where hν : PosBoolB → B is the semiring homomor-
phism which “plugs in” values for the Boolean variables
according to ν then simplifies the result to true or false.
Theorem 3.3 tells us that the c-table threeHop of Fig-
ure 2b correctly represents the possible worlds of Fig-
ure 1d. �

Example 3.5 (Non-interference). Recall the semiring C
of confidentiality policies. For a user with a given se-
curity clearance level c, we want to present a view of
the database containing only tuples of clearance level
c� ≤ c. “Erasing” tuples exceeding a given clearance
level c corresponds to applying the semiring homomor-
phism hc : C → C which maps c� ≤ c to c� and to 0
otherwise. Theorem 3.3 implies that we get the same
result by evaluating the query first, then erasing unau-
thorized tuples from the result, that we get by erasing
first, then evaluating the query. �

4. POLYNOMIALS FOR PROVENANCE
Apart from the kinds of annotations we have discussed

until now, an important category involves provenance
models [8], which have been defined as a way of relat-
ing the tuples in a query output to the tuples in the input
that “contribute” to them. For this reason, in our paper
with Tannen [19] we proposed using the different opera-
tions of the semiring from Definition 3.2, which appear
to fully “document” how an output tuple is produced.
To record the documentation as tuple tags we need to
use a semiring of symbolic expressions. In the case of
semirings, like in ring theory, these are the polynomials.

Definition 4.1. Let X be the set of tuple ids of a (usual)
database instance I. The positive algebra provenance
semiring for I is the semiring of polynomials with vari-
ables (a.k.a. indeterminates) from X and coefficients
from N, with the operations defined as usual1:

(N[X],+, ·, 0, 1)

Example 4.2. Start again from our running example,
with tuples tagged with their own id. These relations
can be seen asN[p, q, r, s]-relations. Applying the query
threeHop from Section 2 and performing the calcula-
tions in the provenance semiring we obtain the annota-
tions in the last column of Figure 5. The provenance of
(a, a) is p3+2pqr which can be “read” as follows: (a, a)
is derived by threeHop in three different ways; one of
them uses the input tuple annotated with p three times;
the other two both involve joining input tuples annotated
with p, q and r. �

The following property of polynomials captures the
intuition that N[X] is as “general” as any semiring.
1These are polynomials in commutative variables so their op-
erations are the same as in middle-school algebra, except that
subtraction is not allowed.

8 SIGMOD Record, September 2012 (Vol. 41, No. 3)

from to Lin(X) Why(X) Trio(X) B[X] N[X]
a a pqr p + pqr p + 2pqr p3 + pqr p3 + 2pqr
a b pqr pq + qr pq + qr p2q + q2r p2q + q2r
a c pqs pqs pqs pqs pqs
b a pqr pr + qr pr + qr p2r + qr2 p2r + qr2

b b pqr pqr pqr pqr pqr
b c qrs qrs qrs qrs qrs

Figure 5: Five kinds of provenance for threeHop

Proposition 4.3. Let K be a commutative semiring and
X a set of variables. For any valuation v : X→ K there
exists a unique homomorphism of semirings

Evalv : N[X]→ K

such that for one-variable monomials Evalv(x) = v(x).
Evalv(P) evaluates the polynomial P in K given a val-

uation for its variables. In calculations with integer co-
efficients, na where n ∈ N and a ∈ K is the sum in K of
n copies of a. Note that N is embedded in K by mapping
n to the sum of n copies of 1K .

Using the Eval notation, for any P∈N[x1, . . . , xn] and
any K the polynomial function fP: Kn→K is given by:

fP(a1, . . . , an) def= Evalv(P) v(xi) = ai, i = 1..n

Putting together Propositions 3.3 and 4.3 we obtain The-
orem 4.4 below, a conceptually important fact that says,
informally, that the semantics of RA+ on K-relations
for any semiring K factors through the semantics of the
same in provenance semirings.

Indeed, let K be a commutative semiring, let R be a
K-relation, and let X be the set of tuple ids of the tuples
in supp(R). There is an obvious valuation v : X → K
that associates to a tuple id the tag of that tuple in R.

We associate to R an “abstractly tagged” version, de-
noted R̄, which is an X ∪ {0}-relation. R̄ is such that
supp(R̄) = supp(R) and the tuples in supp(R̄) are tagged
by their own tuple id. Note that as an X ∪ {0}-relation, R̄
is a particular kind of N[X]-relation.

To simplify notation we state the following corollary
of Theorem 3.3 for queries of one argument (but the gen-
eralization is immediate):

Corollary 4.4. For any RA+ query q we have

q(R) = Evalv ◦ q(R̄)

To illustrate an instance of this theorem, consider the
provenance polynomial p3 + 2pqr of the tuple (a, a) in
the last column of the table in Figure 5. Evaluating it
in N for p = 1, q = 4, r = 2, s = 3 we get 17 which is
indeed the multiplicity of (a, a) in Figure 3.

4.1 Provenance hierarchy
Apart from the various forms of annotations described

earlier, it turns out that various provenance models can
also be captured by semirings, and thus provenance poly-
nomials generalize those models as well. In fact, these

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

B

most informative

least informative

Figure 6: Provenance hierarchy. A path downward from
K1 to K2 indicates that there exists a surjective semiring
homomorphism from K1 to K2.

models of provenance can be neatly arranged in the hi-
erarchy of Figure 6 [15].

In this figure, B[X] denotes the Boolean provenance
polynomials semiring [15] over variables X, Trio(X) de-
notes a semiring capturing the form of provenance used
in the Trio system [15, 5], and Why(X) corresponds to
why-provenance [6]. Formal definitions can be found
in the paper by Green [15], but intuitively, annotations
in B[X] (Trio(X), respectively) can be obtained from the
provenance polynomials by dropping coefficients (expo-
nents, resp.); while annotations from Why(X) can be ob-
tained by dropping both coefficients and exponents. An-
notations from the semiring Lin(X) capturing lineage [10]
collapse all variables appearing in the polynomial into
a single monomial. The corresponding provenance ex-
pressions for these models in our running example are
shown in Figure 5.

Coupled with Proposition 3.3, this hierarchy gives a
clear picture of the relative “informativeness” of the var-
ious provenance models, since provenance computations
for models lower in the hierarchy can always be factored
through computations involving models above them in
the hierarchy. This additional informativeness of prove-
nance polynomials, compared to all other provenance
models in the literature, allows to overcome some of
their limitations [19] (also recognized in SPIDER [9]
for lineage) to support a variety of applications on anno-
tated data.

4.2 Provenance as a graph
We conclude our discussion of annotated relations by

presenting an alternative graphical interpretation of pro-
venance polynomials. This viewpoint is especially use-
ful in practical systems needing provenance support such
as Orchestra [18] and LogicBlox [28].

We define a provenance graph for a query as having
two kinds of nodes, tuple nodes, one for each source
or derived tuple, and join nodes. Edges connect tuple
nodes to join nodes. Intuitively, each join node corre-
sponds to the instantiation of an n-way join in the query,
with incoming edges from tuple nodes participating in
the join, and a single outgoing edge to the tuple node
output by the join. Output tuple nodes may have multi-

SIGMOD Record, September 2012 (Vol. 41, No. 3) 9

hop

(a,a)

(a,b)

(b,a)

(b,c)

(a,a)

(a,b)

(a,c)

(b,a)

(b,b)

(b,c)

threeHop

(a)

prThreeHop

from m n to
a a a a
a a b a
a b a a

a a a b
a b a b

a a b c

b a a a
b a b a

b a a b

b a b c

(b)
threeHop(X,Y) :- hop(X,M), hop(M,N), hop(N,Y).

(c)
prThreeHop(X,M,N,Y) :- hop(X,M), hop(M,N), hop(N,Y).
threeHop(X,Y) :- prThreeHop(X,_,_,Y).

(d)

Figure 7: Graphical representation of provenance poly-
nomials, along with the graph’s relational encoding, and
the Datalog rules which construct the graph.

ple incoming edges, representing alternative derivations.
For example, Figure 7a shows the graphical represen-

tation of the provenance polynomials in Figure 5. The
left column contains tuple nodes for hop, the right col-
umn has tuple nodes for threeHop, and the center col-
umn has connecting join nodes. The highlighted edges
in the graph correspond to (one copy of) the monomial
pqr in the annotation p3 + 2pqr for output tuple (a, a).

This graph representation has served as the basis for
a compact storage scheme for provenance. Indeed, with
some extensions described in Section 6, this graph model
has been used for provenance storage and querying [18,
25] in the Orchestra collaborative data sharing system
(CDSS). In Orchestra data is propagated from vari-
ous sources through paths of schema mappings (akin
to Datalog rules) and materialized in data warehouses,
and provenance is used for view maintenance [18] and
update [24], as well as trust evaluation [18, 25]. A sim-
ilar provenance storage scheme, as well as provenance
querying functionality, is supported by the LogicBlox
[28] Datalog engine. Figure 8 illustrates the output of
a couple of provenance queries issued through the com-
mand-line LogicBlox client for a Datalog program en-
coding our running example.

We illustrate how these systems store provenance
graphs in relations on our running example. A query
such as threeHop (shown in Figure 7c in Datalog syn-
tax) is translated into a pair of Datalog rules shown in
Figure 7d. From the first rule, the relation prThreeHop
contains one tuple for every join node in the provenance
graph. The resulting provenance relation for the graph
of Figure 7a is shown in Figure 7b (where we follow the

Figure 8: Provenance queries in LogicBlox command-
line client, for a Datalog program encoding our running
example.

order of the join nodes in Figure 7a, and we use horizon-
tal lines to distinguish derivations producing the same
result tuple, e.g., the first three tuples correspond to the
top three join nodes, that encode derivations for the tu-
ple (a,a)). The highlighted tuple in the table encodes
the highlighted edges in the graph.

The storage scheme described above avoids storing
redundantly some common provenance subexpressions
[25, 23], which are ubiquitous in settings with multiple
queries, such as large Datalog programs or complex data
sharing settings. Finally, as we explain in Section 6, the
graph—as well as its relational encoding—provides a fi-
nite representation for the (possibly infinite) provenance
of the results of recursive Datalog queries. Even though
the graph representation does not store provenance poly-
nomials directly, one can generate them by traversing
the graph recursively backwards along its edges (this
can be achieved by joining provenance relations) [25].

5. ANNOTATED XML
In this section, we sketch a generalization of K-rela-

tions beyond flat relational data by Foster et al. [12],
to encompass hierarchically-structured XML data. We
present first the annotated XML data model, then illus-
trate the operation of queries on such data (for a frag-
ment of XQuery) via several examples. Key properties
of K-relations (in particular the natural analogue of the
fundamental theorem 3.3) continue to hold in the gener-
alized setting, which can be interpreted as evidence for
the “robustness” of K-relations.

We fix a commutative semiring K and consider XML
data modified so that instead of lists of trees (sequences
of elements) there are sets of trees. Moreover, each tree
belonging to such a set is decorated with an annotation
k ∈ K. Since bags of elements can be obtained by in-
terpreting the annotations as multiplicities (by picking
K to be (N,+, ·, 0, 1)), the only difference compared to
standard XML is the absence of ordering between sib-

10 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Source:

(
az

bx1

dy1

cx2

dy2 ey3

)
Answer:

p

dz·x1·y1+z·x2·y2 ez·x2·y3

Figure 9: Simple for Example.

lings.2 We call such data K-annotated unordered XML,
or simply K-UXML. Given a domain L of labels, the
usual mutually recursive definition of XML data natu-
rally generalizes to K-UXML:3

• A value is either a label in L, a tree, or a K-set of
trees;
• A tree consists of a label together with a finite

(possibly empty) K-set of trees as its “children”;

• A finite K-set of trees is a function from trees to K
such that all but finitely many trees map to 0.

In examples, we illustrate K-UXML data by adding an-
notations as a superscript notation on the label at the root
of the (sub)tree. By convention omitted annotations cor-
respond to the “neutral” element 1 ∈ K.4 Note that a
tree gets an annotation only as a member of a K-set. To
annotate a single tree, we place it in a singleton K-set.
When the semiring of annotations is (B,∨,∧, false, true)
we have essentially unannotated unordered XML; we
write UXML instead of B-UXML.

In Figure 9, two K-UXML data values are displayed
as trees. The source value can be written in document
style as: <az> <bx1> dy1 </>

<cx2> dy2 ey3 </>

</>

where we have abbreviated leaves <l></> as l.
We propose a query language for K-UXML called K-

UXQuery. Its syntax (see Foster et al. [12] for details)
corresponds to a core fragment of XQuery [11] with one
exception: the new construct annot k p allows queries
to modify the annotations on sets. With annot k p any
K-UXML value can be built with the K-UXQuery con-
structs. We use the following types for K-UXML and
K-UXQuery:

t ::= label | tree | {tree}
where label denotes L, tree denotes the set of all trees
and {tree} denotes the set of all finite K-sets of trees.

In the rest of this section, we illustrate the syntax of
K-UXQuery on K-UXML informally on some simple
examples to introduce the basic ideas. We start with
2For simplicity, we also omit attributes and model atomic val-
ues as the labels on trees having no children.
3In the XQuery data model, sets of labels are also values; it is
straightforward to extend our formal treatment to include this.
4Items annotated with 0 are allowed by the definition but
are useless because our semantics interprets 0 as “not
present/available”.

very simple queries demonstrating how the individual
operators work, and build up to a larger example corre-
sponding to a translation of a relational algebra query.

As a first example, define the following queries:

p1
def
= element a1 {()} and p2

def
= element a2 {()}

Each pi constructs a tree labeled with ai and having no
children—i.e., a leaf node. The query (p1) produces
the singleton K-set in which p1 is annotated with 1 ∈ K.
The query annot k1 (p1) produces the singleton K-set
in which p1 is annotated with k1 · 1 = k1. We can also
construct a union of K-sets:

q def
= annot k1 (p1),annot k2 (p2)

The result computed by q depends on whether a1 and
a2 are the same label or different labels. If a1 = a2 =

a, then p1 and p2 are the same tree and thus the query
element b {q} produces the left tree below. If a1 � a2,
then the same query produces the tree on the right.

b

ak1+k2

b

ak1
1 ak2

2

Next, let us examine a query that uses iteration:
p = element p { for $t in $S return

for $x in ($t)/* return

($x)/* }
If $S is the (source) set on the left side of Figure 9, then
the answer produced by p is the tree on the right in the
same figure.5 Operationally, the query works as follows.
First, the outer for-clause iterates over the set given by
$S. As $S is a singleton in our example, $t is bound
to the tree whose root is labeled a and annotation in $S
is z. Next, the inner for-clause iterates over the set of
trees given by ($t)/*:

(b
x1

dy1 ,

cx2

dy2 ey3
)

It binds $x to each of these trees, evaluates the return-
clause in this extended context, and multiplies the re-
sulting set by the annotation on $x. For example, when
$x is bound to the b child, the return-clause produces
the singleton set (dy1). Multiplying this set by the an-
notation x1 yields (dx1·y1). After combining all the sets
returned by iterations of this inner for-clause, we ob-
tain the set (dx1·x1+x2·y2, ex2·y3). The final answer for p
is obtained by multiplying this set by z. Note that the
annotation on each child in the answer is the sum, over
all paths that lead to that child in $t, of the product of
the annotations from the root of $t to that child, thus
recording how it arises from subtrees of $S.

Next we illustrate the semantics of XPath descendant
navigation (shorthand //). Consider the query:
5Actually this query is equivalent to the shorter “grandchil-
dren” XPath query $S/*/*; we use the version with a for-
clauses to illustrate the semantics of iteration.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 11

Source:

(
a

bx1

a

cy3 d

cy1

d

a

cy2 bx2)
Answer:

r

cq1 cy1

d

a

cy2 bx2

where q1 = x1 · y3 + y1 · y2

Figure 10: XPath Example.

r = element r { $T//c }
which picks out the set of subtrees of elements of $T
whose label is c. A sample source and corresponding
answer computed by r are shown in Figure 10. Foster
et al. [12] defines the semantics of the descendant op-
erator using structural recursion and iteration. It has the
property that the annotation for each subtree in the an-
swer is the sum of the products of annotations for each
path from the root to an occurrence of that subtree in the
source, like the answer shown here.

Now we turn to an example which demonstrates how
K-UXQuery behaves on an encoding of a database of
relations whose tuples are annotated with elements of
K, i.e., the K-relations of Section 3. Consider again the
relational algebra query from Figure 1c evaluated over
the table of Figure 2, viewed as an N[X]-relation.

Figure 11 shows theN[X]-UXML tree that is obtained
by encoding the relation hop, the corresponding transla-
tion of the view definition into N[X]-UXQuery, and the
N[X]-UXML view that is computed usingN[X]-UXQue-
ry. Observe that the result is the encoding of the N[X]-
relation of Figure 5. This equivalence holds in general:
Foster et al. [12] give a systematic translation of pos-
itive relational algebra queries into K-UXQuery which
agrees with the definitions of Section 3.

In a K-relation, annotations only appear on tuples. In
our model for annotated UXML data, however, every
internal node carries an annotation (recall that, accord-
ing to our convention, every node in Figure 11 depicted
with no annotation carries the “neutral” element 1 ∈ K).
Therefore, we have more flexibility in how we annotate
source values—besides tuples, we can place annotations
on the values in individual fields, on attributes on the re-
lations themselves, and even on the whole database! It is
interesting to see how, even for a query that is essentially
relational, these extra annotations participate in the cal-
culations. See Foster et al. [12] for an example.

6. FURTHER CONSIDERATIONS
In the few years since the publication of our paper

with Tannen introducing semiring-annotated relations
[19], there has been a flowering of work in the area.
Various researchers have investigated different aspects
of annotated data and provenance. We conclude this col-
umn with a brief overview of these works.

Query: let $h := $d/hop/*
return <threeHop> {
for $h1 in $h, $h2 in $h, $h3 in $h
where $h1/to = $h2/from and

$h2/to = $h3/from
return <t> { $h1/from, $h2/to } </>

} </>

D

hop

tp

from

a

to

a

tq

from

a

to

b

tr

from

b

to

a

ts

from

b

to

c

Source as UXML:

Answer as UXML:
threeHop

tp3+2pqr

from

a

to

a

tp2q+q2r

from

a

to

b

tpqs

from

a

to

c

tp2r+qr2

from

b

to

a

tpqr

from

b

to

b

tqrs

from

b

to

c

Figure 11: Relational (encoded) example

Recursive queries.
Apart from semantics for RA+ queries, in our paper

with Tannen [19] we also gave semantics for recursive
Datalog queries on K-relations. The high-level idea is
that the provenance of a tuple in the result of a Datalog
query is the sum over all its derivation trees of the prod-
uct of the tags of the leaves of each tree. In general, how-
ever, a tuple can have infinitely many derivation trees.
As a result, we focused on ω-continuous semirings, for
which infinite sums can be defined. The most general
such semiring, that can be used as the provenance model
for Datalog queries, is the commutative ω-continuous
semiring of formal power series with variables from
X and coefficients from N∞. Interestingly, even if the
provenances of some tuples are infinite, they can be rep-
resented through a finite system of equations, whose so-
lutions are the provenance expressions for each tuple.
Moreover, the provenance graph we showed in the pre-
vious section can provide an alternative finite represen-
tation for the provenance of Datalog queries.

Query containment.
The introduction of annotations on relations presents

new challenges in query reformulation and optimiza-
tion, as queries that are semantically equivalent when
posed over ordinary relations may become inequivalent
when posed over K-relations. Indeed, this phenomenon
was previously observed for the case of bag semantics [7,
22], where, e.g., adding a “redundant” self-join to a query
actually changes the query’s meaning. Green [15] stud-
ied containment and equivalence of (unions of) conjunc-
tive queries under five difference kinds of provenance
annotations—N[X], B[X], Trio(X), Why(X), and Lin(X)—
and established decision procedures and complexity char-
acterizations in each case. Interestingly, the provenance
hierarchy of Figure 6, which organizes provenance semir-

12 SIGMOD Record, September 2012 (Vol. 41, No. 3)

ings in terms of their information content, also turns out
to organize them in terms of “stronger” to “weaker” no-
tions of containment/equivalence. Kostylev et al. [26]
nicely generalize the containment results by studying
how these containment procedures axiomatize various
classes of semirings.

Negation.
Semirings do not contain any operation that can cap-

ture the semantics of relational difference. Note that,
e.g., for bag semantics, “regular” subtraction does not
work for this purpose, because a tuple cannot have a
negative multiplicity. For this reason, Geerts et al. [14]
identified a class of semirings that can be extended with
a monus operator, that captures the semantics of rela-
tional difference, and showed that the fundamental the-
orem holds for all such extended structures (called m-
semirings). However, they also showed that the struc-
ture obtained by extending polynomials with monus is
not the most general m-semiring (e.g., does not satisfy a
factorization theorem similar to Theorem 4.4). Thus,
they proposed using as a provenance model for RA+
with difference (RA+(\)) the free m-semiring, for which
there is a standard (though not very practical, from a
systems perspective) algebraic construction.

Amsterdamer et al. [3] have recently raised questions
about the suitability of m-semirings for capturing the
provenance ofRA+(\) queries, by identifying an identity
of RA+(\) (namely R� (S \T) = (R�S)\(R�T)) that
fails for some important m-semirings (e.g., PosBool(X)
or the semiring of confidentiality policies). However,
they have left the study of a provenance model satisfying
all identities of RA+(\) as an open problem for future
work, as they also deemed the standard algebraic con-
struction for the free structure satisfying these identities
of RA+(\) to not be very practical.

RDF/SPARQL.
Similar challenges, stemming from a form of nega-

tion, are posed when trying to specify the semantics
of SPARQL queries over RDF data and capture their
provenance. Indeed, recent work on SPARQL prove-
nance [31] has showed that provenance polynomials, and
other relational provenance models, can be used to cap-
ture the semantics of a positive fragment of SPARQL.
However, in that paper the authors also argue that queries
employing the SPARQL OPTIONAL operator, whose
semantics involves a form of difference, cannot be cap-
tured by these models. Unfortunately, m-semirings are
not suitable for this purpose, either, due to subtle differ-
ences between the semantics of relational and SPARQL
difference. The specification of formal semantics and
provenance models for SPARQL queries is the subject
of ongoing work.

Z-relations.
The paper by Green et al. [17] introduced Z-relations,

relations annotated with (positive or negative) integer
values, where the difference operator of RA has a natu-
ral interpretation using the inverse operation of the ring,
and proposed Z-relations as a useful device for repre-
senting data and updates (insertion or deletion of tu-
ples) in a uniform manner. Z-relations turn out to be
surprisingly “well-behaved” with respect to query opti-
mization, in that equivalence of RA queries is decidable
under the semantics (in contrast to set or bag semantics,
where the problem is undecidable). The paper also pro-
posed a unified perspective on view maintenance (prop-
agating the effects of source data updates to material-
ized views) and view adaptation (recomputing materi-
alized views after their definitions are changed), based
on optimizing queries using materialized views. Under
Z-semantics, a sound and complete algorithm for this
problem is possible (again in contrast to set or bag se-
mantics, where any sound algorithm for the problem is
necessarily incomplete). Green and Ives [16] present a
practical implementation of these ideas.

Aggregates.
Beyond RA+, Amsterdamer et al. [4] investigated ag-

gregate queries, and found that capturing their prove-
nance requires annotating with provenance information
not just tuples, but also individual values within tuples.
Then, they provided a semantics for aggregation (in-
cluding group-by) on semiring-annotated relations, that
coincides with the usual semantics on set/bag relations
for min/max/sum/prod, and commutes with semiring ho-
momorphisms. The resulting provenance expressions
involve tensor products between semiring annotations
and possible aggregation values.

Minimization and factorization.
Recent work has focused on alleviating practical chal-

lenges that arise in data management tools due to the
size of provenance information, by proposing methods
to reduce this size. In particular, Amsterdamer et al. [2]
studied provenance minimization, and defined the core
of provenance information, namely the part of prove-
nance that appears independently of the query plan that
is in use. 6 They also provided algorithms that, given a
query, compute an equivalent one that realizes the core
provenance for all tuples in its result, as well as algo-
rithms to compute the core provenance of a particular
tuple in a query result without re-evaluating the query.

Olteanu and Zavodny [29] considered factorization
of provenance polynomials, which conceptually follows
an approach akin to the relational provenance storage

6among plans that are equivalent under standard set seman-
tics, not to be confused with containment and equivalence on
annotated relations described above.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 13

scheme described in Section 4.2, by representing poly-
nomials as nested expressions. Indeed, such factorized
polynomials of query results can be exponentially more
succinct than their flat equivalents, by identifying and
reusing parts of a polynomial that are common across
multiple monomials. Moreover, they make explicit some
of the structure in the query result. A downside of fac-
torization is that the monomials of a factorized poly-
nomial are not represented explicitly, but they can be
enumerated (similarly to traversing a provenance graph
backwards) with polynomial delay.

Recording schema mapping names in provenance.
In data sharing settings, such as addressed in the Or-

chestra collaborative data sharing system [18], there
is a need for provenance to also record the names of
schema mappings (expressed as database queries) via
which data are propagated. For this purpose, Karvou-
narakis [23] extended semirings with a set of unary func-
tions, one for each mapping, and showed that they sat-
isfy the fundamental theorem, as well as that the cor-
responding extension of provenance polynomials is the
most general such structure. The provenance graph was
similarly extended by labeling join nodes with the name
of the corresponding mapping.

Querying provenance.
In Section 4.2 we explained how provenance graphs

can be traversed to reconstruct provenance polynomi-
als. In more complicated data sharing settings, involving
nested and possibly recursive queries or schema map-
pings [18], it is also important to be able to isolate parts
of the provenance of a tuple, e.g., relative to another
derived tuple in the intermediate result of some other
query, or only focus on parts of derivations involving
certain mappings. The provenance query language
ProQL [25] employs path expressions to simplify such
operations, involving traversal and projection of parts of
provenance graphs. Moreover, ProQL takes advantage
of the factorization theorem for provenance polynomi-
als, by supporting evaluation of provenance expressions
(corresponding to matched graph parts) to compute an-
notations from various semirings.

Acknowledgments
We are grateful to Val Tannen and Nate Foster, our coau-
thors from the two papers [19, 12] on which much of
this article is based. We also thank Zack Ives, whose
Orchestra project was the motivating context for the
development of K-relations, and the Penn DB group and
our colleagues at LogicBlox for many useful discussions.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] Y. Amsterdamer, D. Deutch, T. Milo, and V. Tannen. On

provenance minimization. In PODS, 2011.

[3] Y. Amsterdamer, D. Deutch, and V. Tannen. On the limitations
of provenance for queries with difference. In TaPP, 2011.

[4] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for
aggregate queries. In PODS, pages 153–164, 2011.

[5] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. In VLDB,
2006.

[6] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A
characterization of data provenance. In ICDT, 2001.

[7] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive
queries. In PODS, 1993.

[8] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases, 1(4):379–474, 2009.

[9] L. Chiticariu and W.-C. Tan. Debugging schema mappings with
routes. In VLDB, 2006.

[10] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view
data in a warehousing environment. TODS, 25(2), 2000.

[11] D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 formal semantics.
Available from
http://www.w3.org/TR/xquery-semantics/, 12
November 2003. W3C working draft.

[12] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML:
Queries and provenance. In PODS, 2008.

[13] N. Fuhr and T. Rölleke. A probabilistic relational algebra for
the integration of information retrieval and database systems.
TOIS, 14(1), 1997.

[14] F. Geerts and A. Poggi. On database query languages for
K-relations. J. Applied Logic, 8(2), 2010.

[15] T. J. Green. Containment of conjunctive queries on annotated
relations. Theory Comput. Syst., 49(2), 2011.

[16] T. J. Green and Z. G. Ives. Recomputing materialized instances
after changes to mappings and data. In ICDE, 2012.

[17] T. J. Green, Z. G. Ives, and V. Tannen. Reconciliable
differences. Theory of Computing Systems, 49(2), 2011.

[18] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update exchange with mappings and provenance. In VLDB,
2007. Amended version available as Univ. of Pennsylvania
report MS-CIS-07-26.

[19] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[20] T. J. Green and V. Tannen. Models for incomplete and
probabilistic information. In EDBT Workshops, 2006.

[21] T. Imielinski and W. Lipski. Incomplete information in
relational databases. JACM, 31(4), 1984.

[22] Y. Ioannidis and R. Ramakrishnan. Containment of conjunctive
queries: beyond relations as sets. TODS, 20(3), 1995.

[23] G. Karvounarakis. Provenance for Collaborative Data Sharing.
PhD thesis, University of Pennsylvania, July 2009.

[24] G. Karvounarakis and Z. G. Ives. Bidirectional mappings for
data and update exchange. In WebDB, 2008.

[25] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying Data
Provenance. In SIGMOD, 2010.

[26] E. V. Kostylev, J. L. Reutter, and A. Z. Salamon. Classification
of annotation semirings over query containment. In PODS,
2012.

[27] W. Kuich. Semirings and formal power series. In Handbook of
formal languages, volume 1. Springer, 1997.

[28] http://www.logicblox.com.
[29] D. Olteanu and J. Zavodny. Factorised representations of query

results: Size bounds and readability. In ICDT, 2012.
[30] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working

models for uncertain data. In ICDE, 2006.
[31] Y. Theoharis, I. Fundulaki, G. Karvounarakis, and

V. Christophides. On provenance of queries on semantic web
data. IEEE Internet Computing, 15(1):31–39, 2011.

[32] L. A. Zadeh. Fuzzy sets. Inf. Control, 8(3), 1965.
[33] E. Zimányi. Query evaluation in probabilistic relational

databases. TCS, 171(1-2), 1997.

14 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Handling Temporal Information in Web Search Engines

Edimar Manica
Campus Avançado Ibirubá, IFRS

Ibirubá, Brazil

II, UFRGS

Porto Alegre, Brazil

emanica@inf.ufrgs.br

Carina F. Dorneles
INE/CTC, UFSC

Florianópolis, Brazil

dorneles@inf.ufsc.br

Renata Galante
II, UFRGS

Porto Alegre, Brazil

galante@inf.ufrgs.br

ABSTRACT
The Web can be considered a vast repository of temporal
information, as it daily receives a huge amount of new
pages. Generally, users are interested in information re-
lated to a specific temporal interval. In the information
retrieval area, researches have newly incorporated the
temporal dimension to the search engines. This paper
presents a comprehensive study that describes the evo-
lution of search engines on the exploitation of tempo-
ral information. Research directions and future perspec-
tives are also presented, considering the authors’ point
of view.

Keywords
Temporal information, temporal search engine, key-
word search

1. INTRODUCTION
Web pages describe several topics, such as con-

ferences, sports, politics and entertainment. The
most of those events change over time. The SIG-
MOD conference, for instance, occurs every year.
The World Cup occurs every four years. Dr. House
series is a television medical drama displayed once
a week. The database community has devoted ex-
tensive amount effort for indexing and querying
temporal data in past decades [23, 13]. In recent
years, the use of temporal expressions has emerged
in Web search queries once Web documents also
have temporal information, as we presented in pre-
vious work [14]. However, insufficient amount at-
tention has been given to temporal queries on the
Web, bringing a new challenge of the query process-
ing on the Web: to take into account the temporal
interval desired by the user.

Another important requirement for Web queries
is that people are interested in latest informa-
tion, e.g., “Who are the last FIFA World Cup

champions?”. Day after day, a huge number of
new pages are posted on the Web. Most of these
pages are available for a long time remaining a

large repository of historical information. More-
over, users also can be interested in past (e.g.,
“Which are the SIGMOD articles published

in 2009?” and “What team won the World Cup

in 2002?”) or future data (e.g., “What is the

weather forecast for next Monday?” and
“What will happen in the Dr. House series

in the next chapter of Tuesday?”).
The time concept can either help in recreating a

particular historical period or describing the con-
text of a document or collection. Furthermore, the
time may be useful to improve the methods of rank-
ing results by relevance [2]. The information re-
trieval area adopts this new insight by adding time
dimension on ranking the results. The first ini-
tiative was to sort the results by considering the
time, so that the latest results are shown on the
top of the ranking through the concept of freshness
metric. Here, we classify these search engines as
First Generation. In the following, the concept of
“filter results” is introduced in order to allow the
user interaction by defining the notion of temporal
window of interest. These search engines are here
classified as Second Generation. Finally, search en-
gines have begun to exploit the temporal informa-
tion present in the Web documents content incor-
porating the content-based temporal retrieval. They
differ from the previous generations since the first
ones use only temporal information stored in Web
documents metadata. We classify these search en-
gines as Third Generation.

This paper presents a comprehensive study that
describes the evolution of search engines on the ex-
ploitation of temporal information. We first discuss
some special concepts used as base of our proposal.
Then, we propose a new way for clustering search
engines according their evolution features, catego-
rizing them into three distinct generations, as al-
ready discussed before. A number of interesting re-
search directions and future perspectives are also
presented, considering the authors’ point of view.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 15

The rest of this paper is organized as follows. Sec-
tion 2 discusses basic concepts used as groundwork
in our categorization. Section 3 presents the study
we have done in order to describe the evolution of
search engines on the exploitation of temporal infor-
mation and to propose the three generations. Sec-
tion 4 points a number of interesting research di-
rections that are open in relation to use temporal
information in search engines.

2. BASIC CONCEPTS
A Web page can have different temporal informa-

tion resources, which have been classified in three
types [16], as described below.

• Content - a Web document’s content can con-
tain words and/or expressions with tempo-
ral meaning (e.g. “today”, “2011/10/16”,
“Christmas”)1.

• URL Address - all public Web documents have
at least one unique address. The different
segments of an URL, namely host, path and
search part, might be used as a source of tem-
poral information. For instance, a current New
York Times URL is structured in the follow-
ing way - http: //www.nytimes.com /2011 /01
/26 /us/ politics/26speech.html? r=1&hp. It
is possible to derive the document’s year,
month and day of publication by parsing this
URL.

• HTTP Protocol - the Hypertext Transfer Pro-
tocol (HTTP) is an application level proto-
col used to request and transmit hypertext
documents and components between user ap-
plications and online servers. According to
HTTP protocol, servers reply to each request,
sending standard headers and, if available,
the requested resource (body of the message).
HTTP headers have a field that represents
the date and time at which the resource was
last modified (Last-Modified field). How-
ever, this field is not always available and may
not return a valid date, mainly, due to incor-
rectly configured Web servers, or because the
Last-Modified field indicates the date and time
at which the origin server “believes” the vari-
ant was last modified2.

Other temporal information that can be associ-
ated to a Web page by a search engine is the crawled
1In this paper, the examples that represent a complete
date are described in YYYY/MM/DD format.
2http://www.w3.org/Protocols/rfc2616/rfc2616-
sec14.html

date. Crawled date represents the date in which a
Web page was indexed by the search engine. The
temporal information presented in Web documents,
such as a point in the time, an event or a period in
the time, can be described in a conceptual level by
a temporal entity. A sequence of tokens that rep-
resents an instance of a temporal entity is denomi-
nated temporal expression. Those temporal concepts
have been introduced in [2] together with three tem-
poral expression categories:

• Explicit - temporal expressions that directly
describe an input in a timeline3, such as an
exact date or a specific year. For example, the
expressions “December, 2004” or “January
12, 2006” in a text fragment are explicit tem-
poral expressions and can be mapped directly
into points in a timeline.

• Implicit - temporal expressions that need pre-
defined knowledge (ontology describing tem-
poral information, for instance) in order to be
mapped into an input in a timeline. Holiday
names and specific events are typical examples
of implicit temporal expressions. For instance,
the expression “2005 Christmas” needs to be
mapped to “December 25, 2005”.

• Relative - temporal expressions that represent
temporal entities that can be only mapped into
an input in a timeline in reference to an ex-
plicit or implicit temporal expression, or in ref-
erence to the moment the text has been writ-
ten. For instance, the expression “yesterday”
can only be mapped into a point in the time if
we know the moment the document has been
created.

The process of mapping temporal expressions into
a standard format (so that it is possible to represent
a point of a timeline in a standard way) is denomi-
nated temporal expression normalization. The search
engines, which provide support to temporal infor-
mation, index the normalized temporal expressions
in order to allow a fast and consistent access to the
temporal data.

On considering temporal expression in Web
searches, an important concept highlights: tempo-
ral operator. A temporal operator defines temporal
relations between two instants, two intervals or be-
tween an instant and an interval (before, after and
during, for example). The temporal operators can
modify the meaning of a temporal expression. For
3A timeline, also known as a chronology, is a linear
representation of events in the order in which they oc-
curred [2].

16 SIGMOD Record, September 2012 (Vol. 41, No. 3)

example, the following query “2004 elections”
refers to the elections held in 2004. On the other
hand, the query “elections after 2004” refers
to the elections held after 2004, i.e., the temporal
window of interest begins in 2005 and ends in the
current year. This feature requires the appropriate
temporal treatment of temporal operators. How-
ever, the current search engines manipulate tempo-
ral operators as a common keyword, i.e., they search
for the occurrence of the keyword that represents
the temporal operator in the indexed terms.

Allen [1] has defined thirteen temporal opera-
tors that can be used between intervals: after,
before, contains, during, equal, finished

by, finishes, meets, met by, overlapped by,
overlaps, started by and starts. Figure 1 il-
lustrates them. These operators are mutually ex-
clusive, which characterize an issue that is not suit-
able for the context of Web searches because most
queries are generic, which implies to use UNION
in order to employ Allen’s operators. For ex-
ample, considering a query where the user wants
pages that describe accidents that occurred be-
tween 2006 and the current year, and consider-
ing the Allen’s operators, it would be necessary to
use the operator met by together with the oper-
ator after, e.g. “accidents met by 2006 UNION
accidents after 2006”, to get the correct results,
which probably would add a high degree of diffi-
culty for most search engines users. Another ex-
ample is a query in which a user wants pages
about armed revolts that ended in 2005. Using
Allen’s operators, it is necessary to use the opera-
tor finishes together with the operator finished
by, e.g., “armed revolts finishes 2005 UNION

armed revolts finished by 2005”. However, it
would be more intuitive if there is a more general
temporal operator specially projected to solve these
cases. Probably, this generic temporal operator
would be more useful than the operators finishes
and finished by used separately, for example.

Figure 1: Allen’s temporal operators

Manica et al. [14] have reported an analysis where
it was verified that 33.96% of the queries (consid-
ering repeated queries) with temporal expressions
have keywords that explicitly represent temporal
operators. Considering just distinct queries, this
percentage is 30.20%.

3. PAST AND PRESENT
In this section, we briefly describe an overview

about temporal information management in some

Web Search Engines, classifying them in three gen-
erations. Each new generation adds a new feature
while keeping the old ones. The first generation of
search engines introduces the concept of freshness
metric. The second generation allows user interac-
tion by defining the notion of temporal window of
interest. Finally, third generation handles temporal
information present on page content, supporting the
content-based temporal retrieval. Third generation
differs from the others since the previous genera-
tions use only temporal information stored in Web
documents metadata.

3.1 First Generation - Freshness
The first generation of search engines is charac-

terized by adding time while ranking the results
through the freshness metric. The most recent pages
are positioned at the top of the ranking4. The tem-
poral information used in this case is the crawled
date or the last modified date. T-Rank [4] is an
algorithm which extends PageRank [17] to improve
page ranking by exploring the freshness and activ-
ity of both pages and links. Traditional Search En-
gines, such as Google5 and Yahoo!6 have adopted
freshness metrics.

The strategy used in the first generation is to as-
sume that most recently posted pages are most rel-
evant to the user, since they mean to have the lat-
est information. This assertion is typically valid for
news, where the user generally wants to find nov-
elty, since the oldest pages may have already been
read (supposedly). However, this strategy does not
benefit those users interested on historical informa-
tion. For instance, a team X played a game on
2012/01/11 and another game on 2012/01/15. A
user wants information about the first game (since
he/she watched the last game, but lost the first
one). Using a first generation search engines, the re-
sults at the top of the ranking refer to the pages with
information about the game played on 2012/01/15.
It is true once these pages have been created after
the pages that have information about the game
played on 2012/01/11, so they are more recent. Of
course, it is possible to create a query that returns
the pages about the game played on 2012/01/11
at the top of the ranking, using other metrics im-
plemented by the search engines, as for instance,
adding to the query a keyword that represents the
opposing team, or the name of the stadium where
the game has taken place. However, most users do

4Other metrics, such as page popularity, might also be
considered. However, it is not the focus of this paper.
5http://www.google.com
6http://www.yahoo.com

SIGMOD Record, September 2012 (Vol. 41, No. 3) 17

not know how to create such a query. To solve this
problem, the second generation of search engines
adds the notion of temporal window of interest.

3.2 Second Generation - Temporal Win-
dow of Interest

The second generation of search engines defines
the notion of temporal window of interest, where the
users can specify the temporal interval that repre-
sents their interest. This temporal interval is de-
fined in a specific field. The temporal information
used in this case is the crawled date. Google, Chron-
ica [7] and InfoSeek7 are examples of second gener-
ation search engines.

Extracting the crawled date is a trivial task, since
the search engines just need to obtain the cur-
rent timestamp when storing the page on database.
However, usually there is a gap between the page
crawled date and the date to which the page con-
tent is related to. This gap mainly occurs in three
situations: (i) when temporal information, present
at the page content, is equal to the posting date but
different to the crawled date; (ii) when the page con-
tent is about historical information; and (iii) when
the page content has information about future. The
following examples describe these situations.

The first situation can be described by consider-
ing, for instance, a page x posted on 2011/03/07,
whose content is about games played on this date
and with a few important links that point to it.
Therewith, this page can be crawled on 2011/03/10
(i.e., days after the posting date). So, the search
engines associate this date as the temporal infor-
mation, although it is not the real temporal infor-
mation of the page content.

The second situation can be exemplified by given
a page posted, for instance, on 2011/12/14 with
information about the FIFA 2002 World Cup and
with several important links pointing to it. These
features create a favorable situation for the page
to be crawled on the same day it was posted. In
this case, the temporal information associated to
the page is 2011/12/14, although the page contains
information about an event that occurred in 2002.

Finally, we describe the last situation by consider-
ing a page posted, for example, on 2011/05/20, with
information about weather forecast for 2011/05/25
and with several important links pointing to it. It
is another case where the page is crawled on the
same day it was posted. The temporal information
associated with the page is 2011/05/20 even though
the page contains information about the future, i.e.,
2011/05/25.

7http://www.infoseek.co.jp/

In order to solve the above problems, the third
generation search engines focus is the exploration of
temporal expressions present in the Web documents
content.

3.3 Third Generation - Content-based
Temporal Retrieval

The third generation of search engines exploits
the temporal expressions present in the Web doc-
uments content in order to improve the search re-
sult quality supporting the content-based temporal
retrieval. The search engines of this generation have
two big challenges: (i) to extract the temporal ex-
pressions from Web pages content, and (ii) to de-
fine how to manipulate the temporal information.
Therefore, before we describe the search engine, we
present some temporal expression extraction tools,
since they are a key feature of a search engine that
manipulates temporal information. Section 3.3.1
presents the main tools for extracting temporal ex-
pressions while Section 3.3.2 shows some works we
classified as third generation search engines.

3.3.1 Tools for Extracting Temporal Expressions
The current tools for temporal expressions ex-

traction in Web documents use named entities ex-
traction techniques to identify the temporal expres-
sions. Some works propose the use of an XML
document to store the annotated expressions [2].
TimeML [21] is an emerging standard for events and
temporal expressions annotation. However, there
are many tools for annotating temporal expressions
that define their own form of annotation. Bellow,
we present the main tools for temporal expressions
extraction, and a brief comparison among them8.

• ANNIE [3] is an open source extraction tool
that is part of the GATE framework [6]. Be-
sides temporal information, ANNIE extracts
location, people, organization, sports informa-
tion and so on. The extraction is performed
from named entities. Some predefined enti-
ties are available, and it is also possible to de-
fine new ones through a rule-based language
that is embedded in the tool. The output is
an XML file with the annotations of the en-
tities, identified in a specific language of the
tool. The XML handling can be done through
an API designed to be used with the tool (at-
tached at the framework). ANNIE annotates
explicit, implicit and relative temporal expres-

8It is important to notice that these tools are language
dependent and most of them are specific to English Lan-
guage.

18 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Table 1: Temporal Expressions Extraction Tools
POS Language Availability Category Normalization Isolation

ANNIE Yes Own Yes E, I, R No Yes
GUTime Yes TimeML Yes E, I, R Yes Yes
PorTexto No HAREM Directives No E, I, R No Yes
Chronos Yes TIMEX2 No E, R Yes Yes

Label: E: explicit I: implicit R: relative

sions. However, it does not perform the tem-
poral expressions normalization.

• GUTime [10] is an open source tool designed to
annotate temporal information. The GUTime
requires the TreeTagger, which is a POS (Part-
of-Speech) tagger that labels the words of a
text with its morphosyntactic features, such
as verb and noun. GUTime uses these la-
bels in its temporal expression inference rules.
The result of the annotation process is an
XML document with the temporal expres-
sions tagged according to the TimeML lan-
guage. This tool annotates and normalizes ex-
plicit, implicit and relative temporal expres-
sions. To normalize relative expression, such
as today, tomorrow, yesterday, next month
and last year, GUTime checks the local con-
text in order to identify a reference point in
time in which this temporal information are
related to. Typically, the temporal reference
point is the date of document publication.

• PorTexto [5] is a tool that recognizes tem-
poral entity in Portuguese Language docu-
ments. The tool processes the document sen-
tence by sentence, differently of other tools
in which the text is processed word by word.
The temporal expressions identification is per-
formed by using expression patterns based on
co-occurrences. These patterns are defined by
a set of reference temporal words (PTR in
Portuguese). A reference temporal word is
a word that occurs in temporal expressions
with at least two words. For instance, year

is a reference temporal word because it occurs
in the temporal expressions “in last year”,
“in the year of 2009” and “a year ago”.
If a sentence has a number, but it does not
have a reference temporal word, then it is not
considered a temporal expression, e.g., “the
product code is 2009”. The list of PTR is
manually created. The extracted patterns are
defined by regular expressions and stored in a
file. It is possible to change the existing pat-
terns and even include new ones. The out-
put is an XML document with temporal an-

notations that follow the directives proposed
by HAREM [19]9. PorTexto annotates ex-
plicit, implicit and relative temporal expres-
sions. However, it does not perform the tem-
poral expression normalization.

• Chronos [15] is a tool designed to perform the
recognition and normalization of temporal ex-
pressions. The text processing involves the ex-
traction of tokens, a linguistic processing and
the recognition of multi-words that is based
on a list of 5,000 entries retrieved from Word-
Net10. After that, a set of approximately 1,000
rules is used to recognize temporal expressions
and to extract information about them that
are useful for the normalization process. Then,
composition rules are performed to solve ambi-
guities when multiple labels are possible. The
output is an XML document with temporal
annotations in the language TIMEX211 [8].
Chronos annotates explicit and relative tem-
poral expressions.

Table 1 presents a comparison among temporal
annotations tools discussed in this section. In that
table, we consider the following comparison items:

• POS - indicates whether the tool has linguistic
processing.

• Language - indicates which language is used
to annotate the temporal expressions.

• Availability - denotes whether the tool is
available for download.

• Category - identifies which temporal expres-
sions categories (E: explicit, I: implicit and
R: relative) are supported by the tool, con-
sidering those described in Section 2.

• Normalization - indicates whether the tool
normalizes the temporal expressions.

9HAREM is a joint assessment in the area of named
entity recognition in Portuguese.

10http://wordnet.princeton.edu/
11TimeML is an extension of TIMEX2.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 19

• Isolation - denotes whether each expression
is singly evaluated or whether there is a pro-
cess that seeks for patterns in all expressions
of the page in order to disambiguate formats
and gather information to improve the anno-
tations.

Notice that the most of the tools uses some type
of linguistic processing, which increases the cost of
processing. Each tool uses a different language for
annotating temporal expressions, although all lan-
guages are based on XML. Only GUTime and AN-
NIE are available for use. Most tools handle with
explicit, implicit and relative temporal expressions.
Only GUTime and Chronos perform the tempo-
ral expression normalization. All tools individually
evaluate each temporal expression.

The growing availability of collections with an-
notated expressions allows the application of super-
vised machine learning techniques for the task of
recognizing temporal expressions. ATEL [11] and
Alias-i’s LingPipe12 are examples of these systems.
The first one uses Support Vector Machine (SVM)
while the other one uses Hidden Markov Model
(HMM).

Several types of documents are available on the
Web such as Web pages, XML documents, PDF
documents, etc. The techniques for extracting tem-
poral information may not be suitable for all types
of documents. For example, the tools described
above are not suitable for data-centric XML docu-
ments13. These documents rarely contain sentences
with morphosyntactic elements, because generally
they have only nodes with nouns. Therefore, tools
that use linguistic processing are not proper for
data-centric XML documents since they perform
unnecessary processing. Moreover, the fact that
these tools evaluate each temporal expression in iso-
lation generates the loss of valuable information for
the temporal expressions normalization. The pro-
cess of grouping the terms according to the path
that contains them and analyzing together all ex-
pressions of the same path provides more informa-
tion to the normalization process. For example, the
temporal expression format shown in line 4 in Fig-
ure 2 is ambiguous. It means that it is impossible to
find out whether the temporal expression is related
to “March 12, 2011” or “December 3, 2011”. How-
ever, when checking the other values of the same
XML path (people/person/birth) we can infer
that the format of the path is day/month/year.

12http://alias-i.com/lingpipe
13XML documents are classified as data-centric when
their data are structured. The name of the nodes typi-
cally represents semantic annotation.

01. <people>
02. <person>
03. <name>XYZ</name>
04. <birth>12/03/2011</birth>
05. </person>
06. <person>
07. <name>TZY</name>
08. <birth>25/03/2011</birth>
09. </person>
10. </people>

Figure 2: Example of an XML document
containing temporal data

TPI [14] is a third generation temporal search
engine specifically designed for data-centric XML
documents. TPI defines a temporal expressions tool
that clusters the expressions according to their path
in order to obtain information for the normaliza-
tion process. This tool also has some heuristics that
identify temporal intervals and dates that are struc-
tured in different elements.

3.3.2 Search Engines
In this section, we present some third generation

search engines, and a brief comparison of their main
features.

• TISE [12] indexes one temporal expression per
page by selecting the temporal expression that
better describes the events in the Web page.
In the query, the temporal predicate is speci-
fied as an interval, which must be defined in a
different field of that used for other keywords.
The temporal query predicate is applied to the
temporal expression indexed to the page. The
temporal information is represented as an in-
terval.

• TERN [22] indexes all the temporal expres-
sions of a Web page. In the query, the tem-
poral predicate is posed in the same field of
the other keywords. The temporal predicate
is applied to any temporal expression indexed
to the page. The temporal information is rep-
resented as an instant.

• Pasca [18] proposes a temporal search en-
gine for users who wants to find out when
a particular event has occurred. It means
that the user does not pose a temporal pred-
icate in the query, but receives a temporal
value as a result. Pasca indexes a tempo-
ral expression for each temporal nugget, cre-
ating a pseudo-document. A temporal nugget
is a fragment of a sentence that notifies
open domain facts associated with some en-
tity. For example, “Michael Jackson was

20 SIGMOD Record, September 2012 (Vol. 41, No. 3)

born on August 29, 1958.”. The temporal
information is represented as an instant.

Table 2 presents a comparison among the third
generation of search engines. We consider the fol-
lowing comparison items:

• Predicate - indicates whether the temporal
predicate is embedded in the query or it is re-
ported in a distinct field.

• Label - denotes whether the temporal infor-
mation is represented as an instant or as an
interval.

• Temporal index - indicates which temporal
information is indexed.

• Query type - denotes the query type:
(i)Temporal Selection, temporal predicate
is used to filter the query result, and (ii)
Temporal Output, the user wants to know in
which time a certain event has happened.

Notice that TERN is the only search engine that
allows the temporal predicate to be posed in the
same field as the other keywords in the query. This
feature requires an extra step for identifying and
normalizing the query temporal expressions. How-
ever, it simplifies and accelerates the creation of the
query, since it is not necessary to fill several distinct
fields. TISE is the only search engine that repre-
sents the temporal information as an interval. The
representation as an interval is wider since it al-
lows, for example, in the query: “preside Senate

between 2001 and 2003”, to express that “2002”
is also valid.

Each search engine indexes different temporal in-
formation. Indexing only one temporal expression
per page (TISE) causes the loss of relevant temporal
information. Indexing each temporal nugget asso-
ciated with a temporal expression (Pasca), instead
of indexing all the temporal expressions in a page
(TERN), has the advantage of associating a tempo-
ral expression only with the terms that are close in
the page content. Most search engines allow tempo-
ral selection queries. TISE, Pasca and TERN use
techniques of extraction tools for identifying and
normalizing temporal expressions in order to index
the temporal data in a consistent and standardized
way.

The main challenge is to treat the temporal ex-
pressions formulated in a query. This issue is new
and there is no appropriated treatment for tempo-
ral operators (as discussed in the end of Section 2).
Notice that the temporal predicate in TISE is posed

in a fixed field as an interval. PASCA has no tempo-
ral predicate. TERN has the embedded predicate in
the query, but does not address temporal operators.

4. FUTURE DIRECTIONS
A number of interesting and important research

directions are opened when handling temporal in-
formation in web search engines. We point out some
of them below.

1. Temporal Information Weight - temporal
information is an important feature to be con-
sidered in the ranking of Web pages. How-
ever, there are other very relevant metrics to
be used, for example, the popularity. The chal-
lenge for future research is the weight of tem-
poral information comparing to other metrics.
Furthermore, it is necessary to consider the
temporal proximity. For example, in a query
where the user wants information from the last
3 days, information from four days ago may be
relevant. As already discussed in several work
such as [9, 20], we know that in the most of
the Web queries, users do not know exactly
what they are looking for or they do not know
how to properly express their need.

2. Embedded Temporal Query - most tem-
poral search engines has an additional field
where the user specifies the desired time pe-
riod. However, handling temporal operators
is an open field. Consider, as an example, a
query where the temporal information is posed
in the same field of other keywords. How to
find the temporal operator? The temporal op-
erators define temporal relationships, such as
“after” and “before”. These operators can be
explicitly specified, e.g., “President after

2000”). Temporal operators also may be im-
plicit, as for example in the query: “military
regime 64 84”. In this query, the temporal
relationship can be “equal”, i.e. the user wants
to find pages having information about mili-
tary regimes that started in 1964 and ended
in 1984. On the other hand, the temporal re-
lationship can be “intersection”, i.e. the user
wants to find pages on any military regime
that happened between 1964 and 1984. The
identification of implicit temporal operators
requires the semantics and context analysis of
the query.

3. Index - the index structure of a temporal
search engine should consider the temporal di-
mension. A traditional search engine uses a

SIGMOD Record, September 2012 (Vol. 41, No. 3) 21

Table 2: Comparison among Third Generation Search Engines.
Predicate Label Temporal Index Query Type

TISE Isolated Interval One Timex per page Temporal Selection
TERN Embedded Instant All timex in the page Temporal Selection
Pasca NA Instant One timex per temporal nugget Temporal Output

Label: NA: Not Applicable Timex: Temporal Expression

traditional inverted index to store the terms.
Usually, a list of postings (documents iden-
tifiers and pre-computed scores) per term is
used, which is a scalable technique for Web
search engines. However, adding the temporal
dimension, the inverted index would contain
the postings for all kind of temporal informa-
tion. This problem increases when we consider
multi-word queries. Unless the flexibility of
multi-word query in the pre-identified interest
is restricted, it requires a positional index. In
this index, each word list contains postings for
each occurrence of the word in each document.
A new challenge is to add temporal dimension
in order to optimize the index structure [23].

4. Temporal Expressions Normalization
- although there are several proposals for
identification, extraction and normalization
of temporal expressions, there are still several
gaps, such as format disambiguation and
temporal interval identification. For example,
having “12/03/2011” as a temporal expres-
sion, we can not guarantee that this temporal
format is not ambiguous, since its format can
be day/month/year or month/day/year. How
to find the correct format? Another example,
considering the identification of temporal
intervals, is the sentence “In 2004, Johny

started as director of Tempo company,

directing it until 2007”. This sentence
has a temporal interval that begins in 2004
and ends in 2007. Thus, the search engine
must have the knowledge that in 2005 Johny
was also the director of the company Tempo.
How to identify temporal intervals in Web
pages?

5. Temporal Ranking Queries - the database
community has devoted extensive efforts in or-
der to index and query temporal data [23, 13].
However, insufficient attention has been given
to queries with temporal ranking. For exam-
ple, given any time instance t, the user could
want to know about the top-k instances at the
time t related to some score attribute. Rank-
ing queries within a temporal interval rather

than just at one time instance also is an open
field.

6. Temporal Evidence - the Web is a highly
dynamic environment, with significant up-
dates occurring weekly. In this scenario, tem-
poral evidence might be obtained from the
temporal evolution of the content and struc-
ture from each individual document, and from
the whole Web. This dynamic behavior cre-
ates another challenge that is: how can we use
this temporal evidence to improve information
retrieval? Nunes [16] discusses some challenges
in this context.

5. CONCLUSION
Time is an important dimension for any applica-

tion. Realizing the value of temporal information
for information retrieval, researchers have begun to
incorporate this dimension in Web search engines
to improve their ranking mechanisms. The first
initiative, and still used today, is to put the most
recent pages in the top of the result. After that,
some proposals have arisen with the idea of filtering
the results, considering temporal intervals accord-
ing to the page crawled date. Finally, search engines
have been proposed in order to exploit the tempo-
ral information present in the contents of Web pages
and/or the queries. This article has presented a set
of search engine proposals and their mechanisms to
incorporate temporal information treatment.

Finally, we suggested some challenges for future
research, such as: (i) the importance of defining a
temporal information weight to incorporate this fea-
ture in the ranking algorithm; (ii) the requirement
for performing appropriate treatment of temporal
operators in embedded temporal queries and; (iii)
the necessity of modifying the traditional inverted
index to aggregate a temporal dimension consider-
ing different temporal information resources (last-
modified date, crawled date and temporal expres-
sions presented in the Web page content).

6. ACKNOWLEDGMENTS
Work partially funded by the CNPq Research

Grant (Process nr. 307992/2010-1. PQ 2010) and
INCT (Process nr. 573871/2008-6).

22 SIGMOD Record, September 2012 (Vol. 41, No. 3)

7. REFERENCES

[1] J. F. Allen. Maintaining knowledge about
temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[2] O. Alonso, M. Gertz, and R. A. Baeza-Yates.
On the value of temporal information in
information retrieval. SIGIR Forum,
41(2):35–41, 2007.

[3] ANNIE. Open source information extraction,
2010.
<http://www.aktors.org/technologies/annie/>.

[4] K. Berberich, M. Vazirgiannis, and
G. Weikum. T-rank: Time-aware authority
ranking. In S. Leonardi, editor, WAW, volume
3243 of Lecture Notes in Computer Science,
pages 131–142. Springer, 2004.

[5] O. Craveiro, J. Macedo, and H. Madeira. Use
of co-occurrences for temporal expressions
annotation. In SPIRE, volume 5721 of LNCS,
pages 156–164. Springer, 2009.

[6] H. Cunningham, D. Maynard, K. Bontcheva,
and V. Tablan. A framework and graphical
development environment for robust nlp tools
and applications. In ACL, pages 168–175,
2002.

[7] D. Efendioglu, C. Faschetti, and T. J. Parr.
Chronica: a temporal web search engine. In
ICWE, pages 119–120. ACM, 2006.

[8] L. Ferro, I. Mani, B. Sundheim, and
G. Wilson. Tides temporal annotation
guidelines - version 1.0.2, 2001. MITRE
Technical Report MTR 01W0000041.
McLean, Virginia: The MITRE Corporation.
June 2001.

[9] M. Franklin, A. Halevy, and D. Maier. From
databases to dataspaces: a new abstraction
for information management. SIGMOD Rec.,
34:27–33, December 2005.

[10] GUTime. Adding timex3 tags, 2010.
<http://www.timeml.org/site/tarsqi/modules/
gutime/index.html>.

[11] K. Hacioglu, Y. Chen, and B. Douglas.
Automatic time expression labeling for english
and chinese text. In A. F. Gelbukh, editor,
CICLing, volume 3406 of Lecture Notes in
Computer Science, pages 548–559. Springer,
2005.

[12] P. Jin, J. Lian, X. Zhao, and S. Wan. Tise: A
temporal search engine for web contents. In
IITA ’08, pages 220–224, Washington, USA,
2008. IEEE Computer Society.

[13] F. Li, K. Yi, and W. Le. Top- queries on
temporal data. VLDB J., 19(5):715–733, 2010.

[14] E. Manica, C. F. Dorneles, and R. Galante.

Supporting temporal queries on xml keyword
search engines. JIDM, 1(3):471–486, 2010.

[15] M. Negri and L. Marseglia. Recognition and
normalization of time expressions: Itc-irst at
tern 2004, 2004. Technical report, ITC-irst,
Trento.

[16] S. Nunes. Exploring Temporal Evidence in
Web Information Retrieval. In A. MacFarlane,
L. Azzopardi, and I. Ounis, editors, BCS
IRSG Symposium Future Directions in
Information Access (FDIA 2007), pages
44–50. BCS IRSG, BCS IRSG, August 2007.

[17] L. Page, S. Brin, R. Motwani, and
T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999.
Previous number = SIDL-WP-1999-0120.

[18] M. Pasca. Towards temporal web search. In
SAC, pages 1117–1121. ACM, 2008.

[19] D. Santos, C. Freitas, H. G. Oliveira, and
P. Carvalho. Second harem: New challenges
and old wisdom. In PROPOR, volume 5190 of
LNCS, pages 212–215. Springer, 2008.

[20] J. Teevan, C. Alvarado, M. S. Ackerman, and
D. R. Karger. The perfect search engine is not
enough: a study of orienteering behavior in
directed search. In Proceedings of the SIGCHI
conference on Human factors in computing
systems, CHI ’04, pages 415–422, New York,
NY, USA, 2004. ACM.

[21] TimeML. Markup language for temporal and
event expessions, 2010.
<http://www.timeml.org>.

[22] M. T. Vicente-Dı́ez and P. Mart́ınez.
Temporal semantics extraction for improving
web search. In DEXA Workshops, pages
69–73. IEEE Computer Society, 2009.

[23] G. Weikum et al. Longitudinal analytics on
web archive data: Its about time! In 5th
Biennial Conference on Innovative Data
Systems Research (CIDR2011), 2011.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 23

Ryan Johnson: recipient of the 2012 ACM SIGMOD Jim Gray Dissertation Award
 by Marianne Winslett and Vanessa Braganholo

Ryan Johnson
http://www.cs.toronto.edu/~ryanjohn/	

	

Welcome to this installment of ACM SIGMOD Record’s series of interviews with distinguished
members of the database community. I’m Marianne Winslett, and today we are in Phoenix, site
of the 2012 SIGMOD and PODS conference. I have here with me Ryan Johnson, who is the
recipient of the 2012 SIGMOD Jim Gray Dissertation Award for his thesis entitled “Scalable
Storage Managers for the Multi-Core Era”. Ryan’s advisor was Anastasia Ailamaki. His PhD is
from Carnegie Mellon, and he is now a professor at the University of Toronto. So, Ryan,
welcome!

What was your dissertation about?

Well, the short version is making databases run really fast on modern hardware. Especially
changing modern hardware, because we are in a time where designs are under huge flux and the
things that were problems let’s say every ten years, are now problems basically at every
hardware generation. So there is a lot of work for the database engine to keep pace and to
insulate the rest of the database community from all of these disruptive chambers of the lower
levels.

So what kinds of things do you have to change in the database core to keep up with the greater

24 SIGMOD Record, September 2012 (Vol. 41, No. 3)

parallel processing that we are now seeing?

Honestly, you have to be willing to change about anything, though you try to change as little as
possible. The usual culprits are things that were centrally managed in the past. Things like
locking and logging are huge culprits because they are central points of design. And so finding
ways to either distribute those, or make them at least act like they are distributed without giving
up the semantics, is the key to getting the scalability we need.

What does it mean for locking to be distributed?

So, by design, the database engine wants a central point where we can find the state of the world.
And locking is designed to give you that, for the semantics of the applications that rely on it. So
the application can say “I locked this value, nobody else is going to change this value”. What,
exactly, that means is mostly application dependent. The database’s job is just to enforce the lock
itself. The semantic of this globally visible, you know, one state of the world for each lock,
means that you kind of need the central point, but it turns out that usually people aren’t changing
the protected value. So the trick was to identify when the bottleneck comes out of read-only
values, and then play dirty tricks under the hood. Semantically, at the visible level, the system is
still exactly the same as before, but under the hood,
the lock protocol has been spread out so that these
hot spots no longer arise. In practice, that works
really well because a database application where
people are fighting over updates doesn’t scale for
other reasons anyway.

Do you use a technique where you sometimes
abort transactions later on because they had a
conflict that you detected later on?

So that is standard practice for database engines, I
didn’t really change that part. What I was looking at was when a database says “I want to protect
this from updates by other transactions: I’m only going to read, I just don’t want the rug pulled
out from under me while I am doing it”. And everybody does this, it turns out. They say, “lock
the database so that nobody deletes the database”, “lock this table so that no one deletes this
table”, and it’s those locks that were the bottleneck. Because everybody is doing it! And the time
it takes to find out “is the lock compatible?” was long enough to create a bottleneck. So the trick
was to say, since everybody does it, we’ll assume that whoever is next will do it, we’ll just keep
the lock. It’s read-only, it’s not like anything has changed. The agent thread that was executing a
transaction will just hold onto the lock, and hope that the next transaction can use it. And 90+%
of the time, we’re right, and now you’ve completely cut the [central] lock manager out of the
picture, and so it is no longer involved.

Was there something for logging that you had to do?

Logging was a different one. Locking was theoretically parallel but in practice it wasn’t because
of the low level implementation. Logging is the opposite. It’s supposed to be serial, right? We

Be	
 willing	
 to	
 jump	

on	
 a	
 good	
 thing	
 if	

it	
 comes.	

	

	

SIGMOD Record, September 2012 (Vol. 41, No. 3) 25

want the one global history that Mohan gave us [with ARIES], so we can say the state of the
world from all viewers is the same. But under the hood, we really want that to be parallel so that
more than one thing can happen at a time. The trick there was to exploit a technique called
linearizability, which essentially says we can play tricks with time. And so everyone will agree
in the end on what the order was, but it’s not necessarily the order that things actually happened
in. But since we all agree, that’s okay. Doing that relaxed the constraints on the implementation
enough that we could do some things under the hood to get the parallelism that we needed. So at
this point, you’re going to run into other problems before the log becomes a problem again.

Has your dissertation work had impact?

It has. So first of all, the storage engine [Shore-MT] is in use by several researchers at various
institutions, academic and industrial, and so that has been really nice. We debated whether to
open source it or not, and in retrospect, it was a really good idea. People are using it and it is

helping their research. Also, developers for
the various open source databases have
mentioned using various things [from my
dissertation work]. I talked with people
from MySQL, people from Berkeley DB,
recently the PostgreSQL people talked
about picking up the logging stuff, and so it
has been really cool to see people actually
interested in the work and trying to move
forward with it.

What about companies?

The commercial database vendors don’t
talk an awful lot about what’s under the
hood. I am in active talks with both Oracle
and IBM, so they are interested in the kinds

of things I do, but whether they are using precisely what I’ve already done, I don’t know.

It’s amazing to me to see such a core traditional database thesis being honored in this way
because I discovered that the young people in our field, most of them, they don’t know how a
database works. Indexing, maybe. Read and write locks, yes. But anything beyond that, they have
no idea. So do you think this is a problem, or is it okay because the field has expanded so much,
people can’t all know where we started?

This is a tricky one. It becomes a challenge sometimes because you submit all of these systems
in papers, and don’t necessarily get an audience who has any idea or interest in what it was [you
did]. In the end, I decided this means that we’re being successful. A small handful of people can
make these problems go away, and nobody else has to worry about them. But it doesn’t always
work, right? We have to have some guidance from the people up higher of what they need so we
can provide it. They need guidance from the people down lower about what’s just not going to
work, to shift their expectations a little bit. So the database engine is really this two sided thing:

You	
 have	
 to	
 know	
 why	

things	
 are	
 happening,	

and	
 not	
 only	
 why	

they’re	
 happening,	
 but	

why	
 they	
 didn’t	
 work,	

and	
 why	
 they	
 did.	

	

	

26 SIGMOD Record, September 2012 (Vol. 41, No. 3)

there’s the level that faces the user above, and there’s the level that faces the hardware below.
I’m on the hardware facing side, but we still have to talk to each other.

Is there any advice that you’d like to share with our readers or viewers who are working on their
PhDs right now?

One final thing that I really became more aware of as got toward the end of my PhD was that you
have to be willing to cross boundaries into nearby disciplines. It is not enough to be an expert in
one narrow little tiny slice because it is all mined out, to be honest. Database engines are not new
things, we’ve had them for 50, 60 years, and so if you want to really be able to solve these
problems, you’ve got to be willing to bridge gaps between nearby things, and very often it turns
out the problem actually isn’t in the database engine. Some of the work that I enjoyed the most
was actually going out into the operating system, or dealing with other nearby things, or talking
to the SPAA community about distributed algorithms. Those things are what really enrich the
research when you are able to go across boundaries and not be scared of new material.

Is there something you now know that you wish you had known earlier in your research career
or perhaps during your job hunt that you can share with our younger readers and viewers?

So, I’ll rephrase that a little, because I had a great advisor, who taught me early on things that I
am really glad that she taught me. One of them was that you always want to understand what’s
going on. You get this result, and there is some hiccup or some bump in the data that you don’t
understand, you don’t ever let that slide. You have to know why things are happening, and not
only why they’re happening, but why they didn’t work, and why they did. Very often we get
people with results were they say “we turned this knob and performance went up, let’s declare
victory and go home”. But we don’t know why it worked. We don’t know how long it is going to
work, or whether we just got lucky. So if you can point to things besides just performance and
say, “look, I have analyzed the system and here are reasons x, y and z why we know this problem
is gone and it’s not going to be back”. That gives you a much tighter control over your results
because now you know why they are doing what they are doing. And that leads to whole new
areas. One of my papers came from “why in the world would that happen that way?”. It would
have been a huge mistake to let that [question] slide.

Other things for the job hunt, I had a kind of odd job hunt because I only applied to one school. It
was a surprise thing, and I said, “I’ll try it, and if it doesn’t work, I’ll go on the job market next
year”. And it turned out I loved the place. So one thing I would say is “be willing to jump on a
good thing if it comes”. Don’t keep searching after you’ve found something that is good.
Sometimes we get stuck on this “I have to have the absolute best” and we let so many good
things go by that we look back and regret it. So I am really glad that I have been able to jump on
things early and then look back and say, “yeah that was actually a good idea”.

Excellent advice. Thanks so much for talking with me today.

You’re very welcome.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 27

dbTrento: The Data and Information Management group
at the University of Trento

Themis Palpanas
University of Trento, Italy

themis@disi.unitn.eu

Yannis Velegrakis
University of Trento, Italy

velgias@disi.unitn.eu

1. INTRODUCTION
The dbTrento group was established in 2006 by Profs

Themis Palpanas and Yannis Velegrakis. Since then it
has steadily grown into a fully functioning group with
(currently) 17 members. It is located in Trento, a beauti-
fully preserved historic town in the Dolomite mountains,
which hosts one of the 6 ICT Labs of the European In-
stitute of Innovation and Technology (EIT), and aims to
become a reference research and technological center in
Europe. The VLDB 2013 conference is being organized
by dbTrento, its founders serving as the General Chairs.
The mission of the group is to conduct high level re-
search on different aspects of large scale data and infor-
mation management. The following sections provide a
high level description the work in these areas, which has
also led to 3 Best Paper awards.

2. ADVANCED QUERY ANSWERING
[Semantic-based Keyword Search] Keyword search
is becoming the de-facto mechanism for querying
data [19], since it does not require knowledge of the full
semantics or their organization in the repository, neither
knowledge of some complex query language. For this
reason, there has been enough work on querying struc-
tured (mostly relational) data through keywords. These
works are typically based on an index that is built in
advance, and which supports at run time the mapping of
keywords to database structures. This index requirement
makes these approaches difficult to apply when there
is no prior access to the data, a common situation that
occurs in integration system or on the web where the
sources are autonomous and allow access to their data
only through web interfaces or wrappers.

Collaboration with researchers from the University of
Modena and the University of Zaragoza, has resulted
into Keymantic [7], an engine for answering keyword
queries over relational data that uses only the metadata
provided by the database and some auxiliary informa-
tion that is freely available on the web. Keymantic is
using this information in order to understand the seman-
tics of the keywords [6] and discover the best matching

of these keywords to database tables, attributes or val-
ues. It does so by using an adapted version of the Hun-
garian algorithm. The discovered matches are combined
to form SQL queries and returned to the user ranked in
decreasing older of the likelihood that they represent the
intended user query semantics. The KEYRY [9] is a ver-
sion of Keymantics that uses a Hidden Markov Model,
instead of the Hungarian algorithm, to make the predic-
tions [8]. Apart from query answering, Keymantic can
be used in data exploration. In particular, given a key-
word query it can return structured queries exposing the
structures of the data repository that may be related to
the keyword query semantics. This can be applied not
only on relational data but also on data of graph struc-
ture [10].

A lot of work within the group has been devoted to
the management of entities that form the basis of Datas-
paces and of Semantic Web Data [19]. One of these
works is the discovery of the entities that best match a
specification expressed in a keyword query. By exploit-
ing attribute frequencies found in query logs, a classi-
fier is trained to predict the intended semantics of the
keyword query and to construct the answer as a ranked
set of entities, with the most prominent at higher posi-
tions [35].

[Approximate Query Answering] Documents, or
semi-structured data in general, provide a great deal of
information, but their lack of schema makes information
discovery a challenging tasks. Together with the Uni-
versity of Bozen-Bolzano and the University of Alberta,
we have created TASM [3], a system that allows approx-
imate query answering on large XML documents. It is
based on the prefix ring buffer that allows the pruning
of all the subtrees in the document above a threshold in
a single postorder scan of the document, leading into an
algorithm that depends only on the size of the query [4].
This work won the Best Paper award in ICDE 2010.

[Managing Evolution] The dynamic nature of the data
has been realized from the very first days of data man-
agement. However, work has mainly focused on value

28 SIGMOD Record, September 2012 (Vol. 41, No. 3)

updates, offering the ability to query the data at differ-
ent points of time. These approaches did not support the
representation of relationships between different struc-
tures that model the same real world object at differ-
ent points in time, which in turn made hard the realiza-
tion of the evolution phases through which the object
has gone through. Furthermore, even if such a model-
ing is made, it is not guaranteed that it will match the
evolution model on which a query is constructed. For
instance, a database may contain different instances of
Germany from different phases of its history, i.e., as an
empire, as the pre-war country, as East and West, and as
a unified country. If these are different entities, a query
asking for leaders of Germany, where Germany refers
to the general concept of the German nation, will not be
possible to answer.

With this in mind, our members have developed a
mechanism that allows the evolution information to be
included explicitly or implicitly [47, 45, 46, 42] in the
data, forming an evolution graph. Apart from mod-
eling and querying evolution [44], the system allows
the answering of queries formed with a different evo-
lution granularity in mind than the one of the repos-
itory [15]. This is achieved by performing at run-
time merges of structures representing different evolu-
tion phases of an object. Achieving the minimum re-
quired such merges, boils down to efficient discovery of
Steiner Forests which we solve using dynamic program-
ming [14].

3. INFORMATION INTEGRATION
A long chapter in the dbTrento research agenda is

related to Data and Information Integration from mul-
tiple disparate heterogeneous sources. Much of this
work is based on entities as the basic data unit, driven
by their recent popularity and expressiveness. Many of
our developments were fundamental components in the
OKKAM project that aims at the creation of an infras-
tructure for global identifiers for every web object [12,
5, 33, 27, 39] Our collaborations with colleagues from
the Semantic Web community and our participation in
many projects from that area has revealed numerous
challenging data management issues, that were recently
summarized in a related tutorial [24].

[Blocking Techniques] A basic task in every integra-
tion effort is Entity Resolution (ER), i.e., the ability
to identify whether two pieces of information represent
the same real world entity and then merge them into
a single representation. This is inherently a quadratic
task, requiring pair-wise comparisons among all ob-
jects in the collection. In order to scale ER to the vol-
ume of Web Data, blocking techniques are typically
employed. However, most of the blocking techniques
rely on schema information and are inapplicable to the

highly heterogeneous settings of Web Data.
In collaboration with the L3S Research Center, we

have proposed a novel framework consisting of two or-
thogonal layers (the effectiveness and efficiency layers),
and showed how all blocking methods for highly hetero-
geneous data spaces map to this framework [41]. In ad-
dition, we have proposed several new techniques for im-
proving the performance of ER [40, 41], namely, redun-
dancy elimination, attribute-agnostic blocking, attribute
clustering blocking, comparison pruning, and compari-
son scheduling, which all together offer significant time-
performance improvements at a negligible cost on ef-
fectiveness. An interesting research direction would be
to investigate the use of cloud computing and resource
management technologies [28], in order to further im-
prove the performance of the proposed techniques.

[On-the-Fly Entity Resolution] Traditional entity res-
olution approaches compute some similarity score be-
tween entities to decide whether they represent the same
real world object. However, it is not clear what value of
that score is high enough for such a decision, especially
across different score computation methods. Further-
more, two representations may be seen as one in some
cases and as independent in another, making the deci-
sion on the merging an application or query dependent.

With this is in mind, we have decided to take a radi-
cal approach and in collaboration with researchers from
the L3S Research Center and the Technical University
of Crete, we have developed LinkDB [26], a probabilis-
tic linkage database system. We have thought that since
it is hard to decide on whether a score is high enough
to make a decision, we can postpone the decision un-
til when needed. As such, we run entity linkage algo-
rithms on our data but instead of doing any merging
based on the results, we store the computed similari-
ties in the repository alongside the data. At run time,
when the user query is known, the system investigates
what merges can be made and generate the answers the
user query by evaluating it in a virtual database result-
ing from the merging of these entities [25]. An impor-
tant feature of the system is that only the merges that
affect the query results are taking place and not all the
possible merges in the database. Another important fea-
ture is that the user may see results that are not in the
database, but inferred from the stored data through on-
the-fly merges.

[Schema and Data Mapping] A traditional topic of
interest in the group is data mapping, i.e., the ability
to associate data in one format with data in another.
The work is rooted in our past participation in the de-
velopment of Clio [20], a schema mapping tool from
IBM Almaden. Clio was based on relational and semi-
structured data, but we have ported this experience into

SIGMOD Record, September 2012 (Vol. 41, No. 3) 29

the development of mappings between entity reposito-
ries and ontologies. These new applications were de-
veloped in Papyrus [29], an EU project aiming at the
creation of availability of content of one discipline to a
different discipline, allowing people from the first, e.g.,
historians, to query data from the other, e.g., news, even
if the latter uses a different terminology, structure [13],
or language [52].

[Benchmarking] Evaluation is a fundamental step of
every scientific finding, since it allows comparison with
similar products and leads to informative decisions. Un-
fortunately, for many relatively novel areas like schema
mapping and entity management, there is no globally ac-
cepted evaluation methodology. Researchers or vendors
use their own tests and metrics leading into a blurred
environment among similar products, developments or
findings. Our group has spent a significant amount of ef-
fort into studying the problem and developing complete,
consistent and principled evaluation methodologies that
were recently presented in a tutorial [11]. Among these
works is STBenchmark [1], a benchmark co-developed
with the University of California Santa-Cruz, for eval-
uating mapping systems. It consists of a collection of
test cases that can be used to measure the capabilities
and limitations of a mapping system in terms of expres-
siveness and flexibility. Furthermore, it can dynami-
cally generate of test cases at different levels of com-
plexity and size, allowing the evaluation of the map-
ping systems in terms of scale [2]. In the same spirit
with STBenchmark we have developed EMBench1. It
is based on the same principles but it is designed for
evaluating entity matching systems and can be a useful
complement to the test cases provided by the OAEI ini-
tiative.

[Updates] Integration Systems have traditionally been
considered read-only, mainly due to the fact that the
system had no control over the data stored in the indi-
vidual sources. Nevertheless, many times the integra-
tion reveals information not original available by the in-
dividual sources, thus, it may require that updates be
issued on the integrated data. These updates have to
be propagated to the sources. In collaboration with the
AT&T Research Labs have studied ways to implement
this goal [30, 46] and overcoming the difficulties that the
view update theory is posing on the aspect.

4. STRUCTURED DATA ANALYTICS

[Data Stream Processing] The availability and use of
(various types of) sensor networks have generated a lot
of research interest. A major part of this effort has con-
centrated on how to efficiently collect and analyze the

1http://db.disi.unitn.eu/pages/EMBench/

streams of sensed data. The dbTrento group has been
working on several problems related to streaming data,
ranging from data collection and representation, to data
management, and analysis. Much of this work is also
relevant to wireless sensor networks, and has been de-
scribed in a recent survey of the area [37].

We have recently proposed a data-driven acquisition
technique based on a linear model, DBP [43], that re-
duces the communication costs while mitigating the
problems of noise and outliers. Relative to previous ap-
proaches, it can be much more efficiently implemented
on resource-scarce nodes, and provides accuracy guar-
antees on the reported sensor measurements. Our work
has shown that in the case of wireless sensor network
deployments, further advances of the data management
techniques would have little practical impact on the
system lifetime [43]. Instead, improvements are more
likely to come from radical changes at the routing and
MAC layers, where new, data-aware protocols need to
be designed. This work won the Mark Weiser Best Pa-
per award in PerCom 2012.

The sheer number and size of the data we need to ma-
nipulate in many of the real-world applications dictates
in several cases the need for a more compact represen-
tation than the raw data. We have developed novel, am-
nesic data approximation techniques that represent the
most recent data with low error, and are more forgiving
of error in older data, for arbitrary user-specified am-
nesic functions [38]. These techniques are incremen-
tally maintainable, and are applicable to both landmark
and sliding windows.

Several of the applications that consume streaming
data, possibly from multiple sources, have high process-
ing requirements over a significant portion of these data.
We have developed a framework targeted to such appli-
cations, which aims to approximate in an online fashion
multi-dimensional data series distributions [50]. This
framework is adaptive, requires no a priori knowledge
about the distributions of the sensed values, and it oper-
ates in a distributed fashion. We have demonstrated the
applicability of the above framework in addressing two
diverse and demanding problems, namely, identification
and tracking of homogeneous regions [49], and outlier
detection [50].

In a similar setting of multiple data stream processing
in a network of nodes, we have proposed a technique
for processing continuous queries that optimizes for the
profiled input throughput that is focused on matching the
expected behavior of the input streams [48]. We have
also separately considered the problem of streaming
sub-space clustering for high-dimensional spaces [36].

The efficient detection of frequent items in data
streams is another interesting problem with many ap-
plications across domains. In this context, we have

30 SIGMOD Record, September 2012 (Vol. 41, No. 3)

performed a comprehensive comparative analysis of the
available solutions, leading to several insights [31], and
we have proposed a solution to the problem of finding
recent frequent items in ad hoc windows in the past [51].

[Learning in Data Streams] Data streams can also
carry information (e.g., user preferences) useful for
learning algorithms. In this context, we have proposed
a novel approach that can combine the content (descrip-
tive aspect) and the type (directly quantifiable, or binary
aspects) of the information instances, and studied the
learning curves of the algorithms under different ran-
dom information shifts [21]. This work won the Best
Paper award in ADAPTIVE 2009.

Building on this work, we subsequently proposed an
analytic model that describes the effect of the mem-
ory window size on the average prediction performance
of a learning system, regardless of its underlying algo-
rithm [22, 23]. We have additionally identified simple
criteria, some of which are tied to specific data charac-
teristics, that can be used by our framework in order to
compare the behavior of learning algorithms in the pres-
ence of varying levels of noise [34].

[Data Series] There is an increasingly pressing need, by
several applications in diverse domains (ranging from
astronomy and biology, to electrical grids and manu-
facturing), for developing techniques able to index and
mine very large collections of data series, in the order
of hundreds of millions to billions. Evidently, this re-
quirement calls for novel approaches and techniques for
management and processing data series.

In this line of work, we have developed iSAX 2.0, a
data structure designed for indexing and mining truly
massive collections of data series [16], in collabora-
tion with the University of California at Riverside. We
showed that the main bottleneck in mining such massive
datasets is the time taken to build the index, and we thus
introduced the first bulk loading mechanism specifically
tailored to a data series index, and reported the first pub-
lished experiments to index one billion data series. Even
though these results are promising for the practitioners,
we observe that the analysis step cannot start before the
lengthy indexing step ends. Removing this restriction is
an interesting research direction.

In this area, we have also proposed fast and scal-
able techniques for pattern identification in data series
streams [32]. The observation that in several cases the
values in the data series are uncertain, has guided us to
investigate this parameter of the problem. This value un-
certainty may be due to the inherent imprecision of sen-
sor observations, data aggregations, privacy-preserving
transforms, or error-prone mining algorithms. Our study
suggests that a fruitful research direction is to develop
models for processing uncertain data series that take into

account the temporal correlations in the data [18], which
has not been considered so far.

5. ANALYTICS ON NON-STRUCTURED
DATA

[Subjectivity Analysis] In the past years we have wit-
nessed Sentiment Analysis and Opinion Mining becom-
ing increasingly popular topics in Information Retrieval
and Web data analysis, allowing us to capture sentiments
and opinions, expressed in online user-generated con-
tent, at a large scale. Tracking how opinions or dis-
cussions evolve over time can help us identify interest-
ing trends and patterns, and better understand the ways
that information is propagated. The dbTrento group
has been involved in research work relevant to the ar-
eas of Sentiment Analysis and Opinion Mining, and has
spearheaded the work on Contradiction Analysis, which
has also led to collaborations with HP Labs, the Qatar
Computing Research Institute, and the Al Jazeera news
broadcasting network. We have recently presented a
comprehensive survey on the research problems in the
above areas [56].

Our main focus has been the problem of finding
sentiment-based contradictions at a large scale [57]. We
defined two types of contradictions, depending on the
distributions of opposite sentiments over time, namely,
synchronous and asynchronous (sentiment-shift) contra-
dictions, and introduced a novel measure of contradic-
tion that accounts for the variability within and across
data collections. We also proposed a scalable method for
identifying both types of contradictions at different time
scales that employs sentiment values on a continuous
scale. An interesting direction of research is to charac-
terize (e.g., in terms of demographics) and explain (e.g.,
in terms of news events) the identified contradictions, as
well as generalize the proposed model to arbitrary opin-
ion data (i.e., not just numeric sentiments) [55].

[Facet Discovery] Advances in social-media and user-
generated content technologies have resulted in collect-
ing extremely large volumes of user-annotated media;
for instance photos (flickr), urls (del.icio.us), and oth-
ers. All these platforms provide users with the capabil-
ity of generating content and assigning ad hoc tags to
this content. Motivated by applications in the domain
of collaborative tagging, we have introduced the prob-
lem of diverse dimension decomposition, which can be
used for facet discovery, where a dimension is a set of
mutually exclusive tag-sets. The information theoretic
mining framework we have proposed together with Ya-
hoo! Research can be interpreted as a dimensionality-
reducing transformation from the space of all tags to the
space of orthogonal dimensions [53, 54].

SIGMOD Record, September 2012 (Vol. 41, No. 3) 31

6. FUTURE DIRECTIONS
The group continues the work on data and informa-

tion management and analysis, with an emphasis on
the problems arising from the scale of the data, their
non-structured, heterogeneous and uncertain nature, and
from specific application requirements, such as privacy
guarantees on public administration data, or particular
analysis tasks on scientific data. More specifically, the
main research directions of the group are the following.

[Smart Cities] The availability of data and information
on several different aspects of everyday life in digital
format allows us to form a clear picture about the work-
ings of a city, or a community in general. This can help
us design tools for better managing fundamental prin-
ciples relevant to citizens (such as privacy [17]) in new
unexplored contexts, e.g., Big Open Data, and applica-
tions, e.g., Data Journalism. They will also enable us to
react, follow on, predict, and influence various societal
situations. In collaboration with the public administra-
tion and relevant industries, we will investigate novel
techniques and methodologies that can help us achieve
the above goals, even in new fields, like e-crime.

[User-Generated Content] Complementary to the pre-
vious direction is that of analyzing user-generated con-
tent. Given the wealth of such data on the web, we aim
to develop a subjectivity analysis toolset that will take
into account social structures and events information,
and will offer intuitive analytics functionalities for un-
derstanding, explaining, and predicting trends and be-
haviors on the social web. Furthermore, the toolset will
be predicting goals, user intentions and will be building
dynamic user profiles from user generated content and
user actions. Finally, it will be able to evaluate the qual-
ity of the provided information using the history of the
users and the reactions of the crowds.

[Scientific Data] Through the ongoing collaboration
with scientists, e.g., biologists and neuroscientists, who
need to analyze large collections of data, usually on
commodity hardware, we are aiming at providing them
with tools that can efficiently perform complex analytics
that take into account the special nature of their data and
their intended tasks.

Acknowledgments
We thank all our postdoc, PhD and MSc students for
their dedication and hard work: S. Bykau, A. Camerra,
A. Chiasera, A. Cordioli, M. Dallachiesa, V. Falletta, G.
Giannakopoulos, E. Iori, M. Lissandrini, A. Marascu, K.
Mirylenka, D. Mottin, B. Nushi, D. Papadopoulou, M.
Zerega, F. Rizzolo, C. Tsinaraki, M. Tsytsarau, and K.
Zoumpatianos. We would also like to acknowledge the

contributions of our internal and external collaborators,
who made this research possible.

References
[1] B. Alexe, W. C. Tan, and Y. Velegrakis. Comparing

and evaluating mapping systems with STBenchmark.
PVLDB, 1(2), 2008.

[2] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark:
towards a benchmark for mapping systems. PVLDB,
1(1), 2008.

[3] N. Augsten, D. Barbosa, M. H. Böhlen, and T. Palpanas.
Tasm: Top-k approximate subtree matching. In ICDE,
2010.

[4] N. Augsten, D. Barbosa, M. H. Böhlen, and T. Palpanas.
Efficient top-k approximate subtree matching in small
memory. TKDE, 23(8), 2011.

[5] B. Bazzanella, T. Palpanas, and H. Stoermer. Towards a
general entity representation model. In IRI, 2009.

[6] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado,
and Y. Velegrakis. Keyword Search over Relational
Databases: A Metadata Approach. In SIGMOD, 2011.

[7] S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. T.
Lado, and Y. Velegrakis. Keymantic: Semantic Keyword
based Searching in Data Integration Systems. PVLDB,
3(2), 2010.

[8] S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis.
A Hidden Markov Model Approach to Keyword-based
Search over Relational Databases. In ER, 2011.

[9] S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis.
KEYRY: a Keyword-based Search Engine over Rela-
tional Databases based on a Hidden Markov Model. In
ER, 2011.

[10] S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis.
Understanding Linked Open Data through Keyword
Searching: the KEYRY approach. In LWDM, 2011.

[11] A. Bonifati and Y. Velegrakis. Schema Matching and
Mapping: From Usage to Evaluation. In EDBT, 2011.

[12] P. Bouquet, T. Palpanas, H. Stoermer, and M. Vignolo. A
conceptual model for a web-scale entity name system. In
ASWC, 2009.

[13] S. Bykau, N. Kiyavitskaya, C. Tsinaraki, and Y. Vele-
grakis. Bridging the Gap Between Heterogeneous and
Semantically Diverse Content of Different Disciplines.
In FLEXDBIST, 2010.

[14] S. Bykau, J. Mylopoulos, F. Rizzolo, and Y. Velegrakis.
Supporting Queries Spanning Across Phases of Evolving
Artifacts using Steiner Forests. In CIKM, 2011.

[15] S. Bykau, J. Mylopoulos, F. Rizzolo, and Y. Velegrakis.
On Modeling and Querying Concept Evolution. Journal
on Data Semantics, 1, 2012.

[16] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh. isax
2.0: Indexing and mining one billion time series. In
ICDM, 2010.

[17] A. Chiasera, F. Casati, F. Daniel, and Y. Velegrakis. En-
gineering Privacy Requirements in Business Intelligence
Applications. In SDM, 2008.

[18] M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Palpanas.
Uncertain time-series similarity: Return to the basics.
PVLDB, 5(11), 2012.

[19] R. De Virgilio, F. Guerra, and Y. Velegrakis. Semantic
Search over the Web. Springer, 2012.

[20] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema mapping cre-
ation and data exchange. In A. Borgida, V. K. Chaudhri,

32 SIGMOD Record, September 2012 (Vol. 41, No. 3)

P. Giorgini, and E. S. K. Yu, editors, Conceptual Model-
ing: Foundations and Applications, volume 5600 of Lec-
ture Notes in Computer Science. Springer, 2009.

[21] G. Giannakopoulos and T. Palpanas. Content and type
as orthogonal modeling features: a study on user inter-
est awareness in entity subscription services. Interna-
tional Journal of Advances on Networks and Services,
3(2), 2010.

[22] G. Giannakopoulos and T. Palpanas. The effect of history
on modeling systems’ performance: The problem of the
demanding lord. In ICDM, 2010.

[23] G. Giannakopoulos and T. Palpanas. Revisiting the effect
of history on learning performance: The problem of the
demanding lord. KAIS, accepted for publication.

[24] O. Hassanzadeh, A. Kementsietsidis, and Y. Velegrakis.
Data Management Issues on the Semantic Web. In ICDE,
2012.

[25] E. Ioannou, W. Nejdl, C. Niederee, and Y. Velegrakis.
OntheFly Entity-Aware Query Processing in the Pres-
ence of Linkage. PVLDB, 3(1), 2010.

[26] E. Ioannou, W. Nejdl, C. Niederee, and Y. Velegrakis.
LinkDB: A Probabilistic Linkage Database System. In
SIGMOD, 2011.

[27] E. Ioannou, C. Niederee, and Y. Velegrakis. Enabling
Entity-Based Aggregators for Web 2.0 data. In WWW,
2010.

[28] E. Iori, A. Simitsis, T. Palpanas, K. Wilkinson, and
S. Harizopoulos. Cloudalloc: A monitoring and reser-
vation system for compute clusters. In SIGMOD, 2012.

[29] A. Katifori, C. Nikolaou, M. Platakis, Y. Ioannidis,
A. Tympas, M. Koubarakis, N. Sarris, V. Tountopoulos,
E. Tzoanos, S. Bykau, N. Kiyavitskaya, C. Tsinaraki,
and Y. Velegrakis. The Papyrus Digital Library: Dis-
covering History in the News. In TPDL, 2011.

[30] Y. Kotidis, D. Srivastava, and Y. Velegrakis. Updates
Through Views: A New Hope. In ICDE, pages 13–24,
2006.

[31] N. Manerikar and T. Palpanas. Frequent items in stream-
ing data: An experimental evaluation of the state-of-the-
art. DKE, 68(4), 2009.

[32] A. Marascu, S. A. Khan, and T. Palpanas. Scalable sim-
ilarity matching in streaming time series. In PAKDD,
2012.

[33] Z. Miklos, N. Bonvin, P. Bouquet, M. Catasta, D. Cordi-
oli, P. Fankhauser, J. Gaugaz, E. Ioannou, H. Koshutan-
ski, A. Mana, C. Niederee, T. Palpanas, and H. Stoermer.
From web data to entities and back. In CAiSE, 2010.

[34] K. Mirylenka, G. Giannakopoulos, and T. Palpanas. Srf:
A framework for the study of classifier behavior under
training set mislabeling noise. In PAKDD, 2012.

[35] D. Mottin, T. Palpanas, and Y. Velegrakis. Entity Rank-
ing Using Click-Log Information. Intelligent Data Anal-
ysis Journal, 17:5, 2013.

[36] I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and H.-P.
Kriegel. Density-based projected clustering over high di-
mensional data streams. In SDM, 2012.

[37] T. Palpanas. Real-time data analytics in sensor networks.
In C. Aggarwal, editor, Managing and Mining Sensor
Data. Springer, 2012.

[38] T. Palpanas, M. Vlachos, E. J. Keogh, and D. Gunopulos.
Streaming time series summarization using user-defined
amnesic functions. TKDE, 20(7), 2008.

[39] G. Papadakis, G. Giannakopoulos, C. Niederée, T. Pal-
panas, and W. Nejdl. Detecting and exploiting stability

in evolving heterogeneous information spaces. In JCDL,
2011.

[40] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas,
and W. Nejdl. Beyond 100 million entities: large-scale
blocking-based resolution for heterogeneous data. In
WSDM, 2012.

[41] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee, and
W. Nejdl. A blocking framework for entity resolution
in highly heterogeneous information spaces. TKDE, ac-
cepted for publication.

[42] A. Presa, Y. Velegrakis, F. Rizzolo, and S. Bykau. Mod-
eling Associations through Intensional Attributes. In ER,
2009.

[43] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and
G. P. Picco. What does model-driven data acquisition
really achieve in wireless sensor networks? In PerCom,
Lugano, Switzerland, 2012.

[44] F. Rizzolo, Y. Velegrakis, J. Mylopoulos, and S. Bykau.
Modeling Concept Evolution: A Historical Perspective.
In ER, 2009.

[45] D. Srivastava and Y. Velegrakis. Intensional Associations
between Data and Metadata. In SIGMOD, pages 401–
412, 2007.

[46] D. Srivastava and Y. Velegrakis. MMS: Using Queries As
Data Values for Metadata Management. In ICDE, pages
1481–1482, 2007.

[47] D. Srivastava and Y. Velegrakis. Using Queries to Asso-
ciate Metadata with Data. In ICDE, pages 1451–1453,
2007.

[48] I. Stanoi, G. A. Mihaila, T. Palpanas, and C. A. Lang.
Whitewater: Distributed processing of fast streams.
TKDE, 19(9), 2007.

[49] S. Subramaniam, V. Kalogeraki, and T. Palpanas. Dis-
tributed Real-Time Detection and Tracking of Homoge-
neous Regions in Sensor Networks. In RTSS, Rio de
Janeiro, Brazil, 2006.

[50] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online outlier de-
tection in sensor data using non-parametric models. In
VLDB, 2006.

[51] F. I. Tantono, N. Manerikar, and T. Palpanas. Efficiently
discovering recent frequent items in data streams. In SS-
DBM, 2008.

[52] C. Tsinaraki, Y. Velegrakis, N., and J. Mylopoulos. A
Context-based Model for the Interpretation of Polyse-
mous Terms. In ODBASE, 2010.

[53] M. Tsytsarau, F. Bonchi, A. Gionis, and T. Palpanas. Di-
verse dimension decomposition of an itemset space. In
ICDM, 2011.

[54] M. Tsytsarau, F. Bonchi, A. Gionis, and T. Palpanas.
Diverse dimension decomposition for itemset spaces.
KAIS, accepted for publication.

[55] M. Tsytsarau and T. Palpanas. Towards a framework for
detecting and managing opinion contradictions. In ICDM
Workshops, 2011.

[56] M. Tsytsarau and T. Palpanas. Survey on mining subjec-
tive data on the web. DMKD, 24(3), 2012.

[57] M. Tsytsarau, T. Palpanas, and K. Denecke. Scalable
discovery of contradictions on the web. In WWW, 2010.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 33

Temporal features in SQL:2011
Krishna Kulkarni, Jan-Eike Michels (IBM Corporation)

{krishnak, janeike}@us.ibm.com

ABSTRACT
SQL:2011 was published in December of 2011,

replacing SQL:2008 as the most recent revision of the
SQL standard. This paper covers the most important
new functionality that is part of SQL:2011: the ability to
create and manipulate temporal tables.

1. Introduction
SQL is the predominant database query language stan-

dard published jointly by ISO (the International Organi-
zation for Standardization) and IEC (the International
Electrotechnical Commission). In December 2011, ISO/
IEC published the latest edition of the SQL standard,
SQL:2011. A recent article in SIGMOD Record pro-
vides a brief survey of the new features in SQL:2011
[1]. Because of space constraints, it did not cover the
most important new feature in SQL:2011: the ability to
create and manipulate temporal tables, i.e., tables whose
rows are associated with one or more temporal periods.
This is the subject of the current article.

2. Temporal data support
 Extensions to support temporal data1 in SQL have

long been desired. There is a large body of research
papers, conference publications, and books on this topic,
some dating back to the early 1980s. For more details,
we refer the readers to an extensive (but outdated) bibli-
ography [2] and to books such as [3] and [4].

Though the previous academic research produced a
large number of solutions, the commercial adoption has
been rather slow. It is only recently that commercial
database management systems (DBMSs) have begun to
offer SQL extensions for managing temporal data [5, 6,
7]. Prior to this development, users were forced to

implement temporal support as part of the application
logic, which often resulted in expensive development
cycles and complex, hard-to-maintain code.

In 1995, the ISO SQL committee initiated a project to
create a new part of SQL standard devoted to the lan-
guage extensions for the temporal data support. A set of
language extensions based on (but not identical to)
TSQL2 [8] were submitted for standardization at that
time. Unfortunately, these proposals generated consider-
able controversy (see [9] for more details), and failed to
get adequate support from the ISO SQL committee’s
membership. In addition, there was no indication that
key DBMS vendors were planning to implement these
extensions in their products. Eventually, the work on
this new part was cancelled in 2001.

Recently, a new set of language extensions for tempo-
ral data support were submitted to and accepted by the
ISO SQL committee. These language extensions are
now part of SQL:2011 Part 2, SQL/Foundation [10],
instead of appearing as a new part. There is currently at
least one commercial implementation [5] based on these
extensions that the authors are aware of.

2.1 Periods
The cornerstone of temporal data support in SQL:2011

is the ability to define and associate time periods with
the rows of a table. Essentially, a time period is a mathe-
matical interval on the timeline, demarcated by a start
time and an end time.

Many treatments of temporal databases introduce a
period data type, defined as an ordered pair of two
datetime values, for the purpose of associating time
periods with the rows of a table. SQL:2011 has not
taken this route. Adding a new data type to the SQL
standard (or to an SQL product) is a costly venture
because of the need to support the new data type in the
tools and other software packages that form the ecosys-
tem surrounding SQL. For example, if a period type
were added to SQL, then it would have to also be added
to the stored procedure language, to all database APIs
such as JDBC, ODBC, and .NET, as well as to the sur-
rounding technology such as ETL products, replication
solutions, and others. There must also be some means of
communicating period values to host languages that do
not support period as a native data type, such as C or
Java. These factors can potentially slow down the adop-
tion of new type for a long time.

1. Note that there is no single, commonly
accepted definition of the term “temporal
data”. For the purposes of this article, we
define “temporal data” to mean any data
with one or more associated time periods
during which that data is deemed to be
effective or valid along some time dimen-
sion.

34 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Instead of adding a period type, SQL:2011 adds
period definitions as metadata to tables. A period defini-
tion is a named table component, identifying a pair of
columns that capture the period start and the period end
time. CREATE TABLE and ALTER TABLE statements
are enhanced with syntax to create or destroy period
definitions. The period start and end columns are con-
ventional columns, with separate names. The period
name occupies the same name space as column names,
i.e., a period cannot have the same name as a column.

SQL:2011 has adopted a closed-open period model,
i.e., a period represents all times starting from and
including the start time, continuing to but excluding the
end time. For a given row, the period end time must be
greater than its period start time; in fact, declaring a
period definition in a table implies a table constraint that
enforces this property.

The literature on temporal databases recognizes two
dimensions of time for temporal data support, e.g., see
[3]:
• valid time, the time period during which a row is
regarded as correctly reflecting reality by the user of the
database.
• transaction time, the time period during which a
row is committed to or recorded in the database.

For any given row, its transaction time may arbitrarily
differ from its valid time. For example, in an insurance
database, information about a policy may get inserted
much before that policy comes into effect.

In SQL:2011, transaction time support is provided by
system-versioned tables, which in turn contain the sys-
tem-time period, and valid time support is provided by
tables containing an application-time period2. The name
of the system-time period is specified by the standard as
SYSTEM_TIME.The name of an application-time
period can be any user-defined name. Users are allowed
to define at most one application-time period and at
most one system-time period per table.

One of the advantages of the SQL:2011 approach over
an approach based on the period data type is that it
allows existing databases that capture period informa-
tion in a pair of datetime columns to take advantage of
the SQL:2011 extensions more easily. Ever since
DBMSs have been on the scene, users have been build-
ing their own solutions for handling temporal data as
part of their application logic. Since most DBMSs do
not support a period type, applications dealing with tem-
poral data have tended to capture the period information

using a pair of columns of datetime data type. It would
be very expensive for users invested in such solutions to
replace them with a solution that uses a single column of
period type.

2.2 Application-time period tables
Application-time period tables are intended for meet-

ing the requirements of applications that are interested
in capturing time periods during which the data is
believed to be valid in the real world. A typical example
of such applications is an insurance application, where it
is necessary to keep track of the specific policy details
of a given customer that are in effect at any given point
in time.

A primary requirement of such applications is that the
user be put in charge of setting the start and end times of
the validity period of rows, and the user be free to assign
any time values, either in the past, current or in the
future, for the start and end times. Another requirement
of such applications is that the user be permitted to
update the validity periods of the rows as errors are dis-
covered or new information is made available.

 Any table that contains a period definition with a
user-defined name is an application-time period table.
For example:

CREATE TABLE Emp(
ENo INTEGER,
EStart DATE,
EEnd DATE,
EDept INTEGER,
PERIOD FOR EPeriod (EStart, EEnd)
)

 Users can pick any name they want for the name of
the period as well as for the names of columns that act
as the start and end columns of the period. The data
types of the period start and end columns must be either
DATE or a timestamp type, and data types of both col-
umns must be the same.

 The conventional INSERT statement provides suffi-
cient support for setting the initial values of application-
time period start and end columns. For example, the fol-
lowing INSERT statement inserts one row into the Emp
table:

INSERT INTO Emp
VALUES (22217,

DATE ‘2010-01-01’,
DATE '2011-11-12', 3)

The resulting table looks as shown below (assuming it
was empty before):

2. Interestingly, SQL:2011 manages to pro-
vide this support without actually defining
or using the terms “temporal data” or “tem-
poral table”.

Eno EStart EEnd EDept

22217 2010-01-01 2011-11-12 3

SIGMOD Record, September 2012 (Vol. 41, No. 3) 35

The conventional UPDATE statement can be used to
modify the rows of application-time period tables
(including the application-time period start and end
times). Similarly, the conventional DELETE statement
can be used to delete rows of application-time period
tables.

A new feature in SQL:2011 is the ability to specify
changes that are effective within a specified period. This
is provided by a syntactic extension to both UPDATE
and DELETE statements that lets users specify the
period of interest. For example, the following UPDATE
statement changes the department of the employee
whose number is 22217 to 4 for the period from Feb. 3,
2011 to Sept. 10, 2011:

UPDATE Emp
FOR PORTION OF EPeriod
FROM DATE '2011-02-03'
TO DATE '2011-09-10'

SET EDept = 4
WHERE ENo = 22217

To execute this statement, the DBMS locates all rows
whose application-time period overlaps the period P
from Feb. 3, 2011 to Sept. 10, 2011. Recall that periods
follow closed-open semantics in SQL:2011, so P
includes Feb. 3, 2011 but excludes Sept. 10, 2011. Any
overlapping row whose application-time period is con-
tained in P is simply updated. If an overlapping row
whose application-time period has a portion either
strictly before or strictly after P, then that row gets split
into two or three contiguous rows depending on the
extent of overlap, and of these, the row whose applica-
tion-time period is contained in P is updated. For exam-
ple, suppose the following is the only overlapping row:

Note that the application-time period of the above row
extends beyond P at both ends. The result of the
UPDATE statement will be these three rows:

In this example, the row whose EDept value is
updated to 4 is regarded as the original row and hence,
UPDATE triggers fire for this row. The other two rows

are regarded as newly inserted rows, so INSERT trig-
gers fire for them.

The DELETE statement is similarly enhanced with
FOR PORTION OF syntax to facilitate deletes that are
only effective within a specified period. For example,
the following DELETE statement removes the employee
whose number is 22217 for the period from Feb. 3, 2011
to Sept. 10, 2011:

DELETE Emp
FOR PORTION OF EPeriod
FROM DATE '2011-02-03'
TO DATE '2011-09-10'

WHERE ENo = 22217
Similar to the UPDATE example, any row whose

application-time period is contained in P from Feb. 3,
2011 to Sept. 10, 2011 is simply deleted. If an overlap-
ping row whose application-time period has a portion
either strictly before or strictly after P, then that row gets
split into two or three contiguous rows, and of these, the
row whose application-time period is contained in P is
deleted. For example, suppose the following is the only
overlapping row:

 The result of the statement will be these two rows:

In this example, the result is the deletion of the origi-
nal row and the insertion of two new rows; DELETE
triggers fire for the deleted row and INSERT triggers
fire for the newly inserted rows.

2.2.1 Primary keys on application-time
period tables

The last section gave an example of an Emp table in
which one might expect that ENo is the primary key.
However, looking at the sample result of the UPDATE
statement, there are three rows all with ENo 22217. This
example shows that the primary key must also include
the application-time period columns EStart and
EEnd.

ENo EStart EEnd EDept

22217 2010-01-01 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-02-03 3

22217 2011-02-03 2011-09-10 4

22217 2011-09-10 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-02-03 3

22217 2011-09-10 2011-11-12 3

36 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Simply adding EStart and EEnd to the primary key
will not be sufficient though. Consider the following
data:

The triples (22217, 2010-01-01, 2011-09-10) and
(22217, 2010-02-03, 2011-11-12) are not duplicates so
they would be acceptable values for a conventional pri-
mary key on these three columns. But note that the
application-time periods of these rows overlap. Seman-
tically, this says that the employee with ENo 22217
belongs to two departments, 3 and 4, during the period
from Feb. 3, 2010 through Sept. 10, 2011. Perhaps the
user wishes to allow an employee to belong to two
departments; however, the more typical requirement is
that an employee belongs to exactly one department at
any given time. To achieve that, it must be possible to
forbid overlapping application-time periods, which can
be specified with this syntax:

ALTER TABLE Emp
ADD PRIMARY KEY (ENo,
 EPeriod WITHOUT OVERLAPS)

With this primary key definition, the sample data is
prohibited as a constraint violation.

2.2.2 Referential constraints on applica-
tion-time period tables

Continuing the preceding example, suppose there is
another table with the following definition:

CREATE TABLE Dept(
DNo INTEGER,
DStart DATE,
DEnd DATE,
DName VARCHAR(30),
PERIOD FOR DPeriod (DStart, DEnd),
PRIMARY KEY (DNo,
DPeriod WITHOUT OVERLAPS)

)
 Assume also that we want to make sure that at every
point in time, every value in EDept column
corresponds to some value of DNo column in Dept
table, i.e., every employee at every point in time during
her employment belongs to a department that actually
exists at that point in time. How should this work? Let’s

look at some sample data. Assume the Emp table
contains the following rows:

Assume the Dept table contains the following rows:

Looking strictly at the values of EDept column of the
Emp table and the DNo column of the Dept table, we
may conclude that the conventional referential integrity
constraint involving the two tables is satisfied. But note
that the employee with ENo 22218 is assigned to the
department with DNo 4 from Feb. 3, 2011 to Nov. 12,
2011, but there is no department with DNo 4 for the
period from Feb. 3, 2011 to June 1, 2011. Clearly, this
violates our requirement that every value of EDept col-
umn in Emp table corresponds to some value of DNo
column in Dept table at every point in time. To disal-
low such a situation, it must be possible to forbid a row
in a child table whose application-time period is not
contained in the application-time period of a matching
row in the parent table, which can be specified with this
syntax:

ALTER TABLE Emp
ADD FOREIGN KEY

(Edept, PERIOD EPeriod)
REFERENCES Dept
(DNo, PERIOD DPeriod)

With this referential constraint definition, the sample
data is prohibited as a constraint violation.

More generally, for a given child row, it is not neces-
sary that there exists exactly one matching row in the
parent table whose application-time period contains the
application-time period of the child row. As long as the
application-time period of a row in the child table is
contained in the union of application-time periods of
two or more contiguous matching rows in the parent
table, the referential constraint is considered satisfied.

2.2.3 Querying application-time period
tables

In SQL:2011, application-time period tables can be
queried using the regular query syntax. For example, to

ENo EStart EEnd EDept

22217 2010-01-01 2011-09-10 3

22217 2010-02-03 2011-11-12 4

ENo EStart EEnd EDept

22218 2010-01-01 2011-02-03 3

22218 2011-02-03 2011-11-12 4

DNo DStart DEnd DName

3 2009-01-01 2011-12-31 Test

4 2011-06-01 2011-12-31 QA

SIGMOD Record, September 2012 (Vol. 41, No. 3) 37

retrieve the department where the employee 22217
worked as of January 2, 2011, one can express the query
as:
SELECT Name, Edept
FROM Emp
WHERE ENo = 22217
AND EStart <= DATE '2011-01-02'
AND EEnd > DATE '2011-01-02'

A simpler way to formulate the above query would be
to employ one of the period predicates provided in
SQL:2011 for expressing conditions involving periods:
CONTAINS, OVERLAPS, EQUALS, PRECEDES,
SUCCEEDS, IMMEDIATELY PRECEDES, and
IMMEDIATELY SUCCEEDS. For example, the above
query could also be expressed using the CONTAINS
predicate, as shown below:
SELECT Ename, Edept
FROM Emp
WHERE ENo = 22217 AND

EPeriod CONTAINS DATE '2011-01-02'
If one wanted to know all the departments where the

employee whose number is 22217 worked during the
period from January 1, 2010 to January 1, 2011, one
could formulate the query as:
SELECT Ename, Edept
FROM Emp
WHERE ENo = 22217
AND EStart < DATE '2011-01-01'
AND EEnd > DATE '2010-01-01'

Note that the period specified in the above query uses
the closed-open model, i.e., the period includes January
1, 2010 but excludes January 1, 2011. Alternatively, the
same query could be expressed using the OVERLAPS
predicate as:
SELECT Ename, Edept
FROM Emp
WHERE ENo = 22217 AND
EPeriod OVERLAPS

PERIOD (DATE '2010-01-01',
DATE '2011-01-01')

Period predicates are functionally similar to (but not
identical to) the well-known Allen’s interval operators
[11]. The correspondence between SQL’s period predi-
cates and Allen’s operators is as follows:
• The predicate “X OVERLAPS Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X overlaps Y) OR (X
overlapped_by Y) OR (X during Y) OR (X
contains Y) OR (X starts Y) OR (X
started_by Y) OR (X finishes Y) OR (X
finished_by Y) OR (X equal Y)”. Note that
Allen’s overlaps operator is not a true test of period
overlap. Intuitively, two periods are considered overlap-
ping if they have at least one time point in common.

This is not true for Allen’s overlaps operator. In con-
trast, SQL:2011’s OVERLAPS predicate is a true test of
period overlap. Also, SQL:2011’s OVERLAPS predi-
cate is symmetric, i.e, if “X OVERLAPS Y” is true,
then “Y OVERLAPS X” is also true. This is again not
true for Allen’s overlaps operator.
• The predicate “X CONTAINS Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X contains Y) OR (X starts Y)
OR (X finishes Y) OR (X equal Y)”. Note
that Allen’s contains operator is not a true test of
period containment. Intuitively, period X is considered
containing period Y if every time point in Y is also in X.
This is not true for Allen’s contains operator. In con-
trast, SQL:2011’s CONTAINS predicate is a true test of
period containment.
• The predicate “X PRECEDES Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X before Y) OR (X meets Y)”.
• The predicate “X SUCCEEDS Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X after Y) OR (X met_by Y)”.
• The predicates “X EQUALS Y”, “X IMMEDI-
ATELY PRECEDES Y”, and “X IMMEDIATELY
SUCCEEDS Y” in SQL:2011 are equivalent to the
Allen’s operators “X equal Y”, “X meets Y”, and
“X met_by Y”, respectively.

2.3 System-versioned tables
System-versioned tables are intended for meeting the

requirements of applications that must maintain an
accurate history of data changes either for business rea-
sons, legal reasons, or both. A typical example of such
applications is a banking application, where it is neces-
sary to keep previous states of customer account infor-
mation so that customers can be provided with a
detailed history of their accounts. There are also plenty
of examples where certain institutions are required by
law to preserve historical data for a specified length of
time to meet regulatory and compliance requirements.

A key requirement of such applications is that any
update or delete of a row must automatically preserve
the old state of the row before performing the update or
delete. Another important requirement is that the sys-
tem, rather than the user, maintains the start and end
times of the periods of the rows, and that users be unable
to modify the content of historical rows or the periods
associated with any of the rows. Any updates to the peri-
ods of rows in a system-versioned table must be per-
formed only by the system as a result of updates to the
non-period columns of the table or as a result of row
deletions. This provides the guarantee that the recorded

38 SIGMOD Record, September 2012 (Vol. 41, No. 3)

history of data changes cannot be tampered with, which
is critical to meet auditing and compliance regulations.

Any table that contains a period definition with the
standard-specified name, SYSTEM_TIME, and includes
the keywords WITH SYSTEM VERSIONING in its
definition is a system-versioned table. Similar to appli-
cation-time period tables, users can pick any name they
want for the names of columns that act as the start and
end columns of the SYSTEM_TIME period. Though
SQL:2011 allows the data types of the period start and
end columns to be either DATE or a timestamp type (as
long as the data types of both columns are the same), in
practice, most implementations will provide the
TIMESTAMP type with the highest fractional seconds
precision as the data type for the system-time period
start and end columns. For example:
CREATE TABLE Emp
ENo INTEGER,
Sys_start TIMESTAMP(12) GENERATED
ALWAYS AS ROW START,

Sys_end TIMESTAMP(12) GENERATED
ALWAYS AS ROW END,

EName VARCHAR(30),
PERIOD FOR SYSTEM_TIME (Sys_start,
Sys_end)

) WITH SYSTEM VERSIONING
 Similar to application-time periods, system-time peri-

ods use closed-open period model. At any given point in
time, a row in a system-versioned table is regarded as
current system row if the system-time period of that row
contains the current time. A row that is not a current sys-
tem row is regarded as a historical system row.

System-versioned tables differ from application-time
period tables in the following respects:
1) In contrast to the application-time period tables,

users are not allowed to assign or change the values
of Sys_start or Sys_end columns; they are
assigned (and changed) automatically by the database
system. This is the reason why the definitions of
Sys_start or Sys_end columns must include
the keywords GENERATED ALWAYS.

2) INSERT into a system-versioned table automatically
sets the value of Sys_start column to the transac-
tion timestamp, a special value associated with every
transaction3, and sets the value of Sys_end column
to the highest value of the column’s data type. For

example, assume that the following INSERT state-
ment executed in a transaction whose transaction
timestamp is 2012-01-01 09:00:004:
INSERT INTO Emp (ENo, EName)

VALUES (22217, 'Joe')
The resulting table looks as shown below (assuming it

was empty before):

3) UPDATE and DELETE on system-versioned tables
only operate on current system rows. Users are not
allowed to update or delete historical system rows.
Users are also not allowed to modify the system-time
period start or the end time of both current system
rows and historical system rows.

4) UPDATE and DELETE on system-versioned tables
result in the automatic insertion of a historical system
row for every current system row that is updated or
deleted.

An UPDATE statement on a system-versioned table
first inserts a copy of the old row with its system-time
period end time set to the transaction timestamp, indi-
cating that the row ceased to be current as of the transac-
tion timestamp. It then updates the row while changing
its system-period start time to the transaction timestamp,
indicating that the updated row to be the current system
row as of the transaction timestamp. For example, sup-
pose the current system row with ENo 22217 is as
shown below:

The following UPDATE statement changes the name
of the employee whose number is 22217 from Joe to
Tom effective from the transaction timestamp of the
transaction in which the UPDATE statement was exe-
cuted:

UPDATE Emp
SET EName = 'Tom'
WHERE ENo = 22217

A historical system row that corresponds to the state
of the row prior to the update is first inserted and then

3. SQL:2011 leaves it up to SQL-implementa-
tions to pick an appropriate value for the
transaction timestamp of a transaction, but it
does require the transaction timestamp of a
transaction to remain fixed during the entire
transaction.

4. Note that we are not showing the fractional
part of seconds in any of the examples in
this Section.

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

9999-12-31
23:59:59

Joe

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

9999-12-31
23:59:59

Joe

SIGMOD Record, September 2012 (Vol. 41, No. 3) 39

the update is performed. Assuming the above statement
is executed in a transaction with the transaction times-
tamp 2012-02-03 10:00:00, the final result will be these
two rows:

In this example, the row whose name is Tom is the
updated row; UPDATE triggers fire for this row. Note
that the insertion of historical system rows does not fire
any INSERT triggers for the inserted rows. Note also
that historical system rows created as a result of
sequence of updates for a given row form one contigu-
ous chain without any gap between their system-time
periods.

A DELETE statement on a system-versioned table
does not actually delete the qualifying rows; instead it
changes the system-time period end time of those row to
the transaction timestamp, indicating that those rows
ceased to be current as of the transaction timestamp. For
example, suppose that the current system row with ENo
22217 is as shown below:

The following DELETE statement simply changes the
system-time period end time of the current system row
for the employee 22217 to the transaction timestamp of
the transaction in which the DELETE statement was
executed:

DELETE FROM Emp
WHERE ENo = 22217

 Assuming the above statement is executed in a trans-
action with the transaction timestamp 2012-06-01
00:00:00, the final result will be the following row:

In this example, DELETE triggers fire for the row
selected for deletion.

Note that in contrast to the application-time period
tables, FOR PORTION OF SYSTEM_TIME is not
needed (and hence not allowed) for the UPDATE and
DELETE statements on system-versioned tables.

2.3.1 Primary key and referential con-
straints on system-versioned tables

The definition and enforcement of constraints on sys-
tem-versioned tables is considerably simpler than the
definition and enforcement of constraints on applica-
tion-time period tables. This is because constraints on
system-versioned tables need only be enforced on the
current system rows. Historical system rows in a sys-
tem-versioned table form immutable snapshots of the
past. Any constraints that were in effect when a histori-
cal system row was created would have already been
checked when that row was a current system row, so
there is never any need to enforce constraints on histori-
cal system rows. Consequently, there is no need to
include the system-period start and end columns or the
period name in the definition of primary key and refer-
ential constraints on system-versioned tables. For exam-
ple, the following ALTER TABLE statement specifies
ENo column as the primary key of Emp table:

ALTER TABLE Emp
 ADD PRIMARY KEY (ENo)
The above constraint ensures there exists exactly one

current system row with a given ENo value.
Similarly, the following ALTER TABLE statement

specifies a referential constraint between Emp and
Dept tables:

ALTER TABLE Emp
 ADD FOREIGN KEY (Edept)

REFERENCES Dept (DNo)
The above constraint is again enforced only on the

current system rows of Emp and Dept tables.

2.3.2 Querying system-versioned tables
Because system-versioned tables are intended prima-

rily for tracking historical data changes, queries on sys-
tem-versioned tables often tend to be concerned with
retrieving the table content as of a given point in time or
between any two given points in time. SQL:2011 pro-
vides three syntactic extensions for this specific pur-
pose. These are allowed only in queries on system-
versioned tables.

The first extension is the FOR SYSTEM_TIME AS
OF syntax that is useful for querying the table content
as of a specified point in time. For example, the follow-
ing query retrieves the rows of Emp that were current as
of Jan. 2, 2011:

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

2012-02-03
10:00:00

Joe

22217 2012-02-03
10:00:00

9999-12-31
23:59:59

Tom

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

9999-12-31
23:59:59

Joe

ENo EStart EEnd EName

22217 2012-01-01
09:00:00

2012-06-01
00:00:00

Joe

40 SIGMOD Record, September 2012 (Vol. 41, No. 3)

SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME AS OF
 TIMESTAMP '2011-01-02 00:00:00'

The above query returns all rows whose system-time
period start time is less than or equal to the specified
timestamp and whose system-time period end time is
greater than the specified timestamp.

The second and third extensions allow for retrieving
the content of a system-versioned table between any two
points in time. The following query returns all rows that
were current starting from TIMESTAMP '2011-01-
02 00:00:00’up to (but not including) TIMESTAMP
'2011-12-31 00:00:00':

SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME FROM
 TIMESTAMP '2011-01-02 00:00:00’TO
 TIMESTAMP '2011-12-31 00:00:00'

In contrast, the following query returns all rows that
were current starting from TIMESTAMP '2011-01-
02 00:00:00’up to (and including) TIMESTAMP
'2011-12-31 00:00:00':
SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME BETWEEN
 TIMESTAMP '2011-01-02 00:00:00'AND
 TIMESTAMP '2011-12-31 00:00:00'

Note that the period specified in the (FROM ... TO ...)
corresponds to a closed-open period model while the
period specified in the (BETWEEN ... AND ...) corre-
sponds to a closed-closed period model.

If a query on system-versioned tables does not specify
any of the above three syntactic options, then that query
is assumed to specify FOR SYSTEM_TIME AS OF
CURRENT_TIMESTAMP by default and the query
returns only the current system rows as the result. For
example, the following query returns only the current
system rows of Emp table:
SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp

The choice of returning current systems rows as the
default is especially suited for those applications where
retrieval of current system rows is the most frequent
operation. In addition, it also helps with the database
migration in that applications running on non-system-
versioned tables would continue to work and produce
the same results when those tables are converted to sys-
tem-versioned tables.

Finally, to retrieve both current and historical system
rows of a system-versioned table, one can use a query of
the kind shown below:
SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME FROM
 TIMESTAMP '0001-01-01 00:00:00' TO
 TIMESTAMP '9999-12-31 23:59:59'

2.4 Bitemporal tables
A table may be both a system-versioned table and an

application-time period table5. For example:
CREATE TABLE Emp(
ENo INTEGER,
EStart DATE,
EEnd DATE,
EDept INTEGER,
PERIOD FOR EPeriod (EStart, EEnd),
Sys_start TIMESTAMP(12) GENERATED
 ALWAYS AS ROW START,
Sys_end TIMESTAMP(12) GENERATED
 ALWAYS AS ROW END,
EName VARCHAR(30),
PERIOD FOR SYSTEM_TIME
 (Sys_start, Sys_end),
PRIMARY KEY (ENo,

EPeriod WITHOUT OVERLAPS),
FOREIGN KEY
 (Edept, PERIOD EPeriod)
 REFERENCES Dept
 (DNo, PERIOD DPeriod)

) WITH SYSTEM VERSIONING
Rows in such tables are associated with both the sys-

tem-time period and the application-time period. Such
tables are very useful for capturing both the periods dur-
ing which facts were believed to be true in the real
world as well as the periods during which those facts
were recorded in the database. For example, while
employed, an employee may change names. Typically
the name changes legally at a specific time (for exam-
ple, a marriage) but the name is not changed in the data-
base concurrently with the legal change. In that case, the
system-time period automatically records when a partic-
ular name is known to the database, and the application-
time period records when the name was legally effec-
tive. Successive updates to bitemporal tables can journal
complex twists and turns in the state of knowledge cap-
tured by the database.

Bitemporal tables combine the capabilities of both
system-versioned and application-time period tables. As
in the case of application-time period tables, the user is
in charge of supplying values for the application-time
period start and end columns. As in the case of system-
versioned tables, INSERT into such a table automati-
cally sets the value of system-time period start column
to the transaction timestamp, and the value of system-

5. Though SQL:2011 does not define any spe-
cific term for such tables, we use the term
“bitemporal tables” in keeping with its use
in the literature as well as in some products.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 41

time period end column to the highest value of the col-
umn’s data type.

As in the case of application-time period tables, both
the conventional UPDATE statement as well as UPDATE
with FOR PORTION OF app-period, where app-
period is the name of application-time period, can be
used to modify the rows of bitemporal tables. Similarly,
the conventional DELETE statement as well as DELETE
with FOR PORTION OF app-period can be used to
delete rows from bitemporal tables. As in the case of
system-versioned tables, only current rows in system-
time can be updated or deleted and a historical system
row is automatically inserted for every current system
row that is updated or deleted.

Queries on bitemporal tables can specify predicates on
both application-time periods as well as system-time
periods to qualify rows that will be returned as the query
result. For example, the following query returns the
department where the employee 22217 worked as of
December 1, 2010, recorded in the database as of July 1,
2011:
SELECT ENo, EDept
FROM Emp FOR SYSTEM_TIME AS OF
 TIMESTAMP '2011-07-01 00:00:00'
WHERE ENo = 22217 AND
 EPeriod CONTAINS DATE '2010-12-01'

2.5 Future directions
Though SQL:2011 has incorporated several signifi-

cant extensions for managing temporal data, there is cer-
tainly room for additional extensions. These are left as
Language Opportunities for future versions of the stan-
dard. Here is a partial list of such extensions:
• Support for period joins, i.e., joining a row from
one table with a row from another table such that their
application-time or system-time periods satisfy a condi-
tion such as overlap. Note that it is possible to do an
inner join of this kind using SQL:2011’s OVERLAPS
predicate, but outer joins require support for additional
syntax built into the language.
• Support for period aggregates and period grouped
queries that take into account application-time or sys-
tem-time periods of rows.
• Support for period UNION, INTERSECT and
EXCEPT operators that take into account application-
time or system-time periods of rows.
• Support for period normalization that produces
semantically-equivalent minimal set of rows for a given
table by combining contiguous rows that have exactly
the same values in non-period columns.
• Support for multiple application-time periods per
table.
• Support for non-temporal periods.

3. Comparison with previous tempo-
ral proposals

 Earlier, we alluded to the fact that the SQL committee
had initiated a temporal project that was eventually can-
celled around 2001. We list below some of the differ-
ences between the approach taken by the previous
proposals and the approach taken by SQL:2011 exten-
sions:
• In previous proposals, the period information was
associated with the rows of temporal tables using an
unnamed hidden column. This design was motivated by
the notion of temporal upward compatibility [12], which
required a temporal table and its equivalent non-tempo-
ral table to have exactly the same number of columns.
One major drawback of this approach is that it is incom-
patible with SQL’s notion of tables, which requires all
information associated with the rows of a table to be
captured explicitly as (and only as) column values. The
other drawback was that queries of the form “SELECT
* FROM T”, where T is a temporal table, did not return
the period information associated with the rows of T in
the query result. If users wanted to access the period
information associated with the rows, they were forced
to include invocations of special built-in functions in the
select list of a query for that purpose. These built-in
functions operated on the range variables associated
with temporal tables in a query expression, and returned
the period value associated with the rows pointed to by
those range variables. In contrast, the period informa-
tion is associated with the rows of temporal tables using
explicit, user-defined columns in SQL:2011. Also, the
period information associated with the rows of a tempo-
ral table can be accessed in SQL:2011 simply by includ-
ing the corresponding period start and end columns in
the select list of a query.
• The previous proposals resorted to a controversial
technique of prefixing queries, constraints, and insert/
update/delete statements with the so-called statement
modifiers for changing their normal semantics [12].
Unfortunately, previous proposals contained no clear
rules specifying the semantics of constructs prefixed
with these statement modifiers, so it was hard to figure
out the end result [9]. In contrast, SQL:2011 provides a
small set of syntactic extensions with clearly-specified
scope and semantics.
• In previous proposals, query expressions, constraint
definitions, and insert/update/delete statements
expressed without the statement modifier prefixes were
assumed to operate only on the current rows. This
applied to both transaction time tables and valid time
tables. While this made sense for transaction time
tables, it did not make much sense for valid time tables.
For instance, users were allowed to insert into valid time

42 SIGMOD Record, September 2012 (Vol. 41, No. 3)

tables only those rows whose valid time period started
with the current time. In fact, there was no way for users
to insert rows into valid time tables whose validity peri-
ods were either in the past or in the future. In contrast,
query expressions, constraint definitions, and insert/
update/delete statements on application-time period
tables in SQL:2011 operate on the entire table content
and follow the standard semantics. Also, SQL:2011
allows users to specify any time values they desire for
the application-time period start and end columns as
part of the INSERT statement on application-time
period tables.
• The previous proposals relied on adding special
syntax to the table definition for creating temporal
tables (AS TRANSACTION TIME for transaction-time
support and AS VALIDTIME for valid-time support).
Consequently, supporting additional periods in previous
approach would have required extending the table defi-
nition syntax every time a new period was added. In
contrast, supporting additional periods requires no new
syntax in SQL:2011.

4. Acknowledgements
The authors thank Fred Zemke and Matthias Nicola

for their valuable comments on the prior versions of this
article.

5. References
 [1] Fred Zemke, “What’s new in SQL:2011”, SIGMOD

Record, Vol. 41, No. 1, March 2012, pp. 67-73,
http://www.sigmod.org/publications/sigmod-record/
1203/pdfs/10.industry.zemke.pdf/

 [2] Yu Wu, Sushil Jajodia, X. Sean Wang, “Temporal
Database Bibliography Update”, In Temporal Data-
bases: Research and Practice, O. Etzion, S. Jajodia,
and S.Sripada, eds., Springer, 1998

 [3] Richard Snodgrass, “Developing Time-Oriented
Database Applications in SQL”, Morgan Kauf-
mann, 1999

 [4] C. J. Date, Hugh Darwen, Nikos A. Lorentzos,
“Temporal Data and the Relational Model”, Morgan
Kaufman, 2003

 [5] Cynthia Saracco, Matthias Nicola, Lenisha Gandhi,
“A matter of time: Temporal data management in
DB2 10”, April 2012, http://www.ibm.com/devel-
operworks/data/library/techarticle/dm-
1204db2temporaldata/

 [6] Kevin Jerrigan, “Oracle Total Recall with Oracle
Database 11g Release 2”, September 2009, http://
www.oracle.com/us/products/database/security/
total-recall-whitepaper-171749.pdf

 [7] Gregory Sannik, Fred Daniels, “Enabling the Tem-
poral Data Warehouse”, September 2010, http://
www.teradata.com/white-papers/

 [8] Richard Snodgrass (Ed.), “The TSQL2 Temporal
Query Language”, Kluwer Academic Publishers,
1995

 [9] Hugh Darwen, C.J. Date, “An overview and Analy-
sis of Proposals Based on the TSQL2 Approach”, In
Date on Database: Writings 2000-2006, C.J. Date,
Apress, 2006, also avaliable in http://www.dcs.war-
wick.ac.uk/~hugh/TTM/OnTSQL2.pdf

 [10] ISO/IEC 9075-2:2011, Information technology—
Database languages—SQL—Part 2: Foundation
(SQL/Foundation), 2011

 [11] James F. Allen, “Maintaining knowledge about
temporal intervals”, Communications of ACM, Vol.
26, No. 11, November 1983

 [12] Michael Bohlen, Christian Jensen, Richard
Snodgrass, “Temporal Statement Modifiers”, ACM
Trans. on Database Systems, Vol. 25, No. 4, Decem-
ber 2000

SIGMOD Record, September 2012 (Vol. 41, No. 3) 43

A High-Throughput In-Memory Index, Durable on
Flash-based SSD

Insights into the Winning Solution of the
SIGMOD Programming Contest 2011

Thomas Kissinger, Benjamin Schlegel, Matthias Boehm
∗

, Dirk Habich, Wolfgang Lehner
Database Technology Group

Dresden University of Technology
01062 Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Growing memory capacities and the increasing number
of cores on modern hardware enforces the design of new
in-memory indexing structures that reduce the number
of memory transfers and minimizes the need for locking
to allow massive parallel access. However, most appli-
cations depend on hard durability constraints requiring a
persistent medium like SSDs, which shorten the latency
and throughput gap between main memory and hard
disks. In this paper, we present our winning solution
of the SIGMOD Programming Contest 2011. It consists
of an in-memory indexing structure that provides a bal-
anced read/write performance as well as non-blocking
reads and single-lock writes. Complementary to this in-
dex, we describe an SSD-optimized logging approach
to fit hard durability requirements at a high throughput
rate.

1. INTRODUCTION
With large main memory capacities becoming af-

fordable over the past years, we observe a shift
in the memory hierarchy that degrades hard disks
to a persistency-only medium and moves the en-
tire data pool and processing into the main mem-
ory. As a second hardware trend, CPU clock
rates stopped growing and the number of cores
and hardware threads per CPU started to increase
constantly. Another present topic are flash-based
SSDs, which allow increased throughput and lower
latency compared to classic hard disks. When hav-
ing a look at the application trends, we identify
high update rates as a major issue, e.g., in mon-
itoring applications, operational BI or even in so-
cial networks. However, common index structures

∗The author is currently visiting IBM Almaden Re-
search Center, San Jose, CA, USA.

!

! !

! !

! ! ! !

!"#$ %&'"(&)$

*+#,$-,)".#,/.0$

%&1+231&$4.)23+1+05$

6
2+7$6

&8
")5$

912:,$

*+#,$%&:/"7:+(&7&::$

Figure 1: Indexing System Overview.

like B+-Trees [2] are designed to work on block-
based storage and are not well suited for frequent
updates with massive parallelism, because they re-
quire complex locking schemes for split and merge
operations. This increases communication costs be-
tween threads, especially for cache coherency and
locking. Furthermore, they are optimized for large
block sizes that are used on hard disks. There ex-
ist enhancements of the B-Tree that reduce either
locking overhead (B-Link Trees [8]) or make them
cache-aware (CSB+-Trees [10]). However, these im-
proved structures do not overcome the weaknesses
of the B+-Tree base structure in terms of compre-
hensive balancing tasks and main memory accesses,
especially for updates.

In this paper, we describe our solution for the
SIGMOD Programming Contest 2011 [1], which
addresses exactly the described issues: a high-
throughput in-memory index structure, which uses

44 SIGMOD Record, September 2012 (Vol. 41, No. 3)

a flash-based SSD for durability purposes. The
task required us to build an in-memory index that
fits entirely into the available main memory (two
times the total database size) and is able to han-
dle 1024 Byte keys and 4096 Byte values without
duplicates. Further, the index needs to offer an
order-preserving key-value interface comprising the
following operations: (1) read the value for a given
key, (2) update respectively insert a value for a key,
(3) delete a key-value pair, (4) compare-and-swap a
value and (5) iterate over a key range. The given
workload demands a balanced read/write perfor-
mance as well as a fine-grained locking scheme to
allow massive parallel manipulations and reads. For
durability, the contest was defining an Intel X25-E
enterprise class SSD formatted with ext4. The pro-
gramming contest constraints granted three times
the space of the total database size, which required
our solution to perform a continuous garbage col-
lection.

The specifications of the programming contest
were released at the end of January 2011 and all
teams had about two months available for imple-
menting their solutions. In order to compare the
different solutions during this time, the organizers
provided a leaderboard, to show the teams each oth-
ers current results. After the submission deadline
was passed, each solution was tested with different
workloads (unknown before) to determine the win-
ning team that was finally announced during the
SIGMOD 2011.

To give an overview of our winning solution, we
illustrate the architecture in Figure 1. The first
part of the system forms the index structure that
resides completely in the main memory to offer high
throughput and low latency to the consuming ap-
plications. For our solution, we decided to deploy
an enhanced generalized prefix tree [3]. The prefix
tree is optimized to work as in-memory structure,
because it guarantees a maximum number of mem-
ory access for finding a key. In consideration of
the workload, this structure also offers a well bal-
anced read/write performance, since updates do not
involve neither index node nor memory layout re-
organizations. Moreover, its deterministic behavior
allows an efficient handling of parallel requests, be-
cause there are no costly internal reorganizations
that depend on the actual data inside the index.

The contributions of this paper are the presenta-
tion of:

1. A fine-grained locking scheme and an efficient
memory management subsystem for the gener-
alized prefix tree as index structure, which al-
lows non-blocking reads and single-lock writes.

!"#$#%#
&# %# !# '# !(#!"#

&# %# $# !(#!"#! &# %# !# '# !(#!"#! &# %# !# '# !(#!"#!

%# !# '# !(#!"#!

!

%# !# '# !(#!"#!

%# !# '# !(#!"#! %# !# '# !(#!"#! %# !# '# !(#!"#!

)*+#,#
-./0*#

)*+#,#
-./0*#

)*+#,#
-./0*#

)*+#,#
-./0*#

),-#),-#),-#),-#

),-#),-#),-#

!!!#,#
-./0*#

%#
%%%%##%%%%##%!!%##!!!!# !
12*34/.5+#)*+6#!!!#

Figure 2: The Generalized Prefix Tree.

We discuss this locking scheme in Section 2 in
more detail.

2. A complementary coalesced cyclic log [7, 6, 5]
that is used to log each manipulating operation
and to recover the in-memory index in case of
hardware or software failure. This log that we
describe in Section 3 is tuned to cooperate best
with our in memory index structure.

After dealing with both system parts, we evaluate
each part as well as the overall indexing system in
Section 4 on different hardware configurations. Fi-
nally, we conclude the paper in Section 5.

2. HIGH-THROUGHPUT IN-MEMORY
INDEX

In this section, we start giving an introduction
to the generalized prefix tree, followed by the addi-
tional changes we made to enable it to handle mas-
sive parallel requests. Figure 2 shows an example of
a prefix tree in which we highlighted the traversal
path for the 16 bit width key 111 (decimal nota-
tion). To find a key inside this prefix tree, the key
is split into fragments of an equal prefix length k�.
Starting from the left, each fragment is used to iden-
tify the bucket in the corresponding tree node. For
example, the first four bits in this example are used
to find the appropriate bucket in the root node for
this key. This bucket contains a pointer to the next
node that takes the next four bit fragment to find
its bucket on this tree level. The number of buckets
in each node depends on the prefix length k� and
is calculated by 2k�

. At the end of this traversal
path is the actual content node, which contains the
value for the searched key. So, the main character of
a prefix tree is that the key itself is the actual path
inside the prefix tree and is independent of other
keys present in the index.

The most important configuration parameter is
the static prefix length k�. For instance, a 16 bit
key (k = 16), k� = 1 would cause a maximum tree
height h of 16 which also leads to 16 costly random

SIGMOD Record, September 2012 (Vol. 41, No. 3) 45

!!"#"$"
%" $" !" &" !'"!("

%" $" #" !'"!("! %" $" !" &" !'"!("! %" $" !" &" !'"!("!

$" !" &" !'"!("!

!

$" !" &" !'"!("!

%" $" !" &" !'"!("! %" $" !" &" !'"!("! %" $" !" &" !'"!("!"!

"!

"! "!

"! "!

"!

"! "!

)*+,-.-/0"1023/4"1-5-60/"

704"8"
9-:;0"

704"8"
9-:;0"

704"8"
9-:;0"

704"8"
9-:;0"

789" 789" 789" 789"

789" 789" 789"

!!!"8"
9-:;0"

$"
$$$$""$$$$""$!!$""!$!!"!

(a) Tree Traversal.

!!"#"$"
%" $" !" &" !'"!("

%" $" #" !'"!("! %" $" !" &" !'"!("! %" $" !" &" !'"!("!

$" !" &" !'"!("!

!

$" !" &" !'"!("!

%" $" !" &" !'"!("! %" $" !" &" !'"!("! %" $" !" &" !'"!("!"!

"!

"! "!

"! "!

"!

"! "!

)*+,-.-/0"1023/4"1-5-60/"

704"8"
9-:;0"

704"8"
9-:;0"

704"8"
9-:;0"

704"8"
9-:;0"

789" 789" 789" 789"

789" 789" 789"

!!!"8"
9-:;0"

$"
$$$$""$$$$""$!!$""!$!!"!

$" !!" !'"!("!!"!

!$<"8"
9-:;0"

!!!"8"
9-:;0"

(b) Node Split.

Figure 3: Example of how to insert a new Key into a Prefix Tree.

memory accesses. This configuration is similar to
a classical binary tree. The other extreme is k� =
16, where only one huge node with 216 buckets is
created. Here, we have only one memory access
to find a key’s value at the cost of a bad memory
utilization. For the contest, we set k� = 4 to fulfill
the memory limitation on the one hand and the
performance requirements on the other.

In addition to the base index structure, we ap-
plied some performance and memory optimizations
as shown in [3]. The dynamic expansion expands a
node only when a second key with the same prefix
is inserted. The example in Figure 2 contains such
a case. Key 111’s content node is already linked
in the third level of the tree. This is possible, be-
cause there is no other key inside the tree that uses
the same prefix after this point. As soon as a key
is inserted that shares the same 12 bit prefix but
differs in the fourth fragment, a new node is cre-
ated at the fourth level. The second optimization
we applied is to store the type of the next node
directly inside the pointer to that node. So, the
highest bit of each pointer (8 Byte aligned mem-
ory) determines whether the next node is a content
node or an internal node. This reduces the index
size and the number of failed speculative execution
steps, because the code path is determined much
earlier.

The most challenging issue on modern hardware
is parallelization. Thus, we are forced to identify a
fine-grained locking scheme or even better, to use
no locks at all, which is extremely difficult to de-
sign and in some cases not even possible. For our
solution, we designed a locking scheme that allows
non-blocking reads and write operations requiring
only a single lock. However, the main bottleneck
for the write performance is given through the SSD
latency. We will show in Section 3 that due to the
special characteristics of the flash-optimized log and

the on-the-fly garbage collection, also write oper-
ations benefit dramatically from a high degree of
parallelism.

In the first place, we describe how to protect write
operations against each other. This is achieved by
adding a single lock to each internal node. We de-
cided to use spinlocks as the specific locking mecha-
nism, because they (1) have less overhead than mu-
texes/futexes in their lock and unlock operations
and they (2) occupy only 4 Byte of memory, which
is much less compared to the size of a mutex struc-
ture, which is nearly as big as an entire cache line
and therefore doubles the size of each node. Due
to the deterministic behavior of our prefix tree, a
lookup for a specific key takes always the same path
inside the tree and—most importantly—there are
no balancing tasks inside and between the internal
nodes of the tree. Hence, the nature of the prefix
tree allows us to perform a write operation by only
locking a single node, because we do not have to
lock across multiple nodes for, e.g., balancing pur-
poses. Therefore it is enough to lock the node that
needs to be split or where a content node has to be
updated. A more fine-grained solution would be to
lock single buckets instead of complete nodes, since
this would require about 50% more memory for a
node, we decided against this solution.

In order to allow non-blocking read operations,
we use the read-copy update (RCU) mechanism [9].
With RCU, a content node is never updated in-place
by just overwriting the old value with the new one,
but it copies the current content node and modifies
this new private copy. In a second step, the pointer,
which referenced the old content node, is updated
to point to the new content node. This allows read-
ers that still read from the old version to finish and
takes subsequent readers to the new version of the
content node. A problem that arises with RCU
is that the memory management needs to detect,

46 SIGMOD Record, September 2012 (Vol. 41, No. 3)

whether it is safe to recycle the old content node’s
memory block. We accomplished this by adding
a counter to each content node that is atomically
increased by a reader when starting to read from
this content node and is atomically decreased when
finished reading the content node. Thus, the RCU-
aware memory manager has to test this field for
zero, before it can be recycled. The memory man-
ager itself is completely implemented in userland,
because malloc calls turned out to be much too ex-
pensive. Therefore, the memory manager allocates
one huge memory chunk via a mmap call at the begin-
ning and administrates this chunk on its own. For
memory recycling, the memory manager maintains
a free list for each possible chunk length, which is
limited through the maximum key and value sizes
defined by the contest.

Example 1. To summarize, we provide an ex-
ample in Figure 3. The example shows the write
operation of the decimal key 107 (binary represen-
tation and fragmentation in the upper right corner
of the figure). Compared to Figure 2, every inter-
nal node is now extended with a lock. At first, the
running thread traverses the prefix tree down to the
third level as shown in Figure 3(a). The thread now
faces a situation in which the bucket is already oc-
cupied by a another content node with another key.
Thus, it has to perform a dynamic expansion as
shown in Figure 3(b). Therefore, it locks the inter-
nal node and checks whether the situation is still the
same, otherwise it has to retry. At this point it is
safe for the thread to work on that internal node. In
the next step, the thread asks the memory manager
to allocate the new node for the fourth tree level and
two new content nodes. The value of the old content
node is copied to the new content node and the key
tail of the old node is truncated and written to the
new one. The content node for the new node is cre-
ated as usual and both new content nodes are linked
by the new internal node. Now, the pointer of the
third level node is turned to the new internal node
and the node can be unlocked. In a last step, the
thread returns the old content block to the memory
manager, which is going to recycle its memory as
soon as no reader is reading its memory anymore.

3. COALESCED CYCLIC LOG
In this section, we present our flash-optimized co-

alesced cyclic log that is tuned to operate hand in
hand with the in-memory index structure as de-
picted in Figure 1. A flash-based SSD basically
consists of some flashpacks and a controller. The
controller mainly implements the error correction
and the wear leveling, which is responsible for pro-

!"#$%&'& !"#$%&(&!"#$%&)&!"#$%&*& !"#$%&+&!"#$%&,&

!#--.$/&0123/31$& 4.5678".56&0123/31$&

!"#$%&+&
95:36&;5/5&

<-3/.&=#>>.-& <-3/3$?&@A.-5/31$2&

;5/5&
;5/5&
;5/5&
;5/5&

=5--3.-&B3/"&
C3D.1#/&

E15:.2E.6F&EGE:3E&H1?&

!"#$%&I3J.& !4!7*K& H1?&;5/5&

Figure 4: The coalesced cyclic Log.

longing the service life of the flashpacks that are the
actual storage media. Main advantages compared
to hard disks are better energy-efficiency, energy-
proportionality, higher throughput, and lower la-
tency what shortens the gap between transient
main-memory and persistent drives. Previous re-
search [4] showed that SSDs expose their full per-
formance when reading or writing to it with a se-
quential access pattern, similar to hard disks and
main memory, because flashpacks are not capable
of doing in-place updates. Instead, a SSD has to
erase a flash block of typically 4 KB first, before it
is able to write this entire block again. Furthermore,
flash memory is only able to erase a set of blocks
(the erase block size between 128 and 512 KB) at
once. All these internal characteristics are hidden
from the user through the Flash Translation Layer
(FTL). In order to exploit the full performance, we
need to be aware of these internal limitations.

Since the SSD I/O is the bottleneck of the com-
plete indexing system, it is essential to write with a
sequential pattern to the device. Thus, we decided
to use an append log as base structure and applied
the following two extensions:

1. Write coalescing to maximize the write
throughput.

2. Cyclic writing, because of the limited SSD
space.

The idea of write coalescing is similar to a group
commit. Instead of writing each log record individu-
ally, we collect as much as possible log records from
the simultaneously running operations in a write
buffer and flush them at once. The write coalescing
increases the overall throughput dramatically, be-
cause the contest demanded hard durability, which
is ensured by drive cache flushes that are very costly
operations with a high latency. As a side effect, this
raises the latency of single writing operations. How-
ever, it is a good trade-off when taking the through-
put gain into account. Figure 4 shows a schematic

SIGMOD Record, September 2012 (Vol. 41, No. 3) 47

!"#$%

&'()$#*+,%
&'-$.%

//0%

1$2-3%4%5+"6$3%

5+"6$%7899$+%
1$2-%:;$2-%

<2="-26"*'%
1$2-3%4%5+"6$3%

<2="-26"*'%

%%%%%5+"6$%7899$+%
1$2-%:;$2-%

1$2-3% %%%%%%%%%%%%%%%%1$2-3%

>"==% >"==%5+"6$%7899$+% >=83;%% >=83;%

Figure 5: In-Memory Index and SSD Usage
over Time.

overview of our coalesced cyclic log. The central
component is the described write buffer that collects
the single log records from the individual threads.
After a thread has written a log record to the write
buffer, this thread is stalled until the write buffer is
flushed. We flush the write buffer, either it is full,
there is no other write operation left, or a predefined
timeout is reached. Every time a flush is initiated,
the single log records in the write buffer are com-
posed to a chunk that is 4 KB aligned and check-
summed with a CRC-32. Afterwards, this chunk is
written to the disk using the fdatasync system call
in Linux.

Since we do not write out the entire index struc-
ture as a checkpoint and the available space on the
SSD is limited, the log needs to be cyclically over-
written. This forces us to perform a garbage collec-
tion on-the-fly. Thus, the coalesced cyclic log reads
at least the size of the write buffer ahead. While
reading, it validates the read log records against the
in-memory index structure. All log records that are
still valid are stored at the beginning of the write
buffer and are written together with the new log
records on the next write buffer flush.

Figure 5 shows the typical write buffer period and
the activity states of the in-memory index as well
as of the SSD. At first, when the write buffer is in
the Fill mode, read and write operations are pro-
cessed. All changes made by write operations are
stored as log data in the write buffer. The corre-
sponding threads are blocked until the write buffer
is flushed. As soon as one of the Flush conditions
for the write buffer occur, the write buffer is locked
disabling further write operations. During the write
buffer is flushed to the SSD, the storage system al-
ready reads ahead the log to free up the space for
the next data chunk. The SSD’s write performance
is not affected by the simultaneous reading, because
the operating system usually detects sequential read
patterns and prefetches this data in the I/O buffer.
After the data was successfully written to the SSD,
the write buffer changes back into the Fill mode. In
order to fully utilize the SSD, it is necessary to keep
the time of Fill phases as small as possible, because
the SSD becomes idle during these times. Thus,

Operation Type Probability

Read 45%
Write 40%
Delete 5%
Compare-and-Swap 5%
Scan (max. 10 rows) 5%

Table 1: Distribution of Operation Types.

we spent a lot of efforts to allow fast parallel op-
erations and non-blocking reads on the in-memory
index. Another solution is to use two write buffers
and alternately filling and flushing them. However,
this solution turned out to be much slower, because
of the high latency of a SSD flush operation. An-
other reason for making reads non-blocking is, that
reads are allowed at any time and they are exten-
sively used for log data validation. The main rea-
son for using non-blocking reads was given through
the overall scenario: In the contest, the benchmark
was setup to create a specific amount of threads.
Each thread has a given probability to issue either
a read or a write operation and the storage system
works optimally when all of these threads flush their
writes at once. Therefore, we need to process read
operations fast to have every thread doing a write
operation to fill the write buffer as fast as possible.
This finally prevents the SSD from being idle.

Once, the system crashes or is shutdown, the
storage system must be capable of rebuilding the
in-memory index. This is done by reading the log
twice. The first time, we only process update op-
erations and the second time we apply delete op-
erations. To maintain the temporal order, the in-
memory index as well as each log record contains
sequential transaction numbers. Thus, an update
respectively a delete is only applied, if the transac-
tion number is greater than the current one in the
content node of the in-memory index. The need for
applying delete operations in a separate run results
from this comparison.

4. EVALUATION
In this section, we evaluate individual system

components as well as the overall performance on
different hardware configurations and parameter
settings. The evaluation system, which is dif-
ferent from the system used for the contest, is
equipped with an Intel i7-3960X (6 cores with
Hyper-Threading, running at 3.3 GHz and 3.9 GHz
max. Turbo Frequency, four memory channels and
15 MB shared L3 cache), 32GB of DDR3-1600, and
an Intel X25-E 64GB SSD. For benchmarking, we

48 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Figure 6: Pure In-Memory Index Perfor-
mance dependent on the Number of Threads.

used the benchmark driver provided by the pro-
gramming contest. This driver generates 8 Byte
sequential integer keys to populate the index struc-
ture. After that, the driver launches a given set of
threads (32 as default) and each of them queries the
index for a preset amount of time. Table 1 shows
the probabilities for a thread to select a specific type
of operation for the next query.

In the first experiment, we evaluate the per-
formance of the pure in-memory index structure.
Therefore, we completely disable the SSD log. Fig-
ure 6 presents the measurements in million oper-
ations per second for a range of 1 million sequen-
tial keys (uniformly selected from this range) with a
payload of 8, 1024, and 4096 Bytes as values. Fur-
ther, we marked some points specific to the evalu-
ation hardware. For large payloads like 1024 and
4096 Bytes, we observe optimal scalability of the
index. With up to 6 threads, where each of them
can be mapped to an exclusive physical core, the
performance scales nearly linearly. In the range
from 6 to 12 threads, the cores are shared by two
threads to fully utilize its processing units, the in-
dex still scales nearly linear, but with less gain. The
performance gain in this region mainly depends on
the remaining amount of memory bandwidth. Af-
ter the limit of 12 hardware threads is reached, the
performance gain stalls and starts to decrease, be-
cause of the scheduling overhead. When looking at
smaller payloads like 8 Byte, we see another behav-
ior. Here, the performance does not scale linearly,
instead, the performance benefit of adding a new
thread decreases constantly and even starts to lower
the overall performance after nine threads until it
reaches the hardware thread limit. This happens
because the index is not memory bound anymore
and is now facing the high concurrency overhead,
especially in the memory management subsystem,
when writing a key/value pair to the index. Due
to the fact, that the evaluation machine of the con-

Figure 7: Overall Performance on different
Drive Configurations.

Figure 8: Overall Performance as a Function
of the Flush Threshold.

test only got 8 hardware threads available, we did
not have any performance penalty by allowing more
than eight thread to work in parallel.

In the second experiment, we activated the SSD
log and measured the index performance for four
different drives. We used an PCI Express OCZ
Revodrive, which internally consists of two SSDs
connected via a RAID-0 chipset, an Intel X25-E
64GB SATAII enterprise class SSD, and a main-
stream OCZ Solid 3 64GB SATA III SSD. Moreover,
we tested our solution on a classic Samsung 160 GB
SATAII HDD to compare the results with the SSDs.
For each drive, we measured the performance for
three different payload sizes with and without ext4
barriers. An ext4 barrier guarantees the drive cache
to be flushed when calling fdatasync (assuming the
driver controller supports the FLUSH CACHE com-
mand). With disabled ext4 barriers, only the file
cache is written back to the drives cache. In case
of a power loss, the data is not guaranteed to be on
the drive. Figure 7 shows all results. In general,
we observe major differences between the different
drive types with enabled barriers. The worst per-
formance was measured on the Revodrive and the
HDD, which are outperformed by orders of magni-
tude by the X25-E and the Solid 3 drive. With this
setting, we mainly measured the latency of the con-

SIGMOD Record, September 2012 (Vol. 41, No. 3) 49

troller respectively the mechanical movements on
the HDD, because there is no way of hiding the la-
tency with the drive cache anymore. When turning
off the ext4 barriers, we are able to measure the
disks bandwidth. Here, the HDD performs much
better, because HDD controllers are tuned for la-
tency hiding. There are not much expensive me-
chanical seeks necessary, because of the sequential
write pattern. Furthermore, a HDD is able to over-
write sectors without erasing or copying them first.
The best results are achieved with the Revodrive
and the Solid 3, which is mainly dedicated to fast
PCIe x4 respectively SATAIII interface.

The last experiment, demonstrates the impact of
the coalesced writes. This experiment was executed
by 64 threads in parallel on an Intel X25-E for differ-
ent payload sizes and write cache thresholds. For
example, a write cache threshold of 4 means that
the write cache is immediately flushed after it col-
lected 4 single log records. The respective measure-
ments are visualized in Figure 8. As an overall
result, we see that the total performance benefits
massively from a high threshold configuration, be-
cause the cache flush is the actual bottleneck in the
system. When comparing the results for the dif-
ferent payload sizes, we observe that the benefit of
flushing more writes at once decreases earlier for
big payloads than for the small ones, what can be
explained with the SSD hitting its bandwidth limit
when transferring the data from the write buffer in
the main memory to the drives cache, before it is
able to flush this cache.

5. CONCLUSION
With the wide availability of large main mem-

ory capacities and multi-core systems, in-memory
indexes with efficient parallel access mechanisms
become more and more important to databases.
Application trends on the other hand, demand
hard durability requirements and high update rates,
which can not be sustained by classic B-Tree like in-
dex structures on conventional hard disks.

Our solution of the SIGMOD Programming Con-
test 2011, that we presented in this paper, ad-
dresses exactly these issues. We designed an index-
ing structure with an efficient locking scheme that
scales with the growing number of hardware threads
and exhibits a balanced read/write performance.
This structure is based on the generalized prefix
tree, which we augmented with an efficient locking
scheme to allow non-blocking reads and single-lock
writes for fast parallel access. To fulfill durability
requirements, we built a storage system that incor-
porates into this indexing structure and takes ad-

vantage of the characteristics of modern flash-based
SSDs. The storage system is mainly a cyclic log that
collects single log records in a write buffer before
flushing it to disk to achieve maximum throughput.
The orchestration of both components — the in-
dex structure and the storage system — creates a
powerful indexing system for modern applications.

6. ACKNOWLEDGMENTS
We thank the NSF, Microsoft, and the ACM

for sponsoring this contest and especially the MIT
CSAIL for doing such a great job in organizing it.
Furthermore, we thank all the other participants for
pushing each others solutions forward. This work
is supported by the German Research Foundation
(DFG) in the Collaborative Research Center 912
“Highly Adaptive Energy-Efficient Computing”.

7. REFERENCES
[1] SIGMOD Programming Contest 2011. http:

//db.csail.mit.edu/sigmod11contest/.
[2] R. Bayer and E. McCreight. Organization and

Maintenance of Large Ordered Indexes, pages
245–262. Software pioneers, New York, NY,
USA, 2002.

[3] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer,
D. Habich, and W. Lehner. Efficient
In-Memory Indexing with Generalized Prefix
Trees. In BTW, pages 227–246, 2011.

[4] L. Bouganim, B. T. Jónsson, and P. Bonnet.
uFLIP: Understanding Flash IO Patterns. In
CIDR, 2009.

[5] S. Chen. FlashLogging: Exploiting Flash
Devices for Synchronous Logging
Performance. In SIGMOD, pages 73–86, 2009.

[6] B. K. Debnath, S. Sengupta, and J. Li.
FlashStore: High Throughput Persistent
Key-Value Store. PVLDB, 3(2):1414–1425,
2010.

[7] B. K. Debnath, S. Sengupta, and J. Li.
SkimpyStash: RAM Space Skimpy Key-Value
Store on Flash-based Storage. In SIGMOD,
pages 25–36, 2011.

[8] P. L. Lehman and s. B. Yao. Efficient Locking
for Concurrent Operations on B-Trees. ACM
Trans. Database Syst., 6:650–670, December
1981.

[9] P. E. McKenney and J. D. Slingwine.
Read-Copy Update: Using Execution History
to Solve Concurrency Problems.

[10] J. Rao and K. A. Ross. Making B+-Trees
Cache Conscious in Main Memory. SIGMOD
Rec., 29:475–486, May 2000.

50 SIGMOD Record, September 2012 (Vol. 41, No. 3)

 Report of the International Workshop on
Business Intelligence and the Web – BEWEB 2011

Jose-Norberto Mazón, Irene Garrigós

University of Alicante, Spain
{jnmazon,igarrigos}@dlsi.ua.es

Florian Daniel
University of Trento, Italy

daniel@disi.unitn.it

Malu Castellanos
HP Labs, USA

malu.castellanos@hp.com

ABSTRACT
The 2nd International Workshop on Business intelligencE
and the WEB (BEWEB) was co-located with the
EDBT/ICDT 2011 Joint Conference in Uppsala (Sweden)
on March 25, 2011. BEWEB intends to be an international
forum for researchers and practitioners to exchange ideas
on how to leverage the huge amount of data that is available
on the Web in BI applications and on how to apply Web
engineering methods and techniques to the design of BI
applications. This report summarizes the 2011 edition of
BEWEB.

1. INTRODUCTION
Over the last decade, we have been witnessing an in-

creasing use of Business Intelligence (BI) solutions that
allow enterprise to query, understand, and analyze business
data in order to make better decisions.

Traditionally, BI applications allowed business people
to acquire useful knowledge from the data of their organiza-
tion by means of a variety of technologies, such as data
warehousing, data mining, business performance manage-
ment, OLAP, periodical business reports, and the like. Yet,
in the very recent years, a new trend emerged: BI applica-
tions no longer limit their analysis to the data inside a com-
pany. Increasingly, they also source their data from the out-
side, i.e., from the Web, and complement company-internal
data with value-adding information from the Web (e.g.,
retail prices of products sold by competitors), in order to
provide richer insights into the dynamics of today’s busi-
ness.

In parallel to the move of data from the Web into BI
applications, BI applications are experiencing a trend from
company-internal information systems to the cloud: BI as a
service (e.g., hosted BI platforms for small- and medium-
size companies) is the target of huge investments and the
focus of large research efforts by industry and academia.
The idea behind BI as a service is outsourcing the
processing and analysis of large bodies of data by consum-
ing BI from the cloud, which will help in enabling the so-
called Cloud Intelligence [1].

The International Workshop on Business intelligencE
and the WEB (BEWEB) targets the above two moves and

creates an international forum for exchanging ideas on how
to leverage the huge amount of data that is available on the
Web in BI applications, and how to apply Web-related en-
gineering methods and techniques to the design of BI appli-
cations, such as BI as a service.

BEWEB 2011 attracted an average attendance of about
20 people, who actively engaged in fruitful and animated
discussions. High-quality submissions were received from 7
different countries: Austria, Cuba, Germany, Republic of
Korea, Mexico, Spain and USA. Each paper was carefully
reviewed by at least three members of the program commit-
tee. As result of this process, 5 papers were selected as long
papers and 1 as short paper for presentation at the work-
shop. The program included two invited industrial talks and
the opening keynote, which was the highlight of the work-
shop. The proceedings of this year’s edition of BEWEB can
be found at http://doi.acm.org/10.1145/1966883.

2. KEYNOTE
The keynote entitled “Dr. Crowdsource: or How I

Learned to Stop Worrying and Love Web Data” given by
Prof. Felix Naumann (Hasso Plattner Institute, Potsdam,
Germany) was magnificent. The title was inspired by a
famous Stanley Kubrick movie1, satirizing the threat of nuc-
lear war. Using this metaphor, Prof. Naumann revealed that
dealing with web data can be a threat if its inherent hetero-
geneity is not tackled with appropriate techniques. He de-
scribed his experiences with the problems caused by web
data heterogeneity and the required daunting tasks and state
of the art techniques to overcome them, thus facilitating
web data integration: source selection to identify appropri-
ate and high-quality sources, data extraction to obtain rele-
vant structured data, scrubbing to standardize and clean
data, entity matching to associate different occurrences of
the same entity, and, finally, data transformation and data
fusion to combine all data about an entity in a single, con-
sistent representation.

3. INVITED TALKS FROM INDUSTRY
With the aim of bringing together researchers from

academy and industry, we were proud of having two ani-

1 http://en.wikipedia.org/wiki/Dr._Strangelove

SIGMOD Record, September 2012 (Vol. 41, No. 3) 51

mated speakers from industrial research labs: Sihem Amer-
Yahia (Yahoo! Research) and Xin Luna Dong (AT&T
Labs-Research).

Sihem’s talk was entitled “I am complex: Cluster Me,
Don't Just Rank me”. In her lively talk, Sihem argued that
Web search over high-dimensional and structured data
should go beyond the “10-blue links experience”, i.e., a
ranked list of results to a keyword-based query. She post-
ulated that an alternative to ranking is to cluster results by
means of two approaches: persona-driven search and rank-
aware clustering.

In her interesting talk entitled “SOLOMON: Seeking
the Truth via Copying Detection”, Luna presented the SO-
LOMON system, whose core detects copying between data
sources. She delved into the techniques to effectively detect
copying relationships between data sources, leverage the
results in various aspects of data integration, and provide a
user-friendly interface to facilitate identifying sources that
best suit their information needs.

4. RESEARCH SESSIONS
Accepted papers were organized into two research ses-

sions: (i) BI with Web Data and (ii) Engineering Web-
Enabled BI.

4.1 BI with Web Data
In the last decade, the amount and complexity of data

available on the Web has been growing rapidly. As a con-
sequence, designers of BI applications making use of data
from the Web have to deal with several issues. Among the
most interesting challenges we find, for instance, the extrac-
tion and integration of heterogeneous data sources. But
there are many other interesting research challenges that
arise when the Web is seen as data repository: developing
Web warehousing solutions, tackling data quality issues,
leveraging semantic Web technologies, employing Web
mining, extending BI to unstructured data (e.g., text) or
semi-structured data (e.g., XML), and so on. In addition,
Web Intelligence, which explores the use of Artificial Intel-
ligence in conjunction with or in relation to Web technolo-
gies, has emerged as a new area that imposes new research
challenges. The following three papers were presented in
this session:

Self-supervised Web search for any-k complete tuples,
by Alexander Löser, Christoph Nagel, Stephan Pieper,
Christoph Boden (University of Technology Berlin, Ger-
many). This paper highlights the importance of querying
structured information from Web pages. The authors define
a query processor that (i) transforms a structured query into
a set of keyword queries that are submitted to a search en-
gine; (ii) forwards search results to relation extractors; and
then (iii) combines relations into result tuples. This novel
query processor completes tuples returned by the relation
extractors by systematically discovering any-k relations
from Web search results.

Toward total business intelligence incorporating struc-
tured and unstructured data, by Byung-Kwon Park (Dong-
A University, South Korea), Il-Yeol Song (Drexel Universi-
ty, USA). This paper surveys existing approaches that con-
solidate both unstructured and structured data for realizing
the so-called total business intelligence. After reviewing
existing work, the authors present an architecture for total
business intelligence in which information retrieval, text
mining, and information extraction technologies are inte-
grated with relational OLAP technologies.

Integrating Web feed opinions into a corporate data
warehouse, by Lisette García-Moya, Shahad Kudama, Ma-
ria Jose Aramburu Cabo, Rafael Berlanga (Universitat
Jaume I, Spain). This paper presents an approach to inte-
grate sentiment data extracted from Web opinion feeds into
the corporate data warehouse where company analytical
data and models are stored. This approach allows BI appli-
cations to perform new analysis tasks by using the tradi-
tional OLAP-based data warehouse operators.

4.2 Engineering Web-Enabled BI
The move of BI applications from company-internal in-

formation systems to applications that are accessible over
the Web implies the need for web-specific design compe-
tencies. In this context, Web engineering methodologies
and technologies represent a large body of knowledge and
expertise that could be very useful in the design of applica-
tions that allow decision makers to access BI data and func-
tionalities over the Web. Good Web engineering is one of
the key foundations in the design of real-time BI and busi-
ness performance management applications, as Web appli-
cations provide access to data from anywhere, at anytime,
and via any media. However, BI on the Web implies a ple-
thora of new research challenges that are specific to the BI
context, e.g., using Web mashups and RIA for BI develop-
ment, BI as a service, usability and accessibility for BI ap-
plications, etc. This session featured the following three
papers:

Capturing data quality requirements for Web applica-
tions by means of DQ_WebRE, by César Guerra (UPSLP,
Mexico), Ismael Caballero, Mario Piattini (University of
Castilla-La Mancha, Spain). This paper presents a model-
driven Web engineering approach for considering data
quality requirements in the development of Web applica-
tions for BI. This approach is based on two artifacts: a me-
tamodel and a UML profile for the management of data
quality software requirements for Web applications called
DQ_WebRE.

Model-driven restricted-domain adaptation of question
answering systems for business intelligence, by Katia Vila
(University of Matanzas, Cuba), Antonio Ferrández (Uni-
versity of Alicante, Spain). This paper presents an approach
for adapting question answering (QA) systems to restricted
domains, such as those related to specific business areas
(e.g., healthcare, agriculture, transportation, etc.), with the

52 SIGMOD Record, September 2012 (Vol. 41, No. 3)

aim of providing BI applications with actionable informa-
tion from unstructured sources (e.g., data from the Web,
etc.). QA systems have been applied in an interesting fa-
shion for obtaining concise answers to questions formulated
in natural language from a collection of text documents,
thus supporting the decision maker in the analysis of textual
data sources.

Towards TomTom like systems for the Web: a novel
architecture for browser-based mashups, by Emilian Pasca-
lau (Hasso Plattner Institute, University of Potsdam, Ger-
many). This paper introduces a new architecture for brows-
er-based mashups based on the TomTom navigation sys-
tems. The described architecture is capable of addressing
issues such as BI on demand and instant use, and offers the
same degree of generality as the browser.

5. OUTLOOK
In previous editions of BEWEB the focus of the papers

has been on synergies between BI and the Web that leve-
rage heterogeneous and semantically rich Web data in BI
applications, and use Web-related engineering methods for
designing BI as a service. In future editions, we plan to con-
tinue this focus but additionally we would like to foster
research on methods, models and technologies for realizing
the BI-aided Web engineering, i.e., how to acquire, analyze,
and manage actionable BI information from Web usage
data (e.g., logs, data streams, click streams, etc.) to support
the development of Web applications (e.g., to achieve ad-

vanced levels of personalization in websites). Likewise, we
would like to consider other BEWEB related topics such as
big data, data visualization, social networks, streaming data,
data quality, privacy and security, and adaptive, contextua-
lized and personalized Web applications.

Finally, to encourage alignment between academic re-
search and industry, we plan to include a session devoted to
present innovative industrial products, services, experiences
and case studies.

6. ACKNOWLEDGMENTS
We would like to express our gratitude to the Program

Committee members for their invaluable work in reviewing
the submitted papers, and to the authors for sharing their
high quality work and contributing their papers to the work-
shop proceedings. We are very grateful to Prof. Felix Nau-
mann for accepting our invitation to give a keynote and
discussing highly relevant research challenges regarding
Web data, and to our invited industrial speakers Sihem
Amer-Yahia and Xin Luna Dong. Finally, we would like to
thank the EDBT/ICDT Workshops Chair Kjell Orsborn and
the Publicity Chair Silvia Stefanova for their support.

7. REFERENCES
[1] Pedersen, T. B. Research challenges for cloud intelli-

gence. In Proc. of the 1st International Workshop on
Business Intelligence and the Web, BEWEB 2010, DOI
= http://doi.acm.org/10.1145/1754239.1754247

SIGMOD Record, September 2012 (Vol. 41, No. 3) 53

!"#$%&'()*+!"#$$!%&'!"&()'*+,)*&(-!

,-$'!"#$%&'"./01.2/34.25'-4.6010.70'4.'
$2.28090./'46'&2/2'

!"#$%&'($)*+,-$!"#$%&'(-$./0$$
1*22"33*45$6'&78#7,$9&+"2-$:*5";$/<47'"$

=43"$>?@>A-$>BC?$
.//0122333456789:49;72<=>?2!

$
'
'
#0.0125'-:231;<'
!!@ABBA/.!#4!'955!C"9DE8F6G!,B6HA;56/IJ!!
!!K6HA5.!-;6HG5/GHG!C#)L)!$GF5M'A5AG;N.J!
=148129'-:231<'
!!K686/;65!OG0G:6G5!CP@,-)J!
=148129'-4993//00'#14>?'@02A01;<'
!!QGD6:!#;AR!COE;:EAJ!
!!#8;!SD!#FFG:6!C,"-+J!
!!".;65/95!%GD9E/595!C"T,J!
!!O.6DD60!+4!U6FF9B5!C*B/AD!'A5AG;N.J!
!!VGIGB/!PG;6/5G!C*B:6GB!*B5/6/E/A!9R!-N6ABNAJ!
!!*.GF!*DIG5!CWG/G;!"980E/6B7!'A5AG;N.!*B5/6/E/AJ!
!!-G8!TG::AB!CT*)J!
!!)G8A;!&5XE!C,B6HA;56/I!9R!QG/A;D99J!
!!).98G5!-A6:D!C#GN.AB!,B6HA;56/IJ!
!!YG56D65!YG55GD95!C#,S+J!
!!@4Z!Q.GB7!C@#*-)J!
!!TG;6GBBA!Q6B5DA//!C,*,"!GB:!#K-"J!
!!VEB!ZGB7!CKE[AJ!
B0C.4/0'2.A'=2.05'-:231<'
!!T6[A!-/9BAF;G[A;!CT*)J!
".A>;/1325'=148129'-:231<'
!!(6N[!@9E:G5!C,B6HA;56/I!9R!)9;9B/9J!
&094.;/12/34.'-:231<'
!!"I;E5!-.G.GF6!C,-"J!
D>/41325'-:231<'
!!ZERA6!)G9!C",P@J!
=14700A3.8;'-:231<'
!!-/GH;95!OG0G:909ED95!CP@,-)J!
E41F;:4?'-:231<'
!!".;65/6GB!-4!VAB5AB!C#G;.E5!,B6HA;56/IJ! !

G.A01812A>2/0'H0;0217:'=148129'-:231<'
!!#DA\GB:;G!TAD69E!C,T#--!#8.A;5/J!
!!]6G9[E6!]6G9!C(),!-6B7G09;AJ!
I3.2.70'-:231<''
!!U;G.G8!"9;89:A!C#)L)!$GF5M'A5AG;N.J!
I3.2.70'J370K-:2311!
!!%D60!@9;B!C#)L)!$GF5M'A5AG;N.J!
=>L5373/CM!47325'$0A32'-:231<'
!!#8AD6A!TG;6GB!C'E/7A;5!,B6HA;56/IJ!!
!?4.;41;:3?'-:231;<'
!!K6HIG[GB/!#7;G3GD!C,B6HA;56/I!9R!"GD6R9;B6G!G/!-GB/G!+G;FG;GJ!
!!KABB65!-.G5.G!C(A3!Z9;[!,B6HA;56/IJ!
NO:3L3/;'-:231<'
!!TE5/GRG!"GB68!C*+TJ!
@4725',112.8090./;'-:231;<'
!!"9B7!ZE!CU997DAJ!
!!QAB:I!PE6!QGB7!C-/AHAB5!*B5/6/E/A!9R!)AN.B9D97IJ!
H083;/12/34.'-:231<''
!!VA;98A!-68A9B!C*+TJ!
&094.;/12/34.'2.A'E41F;:4?'@4725',112.8090./;'-:231;<'
!!+65.3G;GB^GB!+.G//GN.G;^AA!C*+TJ!
!!)G595!@A8AB/56A/56:65!C*+TJ!
E0LM".64192/34.'-:231<'
!!P6DG!+AN[A;!CU997DAJ!

!
).A!GBBEGD!#"T!-*UT&K!N9BRA;ABNA!65!G!DAG:6B7!6B/A;BG/69BGD!R9;E8!
R9;! :G/GFG5A! ;A5AG;N.A;5_! 0;GN/6/69BA;5_! :AHAD90A;5_! GB:! E5A;5! /9!
A\0D9;A!NE//6B7MA:7A!6:AG5!GB:!;A5ED/5_!GB:!/9!A\N.GB7A!/AN.B6`EA5_!
/99D5_!GB:!A\0A;6ABNA54!!!
!
-*UT&K!<=>?!59D6N6/5!5EF865569B5!R9;!/.A!0;97;G85!GB:!AHAB/5!D65/A:!
FAD931!

• 'A5AG;N.!0G0A;5!
•)E/9;6GD5!
• OGBAD5!
• *B:E5/;6GD!0G0A;5!
•)AN.B6NGD!:A89B5/;G/69B5!
• ,B:A;7;G:EG/A!;A5AG;N.!0G0A;5!

!
QA! 6BH6/A! /.A! 5EF865569B! 9R! 9;676BGD! N9B/;6FE/69B5! ;ADG/6B7! /9! GDD!
G50AN/5! 9R! :G/G! 8GBG7A8AB/! :AR6BA:! F;9G:DI_! GB:! 0G;/6NEDG;DI!
ABN9E;G7A!5EF865569B5!9B!/906N5!9R!A8A;76B7!6B/A;A5/!6B!/.A!;A5AG;N.!
GB:!:AHAD908AB/!N988EB6/6A54!!
!
O;9095GD5! R9;! GNN980GBI6B7!39;[5.905! G;A! GD59! 59D6N6/A:! 9B! /906N5!
/.G/! :A8GB:! :A:6NG/A:! N9HA;G7A! :EA! /9! /.A6;! ;ADAHGBNA! /9! /.A!
NE;;AB/!:G/G!8GBG7A8AB/!;A5AG;N.!GB:!:AHAD908AB/4!).A!0;97;G8!
36DD!GD59!6BNDE:A!6B:E5/;6GD!A\.6F6/5_!G!a(A3!'A5AG;N.A;b!5I80956E8_!
GB:![AIB9/A!/GD[5!FI!DAG:A;5!6B!GNG:A86G!GB:!6B:E5/;I4!
!
#DD!G50AN/5!9R!/.A!5EF865569B!GB:!B9/6R6NG/69B!0;9NA55!36DD!FA!.GB:DA:!
ADAN/;9B6NGDDI4! "GDD5! R9;! 0G0A;5! GB:! :A/G6DA:! 5EF865569B! 6BR9;8G/69B!
36DD!FA!GHG6DGFDA!G/!.//0122333456789:49;72<=>?24!
!
(A3! Z9;[! "6/I! 65! /.A! 895/! 090ED9E5! N6/I! 6B! /.A! ,B6/A:! -/G/A5! GB:!
A\A;/5! G! 567B6R6NGB/! 680GN/! E09B! 7D9FGD! N988A;NA_! R6BGBNA_! 8A:6G_!
G;/_!RG5.69B_!;A5AG;N._!/AN.B9D97I_!A:ENG/69B_!GB:!AB/A;/G6B8AB/4!'
!

!
!
).A! N9BRA;ABNA! 36DD! FA! .AD:! G/! /.A! T6DDABB6E8! +;9G:3GI! .9/AD! 6B!
)68A5! -`EG;A4!).65! #;/! KAN9! .9/AD! 65! D9NG/A:! 6B! (A3! Z9;[! "6/Ic5!
;AB93BA:!).AG/A;!K65/;6N/_! GB:! 65!86BE/A5! R;98! G! .95/! 9R! GN/6H6/6A5!
GB:!0;9865A5!GB!A\N6/6B7!HABEA!R9;!/.65!IAG;d5!N9BRA;ABNA4!!

54 SIGMOD Record, September 2012 (Vol. 41, No. 3)

SIGMOD	
 2013	
 CALL	
 FOR	
 RESEARCH	
 PAPERS	

ACM	
 SIGMOD	
 International	
 Conference	
 on	

Management	
 of	
 Data	

New	
 York	
 City,	
 New	
 York,	
 USA	

Millennium	
 Broadway	
 Hotel,	
 Times	
 Square	

June	
 23-­‐28,	
 2013	

http://www.sigmod.org/2013/	

	

	

	

General	
 Chairs:	

	
 	
 Kenneth	
 A.	
 Ross	
 (Columbia	
 University)	
 	

	
 	
 Divesh	
 Srivastava	
 (AT&T	
 Labs-­‐Research)	

Program	
 Chair:	

	
 	
 Dimitris	
 Papadias	
 (HKUST)	

Program	
 Committee	
 Group	
 Leaders:	

	
 	
 Walid	
 Aref	
 (Purdue)	

	
 	
 Amr	
 El	
 Abbadi	
 (UCSB)	

	
 	
 Christos	
 Faloutsos	
 (CMU)	

	
 	
 Phillip	
 B.	
 Gibbons	
 (Intel	
 Research)	

	
 	
 Jayant	
 Haritsa	
 (Indian	
 Institute	
 of	
 Science)	

	
 	
 Ihab	
 Ilyas	
 (Qatar	
 Computing	
 Research	
 Institute)	

	
 	
 Sam	
 Madden	
 (MIT)	

	
 	
 Tamer	
 Oszu	
 (University	
 of	
 Waterloo)	

	
 	
 Thomas	
 Seidl	
 (Aachen	
 University)	

	
 	
 Vasilis	
 Vassalos	
 (AUEB)	

	
 	
 K.Y	
 Whang	
 (KAIST)	

	
 	
 Marianne	
 Winslett	
 (UIUC	
 and	
 ADSC)	

	
 	
 Jun	
 Yang	
 (Duke)	

Keynote	
 and	
 Panel	
 Chair:	

	
 	
 Mike	
 Stonebraker	
 (MIT)	

Industrial	
 Program	
 Chair:	

	
 	
 Nick	
 Koudas	
 (University	
 of	
 Toronto)	

Demonstration	
 Chair:	

	
 	
 Cyrus	
 Shahabi	
 (USC)	

Tutorial	
 Chair:	

	
 	
 Yufei	
 Tao	
 (CUHK)	

Proceedings	
 Chair:	

	
 	
 Stavros	
 Papadopoulos	
 (HKUST)	

Workshop	
 Chair:	

	
 	
 Christian	
 S.	
 Jensen	
 (Aarhus	
 University)	
 	

Undergraduate	
 Research	
 Program	
 Chair:	

	
 	
 Alexandra	
 Meliou	
 (UMASS	
 Amherst)	

	
 	
 Xiaokui	
 Xiao	
 (NTU	
 Singapore)	

Finance	
 Chair:	
 	

	
 	
 Graham	
 Cormode	
 (AT&T	
 Labs-­‐Research)	

Finance	
 Vice-­‐Chair:	

	
 	
 Flip	
 Korn	
 (AT&T	
 Labs-­‐Research)	

Publicity/Social	
 Media	
 Chair:	

	
 	
 Amelie	
 Marian	
 (Rutgers	
 University)	
 	

Sponsorship	
 Chairs:	

	
 	
 Divyakant	
 Agrawal	
 (University	
 of	
 California	
 at	
 Santa	
 Barbara)	

	
 	
 Dennis	
 Shasha	
 (New	
 York	
 University)	

Exhibits	
 Chair:	

	
 	
 Mustafa	
 Canim	
 (IBM)	

Local	
 Arrangements	
 Chairs:	

	
 	
 Cong	
 Yu	
 (Google)	

	
 	
 Wendy	
 Hui	
 Wang	
 (Stevens	
 Institute	
 of	
 Technology)	

Registration	
 Chair:	
 	

	
 	
 Jerome	
 Simeon	
 (IBM)	

Demonstration	
 and	
 Workshop	
 Local	
 Arrangements	
 Chairs:	

	
 	
 Bishwaranjan	
 Bhattacharjee	
 (IBM)	

	
 	
 Tasos	
 Kementsietsidis	
 (IBM)	

Web/Information	
 Chair:	

	
 	
 Hila	
 Becker	
 (Google)	

	

The	
 annual	
 ACM	
 SIGMOD	
 conference	
 is	
 a	
 leading	
 international	
 forum	

for	
 database	
 researchers,	
 practitioners,	
 developers,	
 and	
 users	
 to	

explore	
 cutting-­‐edge	
 ideas	
 and	
 results,	
 and	
 to	
 exchange	
 techniques,	

tools,	
 and	
 experiences.	
 	
 We	
 invite	
 the	
 submission	
 of	
 original	
 research	

contributions	
 relating	
 to	
 all	
 aspects	
 of	
 data	
 management	
 defined	

broadly,	
 and	
 particularly	
 encourage	
 submissions	
 on	
 topics	
 of	

emerging	
 interest	
 in	
 the	
 research	
 and	
 development	
 communities.	
 	

	

TOPICS	
 OF	
 INTEREST	

Topics	
 of	
 interest	
 include	
 but	
 are	
 not	
 limited	
 to	
 the	
 following:	

• Storage,	
 Indexing	
 and	
 Physical	
 Database	
 Design	
 	

• Query	
 Processing	
 and	
 Optimization	

• Text	
 Databases,	
 XML,	
 Keyword	
 Search	

• Cloud	
 Computing,	
 Map	
 Reduce,	
 Parallel,	
 Distributed,	
 P2P	

Systems	

• Security,	
 Privacy,	
 Authenticated	
 Query	
 Processing	

• Aggregation,	
 Data	
 Warehouses,	
 OLAP,	
 Analytics	

• Streams,	
 Sensor	
 Networks,	
 Complex	
 Event	
 Processing	

• Knowledge	
 Discovery,	
 Clustering,	
 Data	
 Mining	

• Spatial,	
 Temporal,	
 Multimedia	
 and	
 Scientific	
 Databases	
 	

• Graph	
 Management,	
 Social	
 Networks	

• Systems,	
 Performance,	
 Transaction	
 Processing	

• Database	
 Models,	
 Uncertainty,	
 Schema	
 Matching,	
 Data	

Integration	

	

SUBMISSION	
 GUIDELINES	

All	
 aspects	
 of	
 the	
 submission	
 and	
 notification	
 process	
 will	
 be	
 handled	

electronically.	
 Submissions	
 must	
 adhere	
 to	
 the	
 paper	
 formatting	

instructions.	
 Research	
 papers	
 will	
 be	
 judged	
 for	
 quality	
 and	
 relevance	

through	
 double-­‐blind	
 reviewing,	
 where	
 the	
 identities	
 of	
 the	
 authors	

are	
 withheld	
 from	
 the	
 reviewers.	
 Thus,	
 author	
 names	
 and	
 affiliations	

must	
 not	
 appear	
 in	
 the	
 papers,	
 and	
 bibliographic	
 references	
 must	
 be	

adjusted	
 to	
 preserve	
 author	
 anonymity.	
 Submissions	
 should	
 be	

uploaded	
 at	
 https://cmt.research.microsoft.com/SIGMOD2013/.	

	

For	
 SIGMOD	
 2013,	
 there	
 will	
 be	
 a	
 “revise	
 and	
 re-­‐submit”	
 option	
 to	

replace	
 the	
 feedback	
 and	
 shepherding	
 mechanisms	
 of	
 previous	

conferences.	
 The	
 submissions	
 to	
 be	
 revised	
 will	
 be	
 accompanied	
 with	

concrete	
 suggestions	
 for	
 improvement,	
 and	
 will	
 go	
 through	
 a	
 second	

round	
 of	
 reviews.	
 	

	

IMPORTANT	
 DATES	

Nov	
 13,	
 2012:	
 Research	
 papers	
 due,	
 5	
 PM	
 (Pacific	
 Time)	

Feb	
 5,	
 2013:	
 Notification	
 of	
 acceptance,	
 rejection,	
 revision	

Mar	
 5,	
 2013:	
 Revised	
 papers	
 due	

Apr	
 9,	
 2013:	
 Notification	
 of	
 acceptance,	
 rejection	
 for	
 revised	
 papers	

Apr	
 16,	
 2013:	
 Camera-­‐ready	
 deadline	

SIGMOD Record, September 2012 (Vol. 41, No. 3) 55

PODS
SIGMOD CALL FOR PAPERS

32nd ACM SIGMOD–SIGACT–SIGART Symposium on

PRINCIPLES OF DATABASE SYSTEMS (PODS 2013)
June 24 - June 26, 2013, New York, New York

Program Chair:
Wenfei Fan
University of Edinburgh
wenfei@inf.ed.ac.uk

Program Committee:
Marcelo Arenas (PUC)
Leo Bertossi (Carleton Univ.)
Diego Calvanese (Free Univ. Bolzano)
Alin Deutsch (UC San Diego)
Daniel Deutch (Ben Gurion Univ.)
Floris Geerts (Univ. Antwerp)
Maurizio Lenzerini (Rome La Sapienza)
Benny Kimelfeld (IBM Almaden)
Wim Martens (Univ. Bayreuth)
Andrew McGregor (Univ. Massachusetts)
Frank McSherry (Microsoft Research)
Frank Neven (Hasselt Univ.)
Jorge Pérez (Univ. Chile)
Reinhard Pichler (Technische Univ. Wien)
Francesco Scarcello (Univ. of Calabria)
Nicole Schweikardt (Frankfurt Univ.)
Thomas Schwentick (TU Dortmund Univ.)
Peter Widmayer (ETH)
Ryan Williams (Stanford Univ.)
David Woodruff (IBM Almaden)

PODS General Chair:
Richard (Rick) Hull
IBM T.J. Watson Research

Proceedings & Publicity Chair:
Floris Geerts
University of Antwerp

Important Dates:
Short abstracts due: 28 November 2012
Paper submission: 5 December 2012
Notification: 25 February 2013

The PODS symposium series, held in conjunction with the SIGMOD conference series, pro-
vides a premier annual forum for the communication of new advances in the theoretical foun-
dations of data management, traditional or non-traditional (see http://www.sigmod.org/the-
pods-pages). Topics that fit the interests of the symposium include the following:

big data, alternative query languages, data support for analytics;
query languages for semi-structured data (including XML and RDF);
search query languages (including techniques from information retrieval);
distributed and parallel aspects of data management;
dynamic aspects of databases (updates, views, approximate query answering);
incompleteness, inconsistency, and uncertainty in databases;
schema and query extraction; data integration; data exchange;
provenance; workflows, data-centric Business Process Management;
metadata management; meta-querying; privacy and security;
constraints (specification, reasoning, mining, constraint databases);
Web services; automatic verification of database-driven systems;
model theory, logics, algebras and computational complexity;
data modeling; data structures and algorithms for data management;
design, semantics, and optimization of query and database languages;
domain-specific databases (multi-media, scientific, spatial, temporal, text).

In addition, we especially welcome papers addressing emerging approaches and challenges
in data management. An External Review Committee will assist in reviewing papers in the
following multi-disciplinary areas of particular interest to this edition of PODS:

Cloud Computing and Next-generation Distributed Query Processing: Pierre Fraigniaud
(Paris 7), Jignesh M. Patel (Wisconsin), Sergei Vassilvitskii (Google), Milan Vojnovic (Mi-
crosoft Research)

Privacy: Michael Hay (Cornell), Nina Mishra (Microsoft Research), Kobbi Nissim (Ben-
Gurion U.), Aaron Roth (UPenn), Adam Smith (Penn State), Mukund Sundararajan (Google)

Mining and Learning of Data Models and Queries: Pauli Miettinen (Max Planck Inst.), Evi-
maria Terzi (Boston U.), Panayiotis Tsaparas (U. Ioannina)

Recommendation Systems and Social Networks: Gautam Das (U. Texas at Arlington), Joseph
A. Konstan (U. Minnesota)

Semantic, Linked, Networked, and Crowdsourced Data: Pascal Hitzler (Wright State U.),
David R. Karger (MIT), Boris Motik (Oxford), Neoklis (Alkis) Polyzotis (UC Santa Cruz),
Axel Polleres (Siemens)

Submitted papers should be at most twelve pages, including bibliography, using reasonable
page layout and font size of at least 10pt (note that the SIGMOD style file does not have to be
followed). Additional details may be included in an appendix, which, however, will be read at
the discretion of the PC. Papers longer than twelve pages (excluding the appendix) or in font
size smaller than 10pt risk rejection without consideration of their merits. The submission
process will be through the Web at http://www.easychair.org/conferences/?conf=pods2013.
Note that, unlike the SIGMOD conference, PODS does not use double-blind reviewing. The
results must be unpublished and not submitted elsewhere, including the formal proceedings
of other symposia or workshops. Authors of an accepted paper will be expected to sign
copyright release forms, and one author is expected to present it at the conference.

Best Paper Award: An award will be given to the best submission, as judged by the PC.

Best Student Paper Award: There will also be an award for the best submission, as judged
by the PC, written by a student or exclusively by students. An author is considered as a
student if at the time of submission, the author is enrolled in a program at a university or
institution leading to a doctoral/master’s/bachelor’s degree. The PC reserves the right to give
both awards to the same paper, not to give an award, or to split an award among several
papers. Papers authored or co-authored by PC members are not eligible for an award.

56 SIGMOD Record, September 2012 (Vol. 41, No. 3)

