
SIGMOD Officers, Committees, and Awardees

Chair Vice-Chair Secretary/Treasurer

Yannis Ioannidis Christian S. Jensen Alexandros Labrinidis
University of Athens Department of Computer Science Department of Computer Science
Department of Informatics Aarhus University University of Pittsburgh
Panepistimioupolis, Informatics Bldg Åbogade 34 Pittsburgh, PA 15260-9161
157 84 Ilissia, Athens DK-8200 Århus N PA 15260-9161
HELLAS DENMARK USA
+30 210 727 5224 +45 99 40 89 00 +1 412 624 8843
<yannis AT di.uoa.gr> <csj AT cs.aau.dk > <labrinid AT cs.pitt.edu>

SIGMOD Executive Committee:

Sihem Amer-Yahia, Curtis Dyreson, Christian S. Jensen, Yannis Ioannidis, Alexandros Labrinidis, Maurizio
Lenzerini, Ioana Manolescu, Lisa Singh, Raghu Ramakrishnan, and Jeffrey Xu Yu.

Advisory Board:
 Raghu Ramakrishnan (Chair), Yahoo! Research, <First8CharsOfLastName AT yahoo-inc.com>,
 Amr El Abbadi, Serge Abiteboul, Rakesh Agrawal, Anastasia Ailamaki, Ricardo Baeza-Yates,
 Phil Bernstein, Elisa Bertino, Mike Carey, Surajit Chaudhuri, Christos Faloutsos, Alon Halevy,
 Joe Hellerstein, Masaru Kitsuregawa, Donald Kossmann, Renée Miller, C. Mohan, Beng-Chin Ooi,
 Meral Ozsoyoglu, Sunita Sarawagi, Min Wang, and Gerhard Weikum.

Information Director, SIGMOD DiSC and SIGMOD Anthology Editor:
 Curtis Dyreson, Washington State University, <cdyreson AT eecs.wsu.edu>

Associate Information Directors:
 Denilson Barbosa, Ugur Cetintemel, Manfred Jeusfeld, Georgia Koutrika, Alexandros Labrinidis,
 Michael Ley, Wim Martens, Rachel Pottinger, Altigran Soares da Silva, and Jun Yang.

SIGMOD Record Editor:
 Ioana Manolescu, INRIA Saclay, <ioana.manolescu AT inria.fr>

SIGMOD Record Associate Editors:
 Magdalena Balazinska, Denilson Barbosa, Pablo Barceló, Vanessa Braganholo, Chee Yong Chan, Anish Das
 Sarma, Ugur Çetintemel, Brian Cooper, Cesar Galindo-Legaria, Glenn Paulley, Alkis Simitsis, Nesime Tatbul
 and Marianne Winslett.

SIGMOD Conference Coordinator:

Sihem Amer-Yahia, CNRS and LIG, France, <sihemameryahia AT acm.org>

PODS Executive Committee: Rick Hull (chair), <hull AT research.ibm.com>, Michael Benedikt,
 Wenfei Fan, Maurizio Lenzerini, Jan Paradaens and Thomas Schwentick.

Sister Society Liaisons:
 Raghu Ramakhrishnan (SIGKDD), Yannis Ioannidis (EDBT Endowment).

Awards Committee:

Rakesh Agrawal (Chair), Microsoft Research, <rakesh.agrawal AT microsoft.com>, Elisa Bertino,
Peter Buneman, Umesh Dayal and Masaru Kitsuregawa.

Jim Gray Doctoral Dissertation Award Committee:
 Johannes Gehrke (Co-chair), Cornell Univ.; Beng Chin Ooi (Co-chair), National Univ. of Singapore, Alfons
 Kemper, Hank Korth, Alberto Laender, Boon Thau Loo, Timos Sellis, and Kyu-Young Whang.

[Last updated : June 30th, 2012]

SIGMOD Record, June 2012 (Vol. 41, No. 2) 1

 SIGMOD Officers, Committees, and Awardees (continued)

 Alfons Kemper, Hank Korth, Alberto Laender, Boon Thau Loo, Timos Sellis, and Kyu-Young Whang.

SIGMOD Edgar F. Codd Innovations Award

For innovative and highly significant contributions of enduring value to the development, understanding, or use of
database systems and databases. Until 2003, this award was known as the "SIGMOD Innovations Award." In 2004,
SIGMOD, with the unanimous approval of ACM Council, decided to rename the award to honor Dr. E. F. (Ted)
Codd (1923 - 2003) who invented the relational data model and was responsible for the significant development of
the database field as a scientific discipline. Recipients of the award are the following:

Michael Stonebraker (1992) Jim Gray (1993) Philip Bernstein (1994)
David DeWitt (1995) C. Mohan (1996) David Maier (1997)
Serge Abiteboul (1998) Hector Garcia-Molina (1999) Rakesh Agrawal (2000)
Rudolf Bayer (2001) Patricia Selinger (2002) Don Chamberlin (2003)
Ronald Fagin (2004) Michael Carey (2005) Jeffrey D. Ullman (2006)
Jennifer Widom (2007) Moshe Y. Vardi (2008) Masaru Kitsuregawa (2009)
Umeshwar Dayal (2010) Surajit Chaudhuri (2011) Bruce Lindsay (2012)

SIGMOD Contributions Award

For significant contributions to the field of database systems through research funding, education, and professional
services. Recipients of the award are the following:

Maria Zemankova (1992) Gio Wiederhold (1995) Yahiko Kambayashi (1995)
Jeffrey Ullman (1996) Avi Silberschatz (1997) Won Kim (1998)
Raghu Ramakrishnan (1999) Michael Carey (2000) Laura Haas (2000)
Daniel Rosenkrantz (2001) Richard Snodgrass (2002) Michael Ley (2003)
Surajit Chaudhuri (2004) Hongjun Lu (2005) Tamer Özsu (2006)
Hans-Jörg Schek (2007) Klaus R. Dittrich (2008) Beng Chin Ooi (2009)
David Lomet (2010) Gerhard Weikum (2011) Marianne Winslett (2012)

SIGMOD Jim Gray Doctoral Dissertation Award

SIGMOD has established the annual SIGMOD Jim Gray Doctoral Dissertation Award to recognize excellent
research by doctoral candidates in the database field. Recipients of the award are the following:
• 2006 Winner: Gerome Miklau, University of Washington. Runners-up: Marcelo Arenas, University of Toronto;
Yanlei Diao, University of California at Berkeley.
• 2007 Winner: Boon Thau Loo, University of California at Berkeley. Honorable Mentions: Xifeng Yan, University
of Indiana at Urbana Champaign; Martin Theobald, Saarland University
• 2008 Winner: Ariel Fuxman, University of Toronto. Honorable Mentions: Cong Yu, University of Michigan;
Nilesh Dalvi, University of Washington.
• 2009 Winner: Daniel Abadi, MIT. Honorable Mentions: Bee-Chung Chen, University of Wisconsin at Madison;
Ashwin Machanavajjhala, Cornell University.
• 2010 Winner: Christopher Ré, University of Washington. Honorable Mentions: Soumyadeb Mitra, University of
Illinois, Urbana-Champaign; Fabian Suchanek, Max-Planck Institute for Informatics.
• 2011 Winner: Stratos Idreos, Centrum Wiskunde & Informatica. Honorable Mentions: Todd Green, University of
Pennsylvania; Karl Schnaitter, University of California in Santa Cruz.
 • 2012 Winner: Ryan Johnson, Carnegie Mellon University. Honorable Mention: Bogdan Alexe, University of
California in Santa Cruz.
A complete listing of all SIGMOD Awards is available at: http://www.sigmod.org/awards/

[Last updated : June 30th, 2012]

2 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Editor’s Notes

Welcome to the June 2012 issue of the ACM SIGMOD Record!

The issue opens with the Database Principles column, where Mikolaj Bojanczyk explores algorithms
based on algebras (and in particular, on monoids) for solving word and tree problems, such as evaluating
binary queries on words and forests. The paper by Peter Wood surveys query languages for graph
databases, a topic on which attention is renewed due to the popularity of important applications such as
Semantic Web graphs of RDF data, and social network graph analysis. Query languages are analyzed from
the viewpoint of features (expressive power) and then under the angle of their associated algorithmic
complexity.

The survey by Fereira, Gonçalves and Laender focuses on an important problem in scholarly and
bibliographic data management systems: automatic author name disambiguation. This problem is a well-
known particular case of data cleaning, where errors can be due to erroneous data entry or to natural
changes in the names and affiliation an author has along her or his career. In other contexts, two different
authors may actually have the exact same name, complicating the task of setting their publications apart.
The survey formalizes the problem and outlines two main computational techniques used to solve it:
author grouping attempts to group the references of the same author according to some similarity, while
author assignment aims at directly assigning each reference to the right author. Finally, the survey places a
wide selection of relevant work in the classification space thus defined.

The issue includes two Distinguished Profiles in Databases. Tamer Ozsu, recipient of the SIGMOD
Contribution Award of 2006 and an ACM Fellow, muses on the spirit of object-oriented database
hovering above current database modeling tools, even as pure object-oriented databases have by now
disappeared. Tamer is also known to have voiced strong opinions in the conference versus journal
discussions, and in this interview he explains how the database community has overplayed the role of
conferences and should join the majority of the scientific community in giving more importance to
conferences. If you have hated 8-pages major conference submissions as much as I did, it is time to learn
Tamer’s arguments in favor of it! Tamer also discusses the PVLDB model, the Springer database
encyclopedia, left-wing politics, his 600-strong fountain pen collection, and more!

Our second Profile features Erich Neuhold, now a professor at the University of Vienna and a director
of the Fraunhofer Institute for Integrated Publication and Information Systems in Darmstadt. Just like
Tamer, Erich has been involved over time in object-oriented and XML databases, and he discusses
his own lessons learned in this area. Erich also comments on his experience managing a large industrial
and then a larger University department, and draws an interesting comparison between research in the US
versus Europe. Erich shares many insights into the historical evolution of German and other European
research institutes, in particular from the perspective of their funding. The interview also recalls the days
when 64 K seemed more memory than a program would ever need, and about the innovative idea of
connecting ten such computers into a distributed database system!

The issue closes with two calls for contributions. The VLDB Journal editors-in-chief want it to be known
that survey submissions are still very much welcome to the Journal! Closing the issue is the call for
papers for ICDT 2013, to be held in Genoa, Italy, early next year.

SIGMOD Record, June 2012 (Vol. 41, No. 2) 3

Changes to the editorial board Last but not least, I am pleased to announce the presence of new
members in the SIGMOD Record Editorial Board:

• Anish das Sarma (Google) joined us to help Brian Cooper edit submissions to the Reports column;
• Nesime Tatbul (ETH Zurich) is the new survey co-editor, helping Cesar Galindo-Legaria;
• Alkis Simitsis (HP Labs) joins Ugur Cetintemel as a co-editor of the Research Centers column,

with the plan that Alkis will take over from Ugur in a short time.
Welcome to the new editors and may they enjoy a happy tenure!

Your contributions to the Record are welcome via the RECESS submission site
(http://db.cs.pitt.edu/recess). Prior to submitting, be sure to peruse the Editorial Policy on the SIGMOD
Record’s Web site (http://www.sigmod.org/publications/sigmod-record/sigmod-record-editorial-policy).

Ioana Manolescu

June 2012

Past SIGMOD Record Editors:

 Harrison R. Morse (1969)
 Daniel O’Connell (1971 – 1973)
 Randall Rustin (1975)
 Thomas J. Cook (1981 – 1983)
 Jon D. Clark (1984 – 1985)
 Margaret H. Dunham (1986 – 1988)
 Arie Segev (1989 – 1995)
 Jennifer Widom (1995 – 1996)
 Michael Franklin (1996 – 2000)

Ling Liu (2000 – 2004)
Mario Nascimento (2005 – 2007)
Alexandros Labrinidis (2007 – 2009)

4 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Algorithms for regular languages that use algebra

Mikołaj Bojańczyk
∗

University of Warsaw

ABSTRACT
This paper argues that an algebraic approach to regular
languages, such as using monoids, can yield efficient
algorithms on strings and trees.

1. INTRODUCTION
A practically minded reader might have doubts

about using monoids and other algebras for regu-
lar languages, instead of automata. The goal of
this paper is to show that algebra is actually quite
straightforward and can be practically useful in al-
gorithms for words and trees.

2. MONOIDS
A monoid is a method of recognizing regular lan-

guages, which is an alternative to automata and
regular expressions. We illustrate the differences
between recognizing a language with a determinis-
tic finite automaton and a monoid.

In a deterministic automaton, a state q ∈ Q rep-
resents a prefix of an input word:

The state captures all the relevant information that
the automaton needs to know about the prefix. This
can be stated as the following compositionality prin-
ciple: swapping a prefix with another prefix that
gives the same state does not affect the run of an au-
tomaton on the remaining part of the input. There-
fore, a prefix can be abstracted away as just its
state:

∗Supported by FET-Open grant agreement FOX, num-
ber FP7-ICT-233599. I would like to thank Jakub Łącki
and an anonymous referee for comments that improved
this paper.

In the monoid approach, instead of an automa-
ton, we have a function α, which maps every word
w to an element of a setM , called the monoid. The
idea is that the function α can be applied not just
to prefixes of the input, but also to infixes:

The values assigned by the function α to an infix
should capture all the relevant information about
the infix. This can be stated as the following com-
positionality principle: swapping an infix with an-
other infix of the same value does not affect the
value of the whole input. In other words,

α(v) = α(v′) implies α(w1vw2) = α(w1v
′w2)

holds for all words v, v′, w1, w2 ∈ A∗. A function
that is compositional in the above sense is called a
monoid morphism. In a monoid morphism α, an
infix of the input can be abstracted away by its
value under the monoid morphism:

We say that a monoid morphism α : A∗ → M
recognizes a language L ⊆ A∗ if there is some set
F ⊆ M of accepting elements such that a word
belongs to L if and only if it is mapped to F . A
monoid morphism can recognize several languages,
depending on the choice of F .

Examples of monoid morphisms and languages
that they recognize include:

• The function {a, b}∗ → {0, 1} which maps a
word to 1 if and only if it contains some a. If
we choose the accepting set F as {0}, then the
morphism recognizes the language b∗.

• The function which maps a word to its length.
The monoid used is not finite. This morphism

SIGMOD Record, June 2012 (Vol. 41, No. 2) 5

recognizes, e.g. the set of words of prime length.
We are not interested in this kind of monoid
morphism, because we only care about finite
monoids.

• For n ∈ N, the function

αn : {a, b}∗ → {a, b}≤n

which maps words of length < n to themselves,
and longer words to their prefix of length n.
This morphism recognizes the language “the n-
th letter is a”. The set {a, b}≤n is exponential
in n; it is not difficult to see that this language
cannot be recognized using a smaller set. A de-
terministic automaton for this language needs
only n + 2 states, since it corresponds to the
function

βn : {a, b}∗ → {a, b} ∪ {0, . . . , n− 1}
which maps words of length< n to their length,
and longer words to their n-th letter. The
function βn is not a monoid morphism, be-
cause

α(an−1) = α(bn−1) but α(aan−1) = α(abn−1)

A corollary of compositionality is that for every
words w1, w2, the value α(w1w2) depends only on
the values of α(w1) and α(w2). The operation

(α(w1), α(w2)) ∈M2 7→ α(w1w2) ∈M
is called the monoid operation in M . If the monoid
morphism is surjective, the operation is defined on
all pairs inM2. It is not difficult to see that because
of compositionality, the monoid operation must be
associative, which means that the result of the monoid
operation for a sequence m1, . . . ,mk does not de-
pend on its bracketing. Finally, the image of the
empty word is a neutral element for the monoid op-
eration.

A monoid morphism is uniquely represented by:
the images of single letters and the empty word, and
the multiplication table for the monoid operation.

From automata to monoids and back. Monoid mor-
phisms are just another way of talking about regular
languages.

Theorem 1. A language L ⊆ A∗ is regular if
and only if it is recognized by a morphism into a
finite monoid.

Proof. Suppose that L is recognized by a monoid
morphism α : A∗ →M . Then one constructs an au-
tomaton, with states M , which maps every infix of
the input to its value under α.

A bit more effort is required to go from an au-
tomaton to a monoid. The construction even works
for nondeterministic automata. Consider a nonde-
terministic automaton with states Q. Consider a
function which maps a word w ∈ A∗ to the set

{(p, q) ∈ Q2 : some run over w goes from p to q}.
It is not difficult to see that this mapping is com-
positional in the monoid sense.

As seen in the above proof, the conversion from a
monoid to a deterministic automaton, is linear. In
the other direction, sometimes the exponential ex-
plosion from the theorem’s proof cannot be avoided,
as witnessed by the example “the n-th letter is a”.
Languages, for which the monoid has approximately
the same size as a nondeterministic automaton in-
clude “the word contains at least n letters a”.

The exponential blowup from automata to monoids
is a problem for some algorithms; but it will not be a
problem for the algorithms presented in this paper.

Expository Note. Typically, monoids are introduced
as follows. One defines a monoid as an abstract al-
gebraic structure, which is a carrier M equipped
with an associative binary operation and a neutral
element. Then one observes that the set of all words
is a monoid. Finally, one defines a monoid mor-
phism α : A∗ → M to be any function which pre-
serves the structure of a monoid, namely the monoid
operation and the monoid identity.

In this paper, a monoid is presented in the oppo-
site order: we have seen that any surjective mapping
from words to a setM which is compositional in the
appropriate sense uniquely determines a structure
of a monoid in its image M . The reason for this
choice is that sometimes it is easier to think of a
compositional mapping than an abstract algebraic
structure.

3. ALGORITHMS FOR WORDS
As explained in the previous section, a monoid

morphism assigns values to all infixes of an input
word, and not just the prefixes. This means that a
monoid morphism is a more flexible structure, and
it is better suited to some algorithms. We illustrate
this on several examples.

3.1 Incremental updates
We begin with a very straightforward algorithm,

which introduces a data structure that is heavily
used in the rest of the paper. The data structure is
a hierarchical decomposition of the input, decorated
by values of a monoid morphism.

6 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Here is the problem we want to solve. Let L ⊆ A∗
be a regular language of words. We begin with some
initial word in a1 · · · an ∈ A∗. A user produces a se-
quence of edits of the form “change the label of letter
i ∈ {1, . . . , n} to a”. We want an algorithm which
can tell, after a sequence of edits, if the current
state of the word belongs to L. This problem can
be solved with linear preprocessing and logarithmic
cost per edit.

Theorem 2. Let L ⊆ A∗ be a regular language.
There is an algorithm which:

1. inputs an initial word and builds a data struc-
ture in linear time;

2. receives a sequence of edits and updates the
data structure in logarithmic time for each edit;

3. can tell in constant time, using the data struc-
ture, if the word after the edits belongs to L.

Proof. The algorithm uses a straightforward tree
decomposition approach. Let a1 · · · an ∈ A∗ be the
initial word. Divide the set of all positions in the
word into two infixes, of approximately the same
lengths, and then do this division recursively for the
infixes. As a result, we get a tree decomposition of
the initial word, as depicted in the following picture,
where the circles denote positions in the word, and
the triangles denote nodes in the tree (and nodes
correspond to infixes):

.

In general, if the length of the initial word is not
a power of two, then not all leaves have the same
depth, but the maximal depth is still logarithmic.The
tree has at most 2n nodes and can be computed in
linear time (of course, we store the infixes by keep-
ing their first and last positions).

Suppose that α is a monoid morphism which rec-
ognizes the language L. Such a monoid morphism
exists by Theorem 1. For a node x of the tree, let

us denote by wx the infix of the word that corre-
sponds to x. Because a node x with children y and
z satisfies

α(wx) = α(wy) · α(wz), (1)

we can do leaf-to-root pass through the tree t and
compute in time linear in |w| the values

{α(wx)}x∈nodes(t).
The tree t together with the values (1) is our data

structure. We have just argued that it can be com-
puted in linear time.

Consider an edit operation, which changes the
label of letter i ∈ {1, . . . , n}. The infixes in the data
structure that contain i form a root-to-leaf path in
the tree t, which is illustrated by a darker shade of
gray in the following picture:

This path has logarithmic length. We only need to
change the labels for these infixes, in a leaf-to-root
pass. We can do this in logarithmic time using (1).

Finally, if we want to know if the current word
belongs to the language L, we just need to look at
the root of the tree, and see if the monoid element
stored there belongs to the accepting set.

When describing the running time of the algo-
rithm in Theorem 2, we assumed that the language
L was fixed. Suppose now that the language L is
also given on the input, and represented by a non-
deterministic automaton with states Q. What is
the running time of the algorithm, in terms of both
the input word a1 · · · an and the state space Q? We
claim that the data structure is built in time

poly(Q) ·O(n),

and each update operation is processed in time

poly(Q) · log n.
This is despite the fact that the algorithm uses
monoids, and that monoids can be exponentially

SIGMOD Record, June 2012 (Vol. 41, No. 2) 7

larger than automata. The reason is that the algo-
rithm does not need to compute the whole monoid.
It only needs to store elements of the monoid in the
tree nodes; and the space to store a monoid element
is logarithmic in the size of the monoid, and there-
fore polynomial in Q. The algorithm also needs to
consult the multiplication table of the monoid, but
this multiplication table can be generated on-the-
fly, in time polynomial in Q.

3.2 Evaluation of binary queries
In this section, we adapt the algorithm from The-

orem 2 to evaluate binary queries on words.

Binary queries. A binary query on words over al-
phabet A is a function ϕ, which maps every word
w ∈ A∗ to a set of pairs of nodes in w. Typical
queries include:

• Select pairs x ≤ y such that there is at least
one a in the interval {x, . . . , y}.

• Select pairs x ≤ y such that there an even
number of a’s in the interval {x, . . . , y}.

In this paper, we are interested in regular binary
queries, which are the query equivalent of regular
languages. Just like for regular languages, there are
multiple ways of defining regular queries. We use a
definition based on monoids.

Binary query recognized by a monoid morphism.
Let x, y be two distinct positions in a word w. There
are two possible scenarios:

1. x is before y. In this case, the positions of the
word can be partitioned into: x, y, and three
infixes as in the picture below:

2. The second scenario is when x is after y. A
decomposition similar to the one in the first
scenario exists.

Suppose that α : A∗ →M is a monoid morphism.
We define the α-type of a pair (x, y) of distinct po-
sitions in a word w ∈ A∗ to be the following infor-
mation: which scenario holds, what are the labels
of x and y, what are the values under α of the three
infixes in the scenario. The α-type belongs to

{<,>} ×A2 ×M3

A monoid morphism is said to recognize a binary
query if one can choose a subset F of accepting α-
types, such that for every word and every pair of
positions, the pair of positions satisfies the query if
and only if its α-type belongs to F .

We say that a binary query is regular if it is recog-
nized by some monoid morphism. The examples at
the beginning of Section 3.2 are regular. Also, the
class of regular binary queries coincides with the
class of binary queries that can be defined by for-
mulas of monadic second-order logic with two free
first-order variables.

Theorem 3. Let ϕ be a regular binary query.
There is an algorithm which:

1. inputs a word w ∈ A∗ and builds a data struc-
ture in linear time;

2. using the data structure, answers in logarith-
mic time questions of the form: is the pair
(i, j) selected by ϕ?

Proof. Suppose that the binary query is recog-
nized by a monoid morphism α : A∗ →M . We use
the same data structure as in Theorem 2.

The key observation is the following one: every
infix v of the input word can be decomposed as a
concatenation

v = v1 · · · vk
of at most logarithmically many infixes v1, . . . , vk
that correspond to nodes in the data structure. This
decomposition can be computed in logarithmic time,
given the first and last position in the infix v. By
this observation, we can use the data structure to
compute the α-type of any pair of positions in log-
arithmic time.

4. SIMON FACTORIZATION
The algorithms we have seen so far used a tree-

like decomposition of the input word, of logarithmic
depth. What if we could have a constant depth
decomposition, with the depth only depending on
the monoid morphism, and not on the input word?

In this section, we provide such a constant depth
decomposition. The underlying result is called the
Simon Factorization Forest Theorem. This section
is where monoids and their theory start to do some
real work.

Simon factorization trees. Let α : A∗ → M be a
monoid morphism. Let w be a word with n posi-
tions. A Simon α-factorization tree is similar to the
tree from Theorem 2 in the following ways:

8 SIGMOD Record, June 2012 (Vol. 41, No. 2)

• Every node of x of the tree corresponds to an
infix wx of the word w. The leaves correspond
to single letters; the root corresponds to the
whole word w.

• If a node x has children x1, . . . , xn then

wx = wx1 · · ·wxn .

• Every node x stores the value α(wx) ∈M .

The difference is that in a Simon factorization tree,
a node can have more than two children. Having
an unbounded number of children is necessary if we
want to have trees of constant depth for words of
unbounded length. In a Simon factorization tree,
there is a restriction for nodes x with three or more
children:

• If x has at least three children x1, . . . , xn, then

α(wx1
), . . . , α(wxn

)

are the same element, call it m ∈ M . Fur-
thermore, m is idempotent, which means that
m ·m = m. It follows that

α(wx) = α(wx1
) · · ·α(wxn

) = m · · ·m = m.

Consider a Simon α-factorization tree as in the
definition above. Let x and y be siblings such that
y is to the right of x. Let

x = z1, . . . , zk = y

be all of the siblings between x and y. Define

wx...y = wz1 · · ·wzk .

Observe that the monoid element α(wx...y) can be
computed in constant time; as a function of x and y.
Indeed, when k = 1, 2, then α(wx...y) is α(wx) and
α(wx) · α(wy), respectively. The more interesting
case is when k ≥ 3. In this case, the parent of x
and y has at least three children. Let m be the
(idempotent) monoid element stored in the parent.
By the definition of Simon factorization trees,

α(wx...y) = α(wz1) · · ·α(wzk) = m.

Lemma 1. For every infix v one can compute a
sequence of sibling pairs

(x1, y1), . . . , (xm, ym)

such that

v = wx1...y1
· wx2...y2

· . . . · wxm...ym

The number of sibling pairs and the time to compute
them is proportional to the depth of the tree.

Proof by picture.

Corollary 1. The value under α of an infix can
be computed in time linear in the depth of the tree1.

Proof. We use the decomposition of the infix
from Lemma 1. For each sibling interval, its value
under α can be computed in constant time: either it
corresponds to at most two nodes, or its value is the
same as the value in the parent of the interval.

Constant depth. The key result about Simon fac-
torization trees is that they can be built so that
their height depends only on the monoid, and not
the length input word:

Theorem 4. Let α : A∗ →M be a monoid mor-
phism. Every word w ∈ A∗ has a Simon α-factorization
tree of depth at most 3|M |, which can be computed
in time poly(M) · |w|.

The proof of this theorem, although not difficult,
relies on results about monoids that cannot be easily
recovered by treating monoids as a decoration on
automata.

From Corollary 1 and Theorem 4 it follows that
the algorithm from Theorem 3 can be improved
from logarithmic time to constant time query eval-
uation:

Theorem 5. Let ϕ be a regular binary query.
There is an algorithm which:

1. inputs a word w ∈ A∗ and builds a data struc-
ture in linear time;

2. using the data structure, answers in constant
time questions of the form: is the pair (i, j)
selected by ϕ?

Proof. The same proof as for Theorem 3, but
use Corollary 1 to compute the values of infixes.

1By adding accelerating pointers, this can be improved
to time logarithmic in the depth of the tree, see [4]

SIGMOD Record, June 2012 (Vol. 41, No. 2) 9

Incremental updates. We have just shown how to
use Theorem 4 to improve the algorithm for binary
query evaluation. What about the algorithm for
incremental updates? Could Simon factorization
trees be used to get an algorithm that processes ed-
its in constant time? Unfortunately [6] shows that
some languages require at least

log n

log log n

operations per edit.

4.1 References
A survey on the Simon factorization theorem,

and some other applications for algorithms, can be
found in [3]. The original version of Theorem 4 is
from [9]. The 3|M | bound on the depth of the fac-
torization tree, which is optimal, comes from [7]. A
version of the theorem where the factorization tree
is constructed by a deterministic left-to-right au-
tomaton is shown in [5]. The case when the monoid
is obtained from a nondeterministic automaton is
studied in [4].

5. REGULAR TREE LANGUAGES
We now move from regular languages of words to

regular languages of trees. We used node-labelled,
unranked (which means that there is no bound on
the number of children), sibling-ordered trees, which
are a common model for XML documents.

Nondeterministic tree automata. A nondeterminis-
tic tree automaton is given by the following ingre-
dients:

1. An input alphabet A;

2. A set of states Q, with a distinguished accept-
ing subset F ⊆ Q of root accepting states.

3. A finite set δ of transitions. Each transition
is a triple (q, a, L) where q ∈ Q, a ∈ A, and
L ⊆ Q∗ is a regular language.

Of course, when representing such an automaton,
one needs to choose some representation for the reg-
ular word languages in the transitions, e.g. by using
regular expressions or maybe nondeterministic word
automata. This choice of representation influences
the complexity of algorithms that deal with the au-
tomata.

Consider an input tree t. An run of such an au-
tomaton is a labeling ρ : nodes(t)→ Q such that for
every node x with children x1, . . . , xn written from
left to right, there exists a transition (q, a, L) ∈ δ
such that the run maps x to q, the label of x is a, and

the language L contains the word ρ(x1) · · · ρ(xn).
In the special case when x is a leaf, the language L
should contain the empty word. This special case
explains why initial states are not needed in the
definition of the automaton.

A tree is accepted if there is a run where the root
is mapped to a root accepting state. The language
recognized by an automaton is the set of accepted
trees. A tree language is called regular if it is rec-
ognized by some automaton.

Just like for regular word languages, the class of
regular tree languages is very robust and can be
described in many other equivalent ways, including
deterministic/alternating automata, Myhill-Nerode
equivalence and monadic second-order logic2.

6. FOREST ALGEBRA
Just as in the case of words, an automaton can

be seen as a device which assigns a value to parts
of its input. In the case of nondeterministic tree
automaton, the parts which get a value are subtrees,
such as in the following picture:

Since we are using a nondeterministic automaton
model, one should think of a subtree as being mapped
to a set of states.

Forests. Subtrees are not general enough for the
purposes of some of the algorithms we use. They
suffer from the same problems as prefixes (as op-
posed to infixes) for words, together with some new
problems. For instance, if you are only allowed to
use subtrees, then how are you going to hierarchi-
cally decompose a tree with one root and many chil-
dren, such as the one below?

That is why our basic object of interest will not be a
subtree, but an (ordered) forest, which is an ordered
2One of the choices of definition that does not lead to
regular tree languages is the very natural model of deter-
ministic root-to-leaves automata. Deterministic leaves-
to-root automata, on the other hand, are equivalent to
nondeterministic ones, and therefore to regular tree lan-
guages.

10 SIGMOD Record, June 2012 (Vol. 41, No. 2)

sequence of trees. In other words, a forest is a tree
with multiple (ordered) roots. Inside a bigger forest
we can find a smaller forest, by distinguishing a set
of nodes called forest zone. A forest zone is a set of
nodes in a forest which is closed under descendants,
and such that the roots of the zone (which means
the least nodes with respect to the ancestor rela-
tion) form a sequence of consecutive siblings. Here
is a picture of a forest zone inside a tree

Contexts. Forests alone are also not general enough
for the purposes of our algorithms. Recall that in
Theorem 2, we used a data structure where each
infix was split into two infixes, and so on recursively.
This will not work for forests — for instance a tree
cannot be split into two forests in any way. That is
why we use a second kind of object, which is called
a context. Formally, a context is a forest with one
distinguished leaf, which is called a port, as in the
following picture:

The idea is that the port can be filled by any forest.
After the port in the picture above is filled by a
forest with n roots, then parent of the port will
have n+ 2 children (because there are already two
siblings of the port).

A context can be seen as a part of a forest, by
distinguishing a set of nodes called context zone. A
context zone inside a forest is defined as a difference
of two forest zones X − Y . Here is a picture:

Partitioning zones. We claim that forest and con-
text zones are general enough to do decompositions.
As a first example, consider the complement of a
(forest or context) zone. Although the complement
is not necessarily a zone itself, it can be partitioned
into at most two zones. The following pictures illus-
trates a forest (respectively, context) zone in light
gray, and its complement in darker gray.

Generally speaking, since zones are sets of nodes,
we can do the boolean operations on them: union,
intersection and complementation. Although the
result of a boolean combination of zones is not nec-
essarily a zone itself, it can be partitioned into a
small number of zones, as the following lemma shows.

Lemma 2. A boolean combination of n zones can
be partitioned into O(n) zones.

Substitution. Suppose that we have a forest t and a
context C. If we distinguish a context zoneX inside
t, then we can replace the contents of that context
zone by C, with the result being called t[X := C].
This process is illustrated below:

SIGMOD Record, June 2012 (Vol. 41, No. 2) 11

In general, there are four kinds of substitution: the
enclosing object can be a context or a forest, and
the substituted object can be a context or forest.

Forest algebra morphism. We now introduce for-
est algebra. Forest algebra is for forests and con-
texts, as monoids are for infixes. Like we did for
monoids, we focus on the morphisms. A forest al-
gebra morphism over the alphabet A consists of two
sets (H,V) and functions:

1. a function αH from forests over A to H;

2. a function αV from contexts over A to V ;

which are compositional in the following sense. Let
t be a forest, X a context zone inside t, and let C
and C ′ be two contexts. Then

αV (C) = αV (C
′) implies

αH(t[X := C]) = αH(t[X := C ′]).

Likewise for the other three kinds of substitutions.
In other words, all we need to know about a zone
(forest or context) is its value under αH or αV .

A forest algebra morphism can be used to recog-
nize a set of forests. This is done by distinguishing
an accepting subset F ⊆ H; the recognized lan-
guage is then the set of forests that are mapped to
F by the morphism. If you want to recognize a tree
language, you should make sure that only trees are
mapped to elements of F .

The following theorem shows that forest algebras,
as a recognizing device for tree languages, are equiv-
alent to automata.

Theorem 6. A tree language is recognized by a
nondeterministic tree automaton if and only if it is
recognized by a forest algebra morphism.

As in the word case, there is a (singly) exponen-
tial blowup when going from a nondeterministic au-
tomaton to a forest algebra morphism.

6.1 References
For a survey on regular tree languages with a

database angle, see [8]. A discussion of forest alge-
bra and other algebras for trees can be found in [2].

7. ALGORITHMS FOR TREES
In this section, we show how forest algebra can

be used to generalize from words to trees the algo-
rithms that we have seen in Section 3.

7.1 Hierarchical decompositions of forests
The data structure that we used in Section 3 was

a hierarchical decomposition, where the word was
split into halves, quarters, and so on. We now show
that a similar decomposition is possible for forests.

Lemma 3. Every (forest or context) zone X can
be partitioned into at most four (forest or context)
zones such that each of the parts has at most 2/3·|X|
nodes.

Proof. Let n be the size of X.
We say that a node x ∈ X is small if at most

one third of the nodes of X are descendants of x.
Suppose that not all nodes in X are small (the de-
generate case when all nodes are small is treated
the same way). There must be a node x ∈ X which
is not small, but which has only small children, call
them x1, . . . , xk. For each i ∈ {1, . . . , k}, define Di

to be the nodes inX that are (not necessarily strict)
descendants of one of the nodes x1, . . . , xi. The set
D1 has at most n/3 nodes and the set of Dk has at
least n/3 − 1 nodes, because otherwise the parent
x would be small. Take i to be the first index such
that Di has at least n/3 nodes. Then

n

3
≤ |Di| <

2n

3

because the difference between consecutive sizes of
Di is at most n/3.

We now show the decomposition.

• X is a forest zone. We partitionX into the for-
est zone Di and the context zone X−Di. Both
parts have between a third and two thirds the
nodes.

• X is a context zone, which means thatX is the
difference Y −Z of two forest zones. There are
two cases to consider.

12 SIGMOD Record, June 2012 (Vol. 41, No. 2)

– Di is a context zone, which means that
Z ⊆ Di. In this case we decompose X
into two context zones Di and X −Di.

– Di is a forest zone. In this case, the set
X − Di, which itself is not a zone, can
be partitioned into at most three zones,
all of which have at most one third of the
nodes.

Corollary 2. Let t be a forest. There exists
exists a tree s, where each node x is labelled by a
(forest or context) zone in t such that

• The root of s is labelled by the set of all nodes
in t.

• Leaves of s are labelled by singletons.

• Let x be a non-leaf node of s, and let x1, . . . , xk
be its children. Then k ≤ 4, and the zones in
the labels of x1, . . . , xk form a partition of the
zone in the label of x.

• The depth of s is logarithmic in the size of X.

Proof. Apply Lemma 3 to the zone contain-
ing all nodes, and then recursively apply the same
lemma to the resulting zones. Each time, the size
of the zone decreases to at most 2/3, so the process
creates a tree of depth at most log3/2 n.

7.2 Incremental updates
Using the hierarchical decomposition from Corol-

lary 2, we can generalize to trees the algorithms
from Section 3. The algorithm for incremental up-
dates for tree languages is exactly the same as in
the case of words. We just use the data structure
given in Corollary 2.

7.3 Binary queries on forests
As in Section 3, we can use the hierarchical de-

composition to evaluate binary queries. Most of the
discussion in this section is devoted to defining reg-
ular binary queries for trees; once these are defined,
a straightforward application of the hierarchical de-
composition can be used to evaluate them.

In this section, we consider regular binary queries
on trees (actually, on forests). Let x, y be two nodes
in a forest t. There are four possible scenarios for
their relative positions in the forest.

1. The first scenario is when x is an ancestor of
y. In this case, the nodes of the forest can be
partitioned into: x, y, two context zones and
one forest zone, as in the picture below:

2. The second scenario is when x is a descendant
of y. A decomposition similar to the one in
the first scenario can be found.

3. The third scenario is when x and y are incom-
parable with respect to the descendant rela-
tion, but x comes first in document order. Let
z be the closest common ancestor of x and y.
In this case the complement of {x, y} can be
partitioned into three context zones and two
forest zones, as in the following picture:

4. There is a degenerate variant of the third sce-
nario, when x and y are descendants of differ-
ent roots, and z does not exist. In this degen-
erate case when z does not exist, the upper-
most context zone is empty.

5. The fifth scenario is when x and y are incom-
parable with respect to the descendant rela-
tion, but y comes first in document order. A
decomposition similar to the one in the third
scenario can be found.

6. The sixth scenario is the degenerate version of
the fifth.

Suppose that α is a forest algebra morphism. Then
type α-type of a pair of nodes (x, y) in a forest t
consists of the following information:

SIGMOD Record, June 2012 (Vol. 41, No. 2) 13

• the labels of x and y;

• which scenario holds;

• for the appropriate scenario, the values assigned
by α to the zones

A query is said to be recognized by α if there is
a set F of α-types such that for every forest and
pair of nodes (x, y), the pair (x, y) is selected by
the query if and only if its α-type belongs to F . A
query is called regular if it is recognized by some α.
A similar definition makes sense queries of higher
arities, such as three or four, but the number of
scenarios grows with the arity of the query.

The above definition of regular queries coincides
with more standard definitions of regular binary
queries for trees or forests, such as queries defined
by a formula of monadic second-order logic with two
free variables.

Theorem 7. Let ϕ be a regular binary query on
forests. There is an algorithm which:

1. on input forest t, builds a data structure in
linear time;

2. using the data structure, answers in logarith-
mic time questions of the form: is a pair of
nodes (x, y) selected by ϕ?

Proof. The same proof as for Theorem 3, except
using the decomposition from Corollary 2.

7.4 References
The first algorithm for incremental updates of

regular tree languages is from [1]. The algorithm
here is a slight improvement over [1], because for a
tree with n nodes it runs in time O(log n) and not
O(log2 n).

8. REFERENCES
[1] Andrey Balmin, Yannis Papakonstantinou, and

Victor Vianu. Incremental validation of xml
documents. ACM Trans. Database Syst.,
29(4):710–751, 2004.

[2] Mikołaj Bojańczyk. Algebra for trees. In
Handbook of Automata Theory. European
Mathematical Society Publishing House. To
appear.

[3] Mikołaj Bojańczyk. Factorization forests. In
Developments in Language Theory, pages 1–17,
2009.

[4] Mikołaj Bojańczyk. and Paweł Parys. Efficient
evaluation of nondeterministic automata using
factorization forests. In ICALP (1), pages
515–526, 2010.

[5] Thomas Colcombet. Factorization forests for
infinite words and applications to countable
scattered linear orderings. Theor. Comput.
Sci., 411(4-5):751–764, 2010.

[6] Gudmund Skovbjerg Frandsen, Johan P.
Hansen, and Peter Bro Miltersen. Lower
bounds for dynamic algebraic problems. Inf.
Comput., 171(2):333–349, 2001.

[7] Manfred Kufleitner. The height of factorization
forests. In MFCS, pages 443–454, 2008.

[8] Frank Neven. Automata theory for xml
researchers. SIGMOD Record, 31(3):39–46,
2002.

[9] Imre Simon. Factorization forests of finite
height. Theor. Comput. Sci., 72(1):65–94, 1990.

14 SIGMOD Record, June 2012 (Vol. 41, No. 2)

A Brief Survey of Automatic Methods for Author Name
Disambiguation

Anderson A. Ferreira1,2 Marcos André Gonçalves2 Alberto H. F. Laender2

1Departamento de Computação 2Departamento de Ciência da Computação
Universidade Federal de Ouro Preto Universidade Federal de Minas Gerais

35400-000 Ouro Preto, Brazil 31270-901 Belo Horizonte, Brazil
{ferreira, mgoncalv, laender}@dcc.ufmg.br

ABSTRACT
Name ambiguity in the context of bibliographic citation
records is a hard problem that affects the quality of ser-
vices and content in digital libraries and similar systems.
The challenges of dealing with author name ambiguity
have led to a myriad of disambiguation methods. Gener-
ally speaking, the proposed methods usually attempt to
group citation records of a same author by finding some
similarity among them or try to directly assign them to
their respective authors. Both approaches may either ex-
ploit supervised or unsupervised techniques. In this ar-
ticle, we propose a taxonomy for characterizing the cur-
rent author name disambiguation methods described in
the literature, present a brief survey of the most repre-
sentative ones and discuss several open challenges.

1. INTRODUCTION
Several scholarly digital libraries (DLs), such as

DBLP1, CiteSeer2, PubMed3 and BDBComp4, provide
features and services that facilitate literature research
and discovery as well as other types of functionality.
Such systems may list millions of bibliographic cita-
tion records (here understood as a set of bibliographic
attributes such as author and coauthor names, work and
publication venue titles of a particular publication5) and
have become an important source of information for aca-
demic communities since they allow the search and dis-
covery of relevant publications in a centralized manner.
Studies based on the DL content can also lead to inter-
esting results such as topic coverage, research tenden-
cies, quality and impact of publications of a specific sub-
community or individuals, collaboration patterns in so-
cial networks, etc. These types of analysis and informa-
tion, which are used, for instance, by funding agencies
1http://dblp.uni-trier.de
2http://citeseer.ist.psu.edu
3www.ncbi.nlm.nih.gov/pubmed
4http://www.lbd.dcc.ufmg.br/bdbcomp
5We use the terms “citation” and “citation record” interchangeably.

on decisions for grants and for individual’s promotions,
presuppose high quality content [29, 31].
According to Lee et al. [31], the challenges to have

high quality content comes from data-entry errors, dis-
parate citation formats, lack of (enforcement of) stan-
dards, imperfect citation-gathering software, ambiguous
author names, and abbreviations of publication venue
titles. Among these challenges, author name ambigu-
ity has required a lot of attention from the DL research
community due to its inherent difficulty. Specifically,
name ambiguity is a problem that occurs when a set
of citation records contains ambiguous author names,
i.e., the same author may appear under distinct names
(synonyms), or distinct authors may have similar names
(polysems). This problem may be caused by a number
of reasons, including the lack of standards and common
practices, and the decentralized generation of content
(i.e., by means of automatic harvesting [30]).
To illustrate the problem, Table 1 shows a set of three

citations {c1, c2, c3} so that each citation has its author
names identified by rj , 1 ≤ j ≤ 16. For each cita-
tion ci, each name rj is a reference to an author and
has a list of attributes associated with it, such as, coau-
thor names (i.e., the list of references to other authors
of the same citation), work title, publication venue title,
publication year and so on. Examining Table 1, we see
examples of synonyms and polysems, which, as men-
tioned before, are subproblems of the name ambiguity
problem. Author names r3 and r15 are examples of pol-
ysems where r3 refers to “Ajay Gupta” from IBM Re-
search India and r15 refers to “Aarti Gupta” from NEC
Laboratories America, USA. Author names r3 and r7

are examples of synonyms. Both refer to “Ajay Gupta”
from IBM Research India.
More formally, the name disambiguation task may be

formulated as follows: Let C = {c1, c2, ..., ck} be a set
of citation records. Each citation record ci has a list of
attributes which includes at least author names, work ti-
tle and publication venue title. With each attribute in a
citation is associated a specific value, which may have

SIGMOD Record, June 2012 (Vol. 41, No. 2) 15

Table 1: Illustrative Example (Ambiguous Group of A. Gupta)
Citation Id Citation

c1 (r1) S. Godbole, (r2) I. Bhattacharya, (r3) A. Gupta, (r4) A. Verma. Building re-usable dictionary repositories for real-world
text mining. CIKM, 2010.

c2 (r5) Indrajit Bhattacharya, (r6) Shantanu Godbole, (r7) Ajay Gupta, (r8) Ashish Verma, (r9) Jeff Achtermann, (r10) Kevin
English. Enabling analysts in managed services for CRM analytics. KDD, 2009.

c3 (r11) T. Nghiem, (r12) S. Sankaranarayanan, (r13) G. E. Fainekos, (r14) F. Ivancic, (r15) A. Gupta, (r16) G. J. Pappas.
Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. HSCC, 2010.

several components. In case of the author names at-
tribute, a component corresponds to the name of a sin-
gle unique author and is a reference rj to a real au-
thor. In case of the other attributes, a component corre-
sponds to a word/term. The objective of a disambigua-
tion method is to produce a function that is used to parti-
tion the set of references to authors {r1, . . . , rm} into n
sets {a1, . . . , an}, so that each partition ai contains (all
and ideally only all) the references to a same author.
To disambiguate the bibliographic citations of a DL,

first we may split the set of references to authors into
groups of references whose values of the author name
attribute are ambiguous. These are called ambiguous
groups (i.e., groups of references having the value of the
author name attribute with similar names). The ambigu-
ous groups may be obtained by using blocking meth-
ods [37] which address scalability issues avoiding the
need for comparisons among all references.
The challenges of dealing with name ambiguity in ci-

tation records have led to a myriad of disambiguation
methods [3, 4, 7, 9, 15, 16, 20, 21, 22, 24, 26, 27, 33,
35, 38, 40, 41, 42, 43, 44, 46, 49]. One such a chal-
lenge is that, usually, only a minimum set of attributes is
available to work with (in most case only author names
and publication and venue titles). In any case, existing
disambiguation methods usually attempt to either group
citation records of the same author using some type of
similarity between them or try to directly assign the ci-
tation records to their respective authors.
An early survey with some preliminary disambigua-

tion methods is found in [28]. In that work, Klass clas-
sifies the methods into supervised or unsupervised ones
and describes somemethods published until 2006. How-
ever, the area has been very prolific in the last years,
with manymethods recently proposed. In this article, we
propose a new taxonomy for characterizing the current
methods for disambiguating author names and present a
brief survey of some of the most representative ones.
This article is organized as follows. Section 2 pro-

poses our taxonomy for characterizing the author name
disambiguation methods. Section 3 presents an overview
of representative author name disambiguation methods.
A summary of characteristics of the methods is presented
in Section 4. Section 5 discusses some open challenges
in the author name disambiguation task. Finally, Sec-
tion 6 presents our conclusions.

Figure 1: Proposed taxonomy

2. A TAXONOMYFORAUTHORNAME
DISAMBIGUATION METHODS

This section presents a hierarchical taxonomy for
grouping the most representative automatic author name
disambiguation methods found in the literature. The
proposed taxonomy is shown in Figure 2. The meth-
ods may be classified according to the main type of ex-
ploited approach: author grouping [4, 7, 9, 15, 16, 22,
24, 26, 27, 36, 38, 41, 42, 44, 45, 46, 35, 49], which tries
to group the references to the same author using some
type of similarity among reference attributes, or author
assignment [3, 16, 20, 21, 43], which aims at directly as-
signing the references to their respective authors. Alter-
natively, the methods may be grouped according to the
evidence explored in the disambiguation task: the cita-
tion attributes (only), Web information, or implicit data
that can be extracted from the available information.
We should notice that in this survey we cover only au-

tomatic methods. Other types of method, such as man-
ual assignment by librarians [39] or collaborative ef-
forts6, heavily rely on human efforts, which prevent them
from being used in massive name disambiguation tasks.
For this reason, they are not addressed in this article.
There are also efforts to establish a unique identification
to each author, such as the use of an Open Researcher
Contributor Identification7 (ORCID), but these are also
not covered here.
Since the name disambiguation problem is not re-

stricted to a single context, it is also worth noticing that
several other name disambiguation methods, which ex-
ploit distinct pieces of evidence or are targeted at other
applications (i.e., name disambiguation in Web search

6http://meta.wikimedia.org/wiki/WikiAuthors
7http://www.orcid.org

16 SIGMOD Record, June 2012 (Vol. 41, No. 2)

results), have been described in the literature [2, 12, 18,
48, 50]. However, a discussion of these methods is out-
side the scope of this article.
Finally, we should stress that the categories in our tax-

onomy are not completely disjoint. For instance, there
are methods that use two or more types of evidence or
mix approaches. In the next subsections, we detail our
proposed taxonomy.

2.1 Type of Approach
As said before, one way to organize the several exist-

ing author name disambiguation methods is according
to the type of approach they exploit. We elaborate this
distinction further in the discussion below.

2.1.1 Author Grouping Methods
Author grouping methods apply a similarity function

to the attributes of the references to authors (or group of
references) to decide whether to group the correspond-
ing references using a clustering technique. The sim-
ilarity function may be predefined (based on existing
ones and depending on the type of the attribute) [4, 7,
22, 36, 41], learned using a supervised machine learning
technique [9, 24, 44, 45, 46], or extracted from the re-
lationships among authors and coauthors, usually repre-
sented as a graph [15, 33, 35]. This similarity function is
then used along with some clustering technique to group
references of a same author, trying to maximize intra
and minimize inter-cluster similarities, respectively.

Defining a Similarity Function
Here, a similarity function is responsible for determin-
ing how similar two references (or groups of references)
to authors are. The goal is to obtain a function that re-
turns high similarity values for references to the same
author and returns low similarity values for references to
different authors. Moreover, it is desirable that the sim-
ilarity function be transitive. More specifically, let c1,
c2 and c3 be three citations, if c1 and c2 are very similar
(according to the function) and c2 and c3 are also very
similar, then c1 and c3 should have high similarity ac-
cording to our function. Next, we discuss the ways to
determine this similarity function.
Using Predefined Functions. This class of methods
has a specific predefined similarity function S embed-
ded in their algorithms to check whether two references
or groups of references refer to the same author. Exam-
ples of such function S include [6]: the Levenshtein dis-
tance, Jaccard coefficient, cosine similarity, soft-TFIDF
and others [6], applied to elements of the reference at-
tributes. Ad-hoc combinations of such functions have
also been used (e.g., in [4, 41])
These methods do not need any type of supervision in

terms of training data but their similarity functions are
usually tuned to disambiguate a specific collection of

citation records. For different collections, a new tuning
procedure may be required. Finally, not all the functions
used in these methods are transitive by nature.
Learning a Similarity Function. Learning a specific
similarity function usually produces better results, since
these learned functions are directly optimized for the
disambiguation problem at hand. To learn the similar-
ity function, the disambiguation methods receive a set
{sij} of pairs of references (the training data) along a
special variable that informs whether these two corre-
sponding references refer to the same author. The pair
of references, ri and rj ∈ R (the set of references) are
usually represented by a similarity vector !sij . Each sim-
ilarity vector !sij is composed of a set F of q features
{f1, f2, . . . , fq}. Each feature fp of these vectors rep-
resents a comparison between attributes ri.Al and rj .Al

of two references, ri and rj .
The value of each feature is usually defined using

other functions, such as Levenshtein distance, Jaccard
coefficient, Jaro-Winkler, cosine similarity, soft-TFIDF,
euclidean distance, etc., or some specific heuristic, such
as the number of terms or coauthor names in common,
or special values such as the initial of the first name
along with the last names, etc.
The training data is then used to produce a similarity

function S fromR xR to {0, 1}, where 1means that the
two references do refer to the same author and 0 means
that they do not. As mentioned before, methods relying
in learning techniques to define the similarity function
are quite effective in different collections of citations,
but they usually need many examples and sufficient fea-
tures to work well, which can be very costly to obtain.
Exploiting Graph-based Similarity Functions. The
methods that exploit graph-based similarity functions
for author name disambiguation usually create a coau-
thorship graph G = (V,E) for each ambiguous group.
Each element of the author name and coauthor name at-
tributes is represented by a vertex v. The same coauthor
names are usually represented by only a unique vertex.
For each coauthorship (i.e., a pair of authors who pub-
lishes an article) an edge 〈vi, vj〉 is created. The weight
of each edge 〈vi, vj〉 is related to the amount of arti-
cles coauthored by the corresponding author names rep-
resented by vertices vi and vj .
A graph-based metric (e.g., shortest path as in [33])

may be combined with other similarity functions on the
attributes of the references to authors or used as a new
feature in the similarity vectors.
Clustering Techniques
The author grouping methods usually exploit a cluster-
ing technique in their disambiguation task. The most
used techniques include: 1) partitioning [23], which cre-
ates a pre-defined number k of partitions of the set of
references to authors in an iterative process; 2) hier-

SIGMOD Record, June 2012 (Vol. 41, No. 2) 17

archical agglomerative clustering [23], which groups
the references to authors in a hierarchical manner; 3)
density-based clustering [23], in which a cluster corre-
sponds to a dense region of references to authors sur-
rounded by a region of low density (according to some
density criteria) – references in regions with low density
are considered as noise; and 4) spectral clustering [51],
which corresponds to graph-based techniques that com-
pute the eigenvalues and eigenvectors, the spectral in-
formation, of a Laplacian Matrix that, in the the author
name disambiguation task, represents a similarity ma-
trix of a weighted graph. In general, these clustering
techniques rely on a “good similarity function” to group
the references.
2.1.2 Author Assignment Methods
Author assignment methods directly assign each ref-

erence to a given author by constructing a model that
represents the author (e.g., the probabilities of an author
publishing an article with other (co-)authors, in a given
venue and using a list of specific terms in the work title)
using either a supervised classification technique [16,
20] or a model-based clustering technique [3, 21].
Classification. Methods in this class assign the refer-
ences to their authors using a supervised machine learn-
ing technique. More specifically, they receive as in-
put a set of references to authors with their attributes,
the training data D, consisting of examples or, more
specifically, references for which the correct authorship
is known. Each example is composed of a set F of m
features {f1, f2, . . . , fm} along with a special variable
called the author. This author variable draws its value
from a discrete set of labels {a1, a2, . . . , an}, where
each label uniquely identifies an author. The training
examples are used to produce a disambiguation function
(i.e., the disambiguator) that relates the features in the
training examples to the correct author. The test set (de-
noted as T) for the disambiguation task consists of a set
of references for which the features are known while the
correct author is unknown. The disambiguator, which
is a function from {f1, f2, . . . , fm} to {a1, a2, . . . , an},
is used to predict the correct author for the references in
the test set. In this context, the disambiguator essentially
divides the records in T into n sets {a1, a2, . . . , an},
where ai contains (ideally all and only all) the references
in which the ith author is included.
These methods are usually very effective when faced

with a large number of examples of citations for each
author. Another advantage is that, if the collection has
been disambiguated (manually or automatically), the
methods may be applied only to references of the new
citations inserted into the collection by simply running
the learned model on them. Although successful cases
of the application of these methods have been reported,
the acquisition of training examples usually requires

skilled human annotators to manually label references.
DLs are very dynamic systems, thus manual labeling of
large volumes of examples is unfeasible. Further, the
disambiguation task presents nuances that impose the
need for methods with specific abilities. For instance,
since it is not reasonable to assume that examples for
all possible authors are included in the training data and
the authors change their interesting area over time, new
examples need be insert into training data continuously
and the methods need to be retrained periodically in or-
der to maintain their effectiveness.
Clustering. Clustering techniques that attempt to di-
rectly assign references to authors work by optimizing
the fit between a set of references to an author and some
mathematical model used to represent that author. They
use probabilistic techniques to determine the author in a
iterative way to fit the model (or estimate the parameters
in probabilistic techniques) of the authors. For instance,
in the first run of such a method each reference may
be randomly distributed to an author ai and a function,
from a set of features {f1, f2, . . . , fm} to {a1, a2, . . . ,
an}, is derived using this distribution. In the second it-
eration, this function is used to predict the author of each
reference and a new function is derived to be used in the
next iteration. This process continues until a stop con-
dition is reached, for instance, after a number of itera-
tions. Two algorithms commonly used to fit the models
in disambiguation tasks are Expectation-Maximization
(EM) [11] and Gibbs Sampling [19].
These methods do not need training examples, but

they usually require privileged information about the cor-
rect number of authors or the number of author groups
(i.e., group of authors that publish together) and may
take some time to estimate their parameters (e.g., due to
the several iterations). Additionally, these methods may
be able to directly assign authors to their references in a
new citations using the final derived function.

2.2 Explored Evidence
In this section, we describe the kinds of evidence most

commonly explored by the disambiguation methods.
Citation Information. Citation information are the at-
tributes directly extracted from the citations, such as au-
thor/coauthor names, work title, publication venue title,
year, and so on. These attributes are the ones commonly
found in all citations, but usually are not sufficient to
perfectly disambiguate all references to authors. Some
methods also assume the availability of additional infor-
mation such as emails, addresses, paper headers, which
is not always available or easy to obtain, although if ex-
istent, they usually help the process (a lot!).
Web Information. Web information represents data re-
trieved from the Web that is used as additional informa-
tion about an author publication profile. This informa-

18 SIGMOD Record, June 2012 (Vol. 41, No. 2)

tion is usually obtained by submitting queries to search
engines, based on the values of citation attributes and
the returned Web pages are used as new evidence (at-
tributes) to calculate the similarity among references.
The new evidence usually improves the disambiguation
task. One problem is the additional cost of extracting all
the needed information from the Web documents.
Implicit Evidence. Implicit evidence is inferred from
visible elements of attributes. Several techniques have
being implemented to find implicit evidence, such as the
latent topics of a citation. One example is the Latent Di-
rechlet Location (LDA) [5] that estimates the topic dis-
tribution of a citation (i.e, LDA estimates the probability
of each topic given a citation). This estimated distribu-
tion is used as new evidence (attribute) to calculate the
similarity among references to authors.

2.3 Evaluation Metrics
Although not part of our taxonomy, one important

point to understand the discussion that follows is the
evaluation metrics that are used by each proposed method
in their experimental evaluations. The most used metrics
are: accuracy, which is basically the proportion of cor-
rect results among all predictions; the traditional met-
rics of precision, recall, and F1, commonly used for in-
formation retrieval and classification problems8; pair-
wise F1, a variation of F1 that considers pairs of ci-
tations correctly assigned to the same author (or not);
Cluster F1, that calculates precision and recall of the
correct clusters (i.e., the clusters that contain all and
only all the references to an author); the K metric [7], a
combination of purity (a pure cluster contains citations
of only one author) and fragmentation of clusters (frag-
mentation occurs when the production of one author is
split into one or more clusters); B-Cubed [1], that calcu-
lates precision and recall for each reference to an author;
and MUC [1]. In this last metric, recall is calculated by
summing up the number of elements in the ground-truth
clusters minus the number of empirical clusters (obtained
with the method) that contain these elements and divid-
ing this by the total of elements minus the number of
theoretical clusters. Precision is calculated similarly.

3. OVERVIEW OF REPRESENTATIVE
METHODS

In this section, we present a brief overview of rep-
resentative author name disambiguation methods which
fall under one or more of the categories of the proposed
taxonomy. Our main focus here is on those methods
that have been specifically designed to address the name
ambiguity problem in the context of bibliographic cita-
tions, since they are more related to the scope of this
8In this last case, the authors are considered as classes and the correct
assignments need to be known a priori.

work. In the next subsections, we describe each method
under the category we consider that best fits it. We no-
tice that most of the described methods explore citation
information in the disambiguation task. Thus, we leave
to Subsection 3.3 the discussion of those methods that
use additional evidence.

3.1 Author Grouping Methods
Using Predefined Functions. Han et al. [22] represent
each reference as a feature vector where each feature
corresponds to an element of a given instance of one
of its attributes. The authors consider two options for
defining the feature weights: TFIDF and NTF (Normal-
ized Term Frequency), being NTF given by ntf(i, d) =
freq(i, d)/maxfreq(i, d)where freq(i, d) refers to the
feature frequency iwithin the record d, andmaxfreq(i,
d) refers to the maximal term frequency of feature i in
the record d. The authors propose the use of K-way
spectral clustering with QR decomposition [51] to con-
struct clusters of references to the same author. To use
this clustering technique, the correct number of clusters
to be generated needs to be informed. The K-way spec-
tral clustering method represents each reference as a ver-
tex of an undirected graph and the weight of an edge rep-
resents the similarity between the attributes associated
with the connected references. K-way spectral cluster-
ing splits the graph so that records that are more sim-
ilar to each other will belong to the same cluster. This
method was evaluated using data obtained from the Web
and DBLP. Experimental results achieved 63% of accu-
racy in DBLP and up to 84.3% in the Web collection.
An algorithm for collective entity resolution (i.e., an

algorithm that uses only disambiguated coauthor names
when disambiguating an author name of a citation) that
exploits attribute elements (i.e., attribute values present
in the citation records) and relational information (i.e.,
authorship information between entities referred in the
citations records) is proposed in [4] by Bhattacharya
and Getoor. The authors propose a combined similar-
ity function defined on attributes and relational infor-
mation. As the initial step, they create clusters of dis-
ambiguated references verifying if two references have
at least k coauthor names in common (they used only
the author names in their experiments but they men-
tion that other attributes may be used). The experiments
were performed using soft-TFIDF, Jaro-Winkler, Jaro
and Scaled Levenshtein metrics for name attributes, and
Common Neighbours, Jaccard coefficient, Adamic-Adar
similarity and Higher-order neighbourhoods metrics for
relational attributes. The authors exploit a greedy ag-
glomerative strategy that merges the most similar clus-
ters in each step. The collections used in the experi-
ments were: a subset of CiteSeer containing machine
learning documents, a collection of high energy physics

SIGMOD Record, June 2012 (Vol. 41, No. 2) 19

publications from arXiv9 and BioBase10 that contains
biological publications from Elsevier. The method ob-
tained around 0.99 of F1 in the CiteSeer and arXiv col-
lections and around 0.81 in the BioBase collection.
In [41], Soler proposes a new distance metric between

two citations, ci and cj , (or clusters of citations) based
on the probability of these publications having terms and
author names in common. The proposed algorithm cre-
ates clusters of articles using the proposed metric and
summarizes the clusters by means of a representative ci-
tation that includes the distance from it to the others.
It groups the citations whose distances among them is
minimum using as evidence author names, email, ad-
dress, title, keywords, research field, journal and publi-
cation year. The final decision whether two candidate
clusters belong to the same author or not is given by a
specialist. Soler presents some illustrative cases of clus-
ters obtained by using the proposed metric with records
extracted from ISI-ThomsonWeb of Science database11.
In [7], Cota et al. propose a heuristic-based hierar-

chical clustering method for author name disambigua-
tion that involves two steps. In the first step, the method
creates clusters of references with similar author names
that share at least a similar coauthor name. Author name
similarity is given by a specialized name comparison
function called Fragments. This step produces very pure
but fragmented clusters. Then, in the second step, the
method successively fuses clusters of references with
similar author names according to the similarity between
the citation attributes (i..e., work title and publication
venue) calculated using the cosine measure. In each
round of fusion, the information of fused clusters is ag-
gregated (i.e., all words in the titles are grouped together)
providing more information for the next round. This
process is successively repeated until no more fusions
are possible according to a similarity threshold. The
authors used pairwise F1 and K metrics on collections
extracted from DBLP and BDBComp to evaluate the
method and obtained around 0.77 and 0.93 for K in
DBLP and BDBComp, respectively. An extension of
this method that allows the name disambiguation task to
be incrementally performed is presented in [10].
Learning a Similarity Function. In [44], Torvik et al.
propose to learn a probabilistic metric for determining
the similarity among MEDLINE records. The learning
model is created using similarity vectors between two
references containing features resulting of the compari-
son between the common citation attributes along with
medical subject headings, language, and affiliation of
two references. They also propose heuristics for gener-

9http://arxiv.org
10http://www.elsevier.com/wps/find/bibliographicdatabasedescription.
cws_home/600715/description#description
11http://isiknowledge.com

ating training sets (positive and negative) automatically.
In a subsequent work [45], Torvik and Smalheiser ex-
tend the method by including additional features, new
ways of automatically generating training sets, an im-
proved algorithm for dealing with the transitivity prob-
lem and a new agglomerative clustering algorithm for
grouping records. They estimate recall around 98.8%,
that only 0.5% of the clusters have mixed references
of different authors (purity), and that only in 2% of the
cases the references of a same authors are split into two
or more clusters (fragmentation).
In [24], Huang et al. present a framework in which a

blocking method is first applied to create blocks of ref-
erences to authors with similar names. Next DBSCAN,
a density-based clustering method [14], is used for clus-
tering references by author. For each block, the distance
metric between pairs of citations used by DBSCAN is
calculated by a trained online active support vector ma-
chine algorithm (LASVM), which yields, according to
the authors, a simpler and faster model than the stan-
dard support vector machines. The authors use different
functions for each different attribute, such as the edit
distance for emails and URLs, Jaccard similarity for ad-
dresses and affiliations and soft-TFIDF for names. The
authors have applied their framework to a manually an-
notated dataset with 3,335 citation records and 490 dis-
tinct authors. Experiments were performed with pairs of
references in which the disambiguator informs whether
two references are of the same author or not. They ob-
tained 90.6% in terms of pairwise F1. It should be no-
ticed that these results were obtained by exploiting addi-
tional sources of evidence such as the headers of papers
obtained from CiteSeer.
In [9], Culotta et al. aim to learn a score function to

be applied to the disambiguation result, such that higher
scores correspond to the more correct disambiguations.
Instead of calculating the score using pairs of references,
the authors propose a score function that considers all
references in a cluster together, with the goal of maxi-
mizing the result of the score function in the resulting
disambiguation. To learn this function, they propose a
training algorithm that is error-driven, i.e., training ex-
amples are generated from incorrect predictions in the
training data and ranked, i.e., the classifier uses a rank-
ing of candidate predictions to tune its parameters. The
authors evaluated two loss functions to tune the parame-
ters, Ranking Perceptron [17] and Ranking MIRA [8].
The experimental evaluation used two collections ex-
tracted from DBLP (one which is called Penn, because
disambiguation was performed manually by students
from Penn State University) and other from the Rexa12
Digital Library. As evaluation metrics, they used pair-
wise F1, MUC and B-Cubed [1]. As evidence, they ex-

12http://rexa.info

20 SIGMOD Record, June 2012 (Vol. 41, No. 2)

ploited features such as first and middle names of the
authors, number of coauthors in common, rarity of the
last name, similarity between work titles, e-mails, affil-
iations and publication venue titles as well as the mini-
mum, maximum and average values for real-valued fea-
tures, among several others. They also used a greedy
agglomerative clustering technique to group the refer-
ences. Ranking Perceptron generated the best results in
DBLP and Penn, with 0.52 and 0.86 of pairwise F1, re-
spectively. Ranking MIRA generates the best result on
the other DBLP collection with 0.931 of pairwise F1.
Treeratpituk and Giles [46] propose a learned simi-

larity function for author name disambiguation in the
MEDLINE digital library. The authors exploit a large
feature set obtained from MEDLINE metadata, similar
to that proposed in [44]. The authors also use similar-
ity vectors to learn the similarity function using a Ran-
dom Forest classifier. They compare the use of Random
Forests with decision trees, support vector machines,
naïve Bayes and logistic regression to learn the function
to be used along with some clustering technique (left
unspecified). They also investigate the performance of
subsets of the features capable of reaching good effec-
tiveness. The authors obtain almost 96% of accuracy in
their experiments by exploiting this large set of features.
Exploiting Graph-based Similarity Functions. In [35],
On et al. address synonym in the group entity resolution
problem (i.e., a reference to a person associated with
a group of items, e.g., an author with a list of publi-
cations) by proposing an approach that uses the quasi-
clique graph-mining technique for exploiting, besides
simple textual similarities, “contextual information” ex-
tracted from the group items’ attributes (e.g., the citation
attributes) as additional evidence. This contextual infor-
mation is obtained constructing a graph for each group
to represent relationships between the author names (i.e.,
references) and the attribute values (e.g., co-authors).
This graph is then superimposed on the pre-built graph
constructed using the entire set of author names. Using
this contextual information, the authors also propose a
graph-based distance function based on common quasi-
clique between the graphs of two entities (i.e., refer-
ences). They compared their graph-based function (dis-
tQC) with Jaccard, TF-IDF and IntelliClean functions
[32] by measuring the precision and recall at the top k
most similar references using three collections extracted
from ACM13, BioMed (a dataset of medical publica-
tions) and IMDb. On average, the experiments show an
improvement of 63%, 83% and 46% over Jaccard, TFIDF
and IntelliClean functions in terms of precision at top-
k records returned by their algorithm in ACM. Similar
results were obtained for the other collections.
In [33], Levin and Heuser propose social network met-

13http://portal.acm.org

rics that, along with string metrics, generate match func-
tions to verify whether two references represent the same
author. These functions were used in (very small) col-
lections extracted from Cora14, BDBComp and DBLP.
The authors construct a graph with two kinds of ver-
tices: one represents a reference to an author occurring
in a citation and the other represents the citation itself;
and two kinds of edges: one links the reference to the ci-
tation and the other links the vertices that share the same
author name value. The authors obtained in their exper-
iments around 95%, 82% and 95% of F1 in versions of
Cora, BDBComp and DBLP, respectively.
In [15], Fan et al. propose the GHOST (GrapHi-

cal framewOrk for name diSambiguaTion) framework.
GHOST solves the polysem problem using only the coau-
thor name attribute in five steps. In the first one, GHOST
represents a collection as a graphG=(V,E), where each
vertex v ∈ V represents a reference to be disambiguated
and each undirected edge (vi, vj) represents a coauthor-
ship whose label Sij is a set of citations coauthored by vi

and vj . In the second step, GHOST identifies the valid
paths eliminating the invalid ones between two nodes,
i.e., a path that contains a subpath viSikvkSkjvj where
Sik is equal to Skj and both have only one citation.
In the third step, GHOST creates a matrix representing
similarities between the vertices. For this, the authors
propose a new similarity function based on the formula
that calculates the resistance of a parallel circuit. In the
fourth step, the Affinity Propagation clustering algorithm
[13] is used to group the references to the same author.
Finally, in the last step, GHOST makes use of user feed-
back to improve the results. Experimental evaluation
was performed in collections extracted from DBLP and
MEDLINE. GHOST obtained on average 0.86 and 0.98
of pairwise F1 in DBLP and MEDLINE, respectively.

3.2 Author Assignment Methods
Classification. In [20], Han et al. propose two meth-
ods based on supervised learning techniques that use
coauthor names, work titles and publication venues as
evidence for assigning a reference to its author. The
first method uses naïve Bayes (NB), a generative statis-
tical model frequently used in word sense disambigua-
tion, to capture all writing patterns in the authors’ cita-
tions. The second method is based on Support Vector
Machines (SVMs), which are discriminative models ba-
sically used as a classifier [34]. An important difference
between the two techniques is that a NB model requires
only positive examples to learn about the writing pat-
terns whereas SVMs require both positive and negative
examples to learn how to identify the author. Both meth-
ods have been evaluated with data taken from the Web
and DBLP. Experimental results show that, on average,
14http://www.cs.umass.edu/ mccallum/code-data.html

SIGMOD Record, June 2012 (Vol. 41, No. 2) 21

using all attributes, the SVM-based method was more
accurate (accuracy=95.6%) than the NB method (accu-
racy=91.3%) for the Web collected dataset while for the
DBLP dataset the NB method performed better (SVM
accuracy was 65.4% while NB’s was 69.1%).
In [47], Veloso et al. propose SLAND, a disambigua-

tion method that infers the author of a reference by us-
ing a supervised rule-based associative classifier. The
method uses author names, work title and publication
venue title attributes as features and infers the most prob-
able author of a given reference ri using the confidence
of the association rules X → ai where X only contains
features of ri. The method also works on demand, i.e.,
association rules to infer the correct author of a refer-
ence are generated in the moment of disambiguation.
The method is also capable of inserting new examples
into the training data during the disambiguation pro-
cess, using reliable predictions, and detecting authors
not present in the training data. Experiments were con-
ducted in two collections extracted from DBLP and BD-
BComp and the proposed method outperformed repre-
sentative supervised (SVM and NB) considering the Mi-
cro and Macro F1 metrics. In the DBLP and BDBComp
collections, the (Micro) F1 values were 0.911 and 0.457,
respectively. To reduce the cost of obtaining training
data, this method was extended [16] to become self-
trained, i.e., it is now capable of producing its own train-
ing examples using (test) references to be disambiguated.
Initially, the method extracts pure clusters of references
by exploiting highly discriminative features, such as co-
author names. The most dissimilar clusters are then se-
lected to represent training examples for their authors.
Next, the references in the rest of clusters are classified
according to these training examples. In the experiments
with the same collections, the self-trained method out-
performed by far KWAY and SVM-DBSCAN and the
associative method was the best choice for classifying
the remaining test references not incorporated into the
training data when compared to SVM and NB.
Clustering. In [21], Han et al. present an unsupervised
hierarchical version of the naïve Bayes-based method
for modeling each author. The authors assume that each
citation is generated by a mixture of K authors. They
then calculate the probability of a citation record cm

given an author ai P(cm|ai) using the probability of each
attribute of this record given such author, in a hierarchi-
cal way. To estimate the parameters, the authors use
the Expectation Maximization algorithm [11] aiming to
maximize the likelihood of the citation records. The
method obtained on average 54% and 58% of accuracy
on data extracted from DBLP and the Web, respectively.
In [3], Battacharya and Getoor extend the generative

model Latent Dirichlet Allocation (LDA) and propose
a probabilistic model for collective entity resolution that

uses the cooccurence of the references to authors in each
work to determine the entities jointly, i.e., they use the
disambiguated references to disambiguate other refer-
ences in the same citation. In their model, the authors
associate an attribute va, that contains the author name
in the citation, with each author a. They assume that
each citation is constructed choosing their authors from
an author group (i.e., a group of authors that publish
some article together) distribution. That is, initially a
distribution that determines the probability of each au-
thor group having a specific author chosen to write the
article is selected. Next using this distribution, the au-
thors and a variation of their names are chosen for this
citation. The proposed method receives as input only
an approximation of the number of author groups in the
collection. Experiments were performed using citations
extracted from CiteSeer and arXiv reaching up to 0.99
and 0.98 respectively of pairwise F1.
In [43], Tang et al. propose a probabilistic framework

based on Hidden Markov Random Models (HMRF) for
the polysem subproblem. In this work, the authors use
author names, work title, publication venue title, pub-
lication year, abstract and bibliographic references as
content-based evidence and relationships between cita-
tions as structure-based evidence for disambiguating au-
thor names. Each relationship represents the fact that
two citations were published in the same publication
venue, have a coauthor name in common, cite each other,
have distinct coauthor names that were coauthors in an-
other citation, or have some specific user-provided con-
straint in common. Content and structure-based evi-
dence are modeled as feature functions (used to repre-
sent the similarity between two citations by their con-
tent or relationships) which are then incorporated into a
HMRF used to estimate the weights of the feature func-
tions and to assign the citations to their authors. The
authors also use Bayesian Information Criterion to es-
timate the number of authors of the collection. Experi-
mental evaluation was performed on citations extracted
from ArnetMiner15. Pairwise F1 values were 0.888 and
0.805 when the method uses the correct number of au-
thors and when it estimates this number, respectively.

3.3 Using Additional Evidence
Web Information. In [26], Kanani et al. present two
approaches for author name disambiguation that gather
additional evidence from the Web. They construct a
graph in which each vertex corresponds to a reference
to an author and the edges are weighted with values that
represent the probability of the two vertices (i.e., refer-
ences) being the same author. This weight is initially
calculated using the citation attributes. In the first ap-
proach, they use the result of searches submitted to a
15http://arnetminer.org

22 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Web search engine for the work titles of citation records
of the corresponding references to authors to change the
weight of the edge between two references. In the sec-
ond one, they use one of the returned pages of the search
as a new type of vertex in the graph (web vertex), adding
new edges from this new vertex to each previously ex-
isting reference vertex, indicating the probability of the
reference and the web page belonging to the same au-
thor. In both cases, a maximum entropy or logistic re-
gression model is learned for a pair of references ai and
aj and the weight of the edge 〈ai,aj〉 is given by the
probability of the corresponding references refer to the
same author minus the probability of these references
refer to the different authors. DBLP, Penn and the Rexa
collections were used in their experiments. Using the
results of searches to Google to change the weight of
the edges their method obtain around 0.905, 0.877 and
0.918 of accuracy and around 0.886, 0.814 and 0.747 of
pairwise F1 in the DBLP, Rexa and Penn collections, re-
spectively. The method that uses the returnedWeb pages
as vertices in the graph was run only with DBLP, pro-
ducing 0.882 of accuracy and 0.903 of pairwise F1.
In [49], Yang et al. address the author name ambigu-

ity problem using topics and correlations found on the
Web. They determine the topics of the citation from
venue information using an extraction algorithm based
on association rules in order to create a topic association
network. They also use the Web for retrieving publica-
tion pages of authors or coauthors to be disambiguated.
Then, they create a similarity function making use of
an SVM classifier on the top of all these features. The
authors represent the references to authors as vertices
in a graph and the similarity function is used to create
the edges between vertices. Their clustering technique
removes a bridge edge when each resulting connected
component has at least a given number of vertices. They
tested their approach on the collection constructed by
Han et al. [20] and obtained an increase of accuracy
around 66% (0.75 of accuracy) when compared to the
use of citations without topics and Web correlations.
In [27], Kang et al. exploit coauthorship informa-

tion using aWeb-based technique that obtains other (im-
plicit) coauthors of the reference to be disambiguated.
They submit a pair of author names of a same citation
as a query to Web search engines to retrieve documents
containing both author names and then extract new names
found in these documents as new implicit coauthors of
this pair. The authors measure the similarity between
two references by counting the number of coauthors in
common and use the single-link agglomerative cluster-
ing technique [25] to group the references to the same
author. They used a collection of citations published
in Korean during 1999-2006 that has only the polysem
problem obtaining around 0.85 of pairwise F1.

In [38], Pereira et al. also exploit Web information
to disambiguate author names. Their method attempts
to find Web documents corresponding to curricula vitae
or Web pages containing publications of a single author.
It works in three steps. The first step receives a list of
citations whose references must be disambiguated and,
for each citation, submits a query containing data from
its attributes to a Web search engine. It then inserts the
top-m documents in the answer set into a set D of doc-
uments. The second step selects the documents in D
that contain publications from a given author. The third
step groups the reference to authors whose citations oc-
cur in a same document in a hierarchical manner, i.e.,
if citations of two ambiguous references occur in the
same Web document, these citations are considered as
belonging to the same author and are fused in a same
cluster. The experimental evaluation, performed using
DBLP data, obtained on average 0.80, 0.76 and 0.14 of
K, pairwise F1 and cluster F1 metrics, respectively.
Implicit Evidence. In [42], Song et al. propose a two-
step unsupervised method. The first step uses Prob-
abilistic Latent Semantic Analysis (PLSA) and Latent
Dirichlet Allocation (LDA) to assign a vector of proba-
bilities of topics to each citation. The PLSA and LDA
proposed by them introduce a variable for persons (au-
thors) in the generative model, that does not exist in
general generative models. The second step considers
the distributions of the probability of topics with respect
to citations as a new attribute for name disambiguation.
The authors use the Levenshtein distance to measure the
similarity between two names. When two names are
considered similar, they use the probability vectors of
two corresponding citations and the Euclidean distance
to merge the citations of the same authors. The au-
thors compared their method with a greedy agglomer-
ative clustering, K-way spectral clustering and LASVM
+ DBSCAN on citations extracted from CiteSeer and
personal names on the Web. Their experiments demon-
strate that their method, when faced with a lot of citation
information is more effective than the baselines obtain-
ing on average around 0.911 and 0.936 of pairwise F1
on the Web and CiteSeer collections, respectively.
In [40], Shu, Long andMeng extend the Latent Dirich-

let Allocation model (LDA) for obtaining the topic dis-
tribution of each citation by adding the assumption that
every topic is a Dirichlet distribution over all author
names, that each document is a mixture of topics, and
that each topic is a Dirichlet distribution over all the
words. They train a classifier (C4.5 and SVMs) based
on the similarity on topics, coauthor names, title and
venue, as well as on the minimum distance between
coauthor names, to predict whether two references are
of the same author or not. The authors attempt to solve
the problem of name ambiguity by trying to solve first

SIGMOD Record, June 2012 (Vol. 41, No. 2) 23

the polysem problem and then the synonymy. They use
K-way spectral clustering to split the references into k
sets, one for each author, in order to deal with the poly-
sem problem. Next, they compare two sets of references
of authors whose names have a distance below a given
threshold and count the number of citations from these
two sets which are assigned to the same author by the
classifier. This value is divided by the total number of
pairs of those two sets and if the result is greater than
a given threshold they are merged. The authors show
the effectiveness of their method by applying it to data
extracted from DBLP. For the polysem problem the pre-
cision an recall were over 0.9 for the most ambiguous
groups while for the synonym problem the precision was
around 0.99 and recall equals to 0.917.

4. SUMMARY OF CHARACTERISTICS
In this section, we present an overview of the char-

acteristics found in the described author name disam-
biguation methods, summarized in Tables 2 and 3.
Among the collections used to evaluate the methods

we have: (1) versions of CiteSeer, DBLP, BDBComp,
ArnetMiner, and Rexa containing computer science pub-
lications; (2) arXiv that contains citations from high en-
ergy physics publications; (3) BioBase, containing ci-
tations from biological publications; (4) MEDLINE and
BioMed with data from biomedical publications; (5) ISI-
Thomson with publications from several knowledge ar-
eas; (6) Cora, which is constituted of duplicated cita-
tions in Computer Science and person names extracted
from the Web; and (7) IMDb with data about actors.
The majority of the described methods [4, 7, 9, 15,

22, 24, 26, 27, 33, 35, 38, 40, 41, 42, 45, 46, 49] try to
disambiguate references to authors by using a similarity
function to indicate whether two references refer to the
same author instead of directly assigning the correspond-
ing author to each reference, as in [3, 16, 20, 21, 43, 47].
Some of these methods receive the correct number

of authors in the collection as input ([15, 21, 22]) ors
this number corresponds to the number of authors in the
training data [20]. Other methods, such as those pro-
posed in [3], [43] and [16], try to estimate this number.
Almost half of the methods [3, 4, 7, 15, 16, 20, 21,

22, 33, 35, 40] uses at most the three main citation at-
tributes: author names, work title and publication venue
title, as evidence. These attributes are the most com-
monly found in citation records, constituting in most
cases the hardest situation for disambiguation. Fewmeth-
ods [26, 27, 38, 49] exploit additional evidence such as
emails, addresses, paper headers etc., which are not al-
ways available or easy to obtain.
Tables 2 and 3 also summarize the evaluation metrics

used by each method as well as the type of subproblem
(i.e., synonym, polysem, or both) addressed.

5. OPEN CHALLENGES
There are several open challenges that need to be ad-

dressed in order to produce more reliable solutions that
can be employed in a production mode in real digital
libraries. Below we discuss some of them.
Very Little Data in the Citations. In most cases we
have only the basic information about the citations avail-
able: author (coauthor) names, work and publication
venue titles, and publication year. Furthermore, in some
cases author names contain only the initial and the last
surname and the publication venue title is abbreviated.
New strategies that try to derive implicit information
(e.g., topics) or gather additional information from the
Web are promising in this scenario.
Very Ambiguous Cases. Several methods exploit coau-
thor-based heuristics, by explicitly assuming the hypothe-
ses that: (i) very rarely ambiguous references will have
coauthors in common who have also ambiguous names;
or (ii) it is rare that two authors with very similar names
work in the same research area. These hypotheses work
in most cases, but when they fail, the errors they gener-
ate are very hard to fix. For example, in the case of au-
thors with Asian names, the first hypothesis fails more
frequently than for authors with English or Latin names.
Citations with Errors. Errors occur in citation data
which are sometimes impossible to detect. The meth-
ods need to be tolerant to such errors.
Efficiency. With the high amount of articles being pub-
lished nowadays in the different knowledge areas, the
solutions need to deal with the problem efficiently. Few
proposed methods have this explicit concern.
Different Knowledge Areas. As we have seen, most of
the collections used to evaluate the methods are related
to Computer Science. However, other knowledge areas
(e.g., Humanities, Medicine) may have different publi-
cation patterns (e.g., publications with a sole author or
with a lot of coauthors) causing additional difficulties
for the current generation of methods.
Incremental Disambiguation. Ideally disambiguation
should be performed incrementally as new citations are
incorporated into the DL, since it is not reasonable to
assume that the whole DL should be disambiguated at
each new load. However, most, if not all, methods ig-
nore this fact. A promising solution is presented in [10].
Author Profile Changes. It is common that the research
interests of an author change over time. This can hap-
pen due to new collaborations, change in research group
or institution, natural evolution of a research field, etc.
These changes cause modifications in the model rep-
resenting the author profile causing difficulties for the
methods. A possible solution may involve retraining,
but determining when to retrain is a challenge. How-
ever, this issue has been largely ignored by all methods.
New Authors. The methods should be capable of iden-

24 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Table 2: Summary of characteristics - Author grouping methods
Method Similarity function Clustering technique Evidence Collections Evaluation metric Subproblem # of authors

Bhattacharya and Getoor [4] Common neighbours, Agglomerative Author name CiteSeer, F1 Both Unknown
Jaccard, arXiv and
Adamic/Adar and BioBase
Higher-order
neighbourhoods

Cota et al. [7] Fragment Agglomerative Citation attributes DBLP and BDBComp Pairwise F1 Both Unknown
comparison and F1 and K
cosine

Culotta et al. [9] Error-drive Agglomerative All of each collection DBDL and Rexa Pairwise F1, Both Unknown
and hank-based MUC and
learning B-Cubed

Fan et al. [15] graph-based Affinity Propagation Author names DBLP and MEDLINE Pairwise F1 Polysem Unknown
Han et al. [22] Cosine Spectral clustering Citation attributes DBLP and Web Accuracy Both Known

Huang et al. [24] Learned using DBScan First page of the articles CiteSeer Pairwise F1 Both Unknown
LASVM

Kanani, McCallum and Pal [26] Learned using Partitioning Citation attributes DBLP, Penn and Rexa Accuracy and Both Unknown
maximum entropy and Web pages pairwise F1
or logistic regression

Kang et al. [27] Heuristic Agglomerative Author names Korean citations F1 and under/ Polysem Unknown
and Web pages over-clustering

error
Levin and Heuser [33] Social network - Citation attributes DBLP, Cora and BDBComp F1 Both Unknown

metrics
On et al. [35] Quasi-clique - Citation/Movie attributes ACM, BioMed and IMDb Ranked recall Synonym Unknown

and precision
Pereira et al. [38] Heuristic Agglomerative Citation attributes DBLP Pairwise and Both Unknown

cluster F1
and K

Shu, Long and Meng [40] Learned using Spectral and Citation attributes DBLP Pairwise F1 Both Known
C4.5/SVMs agglomerative
and edit distance clustering

Soler [41] Probabilistic Agglomerative Citation attributes, ISI-Thomson - Both Unknown
metric email, address, keywords

and research field
Song et al. [42] Levenshtein Agglomerative Citation attributes CiteSeer and Web Pairwise and Both Unknown

and Euclidean and latent topics cluster F1
distance (LDA/PLSA)

Torvik and Smalheiser [45] Learn a proba- Agglomerative MEDLINE metadata MEDLINE Recall Both Unknown
bilist metric

Treeratpituk and Giles [46] Learned using - MEDLINE metadata MEDLINE Accuracy Both Unknown
random forest
classifier

Yang et al. [49] Learned using Partitioning Citation attributes, DBLP Accuracy, Both Unknown
SVM topics and precision

Web pages and recall

Table 3: Summary of characteristics - Author assignment methods
Method Technique Attributes Collections Evaluation metric Subproblem # of authors

Classification Ferreira et al. [16] Associative classifier Citation attributes DBLP and BDBComp Pairwise F1 and K Both Estimated
Han et al. [20] SVM and naïve Bayes classifiers Citation attributes DBLP and Web Accuracy Both Known

Veloso et al. [47] Associative classifier Citation attributes DBLP and BDBComp F1 Both Estimated

Clustering Battacharya and Getoor [3] LDA with Gibbs sampling Author names CiteSeer and arXiv F1 Both Estimated
Han et al. [21] Hierarchical naïve Bayes with EM Citation attributes DBLP and Web Accuracy Both Known
Tang et al. [43] Hidden Markov Random Fields Citation attributes ArnetMiner Pairwise F1 Polysem Estimated

tifying references to new ambiguous authors who do not
have citations in the DL yet. Only one of the reported
methods [47] has explicitly addressed this issue.

6. CONCLUSIONS
This article presented a brief survey on author name

disambiguation methods. We proposed a taxonomy to
classify the methods and provided an overview of the
most representative ones. Some patterns became clear.
The majority of the surveyed methods perform disam-
biguation by comparing citation records using some type
of similarity function. This function, which can be pre-
defined or learned specifically for the disambiguation
task, is directly applied to the citation attributes, which
can be enhanced with additional information retrieved
from theWeb or inferred from the own citation attributes
(e.g., topics). A few other methods disambiguate by di-
rectly assigning the citation records to their authors us-

ing supervised and unsupervised machine learning tech-
niques. Some open problems were also discussed.
One major gap in the field is the lack of direct com-

parisons among the methods under the same circum-
stances: e.g., same collections (e.g., many methods used
different versions of collections such as DBLP), same
computational environment, same experimental design.
This is probably due to the lack of standard collections
like those provided by the TREC competitions. More-
over, the few comparisons that exist involve at most three
or four methods and were performed in static scenar-
ios. In fact, there is no study about how these methods
would perform in a real-word scenario of a dynamic and
living digital library. These issues along with the open
problems previously discussed are in our opinion what
should guide the research efforts for developing new au-
thor name disambiguation methods in the near future.

SIGMOD Record, June 2012 (Vol. 41, No. 2) 25

Acknowledgments
This research is partially funded by InWeb (MCT/CNPq/FAPEMIG
grant 573871/2008-6), CAPES, CNPq, and FAPEMIG.

7. REFERENCES
[1] A. Bagga and B. Baldwin. Algorithms for scoring coreference

chains. In LREC, pages 563–566, 1998.
[2] R. Bekkerman and A. McCallum. Disambiguating web

appearances of people in a social network. In WWW, pages
463–470, 2005.

[3] I. Bhattacharya and L. Getoor. A latent dirichlet model for
unsupervised entity resolution. In SDM, 2006.

[4] I. Bhattacharya and L. Getoor. Collective entity resolution in
relational data. ACM TKDD, 1(1), 2007.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. JMLR, 3:993–1022, 2003.

[6] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for name-matching tasks.
In IIWeb, pages 73–78, 2003.

[7] R. G. Cota, A. A. Ferreira, M. A. Gonçalves, A. H. F. Laender,
and C. Nascimento. An unsupervised heuristic-based
hierarchical method for name disambiguation in bibliographic
citations. JASIST, 61(9):1853–1870, 2010.

[8] K. Crammer and Y. Singer. Ultraconservative online algorithms
for multiclass problems. JMLR, 3:951–991, 2003.

[9] A. Culotta, P. Kanani, R. Hall, M. Wick, and A. McCallum.
Author disambiguation using error-driven machine learning
with a ranking loss function. In IIWeb, 2007.

[10] A. P. de Carvalho, A. A. Ferreira, A. H. F. Laender, and M. A.
Gonçalves. Incremental unsupervised name disambiguation in
cleaned digital libraries. JIDM, 2(3):289–304, 2011.

[11] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society. Series B, 39(1):1–38, 1977.

[12] C. P. Diehl, L. Getoor, and G. Namata. Name reference
resolution in organizational email archives. In SDM, pages
70–91, 2006.

[13] D. Dueck and B. J. Frey. Non-metric affinity propagation for
unsupervised image categorization. In ICCV, 2007.

[14] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In KDD, pages 226–231, 1996.

[15] X. Fan, J. Wang, X. Pu, L. Zhou, and B. Lv. On graph-based
name disambiguation. JDIQ, 2:10:1–10:23, 2011.

[16] A. A. Ferreira, A. Veloso, M. A. Gonçalves, and A. H. F.
Laender. Effective self-training author name disambiguation in
scholarly digital libraries. In JCDL, pages 39–48, 2010.

[17] Y. Freund and R. Schapire. Large margin classification using the
perceptron algorithm.Machine learning, 37(3):277–296, 1999.

[18] C. Galvez and F. de Moya Anegón. Approximate personal
name-matching through finite-state graphs. JASIST,
58(13):1960–1976, 2007.

[19] T. Griffiths and M. Steyvers. Finding scientific topics. The
National Academy of Sciences, 101(1):5228–5235, 2004.

[20] H. Han, C. L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis. Two
supervised learning approaches for name disambiguation in
author citations. In JCDL, pages 296–305, 2004.

[21] H. Han, W. Xu, H. Zha, and C. L. Giles. A hierarchical naive
Bayes mixture model for name disambiguation in author
citations. In SAC, pages 1065–1069, 2005.

[22] H. Han, H. Zha, and C. L. Giles. Name disambiguation in
author citations using a k-way spectral clustering method. In
JCDL, pages 334–343, 2005.

[23] J. Han and M. Kamber. Data mining: concepts and techniques.
Morgan Kaufmann, 2005.

[24] J. Huang, S. Ertekin, and C. L. Giles. Efficient name
disambiguation for large-scale databases. In ECML-PKDD,
pages 536–544, 2006.

[25] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264–323, 1999.

[26] P. Kanani, A. McCallum, and C. Pal. Improving author
coreference by resource-bounded information gathering from
the web. In IJCAI, pages 429–434, 2007.

[27] I.-S. Kang, S.-H. Na, S. Lee, H. Jung, P. Kim, W.-K. Sung, and
J.-H. Lee. On co-authorship for author disambiguation. Inf.
Process. Manage., 45(1):84–97, 2009.

[28] V. C. Klaas. Who’s who in the world wide web: Approaches to
name disambiguation. Master’s thesis, Diplomarbeit, LMU
München, Informatik, 2007.

[29] A. H. F. Laender, M. A. Gonçalves, R. G. Cota, A. A. Ferreira,
R. L. T. Santos, and A. J. C. Silva. Keeping a digital library
clean: new solutions to old problems. In DocEng, pages
257–262, 2008.

[30] C. Lagoze and H. V. de Sompel. The open archives initiative:
building a low-barrier interoperability framework. In JCDL,
pages 54–62, 2001.

[31] D. Lee, J. Kang, P. Mitra, C. L. Giles, and B.-W. On. Are your
citations clean? Comm. ACM, 50(12):33–38, 2007.

[32] M.-L. Lee, T. W. Ling, and W. L. Low. IntelliClean: a
knowledge-based intelligent data cleaner. In KDD, pages
290–294, 2000.

[33] F. H. Levin and C. A. Heuser. Evaluating the use of social
networks in author name disambiguation in digital libraries.
JIDM, 1(2):183–197, 2010.

[34] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[35] B.-W. On, E. Elmacioglu, D. Lee, J. Kang, and J. Pei.

Improving grouped-entity resolution using quasi-cliques. In
ICDM, pages 1008–015, 2006.

[36] B.-W. On and D. Lee. Scalable name disambiguation using
multi-level graph partition. In SDM, pages 575–580, 2007.

[37] B.-W. On, D. Lee, J. Kang, and P. Mitra. Comparative study of
name disambiguation problem using a scalable blocking-based
framework. In JCDL, pages 344–353, 2005.

[38] D. A. Pereira, B. A. Ribeiro-Neto, N. Ziviani, A. H. F. Laender,
M. A. Gonçalves, and A. A. Ferreira. Using web information
for author name disambiguation. In JCDL, pages 49–58, 2009.

[39] C. L. Scoville, E. D. Johnson, and A. L. McConnell. When A.
Rose is not A. Rose: the vagaries of author searching. Medical
Reference Services Quaterly, 22(4):1–11, 2003.

[40] L. Shu, B. Long, and W. Meng. A latent topic model for
complete entity resolution. In ICDE, pages 880–891, 2009.

[41] J. M. Soler. Separating the articles of authors with the same
name. Scientometrics, 72(2):281–290, 2007.

[42] Y. Song, J. Huang, I. G. Councill, J. Li, and C. L. Giles.
Efficient topic-based unsupervised name disambiguation. In
JCDL, pages 342–351, 2007.

[43] J. Tang and et al. A unified probabilistic framework for name
disambiguation in digital library. TKDE, 24(6):975–987, 2012.

[44] V. I. Torvik , M. Weeber, D. R. Swanson, and N. R. Smalheiser.
A probabilistic similarity metric for Medline records: A model
for author name disambiguation. JASIST, 56(2):140–158, 2005.

[45] V. I. Torvik and N. R. Smalheiser. Author name disambiguation
in MEDLINE. ACM TKDD, 3(3):1–29, 2009.

[46] P. Treeratpituk and C. L. Giles. Disambiguating authors in
academic publications using random forests. In JCDL, pages
39–48, 2009.

[47] A. Veloso, A. A. Ferreira, M. A. Gonçalves, A. H. F. Laender,
and W. Meira Jr. Cost-effective on-demand associative author
name disambiguation. Inf. Process. Manage., 48(4):680– 697,
2012.

[48] Q. M. Vu, T. Masada, A. Takasu, and J. Adachi. Using a
knowledge base to disambiguate personal name in web search
results. In SAC, pages 839–843, 2007.

[49] K.-H. Yang, H.-T. Peng, J.-Y. Jiang, H.-M. Lee, and J.-M. Ho.
Author name disambiguation for citations using topic and web
correlation. In ECDL, pages 185–196, 2008.

[50] M. Yoshida and et al. Person name disambiguation by
bootstrapping. In SIGIR, pages 10–17, 2010.

[51] H. Zha and et al. Spectral relaxation for K-means clustering. In
NIPS, pages 1057–1064, 2001.

26 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Tamer Özsu Speaks Out
On journals, conferences, encyclopedias and technology

by Marianne Winslett and Vanessa Braganholo

Tamer Özsu
http://cs.uwaterloo.ca/~tozsu/ 	
 	

	

Welcome to ACM SIGMOD Record’s Series of Interviews with Distinguished Members of the
Database Community. I’m Marianne Winslett, and today we’re in Providence, site of the 2009
SIGMOD and PODS conference. I have here with me Tamer Özsu, who is a Professor of
Computer Science and a University Research Chair at the University of Waterloo in Canada. He
is also the Director of the David Cheriton School of Computer Science there1. Before joining the
University of Waterloo, Tamer was at the University of Alberta, also in Canada. Tamer’s
research interests lie in multimedia databases, distributed data management and XML. Tamer
received the SIGMOD Contributions Award in 2006, and he is an ACM Fellow and a former
member of the VLDB Endowment board, as well as a former chair of ACM SIGMOD. Tamer’s
PhD is from The Ohio State University.
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 His term ended in July 2010.	

SIGMOD Record, June 2012 (Vol. 41, No. 2) 27

So Tamer, welcome!

Thank you.

Tamer, you worked on object-oriented databases for several years and they never really "caught
on". Do you think there will be a resurgence of interest in object-oriented databases?

Well, object-oriented databases never caught on as a replacement for relational systems. But a lot
of the technology that was developed within the context of object-oriented database research
made its way into object-relational systems. So, it is all there, but in a different context. The pure
object systems do not exist. But object-orientation has actually made a comeback on the
modeling tools, so there is a lot enterprise modeling tools, etc. that are object-oriented. I have
recently listened to a talk by industry folks where the description was on the tools that people are
now developing to take object-oriented models that have been developed and map them into
relational systems. These tools are exceptionally complicated, and the hoops that you have to
jump through are incredible, so if we had actually done object-orientation properly, then we
probably wouldn’t have had to jump through these. So it has never died, they exist in various
forms, and in the modeling tools, they seem to be very popular and used today.

What do you think about this conference versus journal debate?

Hot topic. I am on the record as actually having stated that we have abused the conference
system tremendously. I suspect the number of people who have read it are very small, but one of
my SIGMOD chair notes in SIGMOD Record (I think it was in 2003) was on journals versus
conferences. Perhaps the most relevant phrase I used there was that “we have done a wonderful
job in convincing tenure and promotion committees of the value of conferences, but now we
have to convince ourselves of the value of journals”. So I think all of our attempts to “fix” the
conferences, increasing paper submissions, avoiding bad reviews, unreliable reviews, variability
in the reviews, etc. are really the outcome of pushing the system far beyond what they were
designed to do. We have ignored the journals. That is actually our fault. We should have never
ignored the journals to the extent that we have. A lot of the arguments that are made against
journals no longer hold: long review cycles, etc. The top two journals in data management,
which are VLDB Journal and TODS, have first round review cycles that are now shorter than
conference review times, from submission to appearance. Reviews are probably more solid; they
are more detailed, there is a cycle where you can respond to reviews and so on. I think we should
revisit the value of journals.

So suppose we take our journals very seriously, what will our conferences look like then?

Well, I think one of the things is that conferences were supposed to be places for early
dissemination of very new ideas. Right now there are far from that. A large chunk of the papers
are basically incremental work that are very valuable, but they could just as well go into archival
journals. The conferences should have their paper length reduced to about 8 pages, and they
should actually focus on new ideas. The conference papers don’t have to have all the i’s dotted
and t’s crossed. They don’t all have to have experiments. We should actually turn the conference
to what they were supposed to be.

28 SIGMOD Record, June 2012 (Vol. 41, No. 2)

There is no reason that we need to have this many conferences either. We could actually have a
few ones where the major ideas are presented, and the deeper technical content of the
development of those ideas could lead to journal work.

But then, assuming that there is a certain amount of work trying to get out and be seen, how
would the journals cope with the enormous increase in submissions?

Well, I think if you really compare it, there are a number of things going on there. If you
compare the number of conference and journal submissions in computer science to some more
established disciplines, there is no question that our numbers are far below what, for example,
the chemists or the physicists or even some of the engineering disciplines produce. So, they
manage to process it all within the context of a journal culture. The typical review cycles that are
given in some of these journals in other sciences is about two to three weeks. You need to
actually do the review and return it, now granted that the papers are shorter. But if we really
change the culture, then our journal papers do not have to have 30% more content over already
long conference papers to get to a size where it is really arduous to do the review. We can
actually review them much faster. Now a lot of the journals are online, you can actually change it
from print version to an on-demand print, so the page limit and the cost associated with page
limits are no longer an issue. So
there are ways of addressing this,
ways that other disciplines have
actually figured out, so that we
can actually figure it out. We
don’t have to be identical to the
other disciplines, we need to find
our own culture, but clearly over-
relying on conferences as the
major outlet and the final paper
publication outlet has stressed our
system tremendously.

So what is PVLDB, and how does
it fit into this discussion?

PVLDB, to the extent that I
understand it, it is an initiative of the VLDB Endowment Board led by Jag (H. V. Jagadish).
Since I am no longer on VLDB Endowment Board, I don’t know all the internal details, but to
the extent that I know, at the steady state, the model that they wish to have is that paper
submissions will be done to PVLDB. It is the Proceedings of the VLDB, which is an online
journal, and is also included in ACM digital library. At the steady state, what will happen as I
understand it, is that you will actually submit papers to PVLDB. And they guarantee a first round
turnaround time of 1 month, so it is going to be very quick. But you will have the typical journal
review process, which is you get the review, if they ask for revisions, you can do the revisions,
respond to reviewers, comments, argue with the reviewers if you wish, and then you go through
that more elaborate and probably better system of peer review. And then the papers will be
accepted, they will appear as journal publications, in PVLDB, and the VLDB conference

If	
 we	
 had	
 actually	
 done	

object-­‐orientation	
 properly,	

then	
 we	
 probably	
 would	
 not	

have	
 had	
 to	
 jump	
 through	

these	
 [object-­‐relational	

mappings].	

	

	

SIGMOD Record, June 2012 (Vol. 41, No. 2) 29

program committee will select some of these papers for presentation. So if you have a paper
published in PVLDB, you will get a journal publication, plus you make a presentation at the
VLDB conference. That is the steady state that they are moving towards. Going from here to
there is going to be tricky.

Right now2 what is actually happening is that you submit papers the PVLDB, or you submit
papers to the VLDB conference normally. There are no conference proceedings, the conference
proceedings appear as PVLDB issues. And a certain number of papers that appear in PVLDB
that have not been submitted to the conference directly, are selected by the conference program
committee for presentation as well. But this is a transition as I understand, talking to Jag. The
steady state will be that the journal will be the base, and the conference will be basically
presentation overlay on top of that base.

So how does PVLDB relate to the VLDB Journal?

They are separate. I think, as I understand it, the VLDB Endowment is treating the VLDB
Journal as a regular, classical journal. So you could have published papers at conferences before,
you can increase [their content], the sizes are longer in the VLDB Journal than in PVLDB, and it
has a regular [paper submission] track. What the relationship is going to be over the long run

between PVLDB and VLDB Journal I
suppose remains to be worked out. I
don’t exactly know what the VLDB
Endowment Board discussions were on
that one.

So I see a lot of encyclopedias
springing up, and I see that you’ve
written chapters for some of them, I’ve
written chapters for some of them…
who is going to be reading all of these
encyclopedias?

Well, I have not only written chapters
for some of them, I am actually with
Ling Liu, editing a major Encyclopedia
in database systems3. But other than the
one that we’re actually working on, all
of the others are really handbooks. So
you have chapters devoted to them.
Ours is somewhat different in that it is

really a reference encyclopedia. There are regular entries, which are limited in the number of
words, and we have definitional entries which are even shorter, some on the order of a page or
so. So we really wanted to get a reference encyclopedia, more along the lines of Encyclopedia
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 This refers to the state as of June 2009.	

3 The encyclopedia was published in 2009: Encyclopedia of Database Systems, Springer, 2009, ISBN 978-0-387-
35544-3.

We	
 have	
 done	
 a	

wonderful	
 job	
 in	

convincing	
 tenure	
 and	

promotion	
 committees	
 of	

the	
 value	
 of	
 conferences,	

but	
 now	
 we	
 have	
 to	

convince	
 ourselves	
 of	
 the	

value	
 of	
 journals.	

	

	

30 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Britannica and so on, which are not really lengthy chapters, but shorter encyclopedia entries,
with cross references to other entries. And the idea is that you never actually read an
encyclopedia from cover to cover. There are some of us who actually like reading encyclopedias,
but generally, you don’t, you refer to them. So they are reference works. That is the context in
which we operated in this forthcoming encyclopedia of database systems. It has about 1300
entries, will be about 5,000 pages published in 5 volumes. But, more importantly, it will be
published online, so you can access it online and it will also be indexed in Michael Ley’s DBLP,
so you will be able to quickly get to the articles. So, it is a reference work.

So, who is publishing it?

It is Springer. Springer is publishing it.

So I’ll pay to read it.

Well, if your university is a subscriber to the Springer link, and almost all North American
Universities that I know of are subscribers, you get it free. All the authors who contributed
entries, and there are about 880 them, get free online access.

So how long is the article on say, query optimization, you say they are length limited?

They are all length limited. I think the regular articles are 3,000 to 4,000 words, and the
definitional entries are about 1000 words, so they are really relatively short.

Can you talk about the tradeoffs between stuffing XML data into a relational DBMS versus
building a native XML DBMS?

Well in many of these, there are good arguments to make it either way. I mean, we have invested
about 30 years of research into relational systems, they are very mature. You can cover a lot of
distance by using the relational engines to support these complex data types, and so on. So there
are arguments, but I’ve always (this goes back to my object oriented work as well) preferred to
work in the pure object and the pure XML mode, just because whatever you do, some of those
techniques will find their way into the other one as well. And I don’t necessarily think that we
need to actually have a one pony game, where we tie everything into the relational engine, and
you do everything. It almost reminds me of a Turing machine. We know that anything we can
compute, we can compute with a Turing machine, but none of us are actually talking about
programming Turing machines.

Well, maybe we are, because of virtualization!

Well, I mean, computer science is all about abstractions, building abstractions, and virtualization
is an abstraction that hides certain things that you do underneath. But the issue is that there are
parts of the relational engine, in the relational technology, that are definitely relevant in the XML
world, or any other world. But that doesn’t necessarily mean that you basically tie everything to
the relational [technology] and figure out how to map a complex data type to a flat tabular
structure and do the processing there. I think we need to separate the technology that we

SIGMOD Record, June 2012 (Vol. 41, No. 2) 31

developed for relational systems, from the relational systems themselves. There is room for the
technology obviously to play a role in declarative querying, optimization techniques, etc, and
even some of the optimization techniques that we use can certainly carry over to how we support
these more complex data types. But we don’t need to actually force everything into the relational
engine. I think that probably is not the right thing to do. Even the most recent discussion of
column store versus row store, is an indication that not all applications need to be forced into a
single architecture for data management. I think that we need to be able to break out and figure
out what are the really critical essentials that we build into very [small], perhaps micro-kernel
type engines, and what needs to be left out for customization, for different types of applications,
and different types of data types.

Interesting. So have you built a system like that?

Well, we started building one in the object world, and we actually went quite a bit, and then we
got distracted with other research interests. We started in the XML world as well, but by the time
we were doing the XML world, I really did not have the energy to build up a big implementation
group anymore. I did that in the ‘90’s and it was really a lot of fun, but I didn’t want to repeat
that one more time. So we really never pushed it to a reasonable prototype on the object side. We
did have internal prototypes that we actually fooled around with for research purposes. But we
did a little bit of it.

So benchmarks: what do we need for XML?

Well I think there are benchmarks that have actually been developed. We did one benchmark for
XML called XBench, that started in collaboration with IBM Toronto Labs, and then we kind of
took it on our own and went further. The fundamental point of our benchmark was that we did
not actually want to just say, well, “what are some interesting queries, and what are some
interesting XML structures that we should test these systems on”, but we tried to go out and
actually find actual customer data, and
IBM helped quite a bit. They looked at
their customer data, we didn’t see the
data, but at least the characterization.
“What is going on in terms of the types
of XML data that people develop, and
what type of applications are we
seeing”? So we came up with a
taxonomy of the types of XML data
that we were seeing, and then we
developed a family of benchmarks that
really had their roots on the statistical
characteristics of the data that we were
seeing in real life, for the most part. There were parts of the taxonomy for which we could not
find the data, for which we went and looked at XML use cases, and other things. I think the
important thing in the benchmarks is basically being able to defend the choices in the benchmark
that you are making.

…	
 not	
 all	
 applications	

need	
 to	
 be	
 forced	
 into	
 a	

single	
 architecture	
 for	

data	
 management.	

	

	

32 SIGMOD Record, June 2012 (Vol. 41, No. 2)

So did you get a query workload too?

Yes, but our query workload at the time when we did this, which was very early 2000’s, there
weren’t actually that many applications being built, so the query workloads are really a
distillation of, a careful analysis of XML use cases that were reported as part of the XML
standardization efforts. We looked at it and said “okay, what classes of workloads are these use
cases representing”, and work from that.

One of your colleagues have asked me to ask you when the 3rd edition of your textbook
Principles of Distributed Database Systems will be out, and why is it taking so long.

A fair question and a touchy question! It is going to be out soon, how soon, I don’t know4. The
third edition is a major rewrite, and includes substantial new material. Every chapter has been
reworked, but also there is a lot of new material that we didn’t fit into previous chapters:
replication, peer to peer systems, work data management, data integration, in a much fuller sense
than we had before, etc. We have one chapter to write and two chapters to revise and then we’ll
be done. So, soon! The reason it took this long is because I took over the directorship of the
school, and it is just time.

I understand that you used to be active in politics.

Yes, I was, when I was at university, and shortly after that.

And where were you?

That was in Turkey. I was a fairly left wing radical, more interested in that than in school things.

So what made you become more interested in CS?

Well, I think I was always interested in the CS part. During my undergrad degree, and actually
my first master’s in industrial engineering, I was always interested in CS. I kept taking courses in
CS. Even when my degree advisor told me I could not take more CS courses, I kept taking them,
so I graduated with extra [credits]. I was the type of student who did very well on the topics that
I liked, and just barely survived on the topics that I didn’t care about. So I was always interested
in CS, but the specific interest in databases goes back to about 1976, when I was doing a part
time masters, and working at the Turkish postal administration on a problem which basically can
be the directory problem, the 411 system. You call up and you actually ask for a number, and we
were supposed to be designing a system, but the system needed to be able to be queried using
different keys, and we were struggling on how, what data structures to use, and how to lay it out
so you could actually query it multiple ways. I was part time taking a graduate course, and part
of the course was databases. The first book, Date’s first edition, had just come out. We had a
visiting professor from US who was giving a course, and light bulbs when on. I said “that is the
solution to the problem that we were doing”, and I got hooked up on databases. Back in ’76.

So is that the approach you actually used your directory problem?
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4 The book came out on March, 2011.

SIGMOD Record, June 2012 (Vol. 41, No. 2) 33

Well, we didn’t because there were no [database] systems then. I mean we used a general
approach, but we couldn’t use the system. You still had the index sequential stuff, so you had to
build multiple indexes over the data, etc. But the general idea of how to lay it out so you could
actually do it was it. Shortly thereafter, I started working for a United Nations project in Turkey,
and I remember going to my first conference. It was the second VLDB conference in 1976 in
Brussels… That’s how long ago I got involved in databases.

How many students of yours have picked up your hobby of collecting pens?

I’m sorry to say, none. Although, we gave a fountain pen as a gift to one of my former students
recently, so we are working on them, but so far, as far as I know, none of them have picked it up.

Well then, if they don’t like it, why do you like it, why do you collect pens?

Well, I actually don’t know why I like it. I think there is tremendous esthetics in fountain pens.
They are very simple devices on the face of it. But they are really very sophisticated. Somebody
actually wrote a whole monograph on the physics of fountain pens. The capillary action, why,

what happens, how the air goes in and
the ink replaces air, etc. You could get
hooked on them for scientific reasons.
Mine wasn’t for scientific reasons, I
just loved the esthetics of it, and I loved
the feel of it when I write. I don’t
always use a computer to take notes. I
use the old pen and paper approach. It
has grown from an interest to a
sickness.

Oh, a sickness? How many do you
have?

I think right now I have about 600.

That’s a lot of pens. Do you insure your collection?

No, I don’t. And I have some of them on my webpage. And my wife keeps asking me when we
should expect somebody to see the webpage and then storm our house and steel them.

Actually, I didn’t see them on your webpage. On your homepage I saw photos of your wife, son,
dog, and your motorcycle, no pens.

Actually, if you go one below that, there is a link to my pens, so you missed it. It is there.

So why does that motorcycle rate above the pens?

You	
 are	
 going	
 to	
 be	
 in	
 this	

business	
 for	
 30	
 plus	
 years,	

so	
 if	
 you	
 don’t	
 enjoy	
 it,	

don’t	
 do	
 it.	

	

	

	

34 SIGMOD Record, June 2012 (Vol. 41, No. 2)

This actually came from a talk I was preparing, and they said “we want you to talk about what
you do outside of work”. So I said, well, I spend time with my family, I walk my dog, these are
things I enjoy, I collect pens, I had the link, and I love to ride my motorcycle, so I actually added
them there so they appear. So the motorcycle is another passion.

Do you have an interesting story about one of your pens?

Well, every pen has an interesting story…

Oh, just one! Just one!

I’m going to have to think about it. Either the pen is interesting, or the purchase is interesting.
One of the interesting stories is we were in a taxicab in Taipei in 1995 Data Engineering with my
student, coming back from a museum. We were on a bridge, and I saw the glimpse of a pen shop,
a hundred meters down at the other end of it, and we stopped the taxicab and went down and I
bought the pen. My student could not believe that I could actually spot the pen shop that far
away, about 50 meters below the bridge, a hundred meters on the other side. But us pen
collectors have an eye for these things.

I guess so! Do you have any words of advice for fledgling or midcareer database researchers?

The word of advice is good luck. It is really far more stressful than when we started. Our
expectations for hiring and tenure have grown to be what one might actually legitimately call
ridiculous stage right now. If you take the acceptance rates and you look at what we expect, a
PhD needs to start publishing a paper, or at least submitting papers, in their second term, which
really makes you question whether that is possible. But you know, the pendulum swings in this
business, and it will. I think a fundamental issue is, do what really attracts you, I think that is
probably very cliché, but you are going to be in this business for 30 plus years, and if you don’t
enjoy it, don’t do it.

Among all your past research, do you have a favorite piece of work?

Well, that is probably tough to say, it is almost like choosing which of your children are your
favorites, so it is probably quite difficult. But I think the work that we did, even though we talked
about it not making it in the main stream, the work that we did on object orientation was the most
enjoyable because it really spanned fairly theoretical to system type of work to fairly pragmatic
work, where we built query optimizers and tested them, etc. That and the multimedia image
database work that I did in the second half of the 90’s were end-to-end projects that we actually
started from the architecture and the models all the way to languages and implementation. So
those were probably quite interesting projects.

If you magically had enough extra time to do one additional thing at work that you are not doing
now, what would it be?

SIGMOD Record, June 2012 (Vol. 41, No. 2) 35

Magically finding time is probably the right word. I’d love to do a lot more reading, which I’m
not able to do right now.

I think you’re supposed to say that you will finish your 3rd edition!

I’m trying not to think of that one! But that will get done in the next 6 months.

If you could change one thing about yourself as a computer science researcher, what would it
be?

One thing that I wish I was better at was on more formal aspects. I can actually do certain things,
but I’m not that good in the theoretical side of databases. And there are lots of interesting
problems that I can skirt, but I cannot dig in there. So I wish I were actually a better theoretician
to be able to tackle those.

Thank you very much for talking with me today.

Thank you for the opportunity.

36 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Erich Neuhold Speaks Out
on industry research versus academic research, funding projects, and more

by Marianne Winslett and Vanessa Braganholo

Erich Neuhold
http://cs.univie.ac.at/mis-team/infpers/Erich_Neuhold/ 	
 	

	

Welcome to this installment of ACM SIGMOD Record’s series of interviews with distinguished
members of the database community. I’m Marianne Winslett, and today we are in Indianapolis,
site of the 2010 SIGMOD and PODS conferences. I have here with me Erich Neuhold, who is a
professor at the University of Vienna. Until 2005 he was the director of the Fraunhofer Institute
for Integrated Publication and Information Systems in Darmstadt, and a professor at the
Technical University of Darmstadt. Erich has also worked for IBM and HP, both in Europe and
in the US. Erich is an IEEE Fellow and a Fellow of the Gesellschaft fuer Informatik. Erich’s
PhD is from the Technical University of Vienna. So, Erich, welcome!

Thank you very much for having me!

What does it mean to have an integrated publication and information system?

I think in order to explain, I will add a little background. When I took over the directorship of the
Fraunhofer Institute (formerly a GMD Institute), I felt that, coming from the database area, we

SIGMOD Record, June 2012 (Vol. 41, No. 2) 37

needed to add the human to this whole approach. In this situation, the human is a person that uses
information, and then maybe creates new information. This is a cycle, and that’s what integration
here means: it is the cycle of locating information, processing it, finding the human user, creating
new information, depositing it again. That is what we call the integration of information in this
publication and information cycle. So that gave rise to the name, and we got stuck with it in
reality, and couldn’t change it because at some point publication was not anymore the right
word, and the Web came along, and you couldn’t call publishing what you now do with the
information. But we got stuck with it, we had a brand name “IPSI” and we didn’t want to change
that, so we stayed with it, never finding a new paradigm for it.

Well, you had all these different groups. You were mentioning this really big Institute with 120
people total and a $10M/year budget. So what was it like to manage something that big?

Before I started with this institute, I was at HP as the director of one of their research labs. I had
also about 60 people working for me. So anyway, that provided experience. I mean, if you step
from, let’s say, a small research group with 3 or 4 PhD students, to manage 120 people, some of
them are older than you, and some of them are the same age, and some are really young, then this
needs adjusting your behavior. But I felt it as a challenge, and I took up to that challenge when I
took the job, and I think it went quite successful.

I’m actually a new director of an institute myself, so maybe I should ask you: do you have words
of advice for me, and for the other people out there who are taking on these new roles?

I think one has to look for contact
with the people. I mean, in some
ways, it is a little different from
industry. When I was a director in
industry, for example, it was not a
good style to go down and work
with researchers, because of my
management team. I had two lines
of management between me and
them. They would come to me
and say “don’t you trust that we
can do it?”, whereas in a research
community, this is different
because as a professor, I was
essentially also the PhD advisor
of those younger people. And of
course as a PhD advisor, you have to look for personal contact, and not delegate it to your
management, because that would not really work. So this is a very different behavior I found
between management in industry research and management in academic research.

	
 “We	
 distributed	
 all	
 our	

business	
 cards.	
 Everybody	

was	
 interested”.	
 And	
 my	

question	
 was,	
 “how	
 many	

business	
 cards	
 did	
 you	

collect”?	

	

	

38 SIGMOD Record, June 2012 (Vol. 41, No. 2)

What do you think of the way all this XML stuff has turned out?

I think when semi-structured data came along, let’s say documents were put into databases (let’s
call it that way), I found (talking with publishers and other people) that actually storing the
structure of these documents in the sense of XML or SGML at that time, was important. Then, of
course, HTML came along with the Web, and proved that this concept was important, and
became successful, I believe, because it was simpler than SGML. XML has a lot of SGML and
HTML, but it is complicated. It is simpler than the first one, but more complicated than HTML.
For that reason, I believe that it was a steeper step for people to go in this direction, and that is
why XML wasn’t as successful as I believed originally. I thought it would essentially take over
the Web.

Well, I guess a long time ago, people thought object oriented databases would play this role, and
then the relational vendors just added object oriented features. So is it the same way with XML,
or did something different happen there?

I belong to the people that started out with relational databases, and then got very enthusiastic
with object oriented databases, because in order to talk about entities, you shouldn’t flatten them
out into a table. You want to combine the attributes of different properties together, interconnect
entities and also add manipulation functions. So I thought that was the way to go… And it was at
a similar time when C++ came along in the programming world, and developed in about the
same speed as it did in the database world. But then, object orientation in databases wasn’t so
successful. First of all, there were these strong vendors of relational database systems already, so
there was steep competition. But I believe also that, in my opinion, the first commercial object
oriented database systems never really worked well. They didn’t really have the performance, the
scaling, and things like that. And so people got disappointed with the vendors behind it and the
established RDBS vendors pushing pressure on them said “there is never going to be any better
[product than relational databases]”. A self-fulfilling prophecy...

Do you believe in the Semantic Web?

No. I mean, this has to be qualified. The Semantic Web, in some way, is a vision. A vision in
which many of us didn’t believe in from the very beginning, because we felt it being too
ambitious. You will not be able to describe all the semantic information that is hidden in
documents, in their structures, and in any context information, in the way it was assumed by the
semantic Web people, in order to be able to make automatic deductions and all kinds of other
things. For a long time I have worked in data integration and as a curator of databases, and
terminology discrepancies and all kinds of other problems have not been solved. So it was quite
clear they are not going to solve them in a Semantic Web, and they didn’t. Despite that some of
their algorithms made sense or made contributions… For me, it is like in artificial intelligence.
Artificial intelligence always had such high goals. And then it didn’t succeed, and then funding
stopped, and everybody kind of said they were not successful. But if you look a little more
carefully, a little deeper, they actually made many contributions. There are quite a number of
fields where their algorithms, like machine learning algorithms, have moved into systems.
Supervised learning and unsupervised learning have played a role in many other applications.
But of course, we are not recreating human intelligence with those machines.

SIGMOD Record, June 2012 (Vol. 41, No. 2) 39

Have the Web standards bodies played an important role in the creation of the Web as we see it
today? The W3C…

I would say definitely not at the beginning. Tim Berners-Lee himself, he was working at CERN
at the time when essentially the Web was created. He and his colleague Robert Cailliau actually
wanted to build an SGML engine, but their manager – who told me the story – advised them
“you need two years and three people to build that, but I’ll give you half a year, and you two do
it”. So they had to cut down on SGML, simplified it and developed HTML as a hypertext
system. There was no standard for doing it. It was just a simple code that allowed exchanging
documents in the high energy physics domain, but they were very successful. And of course
interfaces and tools like Mosaic and other things, made it useful for everybody. Again, Mosaic
was not built on any standards or anything. Later on, when the field became a little more mature,
and many other people joined in, I think standards started making more sense. If you don’t have
standards, for example, if you look at an HTML document, how to visualize it? You have many
choices. So in that way, Mosaic was an ad-hoc standard. People just keep following whoever has
the first successful approach. But then later you have to have some control of that. I think, then
some of the standard things are very valuable, but you shouldn’t go too early, because otherwise
you will restrict the development.

How is it different to do research in the US versus in Europe?

This is a difficult question, but I will try to answer it. I think for example, research in Europe has
similarities now within the universities at both places. When I started out as a professor, a long
time ago, a professor in Germany had a number of research assistants, a number of teaching
assistants, provided by the universities. So essentially, you had a budget and you didn’t need to
go out for project money or industry things. That changed. Of course, even then ambitious
professors would always go for additional money. Starting out I had 3 researchers and 2
technicians from the University in Stuttgart, but in the end I had a team of 15 or 20 people. So I
was able to have large projects. But the pressure was different; you didn’t have to do it in order
to be successful. So, that gave you an advantage, because you had a larger number of people, but
you were free to do with them whatever you liked. There was no funding available in distributed
databases when I started working on it. I started working on it because somebody in the institute
bought about 10 PDP 11 computers and then we didn’t know what to do with them, because the
guy who was supposed to do something with them left. So they were sitting around with 64K
addressing space, and as I was in the database field, I said “wouldn’t it be good to distribute a
database over these small machines, and utilize these machines in a distributed system”? There
was nobody who would say that was a great idea, at least not at that time.

It is amazing to think of doing something significant with 64K of memory.

Oh yeah, but that was the time. I mean, I was talking to Nicholas Wirth at some point and he
built the personal computer LILITH. We discussed, and he said “oh, 64K of memory is plenty
for writing programs! Nobody writes larger programs”. He was at Zurich, at ETH at that time.
And I told him “this is not enough, I work in databases, and where do you store the data”? And
he said “oh, you bring them in as you need them”. And then a year later he came back to me, and
said, “You were right, and I need a larger memory”. But it was not because of the data. It was

40 SIGMOD Record, June 2012 (Vol. 41, No. 2)

because of the visualization he wanted to do on his screen. The machines were slow, so you
didn’t do graphics on the fly, you prepared the screen in the memory, and he needed as much
memory as he had (64k) just for the higher resolution screen. So this was a very interesting
observation.

Coming back; on the other side, I feel that having had NSF projects in the United States, and EU
projects in Europe, the overhead in Europe is much higher and slows down research behavior.

When you say overhead, do you mean like management overhead?

Yeah, yeah, administrative overhead.

Is that because of the meetings?

This might be because of the multi-national teams, and of course, the idea behind it is that
cooperation over Europe should be encouraged. On the other side, you travel a lot, the behavior,

knowledge and culture of the
different nationalities are
different, and you spend a lot of
time in meetings arguing about
things which you would much
better solve in your own home
place. My institute had many
researchers and in some of the
areas we were involved in, we
could have done the whole

project much more efficiently ourselves, but we wouldn’t have gotten any money for it without
international partners, whereas in the United States, as an institute, I probably would have gotten
the money.

You’ve moved back and forth between academic and industrial research. What leads you to
make those changes?

Opportunities. I mean, I was in industry, I worked for IBM at the beginning, and then in IBM, I
moved into the field of databases. Then when I moved back to Europe, after being in IBM (I was
in New York at that time), computer science in Germany was building up. Some friend of mine,
whom I knew from earlier days, told me “Oh, I became a professor. Don’t you want to become a
professor too”? So I just applied, and I got 2 offers, one in Darmstadt and one in Stuttgart. In the
end I took the Stuttgart position. Amazing enough, because you mentioned my Darmstadt
association, I went to Darmstadt 20 years later. So it was Stuttgart, and I left IBM, and I built up
a team there, and then I got contacted by Joel Birnbaum, I think he was vice-president of HP,
whom I knew when he was the head of computer research of IBM in New York. I had spent
some sabbatical leave there, so he knew me, and he sent me e-mail where he asked “do you
know somebody who could lead a research group as research director in my team at HP in the
database field”? I thought he meant me! And I applied. And it turns out that he didn’t mean me
because when he knew me in IBM, I was actually working on compilers. I even wrote a book on

	
 The	
 first	
 commercial	
 object	

oriented	
 database	
 system	

never	
 really	
 worked…	

	

	

SIGMOD Record, June 2012 (Vol. 41, No. 2) 41

compilers, so he thought I was a language person, and was very surprised, but he hired me
anyway. This was kind of the reason I switched the second time into industry. And then I stayed
in Palo Alto, and I enjoyed it very much working for HP. But I had a slight problem with my
family, because they didn’t want to come. I could have tried to force them but without ever
applying, I got offers from Europe, as a professor again. So essentially, as a test I asked all that I
wanted from the universities. If they gave it to me, I would take the job. If they didn’t do it, I’d
stay with HP. They gave me everything I asked for and I went back to Europe.

So there is one more switch to Fraunhofer, right?

Yeah, yeah, right. Actually, I went to Vienna as a professor from the United States. The Austrian
president came to California and told me “we need people like you in Austria”. So I got tricked
into that, since when I came to Austria others there told me “we don’t really need you here”, but
more polite, of course. As a result, I was not so happy, and I started looking around again. Soon,
some other colleagues knew that I was looking around. I looked into the United States, looked at
HP actually, as I thought to go back and even got an offer. But I also looked at academia at that
time, and GMD came to me with an institute proposal. Later GMD (German National Research
in Computer Science), was merged into Fraunhofer. GMD was more research oriented than
Fraunhofer. Fraunhofer is really applied or contract research and GMD was more like basic and
applied research. It did not as much research as the Max Plank Society. For example. Max Plank
doesn’t have to go out for projects. They have enough funding to perform their research;
consequently they do more basic research. GMD was an in-between organization. At that time
there was an outside research institute which actually fell apart working in the documentation
field. They were chartered to develop things for online databases, like CAS (Chemical Abstract
Services) in the USA, or FIS (Technical Information Systems) in Germany, but were not
successful. In the end they were dissolved. A number of people left, and GMD was supposed to
take over the remaining parts, and thus needed a leader for that. That’s how they approached me.
It was a challenge to build up from 20 people to the kind of what was later an institute of 100,
120 and more people, more than many American university CS departments.

So did the whole thing become contract research?

No, it was part of it. I mean, at GMD, my institute had about 50% that was directly government
funded, and another 40% was typically EU funded with joint projects the EU was offering, and
some from the German National Science Foundation. But this was a smaller part. Industry played
a small role: a maximum 5-10% of the funding came from them. At Fraunhofer, this changed.
They actually expect you to have about 30-40% of industry money, and then another let’s say
30-40% of EU money, and only 20% would be given to you, directly. It is a very different
model, especially as the pressure is on getting industry money. If you are not successful with the
industry money, you are losing basic money also. You are in a situation where failure here will
actually lead to your institute being out of money even if successful in other areas.

42 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Well, how do you go after industry money? I think a lot of our readers might be interested in how
you get money out of industry.

It is a lot of footwork. We went to fairs and exhibitions with demonstrations and showed them
our capabilities. I’ll give you the attitude of, let’s say, a university person, and the attitude of
somebody who wants industry money. My people came back from a fair and happily told me
“we distributed all our business cards. Everybody was interested”. And my question was, “how
many business cards did you collect”? And they would just look at me, and say “huh”? Of
course, as any industry person will know, you have to collect the business cards, because you
have to make calls after that, and then you say “Yes, you were at my stand, and you saw my
demonstrations. Are you interested in talking to us? We can probably help you”. In Germany this
is difficult, but also in Europe altogether. I believe that happens in computer science, not in
machinery or manufacturing or other fields because there is very little primary industry in CS,
nothing like Microsoft, IBM, and all those. What we have are application industries, banks and
logistic companies and other similar ones. They don’t want to take your prototype because
people want product quality software. Essentially, they want your consulting, but you need
money for doing research, and this is a stretch, it is not easy to bridge. You have to really learn
how to do that. We had training. We had people that came in to teach us when GMD was taken
over by Fraunhofer. One of them
was a friend of mine. He headed IT
for a bank in Germany. He would
come and sit there and my people
would come and make their ‘sales’
presentation. If he didn’t like it he
would say “thank you very much for
an excellent presentation, don’t call
me, I will call you”. This of course
was a clear indication he wasn’t
impressed. But then he also analyzed
the talk and told them why he wasn’t
impressed.

Oh, that would be very helpful! Why is it so hard to get the scientific community to accept
computer science as a first class discipline?

Because they are used to use computers as a service. They think computers are there, and
computer science is just the industry that builds computers, but of course it is not. Very often, in
research environments, the researchers write software themselves. Take a physicist, for example,
in CERN, or in Stanford. Most of the software written there is not written by computer science
people. It is written by physicists. So they feel that computer science is a service discipline for
them, and not a standing by itself research field.

So do you agree with them, are we a service industry?

Of course I do not agree, but we had the same problem in Fraunhofer. Fraunhofer spreads to all
disciplines and the largest institutes, the very successful institutes are in, let’s call it mechanical

Even	
 in	
 the	
 era	
 of	
 the	
 web,	

the	
 computer	
 science	
 is	
 not	

topmost	
 in	
 the	
 minds	
 of	
 the	

people.	

	

	

SIGMOD Record, June 2012 (Vol. 41, No. 2) 43

engineering. They work with the Germany car manufacturers, and they work with the famous
German tool manufacturers and so on. Fraunhofer was created after the war to actually help build
up the German industry again. And you know the success story of Germany is in the
manufacturing industry. So these institutes considered that we, the IT institutes, would be
essentially a service for them. They essentially came to us and told us “can you adjust this for us,
or can you do this for us?” They were not interested in a partnership. They looked at us as a
service. The Fraunhofer directors have a meeting once a year, where all directors are together for
two or three days, and usually we have discussions about that view, because we IT people of
course would not accept such a secondary role.

Did they ever change their mind, or is there something we need to do in our discipline to change
their minds for them?

I think it is difficult. I think even in the era of the Web, the computer science is not topmost in
the minds of people. If you go to Facebook and play around, or if you go to YouTube, or Twitter,
or whatever, you are not thinking that behind all this is a computer scientist. You think of it as if
someone just writes software that you can use, but seeing it as a discipline that analyses the data,
for the good or for the bad (I don’t want to comment on that), and a whole scientific research
field behind it, I don’t think is in front of the mind of the people. Maybe it needs time. I think
mathematics may be in a very similar situation. However mathematics is accepted as a separate
discipline, but they have a 3,000 years old history, and we have 40 years of history.

What do you think will happen with the conference system way of publishing in computer
science?

I think we are in a time of changes. Because of the internet and the electronic availability of
documents, now proceedings and the conference documents appear in a digital library essentially
at the same time as the conference takes place, so the need to access documents by going to a
conference will go away. Before, it was precisely that need, especially in the beginning, when we
didn’t have many journals. The way of publishing high quality work was through a conference.
This was the main role, and that is changing now. The conference becomes more and more a
social gathering place, because you can take the proceedings home, or you can download them
later, but you are meeting peers, you go to sessions to discuss. All the conferences have now a
tendency, like SIGMOD this year, to have the papers shortened in order to have more interactive
sessions. There are people who have a paper and also have a presentation with a poster. We don’t
call it poster sessions now, but it is an additional possibility to discuss with the authors directly
for better interactions. This social gathering aspect is increasing. But of course the other aspect,
namely to have an achievable document in the database conference instead of a database journal
will decrease because of that. At least, that is my opinion. But there is another situation coming
up. I believe that maybe for the next generation of researchers (the one that is now 10 years old),
physical gatherings may be in danger. This is because they have all this Facebook stuff. I see it
with my grandchildren. Funny as it is, they are sitting in the same room, and talk to each other
via Facebook, and not directly. They have this group of Facebook friends, and they chat and
chat, and exchange all kinds of information. When they meet the same people physically, they
don’t know what to talk about. In a way, I believe there is a danger that the conferences as a
social gathering place will also disappear, but then what is remaining and what are we loosing?

44 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Definitely having a drink or a
coffee in a bar together. I am
watching this development very
carefully, but I see a tendency in
this direction and I believe it is
wrong.

Do you have any words of advice
for fledgling or midcareer database
researchers or practitioners?

My advice is that you look around. See “hanging in the air” problems. I mean, at the
conferences, sometimes good keynotes will raise issues. Look around your own environment and
see some problems, and then you try to formulate a goal. What would you like to see happening
here? And then try to find an approach of how you can solve it or partially solve it, if it is a mega
problem. I always keep saying to my PhD students, “you should also be willing to say no to your
advisor”, because he is caught in his own context, and he may not see some developments. I
changed fields a number of times. I worked not only on the database field, but earlier in
programming languages and later also the in the digital library field. But when you are older, it is
very hard to establish yourself in a new field. So for that reason, you get kind of stuck in your
field. But young people or midcareer people are still free. They can still make this change. So
that is my advice: follow your own intuition and not necessarily your advisor or a prospective
(short term) job situation.

If you magically had enough extra time at work to do one thing that you are not doing now, what
would it be?

I would really go and look at the whole issue of interoperability and semantics and modeling and
try to make some sense out of the many conflicting and many repeating approaches. I’d try it for
myself. First of all, find out whether there was any progress in the last 20 years in the field. But
then also try to find out what would be a good thing to really help a human centered approach, to
really help the human to find things she/he does not know at all. Most of the approaches in
semantics, even if they are semi-automatic and with human feedback and all such stuff, always
assume the human knows. But if I don’t know, I can make no judgment. If I go to, let’s say, a
medical wiki and I believe I have this and that sickness, and I find treatments in there, how do I
know I can trust this information? I mean, I can only do it when I know doctors that have a high
reputation or experience, and they back these descriptions. But I don’t know the doctors because
the whole subject is new to me. My human feedback is not going to help either. The question
therefore is: how can you build systems that do not assume the human knows what he/she is
doing?

If you could change one thing about yourself as a computer science researcher, what would it
be?

I don’t know. I started in electronics, I have to say, and I switched to computer science only
when I joined IBM. I became a programmer, and the group itself was theoretically oriented,

There	
 is	
 a	
 danger	
 that	
 the	

conferences	
 as	
 a	
 social	

gathering	
 place	
 will	
 also	
 be	

gone.	

	

	

SIGMOD Record, June 2012 (Vol. 41, No. 2) 45

consequently I did formal language stuff for programming. But when I got in contact with
databases, I realized that one thing that would have helped me a lot, even in the early days with
SQL and relational approaches would be to know more about linguistics. I feel knowledge about
linguistics, concepts of speech, and natural languages, etc., is very helpful. That is even more
helpful and more important nowadays. When I started IPSI, I had a linguistics group as one of
five research fields. But we needed additional research money and eventually I couldn’t maintain
the group. I would get projects, but I would not get linguistics projects because ‘true’ linguists at
the university would get that part, even of cooperation projects. Here I regret that I had no
linguistic background myself. I was an outsider, and the funding agencies would not give me the
money. They gave me the implementation aspects, the software aspects of the project, but not the
linguistic aspects. If I had been a linguistic, even as a second kind of expertise I probably would
have been more successful.

Thank you very much for talking with me today.

Thank you very much for having me.

46 SIGMOD Record, June 2012 (Vol. 41, No. 2)

A Call for Surveys

Philip A. Bernstein
Microsoft Corporation

philbe@microsoft.com

Christian S. Jensen
Aarhus University
csj@cs.au.dk

Kian-Lee Tan
National Univ. of Singapore
tankl@comp.nus.edu.sg

The database field is experiencing an increasing
need for survey papers. We call on more researchers
to set aside time for this important writing activity.

The database field is growing in population, scope
of topics covered, and the number of papers pub-
lished. Each year, thousands of new papers enter
the database research literature. As a result, it
has become a daunting task to maintain a basic
understanding of more than a few major areas of
database technology. Even relatively narrow topics
have dozens of papers, making it hard for students,
researchers, and engineers to get a quick overview
of the state-of-the-art.

The increasing demand for surveys has recently
been recognized by commercial publishers, such as
Morgan-Claypool with their Synthesis Lectures se-
ries, Now Publishers with their Foundations and
Trends in Databases series, and Springer with their
SpringerBriefs series. There is also a Surveys sec-
tion of SIGMOD Record. We applaud these efforts,
but feel that the field would benefit from a great
many more surveys than are currently being pub-
lished.

While the raison d’être of research journals is pri-
marily to publish original research results, many
journals welcome the submission of surveys. How-
ever, few submissions are received. In particular,
The VLDB Journal has always welcomed surveys,
but the submission rate is lower than we would like.
To further encourage the submission of surveys, we
offer prospective authors of a survey the option of
contacting us in order to gauge the level of interest
before investing the effort.

In addition to the altruistic reason of writing a
survey to help other researchers, there are also self-
ish reasons to invest time to write a survey. A sur-
vey is great way for junior and senior researchers
alike to establish a presence in a research area and
to become better known to a wider community. It is

also a good way to increase their citation count. For
example, according to Microsoft Academic Search,
the two most highly-cited papers in The VLDB
Journal are surveys. And according to Springer,
a third survey is the most frequently downloaded
paper from the journal.

New Ph.D. graduates who worked on a well de-
veloped topic have already done a literature review
which, possibly in collaboration of their advisor,
could be extended into a high-quality survey paper.
Similarly, researchers who have prepared tutorials
at research conferences are also well on their way to
generating an excellent survey on a timely topic.

A survey covers an area with a well-established
body of work rather than introducing novel so-
lutions in the surveyed area. Successful surveys
are authoritative and offer comprehensive coverage
within their chosen scope. They may offer broad
coverage of an area or in-depth coverage of a nar-
rower subarea. A survey can add value by synthe-
sizing new ways of understanding the relationships
among previous contributions. In addition to re-
viewing the key results in an area, a survey may give
the reader a deep understanding of goals, require-
ments, solutions, open questions, and example sys-
tems and applications. A survey that analyzes, in-
tegrates, and classifies what is known about a topic
in a clear and comprehensive fashion by means of
a conceptual framework is a tool for thought that
provides a baseline from which the field can make
faster progress, and it represents a valuable contri-
bution in its own right.

The VLDB Journal has no minimum length for
surveys, but they must comply with the general
maximum length restriction for papers.

About the Authors: The authors are cur-
rently the editors-in-chief of The VLDB Journal,
published by Springer.

See http://vldb.org/vldb_journal.

SIGMOD Record, June 2012 (Vol. 41, No. 2) 47

16th INTERNATIONAL CONFERENCE ON DATABASE THEORY (ICDT 2013)
CALL FOR PAPERS
Genoa, Italy, March 18–22, 2013
http://edbticdt2013.disi.unige.it

Invited Speakers
Jan van den Bussche (Hasselt Univ.)
Yehoshua Sagiv (Hebrew Univ. of Jerusalem)
Luc Segoufin (Inria & ENS-Cachan)

Program Chair
Wang-Chiew Tan
(IBM Almaden and UC Santa Cruz)

Publicity Chair
Benny Kimelfeld (IBM Almaden)

Program Committee
Balder ten Cate (UC Santa Cruz)
James Cheney (University of Edinburgh)
Jan Chomicki (University at Buffalo)
Sara Cohen (The Hebrew University of Jerusalem)
Todd J. Green (UC Davis & LogicBlox)
Sudipto Guha (University of Pennsylvania)
Benny Kimelfeld (IBM Almaden)
Solmaz Kolahi (Oracle)
Kobbi Nissim (Ben-Gurion University)
Antonella Poggi (Sapienza University of Rome)
Riccardo Rosati (Sapienza University of Rome)
Cristina Sirangelo (ENS Cachan)
Nicole Schweikardt (Goethe-University Frankfurt)
Kyusheok Shim (Seoul National University)
Sławek Staworko (University of Lille)
Jianwen Su (UC Santa Barbara)
Wang-Chiew Tan (IBM Almaden & UC Santa Cruz)
Stijn Vansummeren (University Libre de Bruxelles)
Victor Vianu (UC San Diego)
Jef Wijsen (University of Mons)

Important Dates
Abstract submission deadline:

August 17, 2012, 11:59pm PDT (firm)
Paper submission deadline:

August 24, 2012, 11:59pm PDT (firm)
Notification deadline: Nov. 2, 2012
Camera-ready deadline: TBD
Conference: March 18–22, 2013

The series of ICDT conferences provides an international forum for the
communication of research advances on the principles of database sys-
tems. Originally biennial, the ICDT conference has been held annually
and jointly with EDBT (“Extending Database Technology”) since 2009.

Topics of interest for submissions include but are not limited to:
Business processes and workflows; Concurrency and recovery; Con-

straint databases; Data exchange and data integration; Data mining;
Data models, semantics, and query languages; Data privacy and secu-
rity; Data provenance; Data streams; Inconsistency and uncertainty in
databases; Information extraction; Deductive databases; Distributed and
parallel databases; Logic and databases; Query processing and optimiza-
tion; Semi-structured and Web data; Spatial and temporal databases;
Transaction management; Views and data warehousing.

Submissions: Papers must be submitted electronically to:
https://www.easychair.org/conferences/?conf=icdt2013.

Papers must be submitted as PDF documents within 12 pages
according to the ACM guidelines, which can be found at
http://www.acm.org/sigs/publications/proceedings-templates. Tem-
plates are available in Word, WordPerfect, and LaTeX (versions 2.09
and 2e). For the LaTeX formats, you may use either the standard style
or the SIG-alternate style. It is not permissible to change the template’s
font size, margins, inter-column spacing, or line spacing, etc. If the
authors believe more details are necessary to substantiate the main
claims of the paper, they may also include a clearly marked appendix
to be read at the discretion of the committee. Papers not conforming to
these requirements may be rejected without further consideration.

The deadline for abstract submission is August 17, 2012 and the dead-
line for paper submission is August 24, 2012. Submission deadlines
firm; late submissions will not be considered. Authors will be notified
of acceptance or rejection by November 2, 2012.

The results must be unpublished and not submitted for publication
elsewhere, including the formal proceedings of other symposia or work-
shops. All authors of accepted papers will be expected to sign copyright
release forms. One author of each accepted paper will be expected to
present it at the conference. The proceedings will appear in the ACM
International Conference Proceedings Series (pending approval).

Awards: An award will be given to the best paper. Also, an award will
be given to the best paper written by newcomers to the field of database
theory. The latter award will preferentially be given to a paper written
only by students; in that case the award will be called “Best Student
Paper Award.” The program committee reserves the following rights:
not to give an award; to split an award among several papers; and to
define the notion of a newcomer. Papers authored or co-authored by
Program Committee members are not eligible for any award.

48 SIGMOD Record, June 2012 (Vol. 41, No. 2)

	01.committees
	02.editor-notes
	03.principles.bojanczyk
	04.surveys.ferreira
	05.profiles.ozsu
	06.profiles.neuhold
	07.announce.vldbj
	08.announce.icdt

