
A Survey on Tree Edit Distance Lower Bound
Estimation Techniques for Similarity Join on XML Data

Fei Li
Harbin Institute of Technology

lifei@umich.edu

Hongzhi Wang
∗

Harbin Institute of Technology
wangzh@hit.edu.cn

Jianzhong Li
Harbin Institute of Technology

lijzh@hit.edu.cn
Hong Gao

Harbin Institute of Technology
honggao@hit.edu.cn

ABSTRACT
When integrating tree-structured data from autonomous
and heterogeneous sources, exact joins often fail for the
same object may be represented differently. Approxi-
mate join techniques are often used, in which similar
trees are considered describing the same real-world ob-
ject. A commonly accepted metric to evaluate tree sim-
ilarity is the tree edit distance. While yielding good re-
sults, this metric is computationally complex, thus has
limited benefit for large databases. To make the join
process efficient, many previous works take filtering and
refinement mechanisms. They provide lower bounds
for the tree edit distance in order to reduce unneces-
sary calculations. This work explores some widely ac-
cepted filtering and refinement based methods, and com-
bines them to form multi-level filters. Experimental re-
sults indicate that string-based lower bounds are tighter
yet more computationally complex than set-based lower
bounds, and multi-level filters provide the tightest lower
bound efficiently.

1. INTRODUCTION
For the ability to represent data from heteroge-

neous sources, XML is widely used for web data
representation and exchange. For its flexibility, da-
ta representing the same object may not be exactly
the same. For duplication detection and data inte-
gration, approximate join techniques are in demand.
That is, similar XML fragments are joined for they
are considered as representing the same real-world
object.

XML fragments are often modeled as ordered la-
beled trees. Tree edit distance is a widely used met-
ric to evaluate the similarity between trees [17]. The
tree edit distance is the minimum number of node
insertions, deletions, or relabels to transform one

∗corresponding author

tree to another 1. Two trees are considered as a
similar tree pair if their tree edit distance is below
a predefined threshold. It is effective but compu-
tationally expensive. Many researches have been
performed to improve the efficiency [22, 14, 7, 8].
Unfortunately, the time complexity is still at least
O(n3), where n is the tree size. When there are
large numbers of trees and the trees are huge, the
join process needs a lot of time.

Filtering and refinement mechanisms are often
used to overcome this problem. The main idea is to
compute lower bounds for tree edit distances and
filter out dissimilar tree pairs without computing
their exact tree edit distances. Since lower bounds
are much easier to compute than the exact value,
the overall efficiency is improved significantly.

To our knowledge, existing lower bounds are com-
puted based on transformation. Trees are trans-
formed into other data structures whose distances
serve as lower bounds to tree edit distance. String
is a relatively simple data structure which contains
order for structure as well as content information
in each entry. In [10], XML documents are trans-
formed into their corresponding preorder and pos-
torder traversal sequences. Then the string edit dis-
tance is used as the lower bound of the tree edit dis-
tance. This method has high filter quality but rela-
tively low efficiency. Set (multi-set) is even simpler
than string. In [12], three kinds of histograms are
proposed based on the node height (leaf height), n-
ode degree, and node label, respectively, to compute
relatively rough lower bounds. In the method of bi-
nary branch [21], trees are transformed into binary
branch sets and the binary branch distance between
these sets is used to compute the lower bound of the
tree edit distance. These two set-based methods are

1In this article, we mainly discuss unit cost tree edit
distance, in which all operations have the same cost.

SIGMOD Record, December 2013 (Vol. 42, No. 4) 29

very efficient but can not provide the lower bound
as tight as the string-based methods do.

Since all the lower bounds of tree edit distance
are definitely lower than or equal to the exact tree
edit distance, these methods can be combined to
give tighter lower bounds. The maximum value of
all the lower bounds in different methods serves as
the tightest lower bound. Instead of computing all
the lower bounds independently, a multi-level fil-
tering mechanism can be applied. Efficient lower
bounds are computed first to wipe some dissimi-
lar tree pairs out. Then more expensive yet tighter
lower bound are computed only for the remaining
tree pairs. After all the lower bound methods are
applied, tree edit distance is compute for the re-
maining tree pairs. While having the same filtering
quality, multi-level filter is conducted more efficient-
ly than computing all lower bounds independently
and choosing the highest one.

Contributions: This paper presents a compara-
tive study of these filtering and refinement methods
for tree similarity join. We implement the string-
based lower bounds [10], Histogram [12], and binary
branch distance [21] respectively to test the bound
tightness and computational efficiency. From the
comparisons, each of these three methods has spe-
cial benefits. As a result, they could be combined
to form a multi-level filter to achieve tighter low-
er bound efficiently. Such a combined mechanism
could be more effective and efficient than each sin-
gle one.

The rest of the paper is organized as follows. In
Section 2, related work is discussed. In Section 3,
some background knowledge is introduced. Three
widely accepted methods in computing the lower
bound of tree edit distance are described in detail
in Section 4. We analyze the properties of each
method in Section 5. The combined strategy is dis-
cussed in Section 6. We test the efficiency and effec-
tiveness of each method experimentally in Section 7.
The conclusions are drawn in Section 8.

2. RELATED WORK
Approximate joining techniques for trees are of-

ten based on similarity evaluation. A well-known
distance function for trees is the tree edit distance.
To describe time complexity, we use n, l, and h to
denote the number of nodes, leaves, and the height
of a tree, respectively. [17] presented the first al-
gorithm for computing tree edit distance in time
O(n2l4). [22] improved this result toO(n2min2(l, h))
running time with O(n4) in the worst case. [14] im-
proved it to O(n3 log n). Both [22] and [14] achieved
their improvements based on closely related dynam-

ic programming, presenting different ways to com-
pute only a subset of relevant subproblems. [7] p-
resented a different approach based on the results
of fast matrix multiplication and give an algorith-
m with time complexity O(n3.5) in the worst case.
A recent development is by [8] which compute the
tree edit distance in time O(n3).

Obviously, the tree edit distance computation is
expensive and does not scale for large trees in mas-
sive data-sets. Therefore, many previous works take
the filtering and refinement mechanisms to acceler-
ate the similarity join process. In the filtering step,
many pairs of dissimilar trees are filtered out. In
the refinement step, tree edit distance is only com-
puted for the remaining tree pairs. The overall join
process is accelerated since fewer tree edit distances
need to be computed directly.

To the best of our knowledge, existing filtering
and refinement methods are based on transforma-
tion. Trees are transformed into simpler data struc-
tures whose distance is lower than the tree edit dis-
tance but much easier to compute. String is a rela-
tively simple data structure that contains order for
structure information as well as content information
in each entry. In [10], XML documents are trans-
formed into their corresponding preorder (or pos-
torder) traversal sequences. Then the string edit
distance between two sequences serves as the lower
bound of their tree edit distance. [2, 1] use half of
the string edit distance between Euler traversals as
the lower bound of the tree edit distance. Howev-
er, this lower bound is often lower than the max-
imum of the two lower bounds (provided by their
preorder traversal sequences and postorder traver-
sal sequences, respectively) proposed in [10], thus
cannot be tighter lower bounds in most cases. The
Euler traversal is twice as long as the preorder (or
postorder) traversal, which would cause 4 times in
running time. So we use [10] to represent string
based lower bounds.

Set (multi-set) is a even simpler data structure.
In Histogram [12], three kinds of histograms are
proposed based on the node height, node degree,
and node label, respectively, to compute rough low-
er bounds for tree edit distance. Another set-based
method is Binary branch [21]. In that method, trees
are first transformed into binary trees and then in-
to sets. The binary branch distance between these
sets is then used to compute the lower bound of the
tree edit distance.

Recently, some works adopted different distance
functions to evaluate the similarity between trees
directly. pq-gram distance is first proposed to eval-
uate the distance between ordered trees directly [4].

30 SIGMOD Record, December 2013 (Vol. 42, No. 4)

In [3], the pq-gram method is extended to evaluate
the similarity between unordered trees. Recently
in [18], each tree is transformed into a set of piv-
ots and the Jaccard Coefficient between two set-
s of pivots are used to approximate the tree edit
distance. As is shown in [18], for unordered trees,
their method approximates tree edit distance more
accurately than pq-gram. In the case of ordered
trees, their matching quality is lower than that us-
ing pq-gram [11]. These methods are proposed to
evaluate the similarity between trees directly. Al-
though some of them approximate tree edit distance
well, they do not have any guarantee of being low-
er bounds to tree edit distance. Hence we do not
discuss these methods in this paper. Later in [5],
the pq-gram distance is modified to serve as a low-
er bound to the fanout-weighted tree edit distance,
but not to the widely used unit cost tree edit dis-
tance or general case. We do not consider it in this
paper.

3. PRELIMINARY DEFINITIONS

Definition 1. (Tree Edit Distance). Given
a pair of trees T1 and T2, the tree edit distance be-
tween them is the minimum cost of a series of tree
edit operations to transform one into another. The
three standard tree edit operations [17] includes:

1. relabeling (changing the label) a node v.

2. deleting a node v (and moving all the children
of v to v’s parent).

3. inserting a node v to w (and moving a con-
tiguous sequence of w’s children under v).

In order to determine the distance between trees,
a cost model must be defined. In this paper, we dis-
cuss the unit cost model: the cost of each standard
operation is 1. We use the symbol TD(T1, T2) to
denote the unit tree edit distance between T1 and
T2.

Definition 2. (Approximate Join on Trees).
]Given two tree sets, F1 and F2, the Join between
F1 and F2 on Tree Edit Distance is the set {(Ti,
Tj)|(Ti, Tj)∈ F1× F2, TD(Ti, Tj)≤τ}, where τ is
a predefined threshold.

Example 1. Figure 1 shows two tree sets F1 =
{T11, T12} and F2 = {T21, T22}. Suppose the prede-
fined threshold is 2. Only TD(T11, T21) and TD(T12,
T22) are lower or equal to that threshold. Then the
tree edit distance join on them is {(T11, T21), (T12,
T22)}.

v1,$a�

v2,$a� v3,$b� v4,$c�

v5,$f� v6,$b�

w1,$a�

w2,$a� w3,$b�w4,$y�

w5,$f�w6,$b�w7,$x�

u1,$a�

u2,$a� u3,$e� u4,$b� u5,$c� u6,$g�

x1,$a�

x2,$a� x3,$b� x4,$c� x5,$f�

T11� T12�

T21� T22�F2�

F1�

Figure 1: Approximate Tree Matching

Join based on tree edit distance is effective but
computationally expensive. To accelerate the effi-
ciency, filtering and refinement mechanisms are of-
ten used. That is, if the lower bound of the tree edit
distance is above the predefined threshold, that tree
pair must be dissimilar and can be safely eliminated.
Since lower bounds are much easier to be computed
than the tree edit distance, the whole join efficiency
is improved significantly.

4. LOWER BOUNDS FOR TREE EDIT
DISTANCE

In this section, we introduce three commonly ac-
cepted methods for computing the lower bounds of
tree edit distance: string-based lower bound [10],
histogram [12] and binary branch distance [21].

4.1 String-based Lower Bound
Let T be an ordered labeled tree, where pre(T)

and post(T) are the preorder and postorder traver-
sals of T , respectively. Both pre(T) and post(T)
are viewed as strings. With ed(s1, s2) denoting the
edit distance between two strings, the relationship
between the unit tree edit distance and the string
edit distance is shown as follows:

ed(pre(T1), pre(T2)) ≤ TD(T1, T2)

ed(post(T1), post(T2)) ≤ TD(T1, T2)

Example 2. Figure 2 shows the preorder and pos-
torder of T12 and T21 in Figure 1. Suppose the pre-
defined threshold is 2. Since ed(pre(T12), pre(T21))
= 4 and ed(post(T12), post(T21)) = 6, TD(T12, T21)
is at least 6. So T12 and T21 are definitely dissimi-
lar.

String edit distance is computed in time O(n2),
where n is the tree size. This is much faster than
computing the tree edit distance. However, when
the trees in the databases is too large, the compu-
tation of the string edit distance is also costly. Vec-
tors and sets (bags) are data structures even simpler

SIGMOD Record, December 2013 (Vol. 42, No. 4) 31

pre(T12))=)a,)a,)e,)b,)c,)g�

pre(T21))=)a,)a,)f,)b,)x,)b,)y�

post(T12))=)a,)e,)b,)c,)g,)a�

post(T21))=)f,)b,)x,)a,)b,)y,)a�

ed(post(T12),)post(T21))=6�ed(pre(T12),)pre(T21))=4�

Figure 2: String-based Lower Bound

than strings. So many following researches trans-
form trees into vectors or sets to estimate the lower
bound faster [12, 21, 5].

4.2 Histogram
Histogram was firstly proposed in [12] to compute

lower bounds for the tree edit distance efficiently. In
their method, three kinds of histograms (leaf dis-
tance histogram, degree histogram, and label his-
togram) are developed. The basic idea of all these
methods is to transform trees into vectors and use
the L1 distance between these vectors to estimate
the lower bounds.

4.2.1 Leaf Distance Histogram
The height of the nodes in a tree is an important

structural property. Leaf distance histogram defines
the height from the leaves to the root as follows:

Definition 3. (Leaf Distance). The leaf dis-
tance dl(v) of a node v is the maximum length of a
path from v to any leaf node in the subtree rooted at
v.

Definition 4. (Leaf Distance Histogram).
The leaf distance histogram hl(T) of a tree T is a
vector of length k = 1 + height(T) where the val-
ue of any entry i ∈ 0, ..., k is the number of nodes
that share the leaf distance i, i.e. hl(T)[i] = |v ∈
T, dl(v) = i|.

Theorem 1. For any two trees T1 and T2, the
L1-distance of the leaf distance histogram is a lower
bound of the edit distance between T1 and T2 [12].
That is:

L1(hl(T1), hl(T2)) ≤ TD(T1, T2).

Example 3. Figure 3 shows the leaf distance his-
togram of T12 and T21 in Figure 1. Take T21 as
an example. T21 has 5 nodes with leaf distance 5
(w3, w4, w5, w6, w7), 1 node with leaf distance 1
(w2), and 1 node with leaf distance 2 (w1). So the
leaf distance histogram of T21 is (5, 1, 1). Suppose
the predefined threshold is 2. If we use leaf dis-
tance histogram to compute a lower bound, which
is L1(hl(T12), hl(T21)) = 1, we can not filter this
dissimilar tree pair off.

5"

1" 0"

0" 1" 2"

5"

1" 1"

0" 1" 2"

Leaf"Distance"�

Leaf"Distance"�

Appearance�

Appearance�T12:"�

T21:�

Figure 3: Leaf Distance Histogram

4.2.2 Degree Histogram
The degrees of the nodes are another structural

property. The degree histogram uses the informa-
tion of node degrees and gives a rough lower bound
for the unit tree edit distance.

Definition 5. (Degree Histogram). The de-
gree histogram hd(T) of a tree T is a vector with
length k = 1+degreemax(T) where the value of any
entry i ∈ 0, ..., k is the number of nodes that share
the degree i, i.e. hd(T)[i] = |v ∈ T, degree(v) = i|.

Theorem 2. L1(hd(T1), hd(T2))/3 provide a low-
er bound for the edit distance between two trees T1
and T2 [12]. That is:

L1(hd(T1), hd(T2))

3
≤ TD(T1, T2).

Example 4. Figure 4 shows the degree histogram
of T12 and T21 in Figure 1. Take T21 as an example.
T21 has 5 nodes in 0 degree (w3, w4, w5, w6, w7), 2
nodes in 3 degree (w1, w2). So the degree histogram
of T21 is (5, 0, 0, 2, 0, 0). Suppose the predefined

threshold is 2. Since L1(hd(T12),hd(T21))
3 =3/3=1, we

can only tell that the tree edit distance between T12
and T21 is at least 1. In this example, similar to leaf
distance histogram, degree histogram cannot filter
this tree pair off either.

4.2.3 Label Histogram
Apart from the structure information, the con-

tent features, which are stored as tree labels, can
also be used to distinguish dissimilar trees. Intu-
itively, if two trees share many labels, they are very
likely to be similar.

Definition 6. (Label Histogram). The label
histogram hlab(T) of a tree T is a (multi-)set con-
sists of all the node labels in T .

32 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Degree�

Degree�

Appearance�

Appearance�T12:%�

T21:�

5+

0+ 0+ 2+ 0+ 0+

0% 1% 2% 3% 4% 5%

5+

0+ 0+ 0+ 0+ 1+

0% 1% 2% 3% 4% 5%

Figure 4: Degree Histogram

Theorem 3. For two trees T1 and T2 [12]:

L1(hlab(T1), hlab(T2))

2
≤ TD(T1, T2).

Example 5. The label histogram of T12 in Fig-
ure 1 is {a, a, e, b, c, g}, while the histogram of
T21 is {a, a, b, y, f , b, x}. Suppose the prede-
fined threshold is 2. The lower bound provided by
label histogram is |hlab(T12)

⋃
hlab(T21) - hlab(T12)

⋂

hlab(T21)|/2 = 4, which is higher than the threshold.
In this example, label histogram successfully filters
this tree pair off.

Label histogram can effectively filter the tree pairs
whose node labels are very different. And, in most
cases, label histogram can provide a much tighter
lower bound than leaf distance histogram and de-
gree histogram.

For a pair of trees with n nodes, height h and
degree d, the length of their leaf distance histogram
and degree histogram is h + 1 and d + 1, respec-
tively. Thus their L1 distance can be computed in
time O(h) and O(d). Also, the size of each label his-
togram is n, thus the symmetric difference between
them can be computed in time O(n log n). Further-
more, in the case of similarity join two tree sets, the
efficiency can be further enhanced when applying
some well-known techniques (e.g., sort merge and
hash join) to avoid nested loop. So all the three
kinds of histograms can give rough lower bounds
and wipe out some dissimilar trees very efficiently.

4.3 Binary Branch Distance
Leaf distance histogram and degree histogram con-

sider only structural information while the label his-
togram considers only content information. Thus
they can only give relatively rough lower bound-
s. Binary branch [21] is a set-based method which
considers both structure and content information at
the same time.

There is a natural correspondence between a tree
and its binary tree. For each node in a tree, its left
most child (if any) becomes it left child in its binary
tree while its right sibling (if any) becomes its right
child in its binary tree. In this paper, we use the
symbol B(T) to denote the binary tree transformed
from T .

Example 6. Figure 5 shows binary trees B(T12)
and B(T21) of T12 and T21, respectively. Note that
we further transform each binary tree into a full
binary tree by adding dummy nodes (labeled ∗).

Definition 7. (Binary Branch). Let B be a
binary tree. ∀u ∈ B has a binary branch Br(u)
composed by u and its two children.

Definition 8. (Binary Branch Vector). A
binary branch vector BRV (T) of a tree T is a vector
(b1, b2, ..., b|B|), with each element bi representing
the number of occurrences of the ith binary branch.
|B| is the size of the binary branch space of the
dataset.

Definition 9 (Binary Branch Distance).
Let BRV (T1)=(b1, b2, ..., b|B|), BRV (T2) = (b′1, b′2,
..., b′|B|) be the binary branch vectors of tree T1 and

T2, respectively. Their binary branch distance is
BDist(T1, T2) = ΣBi=1|bi − b′i|.

Theorem 4. For any two trees T1 and T2 [21]:

BDist(T1, T2)

5
≤ TD(T1, T2).

Example 7. Figure 6 shows all binary branches
of T12 and T21. Their corresponding binary branch
vectors are shown in Figure 7. The binary branch
distance between the two binary branch vectors is
11. Thus the estimate lower bound is 3.

5. ANALYSIS

5.1 Running Time
In the previous section, we describe altogether

6 lower bound functions: two string-based lower
bounds and four set-based lower bounds. For string-
based lower bounds, the computation of string ed-
it distance needs potentially quadratic time. The
latter 4 distance function compute the L1 distance
between vectors, which is equal to compute the sym-
metric difference between the (multi-)sets of the en-
tries in these vectors. The symmetric difference
between the (multi-)sets can be computed in time
O(n log n), which is much faster than the O(n2)

SIGMOD Record, December 2013 (Vol. 42, No. 4) 33

w1,$a�

w2,$a� w3,$b�w4,$y�

w5,$f�w6,$b�w7,$x�

u1,$a�

u2,$a� u3,$e� u4,$b� u5,$c� u6,$g�

T12� T21�

u1,$a�

u2,$a�
B(T12)�

u3,$e�

u4,$b�

u5,$c�

u6,$g�

��

��

��

��

��

w1,$a�

w2,$a�

w5,$f�

B(T21)�

w6,$b�

w7,$x�

w3,$b�

w4,$y�

��

��

�� ��

�� ��
�� ��

�� ��

Figure 5: Binary Tree of T12 and T21

u1,$a�

u2,$a� ��

w6,$b�

w7,$x�

w3,$b�

w4,$y�

��

��

Binary$Branches$of$T12:$� Binary$Branches$of$T21:$�

u5,$c�

u6,$g���

u2,$a�

u3,$e���

u3,$e�

u4,$b���

u4,$b�

u5,$c���

u6,$g�

�� ��

w1,$a�

w2,$a���

w2,$a�

w5,$f�w3,$b�

�� ��

w3,$b� w5,$f�

w6,$b���

�� ��

w7,$x�

Figure 6: Binary Branches of T12 and T21

of computing the string edit distance. When ap-
plying well-known techniques (e.g., sort merge and
hash join), all the lower bounds between each tree
pair in F1 × F2 can be computed without nested-
loop. This makes the filtering process using set-
based method much more efficient than that based
on strings. Here we take the label histogram dis-
tance as an example to discuss the efficiency of set-
based join methods.

Suppose that F1 and F2 are two sets of XML frag-
ments. The goal of filtering process is to find all
the tree pairs in F1 × F2 with lower bound within
the threshold τ . Algorithm 1 describes the filter-
ing process. All the trees are firstly transformed
into node-sets (multi-sets). Then we merge all the
node-sets transformed from trees in Fi into Listi
(line 3). Note that the two Lists are lists sorted
by the label − value of each node (to be brief, all
alphanumeric labels are converted to number label-
s method [13]). The size of each node-set in Fi is
computed and stored in the Lists (line 4). We check
for each node label in which pairs of trees it appears
and count the number of node labels that each tree
pair shares (line 5-6). That number equals to the
size of the intersection of a pair of node-sets. The

BRV(T12): 1 1 0 1 0 0 1 1 0 1 0 0�

���

a,a,�|a,�,e|a,f,b|b,�,c|b,�,x|b,�,y|c,�,g|e,�,b|f,�,b|g,�,�|x,�,�|y,�,��

BRV(T21): 1 0 1 0 1 1 0 0 1 0 1 1 �

Figure 7: Binary Branch Vectors of T12 and
T21

sum of the size of two trees minus twice the size
of their intersection equals to the size of symmet-
ric difference(line 7). Then all the lower bounds of
edit distance between in F1×F2 are computed with-
out nested-loop (line 7). The tree pairs with lower
bound lower than τ are returned (line 7).

Algorithm 1 Filtering Algorithm for Set or
Vector Based Methods

Input:F1, F2, τ
Output:CandidateTreePairs

1: for all trees in Fi do
2: for all the node labels in this tree do
3: Listi=Listi] (tIDi,label-value, counti)
4: end for
5: end for
6: ΓtIDi,SUM(counti)→sizei(Listi)
7: List′=List1 ./ List2
8: List′′=ΓtId1,tId2,sum(min(count1,count2))→∩(List′)
9: candidate← πtId1,tId2(σ size1+size2−2∗∩

2 ≤τ (List′′))

10: return candidate

To be brief, it is supposed that the two XML sets
have N trees for each and all the trees have n nodes.
To analyze the time complexity, we summary the
filtering algorithm algorithm to two steps:

1. All the trees are transformed to their corre-
sponding node sets.

2. Sort-merge and hash join is applied to the sets
and the tree pairs with lower bound distance
lower than τ are returned.

In the first step, since each tree can be trans-
formed to its corresponding label set in time O(n),
the running time in the first step is O(Nn). In the
second step, the diversity of the trees would affect
the running time. In the best case, when no tree
pair shares any element, the run time in this step
is the time of merging all sets into List1 and List2.
That is O(Nnlog(Nn)). In the worst case, when all
the transformed sets are exactly the same. Each ele-
ment in one List would match N tuples in the other
List. Thus the run time is O(Nnlog(Nn) + N2n).
From our experiments on various real-world data
sets, the running time in this step is usually close to
the best case. Therefore, the average time complex-

34 SIGMOD Record, December 2013 (Vol. 42, No. 4)

Methods Worst Case Average

String-based N2n2 N2n2

Leaf Distance Histogram Nh*log(Nh) + N2h Nh*log(Nh)

Degree Histogram Nd*log(Nd) + N2d Nd*log(Nd)

Label Histogram Nn*log(Nn) + N2n Nn*log(Nn)

Binary Branch Nn*log(Nn) + N2n Nn*log(Nn)

Figure 8: Time Complexity of each Method
(N denotes the number of trees in each da-
ta source, n denotes the number of nodes in
each tree, h denotes the height of a tree, and
d denotes the highest fanout of a tree).

ity of set-based filtering algorithm can be estimated
as O(Nnlog(Nn)).

The time complexity of each method is summa-
rized in Figure 8.

5.2 Tightness of each Lower Bound
Since different lower bound functions are suitable

in different cases, it is hard to analyze the overal-
l tightness of each lower bound theoretically. In-
tuitively, leaf distance histogram and degree his-
togram give very rough lower bounds, while label
histogram and binary branch provide much tighter
lower bounds. Except in some extreme examples,
the string-based lower bounds are much tighter than
set-based lower bound functions. Here, we analyze
the tightness of each lower bound function using
extreme examples.

5.2.1 Leaf Distance Histogram and Degree His-
togram

Leaf distance histogram (degree histogram) can
only detect the differences in leaf distance (degree)
information between trees but entirely disregard the
label information. As long as the leaf distance (de-
gree) information between trees are similar, leaf dis-
tance histogram (degree histogram) cannot detect
the distance. Here we illustrate this point in two
examples.

Example 8. In Figure 9, T1 and T2 are very d-
ifferent trees, but their leaf distance histograms are
exactly the same. Both of them have 5 nodes (v4,
v5, v6, v7, v8 in T1 and w4, w5, w6, w7, w8 in T2)
at leaf height 0, 2 nodes (v2, v3 in T1 and w2, w3

in T2) at leaf height 1, and one node (v1 in T1 and
w1 in T2) at leaf height 2. Leaf distance histograms
fail to detect the differences between these two trees,
thus cannot provide tight lower bounds in this case.
In Figure 10, T3 and T4 are also very different trees.
Using degree histogram, their label and structural d-
ifferences cannot be detected at all, since the two

v1,a�

v2,b� v3,b� v4,b�

v5,c�v6,c�

w1,x�

w2,y� w3,y�

T1� T2�

v7,c� v8,c� w4,z�w5,z�w6,z�w7z� w8z�

Figure 9: Mismatch using Leaf Distance His-
togram

v1,a�

v2,b� v3,b� v4,b�

v5,c�v6,c�

w1,x�

w2,y� w3,y�

T3� T4�

w4,z�w5,z�w6,z�

Figure 10: Mismatch using Degree His-
togram

trees have exactly the same degree histograms: one
node (v1 in T3 and w3 in T4) has 3 children, one
node (v2 in T3 and w1 in T4) has 2 children, and
other five nodes do not have children.

5.2.2 Label Histogram
Since the label histogram only considers the label

information of trees, it cannot work well when most
changes are structural changes.

Example 9. In Figure 11, T5 and T6 are very
different trees. But their histograms are exactly the
same since they share the same label set. So in this
case, label histograms fail to provide a tight lower
bound.

v1,a�

v2,b�

v3,c�

v4,d�v5,e�

w1,e�

w2,c�w3,d�

T5� T6�

w4,b�w5,a�

Figure 11: Mismatch using Label Histogram

5.2.3 Binary Branch
Although both label and structure information

are considered, the lower bounds provided by Bina-
ry Branch is also rough.

Theorem 5. Let T1 and T2 be two trees with n
and m nodes, respectively. The lower bound dis-
tance between T1 and T2 provided by the binary branch
is at most 0.2(n+m).

Proof. The number of binary branch of a tree
equals to the tree size. The binary branch distance
between them is at most n + m (only in the case

SIGMOD Record, December 2013 (Vol. 42, No. 4) 35

that the two trees share no binary branch). Thus
the lower bound distance provide by binary branch
is at most 0.2(n+m).

In many cases, especially when the predefined
threshold is above 0.2(m + n), the method bina-
ry branch cannot filter out any tree pairs. Now we
analyze the provided lower bounds in different cas-
es. A small change in a node would affect all its
binary branches. Consider the ratio between bina-
ry branch distance and number of changed nodes.
This ratio would be higher in the case of many s-
mall changes than a big change (a subtree move or
deletion). Thus the lower bounds provided by bi-
nary branch would be relatively tighter in the cases
when a lot of small differences exist between trees.

5.2.4 String-based Lower Bound
String is a data structure which contains order for

structure as well as content information in each en-
try. Although computationally more complex than
sets, in most cases, string-based lower bounds are
tight. Here we illustrate this point intuitively. S-
ince the discussed trees are ordered trees, the child
order information is important to identify similar
trees. In both preorder and postorder traversal, the
child order information is fully contained. Also, the
label of each tree node appears exactly once, which
describes the label information properly. The hi-
erarchical information of trees is the most difficult
information to describe. To describe the hierarchi-
cal information, string-based lower bounds use two
kinds of traversals: preorder traversal and postorder
traversal, in which each node is visited before (af-
ter) all its children are visited. Since the maximum
value of the two string edit distance is chosen as the
lower bound, the lower bound is not accurate only
when neither of the two traversals can properly de-
scribe the hierarchical information.

Also, string-based lower bound is always no worse
than that provided by label histogram. That is be-
cause label differences cost the same in both string-
based method and label histogram while string-based
lower bound also detects some structure differences.

6. COMBINING FILTERING METHOD-
S

Since lower bounds are definitely lower than the
exact tree edit distance, the lower bound which has
the maximum value is the one closest to the exact
value. This inspires us to use different methods to
compute different lower bounds and use the maxi-
mum lower bound as the final lower bound.

Definition 10. (Combined Distance Func-

tion). Let D = di (i from 1 to n) be a set of
lower bound distance functions. The combined dis-
tance function dc is defined as the maximum of the
component functions:

dC(T1, T2) = max{di(T1, T2)|1 < i < n}.

Also, a tree pair is definitely dissimilar if any of
its lower bounds is higher than the threshold. In
the case of approximate join two tree sets, we can
first use some very efficient yet rough lower bound
functions to wipe out a large part of dissimilar tree
pairs and then use a slower yet more accurate filter-
ing method to further filter the remained tree pairs.

Definition 11. (Multi-level filtering). Let
F1 and F2 be two tree sets, τ be the threshold, D =
di (i from 1 to n) be a list of lower bound distance
function (or combined distance function), Ci be tree
pairs remained after the ith filtering. The result
of multi-level filtering method using D is Cn where
C0=F1 × F2, Ci = {t|t ∈ Ci−1, di(t) ≤ τ}.

The filtering effect of using multi-level filtering
method is equal to using all the methods one by
one, while saving much of the overall running time.
Since set-based lower bounds functions are comput-
ed more efficiently. All set-based functions are com-
bined to form a set-based combined distance func-
tion, which serves as the first round of filter. T-
wo string-based functions ed(pre(T1), pre(T2)) and
ed(post(T1), post(T2)) are used as the second and
third distance function, respectively. The overal-
l efficiency is enhanced, since most dissimiar tree
pairs are wiped out in the first round.

7. EXPERIMENTS
In this section, we test the efficiency and effec-

tiveness of all the reviewed lower bound functions
and the combined lower bound functions. All of
our experiments were performed on a PC with In-
tel Core Duo 2GHz, 1GB main memory and 250GB
hard disk. The OS is Windows XP Professional. We
implemented our experiments using CodeBlocks.

We use four real-world data sets ranging from a-
partment data (street), bioinformatics (Swissprot),
linguistics (Treebank), and bibliography (DBLP).

• Street: We use the application data from the
Municipality of Bozen. The scene is that the
Office wants to integrate the apartment data
stored in two databases and display that infor-
mation on a map. The data is hierarchically
organized, in which the root of the tree is the
street name, the children of the street name
are the house numbers, the children of house

36 SIGMOD Record, December 2013 (Vol. 42, No. 4)

numbers are the entrance numbers, and the
children of entrance numbers are the apart-
ment numbers. We choose subsets from them
which has 100 trees for each. The tree size is
from 50 to 200. We denote the two sources as
R and L.

• SwissProt: SwissProt is a database which de-
scribe protein sequence. Each SwissProt docu-
ment contains trees with about 100 nodes and
about 4 depth on average. The documents in
SwissProt show high degree of similarity for
they share large numbers of labels.

• TreeBank: TreeBank is a database storing
parts of speech tagged English sentences. Its
documents have deep recursive structure (about
50 nodes and about 7 depth on average).

• DBLP: DBLP is a bibliography database that
consists of large numbers of small and flat doc-
uments (about 15 nodes and 2 depth on aver-
age).

7.1 Tightness of each Lower Bound
In this section, we test the tightness of each lower

bound function. For two trees T1 and T2, TD(T1, T2)
is the exact tree edit distance, while di(T1, T2) is
the lower bound provided by ith method. We use

tight ratio (tr = di(T1,T2)
TD(T1,T2)

) to evaluate the tight-

ness for each lower bound. The closer the tight
ratio is to 1, the tighter the lower bound is. The
average tight ration for each database is shown in
Figure 12(a). The detailed tight ratios for the street
database are shown in Figure 12(b) to Figure 12(f).
Binary branch serves as the roughest lower bound
distance while histogram often gives much tighter
lower bounds. String-based lower bounds always
provide the most accurate lower bounds. The com-
bination of histogram and binary branch perform-
s slightly better than that of histogram, while the
combination of all the lower bounds slightly outper-
forms string-based lower bounds.

7.2 Filter Quality
In this section, we test the filtering quality pro-

vided by each method. For two tree sets F1 and
F2 and a threshold τ , the goal of the filtering pro-
cess is to wipe out as many dissimilar tree pairs as
possible. In this section, we test the size of remain-
ing tree sets provided by each method. We also
compute the size of exact result by computing the
exact edit distance for the smallest remaining set.
The closer the size of remaining set to the result
size, the higher filter quality is. We compute the
size of remaining set for different thresholds from

Histogram� Binary� Histo+Binary� String� All1Methods�

Street� 0.502� 0.310� 0.503� 0.983� 0.983�

SwissProt� 0.795� 0.344� 0.795� 0.998� 0.998�

TreeBank� 0.748� 0.325� 0.748� 0.996� 0.996�

DBLP� 0.894� 0.414� 0.894� 1.000� 1.000�

(a) Average Tightness in each Database

(b) Histogram (c) Binary Branch

(d) Histo+Binary (e) String-based

(f) All the Methods

Figure 12: Tightness of each Lower Bound
Function

0.05(m+n) to 0.5(m+n) in all the databases, where
m and n are the size of the two current trees. The
average size of remaining set is shown in Figure 13.
The sizes of remaining set under different thresholds
are shown in Figure 14. The result is that binary
branch has the lowest filter quality while histogram
works much better. String-based lower bounds al-
ways give the highest filter quality and nearly filter
out all the dissimilar tree pairs. The combination
of histogram and binary branch performs slightly
better than histogram while the combination of all
the lower bounds works slightly better string-base
lower bounds.

7.3 Computing Efficiency
As we analyzed in Section 5, the string-based low-

er bounds are relatively costly, while set-based low-
er bounds can be computed efficiently. Also, the
multi-level filter, which is at least as effective as

SIGMOD Record, December 2013 (Vol. 42, No. 4) 37

Histogram� Binary� Histo+Binary� String� All1Methods� Result�

Street� 1441� 1808� 1440� 543� 543� 526�

SwissProt� 220� 649� 220� 108� 108� 107�

TreeBank� 288� 658� 288� 105� 105� 105�

DBLP� 223� 681� 223� 136� 136� 136�

Figure 13: Average Filter Quality in each
Database.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

C
an

di
da

te
 (P

er
ce

nt
)

Predefined Threshold

 Histogram
 Binary Branch
 Histo+Binary
 Derving
 All the Methods

Figure 14: Detail Filter Quality in Street
Database.

string-based methods since the latter is included by
the former, benefits high efficiency. In this section,
we test the efficiency of each individual method and
the multi-level filter.

We use the Swissprot, Treebank, DBLP and street
databases to test the efficiency. We set the thresh-
old τ = 0.1(m+n) (m and n are the size of the two
current trees) and increase the number of trees in
each database to test the filter time. In the multi-
level filter, all set-based lower bounds are used in
the first round while the ed(pre(T1), pre(T2)) and
ed(post(T1), post(T2)) serve as the second and third
filters. The results are shown in figure 15(a) - fig-
ure 15(d). Histogram and binary branch have much
higher efficiency than string-based lower bounds.
The multi-level filter also outperforms string-based
lower bounds significantly in efficiency.

8. CONCLUSION
In this paper, we have compared and analyzed

the performance of string-based lower bounds, his-
togram, and binary branch for giving the lower bound
to tree edit distance. String-based lower bounds is
the tightest and thus have the highest filter qual-
ity. Although relatively rough, the lower bounds
provided by histogram and binary branch can be
computed very efficiently. We also combine these
methods to form multi-level filters to get tight low-
er bound efficiently. Experiment results confirm the
analytical results.

9. ACKNOWLEDGEMENTS

Histogram*
Binary*Branch*
String1based*
All*Methods�

(a) SwissProt

Histogram*
Binary*Branch*
String1based*
All*Methods�

(b) TreeBank

Histogram*
Binary*Branch*
String1based*
All*Methods�

(c) DBLP

Histogram*
Binary*Branch*
String1based*
All*Methods�

(d) Street

Figure 15: Filter Efficiency

Many thanks to Michael H. Böhlen [4, 3, 5] for
his source code and test data. He has been a great
help in this research. This paper was partially sup-
ported by NGFR 973 grant 2012CB316200, NSFC
grant 61003046, 61111130189, 61133002 and NGFR
863 grant 2012AA011004. Doctoral Fund of Min-
istry of Education of China (No. 20102302120054).
Key Laboratory of Data Engineering and Knowl-
edge Engineering (Renmin University of China), Min-
istry of Education (No.KF2011003). the Funda-
mental Research Funds for the Central Universi-
ties(No. HIT. NSRIF. 2013064).

10. REFERENCES
[1] Tatsuya Akutsu. A relation between edit

distance for ordered trees and edit distance
for euler strings. Inf. Process. Lett.,
100(3):105–109, 2006.

[2] Tatsuya Akutsu, Daiji Fukagawa, and
Atsuhiro Takasu. Approximating tree edit
distance through string edit distance. In
ISAAC, pages 90–99, 2006.

[3] Nikolaus Augsten, Michael H. Böhlen,
Curtis E. Dyreson, and Johann Gamper.
Approximate joins for data-centric XML. In
ICDE, pages 814–823, 2008.

[4] Nikolaus Augsten, Michael H. Böhlen, and
Johann Gamper. Approximate matching of
hierarchical data using pq-grams. In VLDB,
pages 301–312, 2005.

[5] Nikolaus Augsten, Michael H. Böhlen, and
Johann Gamper. The pq-gram distance
between ordered labeled trees. ACM Trans.
Database Syst., 35(1): 1–36, 2010.

[6] Philip Bille. A survey on tree edit distance
and related problems. Theor. Comput. Sci.,

38 SIGMOD Record, December 2013 (Vol. 42, No. 4)

337(1-3):217–239, 2005.
[7] Weimin Chen. New algorithm for ordered

tree-to-tree correction problem. J. Algorithms,
40(2):135–158, 2001.

[8] Erik D. Demaine, Shay Mozes, Benjamin
Rossman, and Oren Weimann. An optimal
decomposition algorithm for tree edit
distance. In ICALP, pages 146–157, 2007.

[9] Minos N. Garofalakis and Amit Kumar. XML
stream processing using tree-edit distance
embeddings. ACM Trans. Database Syst.,
30(1):279–332, 2005.

[10] Sudipto Guha, H. V. Jagadish, Nick Koudas,
Divesh Srivastava, and Ting Yu. Approximate
XML joins. In SIGMOD Conference, pages
287–298, 2002.

[11] Fei Li, Hongzhi Wang, Cheng Zhang,
Liang Hao, Jianzhong Li, and Hong Gao.
Approximate joins for XML using g-string. In
XSym, pages 3–17, 2010.

[12] Karin Kailing, Hans-Peter Kriegel, Stefan
Schönauer, and Thomas Seidl. Efficient
similarity search for hierarchical data in large
databases. In EDBT, pages 676–693, 2004.

[13] Richard M. Karp and Michael O. Rabin.
Efficient randomized pattern-matching
algorithms. IBM Journal of Research and
Development, 31(2):249–260, 1987.

[14] Philip N. Klein. Computing the edit-distance
between unrooted ordered trees. In ESA,
pages 91–102, 1998.

[15] Tetsuji Kuboyama. Matching and Learning in
Trees. Doctoral Dissertation. The University
of Tokyo, 2007.

[16] Bruce A. Shapiro and Kaizhong Zhang.
Comparing multiple RNA secondary
structures using tree comparisons. Computer
Applications in the Biosciences, 6(4):309–318,
1990.

[17] Kuo-Chung Tai. The tree-to-tree correction
problem. J. ACM, 26(3):422–433, 1979.

[18] Shirish Tatikonda and Srinivasan
Parthasarathy. Hashing Tree-Structured Data:
Methods and Applications. In ICDE, pages
429-440, 2010.

[19] Gabriel Valiente. An efficient bottom-up
distance between trees. In SPIRE, pages
212–219, 2001.

[20] C. J. van Rijsbergen. Information Retrieval.
Butterworth, 1979.

[21] Rui Yang, Panos Kalnis, and Anthony K. H.
Tung. Similarity evaluation on tree-structured
data. In SIGMOD Conference, pages 754–765,
2005.

[22] Kaizhong Zhang and Dennis Shasha. Simple fast al-
gorithms for the editing distance between trees and
related problems. SIAM J. Comput., 18(6):1245–
1262, 1989.

SIGMOD Record, December 2013 (Vol. 42, No. 4) 39

