Optimizing XML Twig Queries with Full-Text Predicates

Ya-Hui Chang
Department of Computer Science and Engineering
National Taiwan Ocean University, Keelung, 202, Taiwan, R.O.C.
E-mail: yahui@ntou.edu.tw

ABSTRACT

Efficient query processing has been a critical issue for
XML repositories. In this paper, we consider the XML
query which can be represented as a query tree with twig
patterns, and also consists of full-text constraints. Previ-
ously, the structure-first approach and the keyword-first
approach have been proposed to process such kind of
queries. The main focus of this paper is constructing an
integrated system to support these two approaches and
find the best execution plan. To achieve this goal, we
first analyze the components of these two approaches
and design a set of operators. We then derive the corre-
sponding cost model and rewriting rules to perform cost-
based optimization. We also propose several heuristic
rules by observing the behaviors of the two approaches.
Via an extensive experimental study, we demonstrate
that our cost-based system and heuristic system are both
effective.

1. INTRODUCTION

As the XML (eXtensible Markup Language) technol-
ogy emerged as the de facto standard for information
sharing and data exchange on the Web, XML data man-
agement and query processing have attracted a lot of at-
tention from the academic and business communities.

In general, the nested structure of an XML document
is captured by a tree model, so XML queries, e.g., XPath
or XQuery, are normally specified based on path expres-
sions to navigate the complex structure of XML data.
The path expressions involved in a query might consti-
tute a tree structure, and such query is usually named
as a twig query. There have been many research efforts
on the relevant processing techniques [2, 3, 4, 9]. They
usually first identify the elements which meet the tag or
path requirements, and apply specially-designed encod-
ing schemes, algorithms, or data structures, e.g., indices
or stacks, to expedite the combining process.

In contrast, researchers also advocate keyword-based
search against XML documents, since it provides a more
friendly user environment. Specifically, users do not
need to explicitly state the structural constraint, but the

SIGMOD Record, March 2012 (Vol. 41, No. 1)

system will ensure that the returning data satisfy the
structure of the queried XML document [1, 7, 8, 11].
This type of researches usually apply the techniques seen
in the information retrieval (IR) field, e.g., inverted lists
or ranking schemes.

In view of the need to combine the above two query-
ing facilities, XQuery and XPath Full-Text (XQFT) 1.0,
has been proposed and became a W3C standard [10].
Consider the following sample query, which is posed
against the XML document in Figure 1:

Q1

for $p in /catalog/item

where $p/remark contains text (“database” ftand
“design” ordered) ftand (“database” ftand “design”
distance at least 2 words) and $p//name
contains text (“Peter” ftand “Rob” ordered)

return $p

In this query, the path expressions ‘/catalog/item”,
“/catalog/item/remark” and “/catalog/item//name” form
a twig pattern, which represent the structural constraint
on the retrieved data. On the other hand, the operator
“contains” is used to enforce the content of the ele-
ments remark and name to satisfy the given full-text con-
straints. Particularly, the content of the element ““/cat-
alog/item/remark” is required to have an ordering be-
tween the keywords “database” and “design”, with the
distance at least “2” between them.

We have previously proposed two ways to process
XML queries with these constraints [3]. The first one
is called the structure-first approach. It mainly follows
the research direction originally designed for process-
ing twig queries, but is extended to be able to process
full-text constraints as well. In contrast, the second one
is called the keyword-first approach, since it is mainly
based on the techniques for processing keyword-based
queries. This approach will first process the full-text
constraints, and then make its answer also satisfy the
structural constraint. Although these two approaches
have been shown both feasible, they were built as two
separate systems where users are hard to determine which
one to use.

Database ... Databases: Design,
38 39

Database
82

Design, ... Development, And
3 Peter Rob
Peter Rob Deployment ... 83 &
7 8 42 ‘We have developed countless
Carlos Coronel 85 86 87 88
Q
’ 10 database ... web interface design
89 99 100 101
Database Systems: Design ... a market-leader Robs Databases: Design, Development ...
14 15 16 22 23 56 57 58 59

for database texts, ... database design through the use of Microsoft Access.
24 25 26 34 35 7% 77 18 719 80 81

Figure 1: The Sample XML Tree

In this paper, we intend to construct an integrated sys-
tem to support the structure-first (SF) approach and the
keyword-first (KF) approach in a uniform way. We first
analyze the components of these two approaches and de-
sign a set of operators to represent how they work. We
then define the cost model to represent the cost of each
operator and propose a set of rewriting rules, so that we
can choose the plan with the least cost from all possible
execution plans. In addition to supporting cost-based
optimization, we also propose several heuristic rules by
observing the behaviors of the two approaches. Finally,
we have conducted a series of empirical studies. The
experimental results show the effectiveness of the cost-
based optimization system and the proposed heuristic
rules.

The remaining of this paper is organized as follows.
We first introduce the underlying data model and the
two approaches in Section 2. We then describe how we
achieve cost-based optimization in Section 3. We have
performed a series of experiments to demonstrate the ef-
fectiveness of our integrated system. The experimental
results are analyzed in Section 4. Finally, conclusion
and future works are discussed in Section 5.

2. PRELIMINARIES

In this section, we first discuss the underlying data
representation in our system. We then explain the SF
approach and the KF approach. The XML tree in Figure
1 and the sample query Q1 will be used as the running
example throughout this paper.

2.1 Data Modeling

The XML document is represented as a rooted la-
beled tree as usual. To quickly determine the structural
relationship between two elements, each element node
is associated with the extended Dewey encoding [9].

6

There are mainly two reasons for applying this encod-
ing scheme. First, this encoding scheme has the main
properties of the original Dewey encoding, so we can
easily obtain the LCA (lowest common ancestor) of two
elements by computing their common prefixes. This is
required by the keyword-first approach. For example,
the LCA of elements 1.1.1 and 1.1.2 is 1.1. Second, a
unique property of the extended Dewey encoding is that
it can be easily transformed to a labeled path. For exam-
ple, encoding 1.1.1 can be transformed to the path “/cat-
alog/item/title”. This supports the efficient processing
of twig joins.

For processing full-text constraints, each keyword in
the context is also given a global position, which is as-
signed across elements. For example, the first “Database”
under the leftmost title element is encoded as 1, while
the first “Database” under the leftmost remark element
is encoded as 14.

2.2 The Structure-First Approach

-,

Peter (7) = Carlos (9) Peter (49) - Peter (83)
Rob (8) Coronel (10) = Rob (50) Rob (84)

i
i

| Database (14) Database (57) = Database (89)
|

\ Design (58)
|
i
i
|
i

|
I

|

!

R !

Termlist Termlist Termlist Termlist Design (16) Design (101) |
Datsbase(75) il

Database (25) 1

””””””””””””””””””” I I
| Database (34))

| - Design (35) !

| i |

|__Temist __ Temist __ Temist |

Figure 2: The Query Tree with Streams and

Termlists

In the SF approach, an input query is first constructed
as a query tree to clearly show its structural constraint.
The query tree is built based on all the path expressions
specified in the query, where the component elements
are illustrated by nodes and the location steps are de-
noted by edges. The node with a double circle indicates
the answer node. After the query tree is built, the SF
approach first identifies the elements which match the
tag constraint for each leaf node of the query tree and
represents them in a sorted order, which are called the
stream of the associated node. For each element in the
stream, the SF approach then represents the component
keywords along with their positions in a sorted order,
which are named as the Termlists. Figure 2 illustrates
the result of processing Q1 against the sample XML tree
at this stage.

SIGMOD Record, March 2012 (Vol. 41, No. 1)

The SF approach then examines each element in the
stream, and uses a variant of the merge-sort algorithm,
to see if the associated Termlist represents the queried
keywords in the required ordered or distance sequence.
For example, in the stream of the node name, the el-
ements 1.1.2.1, 1.2.2.1, and 1.3.2.1 all satisfy the or-
dered constraint for the keywords Peter and Rob. After
identifying all the elements which satisfy the full-text
constraint from each individual stream, the SF approach
applies a twig join algorithm, called TJFast [9], to find
the correct answers which satisfy the whole twig con-
straint.

2.3 The Keyword-First Approach

114 Database design
o 1111 1113
118 | 11814 1.1.8.16
118 | 1.1.834 1.1.835
121 | 12138 1.21.39
order 128 | 12857 12858
134 | 1348 134101
13 | 13182 13.4.101
12138 1.1.835
T 1 | 12875 1.3.4.101
141 | Database design (d)
= 1111 1.1.1.3
118 | 1.1.834 1.1.8.16
> 118 [11834 11835
118 [11814 1.1.8.16
1.1 11814 1113
/ ’\ 121 | 12138 1.21.39
128 | 12857 12858
SCU (database) SCU (design) 128 | 12875 1.2858
111 1444 114 1143 1.2 | 12857 1.2.1.39
1.1.8 1.1.8.14 118 1.1.8.16 134 | 13489 134101
118 1.1.834 1.1.8 1.1.8.35
121 12138 121 12139 13 | 13182 134101
128 1.2.857 128 12858 4 12.1.38 1.1.8.35
128 12875 1.3.4 1.3.4.101 1.2.8.75 1.3.4.101
1.3.1 1.3.1.82
134 1.3.4.89
(a) (b) (c)

Figure 3: An Example of the KF Approach

In contrast to Termlists, the underlying data structure
of the KF approach is the SCU (Smallest Containing
Unit) [1]. An SCU consists of a list of items, where
each item represents the element and the position which
matches the pattern (keyword or full-text constraint). For
example, in Figure 3(a)-(b), we can see the SCU ta-
bles for the keywords “database” and “design”, where
the position is represented by attaching the global posi-
tion to the extended Dewey encoding of its parent ele-
ment. Another difference from the SF approach is that
the items in an SCU table are sorted based on the pos-
torder of nodes, instead of preorder.

The KF approach starts by processing the full-text
constraints. For each full-text constraint which consists
of the keywords K1 and K2, it will first create the cor-
responding SCU tables (Figure 3(a)-(b)). It then calcu-
lates the LCAs which represent both keywords K1 and

SIGMOD Record, March 2012 (Vol. 41, No. 1)

K2, as seen in Figure 3(c). To identify those elements
which satisfy the full-text constraint, the algorithm first
determines if an LCA satisfies the given constraint. If it
does not, the matched position will be sent to its near-
est ancestor to check next. For example, as shown in
Figure 3(d), element 1.1 does not satisfy the first or-
dered constraint in @1, because the matched position
for “database” (1.1.8.14) is bigger than the matched po-
sition for “design” (1.1.1.3). Therefore, these informa-
tion will be propagated to its ancestor (element 1) for
further checking. Note that in this approach, it is com-
parably easy to check the full-text predicates ordered
and distance, since we can directly retrieve the matched
positions for the keywords from the SCU, and a simple
arithmetic calculation will suffice. After obtaining those
elements which satisfy the full-text constraints, the KF
approach will represent them as streams of the corre-
sponding leaf node in the query tree, and find answers
by invoking the TJFast algorithm.

3. COST-BASED OPTIMIZATION

In this section, we discuss how we combine the SF
and KF approaches into an integrated system, and how
to perform cost-based optimization.

3.1 Operators
Table 1: Operators

| operator | cost model
0 o IT0)
Kk) co * | K (k)|
Cf)%;w(.) c3 * |I|; I: input Termlist
¢y * |1]; It input SCU
P,() ¢s * |I]; I: input Termlist
TJ ¢ (stream™) | cg * |input| + c7 * |output|
L(sl, s2) cs * (|s1] + |s2|) 4 cg * |output]
O(s) c1o * ||

By analyzing all components of the SF and KF ap-
proaches, we define a set of operators for the integrated
system, as summarized in Table 1. Among the seven op-
erators, the first two operators are classified as I/O oper-
ators, the following two operators are filters, and the last
two operators are introduced because they are required
during the process of the KF approach. Specifically, op-
erators 7' and K identify elements based on the given
tag ¢ and keyword k, respectively. Operators C' and P
return elements satisfying the full-text constraint based
on op, t1 and t2, and the path constraint p, respectively.
Operator T'J identifies a set of match trees from the
given streams. A match tree is a set of elements, where
each component satisfies individual constraints, and the
whole set satisfies the structural constraint imposed by
the twig query. Finally, the L operator is applied to iden-
tify the LCAs which consist of the input keywords. The

7

O operator is required since the elements represented in
an SCU table are in postorder, while the elements repre-
sented in a stream should be in preorder. This operator
will perform the required order transformation.

We can apply these operators to represent different
execution plans. The following expression describes a
possible execution plan for Q1 based on the SF approach,
where the keywords and tag names are represented in
shorthand, and gt represents the sample query tree de-
picted in Figure 2:

TJat(Prejise(Capancs (Cor ™ (T (remark)))),

dis>=2 ord

Pyesisn(Coriy (T (name)))))

ord

Specifically, this plan first processes the leaf nodes of
the query tree and identifies those elements representing
the given tag names. It then examines each element in
the associated stream and determines if the correspond-
ing Termlist satisfies the specified full-text predicates.
Finally, it picks those elements satisfying the path con-
straints to form match trees and return answers.

The following expression represents another possible
execution plan based on the KF approach:

TJgt(O(Pyesiyr(Capats (Cora™* (L(K (dat), K (des)))))),

dis>=2 ord
O(Pyesiym(Coye TP (L(K (Pet), K(Rob)))))) (2)

Note that the L and O operators are additionally re-
quired in the KF approach.

3.2 Rewriting Rules
Table 2: Rewriting Rules

[No [Rule ‘
I [G (Copa () = Coga (Copi (1))
2 [B(CoP() = Cop(Pu()

Ct%”(t2t4(L((s1,52)), (L (83 s4)))) =
31| Cot*(Copy (L(L(L(s1, 52), 53), 54))) =
3-2 Cf,f;z“((Ei,f?(L(sl s2)), (L (53,3) =
33 | L(Copi*(L(s1,52)), oy (L(53, 54))) =

Table 2 lists several rewriting rules designed for this
system. Rule 1 indicates that two C' operators are com-
mutable; rule 2 indicates that a C' operator and a P op-
erator are commutable. These two rules are applicable
to both SF and KF approaches. There are certain rewrit-
ing rules which are only applicable in one approach. For
example, rules 3-1 to 3-3 represent that the C' operator
can push before or after the LCA operation, which only
function in the KF approach.

We then explain how to produce different execution
plans. First, for each leaf node of the query tree, we de-
rive the default-SF plan and the default-KF plan. The
default-SF plan is produced by enforcing the follow-
ing processing sequence: the ordered constraint, the dis-
tance constraint, and the path constraint. The default-KF

8

plan performs the LCA operation first, and then follows
the same sequence as in the default-SF plan.

After getting the default plans, as the sample execu-
tion plans (1)-(2) presented in Section 3.1, we then apply
the rewriting rules to produce all possible plans. For ex-
ample, rewriting rule 2 can be applied to execution plan
(1) and make path filtering performed before the full-
text constraint. Finally, we consider possible combina-
tions among all leaf nodes to produce the set of complete
execution plans.

3.3 The Cost Model
Table 3: Coefficients in the Cost Model

coefficient | ¢; | ¢ | c3 Cq Cs
value 12 [15| 156 | 1.33 | 4.24
coefficient | cg | ¢7 | cg Cg C10
value 1 4 1 5 0.1

In our cost-based optimization system, we estimate
the cost of each possible execution plan and choose the
plan with the least cost. To do so, we design the cost
model for each operator, as shown in the last column of
Table 1. They are derived based on the time complex-
ity of the corresponding algorithms, which are basically
linear to the input (and/or output).!

The coefficients in the cost model, i.e., ¢; through ¢y,
are obtained empirically based on representative datasets
and queries. Briefly speaking, we divide the execution
time of a query into several portions based on the opera-
tors which constitute the execution plan, and also record
the amounts of data operated (and produced) within each
portion. By simple calculation we get the values of co-
efficients. We execute each query twenty times and get
the average values of coefficients. The values got from
all test queries are again averaged and normalized. The
final result is summarized in Table 3. In addition, we
also collect several types of statistic data, which include
the occurrences of each tag name and the occurrences
of each keyword in an XML document, to calculate the
estimated cost of an execution plan.

4. EXPERIMENT

We have designed several experiments to evaluate the
performance of our integrated system. All the experi-
ments are performed on a personal computer with Intel
Core i7 3.7GHz CPU and 16GB memory, with the Mi-
crosoft Windows 7 operating system. The test queries
are summarized in Table 4, where the XPath-like syntax
is applied to save space. Besides, “cnt” is the shorthand

"We build two indices to support the two I/O operators. The
first one is a hash index designed for operator 7', which has the
tag-name as the key, and will return the information: (encod-
ing, keyword, position). The second one is an inverted index
designed for operator K, which utilizes the keyword as the
keys, and returns the encoding and position information.

SIGMOD Record, March 2012 (Vol. 41, No. 1)

Table 4: The Test Queries

[No [Query Statement

Ty

Ql /dblp/inproceedings|./title cnt (“system”, “system”), (“advanced”,
“course”), (“algorithm, “application”), (“base”, “computer”),
(“information”, “image”) and ./booktitle cnt (“language”,

“language”), (“conference”, “conference”), (“data”, “performance”),
(“model”, “management”), (“design”, “design”)]

Q2-5 | similar to Q1 and omitted due to space limitation

Q6 /dblp/inproceedings|./booktitle cnt (“air”, “air”) and

title cnt (“consider”, “consider”)]

Q7 /dblp/inproceedings|./booktitle cnt (“architecture”, “architecture”)
and ./title cnt (“knowledge”, “knowledge”)]

(T

Q8 /dblp/inproceedings|./booktitle cnt (“system”, “system”) and
Jtitle ent (“‘us”, “us”)]

Q9 /dblp/inproceedings|./school cnt (“university”, “university”) and
./note cnt (“conference”, “conference”)]

Q10 | /dblp/inproceedings[./editor cnt (“John”, “John”) and
./publisher cnt (“Germany”, “Germany”)]

Q11 /dblp/inproceedings]./title cnt (“System”, “System”) and
J/author cnt (“Jerry”, “Jerry”)]

Q12 | /site/reqions/asia/item[.//description//text//keyword cnt (“master”,
“attend”, <=, 500) and .//shipping cnt (“ship”, “see”)]

CIaTy

Q13 | /site/reqions/asia/item[.//description//text cnt (“master”, “attend”,
<=, 500) and .//shipping cnt (“ship”, “see”)]

Ql4 /site/reqions/asia/item[.//description cnt (“master”, “attend”,
<=, 500) and .//shipping cnt (“‘ship”, “see”)]

Ql5 /site/reqions/asia/item[.//desciption//text cnt (“master”, “attend”,

<=, 5) and .//shipping cnt (“see”, “see”)]
Q16 | /site/reqions/asia/item[.//desciption//text cnt (“master”, “attend”,
<=, 50000) and .//shipping cnt (“see”, “see”)]

Q17 /site/reqions/asia/item[.//desciption//text cnt (“master”, “attend”,
<=, 50000000000) and .//shipping cnt (“see”, “see”)]

Q18 | /site//item[.//desciption//text cnt (“master”, “master”) and .//keyword
cnt (“bound”, “bound”) and .//shipping cnt (“description”,

“description”)]

Q19 /site//item[.//desciption//text cnt (“master”, “master”) and .//keyword
cnt (“bound”, “bound”) and .//shipping cnt (“description”,
“description”) .//location cnt (“Netherland”, “Netherland”)]

Q20 | /site//item[.//desciption//text cnt (“master”, “master”) and .//keyword
cnt (“bound”, “bound”) and .//shipping cnt (“description”,
“description”) .//location cnt (“Netherland”, “Netherland”) and

e

Jlfrom cnt (“june”, “june”)]

of contains text, (A, B) represents “A ftand B ordered” 2
and the distance constraint is represented as a quadruple.
These test queries are designed to consist of a variety of
cases. Q1-Q5 have the same query tree structure, but
with 10, 14, 18, 22, 26 full-text constrains, respectively.
Q6-Q8 also have the same query tree structure, but the
constrained keywords have different frequencies, where
those in Q6 have the lowest frequencies, and those in
QS8 have the highest frequencies. In contrast, Q9-Q11
have different tag frequencies, where those in Q9 have
the lowest frequencies, and those in Q11 have the high-
est frequencies. Q12-Q14 have the same full-text con-
straint, but the length of the root-to-leaf path decreases.
The difference among Q15-Q17 is that the distance be-
tween the constrained keyword increases. Finally, Q18-
Q20 have increasing numbers of path constraints.

We apply three datasets, which are two DBLP col-
lections with the size 107MB and the size 872MB, re-
spectively, and the XMark data set with the size 116MB.
Each query is executed three times, and we calculate the
average of the last two execution time.

>When using the same word in an ordered constraint, e.g.,
(“system”, “system”), we only require the word to appear
once.

SIGMOD Record, March 2012 (Vol. 41, No. 1)

DBLP 107MB —&— DBLP 872MB —l—

5.0 % ‘ ‘ ‘ : :
45% ‘.,_\

40% A
352 N\
3.0%

25% l/.
20%

1.5% - -
Q1 Q2 Q3 Q4 Q5

4

Figure 4: Overhead of Performing Optimization

Default-SF ==
Worst Plan =

Best Plan
Selected Plan mm
Default-KF mm

20 71T T W T —

1507 |]

Execution Time (Sec)
)

: al Ll

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11
(a) DBLP 872MB

Execution Time (Sec)
o = N W H» O O N ©

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
(b) XMark 116MB

Figure 5: Effectiveness of Cost-Based Optimization

4.1 Effectiveness of Cost-based Optimiza-
tion

First, we evaluate the overhead of performing opti-
mization. Normally, when a query consists of more con-
straints, more alternative plans will be produced and need
to be explored. However, the query might also need
more time to evaluate. In Figure 4, we show the ratios of
the optimization time and the execution time of selected
plans. Observe that they are all below 4.5%, which are
quite minor and acceptable.

Next, we evaluate the performance of our cost-based
optimization system.?> For each query, we record the
execution time of the real best plan, the plan selected
by our system, the default-KF plan, the default-SF plan,
and the worst plan. We applied queries Q1-Q11 to the
two DBLP datasets and applied queries Q12-Q20 to the

3Experimental results of the smaller DBLP dataset are similar
to those of the larger one, and are omitted in Figures 5-6.

Best Plan

Selected Plan

Heuristic Plan

Selected Plan plus Optimization

i

Execution Time (Sec)

mmm_.m.m’

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11
(a) DBLP 872MB

Execution Time (Sec)

0
Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
(b) XMark 116MB

Figure 6: Effectiveness of the Heuristic Rules

XMark data set. As shown in Figure 5, for the vast ma-
jority (over 90%) of queries, our cost-based system will
choose the best plan. If not, the selected plan whose
execution time is all less than 8% above the cost of the
actual best plan. This shows the effectiveness of our
system.

Based on the execution time of each query, we ob-
serve that the KF approach usually outperforms the SF
approach. The reason is that the costs of those operators
comprising the KF approach and SF approach do not
differ a lot. The only exception is that coefficients c1 and
c2, i.e., the costs of the input operations, are larger than
others by an order of magnitude (See Table 3). There-
fore, the amount of the input dominates the total cost.
Since a document usually consists of more keywords
than tags, keyword frequencies tend to be less than the
tag frequencies. Therefore, it is reasonable that the KF
approach is commonly more efficient than the SF ap-
proach when the query is not very complex. However,
recall that the KF approach needs to do extra LCA com-
putation and order transformation. Therefore, we can
see that the KF approach will be defeated when there
are many full-text constraints, as shown in Q5.

4.2 Effectiveness of the Heuristic Rules

Based on the above discussion and observing that the
best plan is usually the default plan (Figure 5), we de-
rived two heuristic rules as listed below:

1. If sum(Km) < sum (Tm), choose the default-KF plan.

2. If the number of full-text constraints (V) is bigger
than 20, choose the default-SF plan.

10

In short, our heuristic system will not apply the rewrit-
ing rules discussed in Section 3.2, but directly choose
the most appropriate plan based on the following rule:

If (sum(KM) < sum(Tm)) or N < 20 then choose the
default-KF plan; else choose the default-SF plan.

As shown in Figure 6, our heuristic system works cor-
rectly in about 80% cases. When additionally consid-
ering the optimization time required by the cost-based
system, our heuristic system runs faster than the cost-
based system in more than 90% cases. This shows the
effectiveness of our heuristic rules.

S. CONCLUSION

For an XQuery with structural and complex full-text
constraints, we first design a cost-based optimizer and
then derive a heuristic system to avoid performing rewrit-
ing. The experimental results show that the two ap-
proaches are both effective. In the future, we plan to
explore more optimization techniques such as described
in [5, 6] to further improve querying performance.

6['1] B E&E%Ey E]C;:lﬁtmola, and A. Deutsch. Flexible

and efficient xml search with complex full-text
predicates. In Proceedings of the SIGMOD Conference,
2006.

[2] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: Optimal xml pattern matching. In Proceedings of
the ACM SIGMOD conference, 2002.

[3] Y.-H. Chang, C.-Y. Wu, and C.-C. Lo. Processing xml
queries with structural and full-text constraints. Journal
of Information Science and Engineering, 28(2), 2012.

[4] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung,

D. Agrawal, and K. S. Candan. Twig2stack: Bottom-up
processing of generalized-tree-pattern queries over xml
documents. In Proceedings of the 32rd VLDB
Conference, 2006.

[5] H. Georgiadis, M. Charalambides, and V. Vassalos. Cost
based plan selection for xpath. In Proceedings of the
SIGMOD conference, 2009.

[6] H. Georgiadis, M. Charalambides, and V. Vassalos.
Efficient physical operators for cost-based xpath
execution. In Proceedings of the EDBT conference,
2010.

[7]1 R. Kaushik, R. Krishnamurthy, J. F. Naughton, and
R. Ramakrishnan. On the integration of structure
indexes and inverted lists. In Proceedings of the
SIGMOD Conference, 2004.

[8] Z. Liu and Y. Chen. Reasoning and identifying relevant
matches for xml keyword search. In Proceedings of the
34rd VLDB Conference, 2008.

[9] J. Lu, T. W. Ling, C.-Y. Chan, and T. Chen. From region
encoding to extended dewey: On efficient processing of
xml twig pattern matching. In Proceedings of the VLDB
conference, 2005.

[10] The World Wide Web Consortium. XQuery and XPath
full text 1.0. w3c recommendation.
http://www.w3.org/TR/xpath-full-text-10/, 2011.

[11] M. Theobald, R. Schenkel, and G. Weikum. An efficient
and versatile query engine for topx search. In
Proceedings of the VLDB Conference, 2005.

SIGMOD Record, March 2012 (Vol. 41, No. 1)

