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Abstract 

Intel has moved to a collaboration model with universities 
consisting of  “Science and Technology Centers” (ISTCs).  
These are located at a “hub” university with participation from 
other universities, contain embedded Intel personnel, and are 
focused on some research theme. Intel held a national com-
petition for a 5th Science and Technology center in 2012 and 
selected a proposal from M.I.T. with a theme of “Big Data”. 
This paper presents the big data vision of this technology cen-
ter and the execution plan for the first few years. 

1.  Introduction 

Others have categorized “big data” in three ways: 

Big volume.  The size of the database is too large to man-
age with current tools. 

Big velocity.  The data is arriving too fast for software to 
cope.  This has been labeled as “drinking from a fire hose”. 

Big variety.  The data is coming from too many disparate 
sources, and there is a massive data integration problem. 

The members of the ISTC big data team believe that the 
“big volume” category must be subdivided into two com-
ponents.  Some users want to run conventional SQL ana-
lytics on massive data sets.  In our opinion, this market is 
well served by the commercial data warehouse vendors, 
who are adept at managing peta-scale databases on multi-
hundred node server farms, with on-line replication and 
failover and full transaction support.  In fact, we know of 
a dozen or so installations at this scale from multiple ven-
dors.  Hence, we do not see the necessity of a research 
initiative in this area. 

In contrast, we see an emerging need for complex analyt-
ics (machine learning, data clustering, predictive modeling, 
data categorization, etc.) on massive data sets.  This market 
is not well served by the data warehouse crowd.  In fact, 
most of the underlying algorithms are expressed as se-
quences of linear algebra operations on matrices.  Hence, 
the relational model of data is a poor fit to this class of 
problems.  Obviously, there is a need to mix complex 
analysis operations with data management (filtering, joins, 
etc.).   As such, statistical packages provide only part of the 
needed functionality.  Therefore, we are performing a major 
initiative in this area, as will be discussed in Section 2. 

In the “big velocity” space, we require a corresponding 
subdivision. Some applications, for example electronic 

trading, must consume a “fire hose”, looking for complex 
patterns in the stream of data.  For example, if the trading 
engine thinks stocks A, B and C are correlated, then it 
would look for movement in any two of the three, and 
then trade the third based on the expected correlation.  
Complex event processing (CEP) engines are focused on 
this use case. The DBMS research community focused on 
this application area during the last decade, (see for ex-
ample [8] and [9]), and it is not clear that a major new 
initiative is warranted in this area. 

The second “big velocity” problem is processing the fire 
hose as before, but dealing with updating a persistent 
state, rather than searching for patterns.  Maintaining the 
state of massively multiplayer Internet games is an exam-
ple of this second use case.  Here, applications look more 
like very high performance On-Line Transaction Pro-
cessing (OLTP) problems.  We know of many areas (e.g., 
maintaining leader boards, ad placement on web pages, 
maintaining real time risk exposure in trading engines) 
where there is considerable pain because of high velocity 
input.  In Section 3, we indicate our initiative in this area. 

In both areas, we propose end-to-end research programs, 
which span visualization technology, DBMS technology, 
and algorithm development, as will be explained in Sections 
2 and 3 of this paper.  Obviously, Intel is interested in the 
implications of big data on CPU and storage architectures; 
hence, we have research tasks in both areas dealing with 
hardware implications.  These will be covered in Section 4. 

We believe the “big variety” problem to be exceedingly 
important.  In fact, some of us are active in this area [10].  
In the future this ISTC will likely expand its scope into 
this facet of big data.  Also, there are several aspects of 
“big data” that we are not addressing, largely because 
other Intel ISTCs are addressing them.  These issues in-
clude security and privacy, being addressed by the ISTC 
at Berkeley, and cloud-oriented aspects of big data being 
tackled by the ISTC at CMU. 

2.  Complex Analytics – Big Volume 

2.1  Motivation  

We are motivated by four real world problems, which we 
briefly describe in this section.   

Problem 1:  Earth Science and satellite imagery.  On 
the ISTC team are two researchers (Jim Frew and Bill 
Howe) who deal with Earth Science research using satel-
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lite imagery.  Frew uses such imagery to analyze snow 
depth in the Sierra Nevada Mountains to help manage 
water in the state of California, while Howe works with 
an oceanography group looking at water quality issues in 
Puget Sound.  Both groups want to do transformations on 
massive amounts of imagery (MODIS in their case) and 
then browse the resulting data sets.  The requirement is a 
scalable visualization system connected to a scalable da-
tabase holding many terabytes of MODIS data. 

Problem 2:  Medical records and ICU data.  Another 
ISTC member (Peter Szolovits) is interested in predictive 
modeling of medical data.  We have access to 1600 pa-
tient days of intensive care unit (ICU) monitoring data, 
along with corresponding patient records.  The goal is 
predictive modeling of medical events (for example code 
blues), so early intervention can be taken.  This task re-
quires complex prediction on a sea of data.  Additionally, 
we have teamed with the Massachusetts General Hospital 
(MGH) and have access to their cancer patient database, 
which contains treatments and test results for all MGH 
cancer patients for the last 20 years.  We are exploring a 
range of questions from modeling the relationship be-
tween cost and outcomes to the effectiveness of early 
screening and preventative medicine programs like 
mammograms and flu shots. 

Problem 3:  Large industrial machine maintenance.  
We are still looking for a partner in this area, but can de-
scribe the task as follows.  Consider a complex piece of 
machinery (jet engine, helicopter, chemical plant, agricul-
tural combine, etc.)  Appropriate companies have the en-
tire maintenance history on each piece of equipment and 
often real time monitoring data.  The goal is to predict 
unscheduled maintenance problems, so they can be dealt 
with during a previous scheduled maintenance event.  
Problem 3 is the same kind of predictive modeling as 
Problem 2, but in a different domain. 

Problem 4:  Graph data.  In the semantic web, Twitter, 
Facebook, and many science communities, there is a pre-
ponderance of graph data.  What is needed is complex 
analytics on very large graphs.  As an example, consider 
finding the average distance between any two humans in 
the Facebook graph.  Other operations include minimum 
cut sets, reachability, etc. 

We have (or expect to have) large amounts of data in each 
area on a server at MIT.  In aggregate, we hope to have 
about 500 terabytes (0.5 petabytes) of data under man-
agement.  Although others might suggest storing 0.5 
petabytes in a file system, we believe that is the wrong 
approach to massive data sets.  Database Management 
Systems (DBMSs) offer a range of useful services not 
addressed by file systems, including a schema (to control 
data semantics), a query language (to access subsets of 
data), sophisticated access control (on data granules), data 
consistency services (integrity control and transactions), 
compression (to reduce storage space), and indexing (to 

speed query performance).  In our opinion, everybody with a 
big data problem should use DBMS technology.  Hence, the 
file system is merely the storage layer used by the DBMS. 

All of the sample problems in Section 2.1 are array or 
graph data and are ill-suited to the relational model.  As a 
result we are studying two other options.  First, we are 
exploring array databases, such as SciDB [11]1, as an ob-
vious representation for much of the above data.  In addi-
tion, we are exploring how to manage graph data.  Our 
options include building a native graph DBMS, simulat-
ing graph data as sparse arrays in an array DBMS and a 
commercial graph DBMSs, such as Neo4J.  We are also 
exploring visualization of large data sets and efficient 
algorithms for complex analysis.  

2.2. Array Databases 

We are investigating a variety of issues surrounding array 
DBMSs, including the following. 

Array query languages.  The success of the relational 
model has been helped immensely by a standard notation 
for queries and updates (SQL).  In fact, other technolo-
gies, for example object-oriented databases and the entire 
“NoSQL” movement, have been hampered by a lack of 
standards.  Some of us (Stan Zdonik and David Maier) are 
working on a standard query language for array data.   
Our approach is to define a standard abstract algebra of 
the semantics of operations (e.g. join, restriction, etc.).  
Then we plan to solicit agreement from the popular array-
based DBMSs, including SciDB, Rasdaman and SciQL.  
Once we have agreement on the meaning of basic opera-
tions, we can move on to formalizing an SQL-like nota-
tion for arrays.  A necessity for such an array query lan-
guage (AQL) is to operate on arrays with integer dimen-
sions (the standard ones in programming languages) as 
well as ones with dimensions of other data types (say lati-
tude and longitude).  As such the data model must allow 
arbitrary dimensions of user-defined data types, along 
with cell values that can be arbitrary vectors.  It is also 
possible that we will extend our work to cover arrays with 
cell values that are complex data types.  Our initial efforts 
are detailed at http://www.xldb.org/arrayql/. 

Another standardization effort builds on the universality 
of the R statistical environment.  R includes computation 
and visualization, as well as statistics.  Hence, it is widely 
used as a programming and execution model for scientific 
computation.  One of the pet peeves of many R users is the 
absence of scalability and data management functionality.  
Hence, we have built an extension of R that allows it to 
perform scalable execution by passing commands to an 
array database backend.  This system is described in [12]. 

                                                           
1 One goal of our work in the ISTC is to release all code under 
an MIT or BSD open-source license.  Because SciDB is GPL, 
our implementations do not make use of any SciDB code, and 
are designed to be able to operate independently from it. 
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Physical layout of array data in storage.  There has been 
considerable research on the best ways of allocating rela-
tional data to storage blocks.  However, most commercial 
RDBMSs allow a table to be sequenced, and that makes it 
a one-dimensional array. General arrays, on the other hand, 
can have multiple dimensions, and this allow more oppor-
tunities for storage optimization than do tables or se-
quenced tables.  Hence, the best way to “chunk” multi-
dimensional arrays onto storage blocks is a question we 
are working on.  This problem gets more interesting if 
arrays are sparse and have a multitude of holes (nulls).  
Even harder is the case where arrays are sparse and the 
empty cells are skewed.  For example imagine a two di-
mensional array with a cell value for every person in the 
United States.  Obviously the density of people in Manhat-
tan is 5 orders of magnitude higher than that in Montana. 

We are investigating fixed size chunking systems, which 
would define a “stride” in one or more dimensions as the 
size of a “chunk”.  Such a layout makes query processing 
straight-forward, but will have problems with sparse and 
skewed data.  On the other hand, we are also considering 
hierarchically decomposable systems based on splitting 
chunks, for example using quad trees.  This will support 
skewed data using a regular, but variable size chunking sys-
tem.  Finally, we could also use a hierarchical chunk splitting 
scheme, for example based on R-trees, whereby all chunks 
become variable in size and irregular.  The more flexible 
schemes deal with sparseness and skew more effectively, 
but make processing of joins more difficult.   Lastly, we 
are investigating a scheme to group fixed-size chunks into 
“super chunks”.  Our initial results are presented in [13]. 

No overwrite and versioning of data. In many scientific 
applications it is important to be able to go back to earlier 
versions and compare the results of computations.  Our 
approach is to add an extra dimension onto all arrays, 
which records wall clock time.  Then, updates to array data 
merely add cells in this extra dimension.  Hence, arrays 
have a dimension that grows without bound.  This, of 
course, makes chunking strategies even more challenging, 
and our initial work in this direction is presented in [1][14]. 

Seamless on-line reprovisioning.  A goal of all DBMSs 
is to support dynamic reprovisioning.  In other words, if a 
data base is currently allotted X nodes, and more horse-
power is needed, then the software should be able to add 
another Y nodes of storage and processing and then seam-
lessly move to utilizing all X + Y nodes for storage and 
processing.  There have been extendible techniques de-
veloped for record data (e.g., Chord) as well as ones that 
make no attempt to organize the data for fast access (e.g., 
Hadoop).  We are starting an effort to do the same thing for 
the chunk-oriented data we see in array-based systems. 

Query optimizers.  Optimization of SQL commands for 
relational data has been investigated for years, and ap-
pears to be well understood.  There are well known strat-
egies for performing joins of tables spread across multiple 

nodes in a computer system.  However, array DBMSs 
present additional challenges.  For example, if two arrays 
are joined using equality on all of the dimensions, then a 
straightforward chunk-to-chunk join can be performed.  
This generalizes the standard merge-sort used in relational 
systems.  In addition, an array system must also perform 
joins where the join predicate entails matching cell values 
as well as ones that have a mix of cell values and dimen-
sion values.  Just as with storage optimization, array sys-
tems present a more complex challenge than the simpler 
relational systems that have preceded array DBMSs. 
Provenance.  In most of our applications in Section 2.1, 
there is the possibility of incorrect data.  Hence, whenever 
a result is calculated, a user should be able to trace the 
derivation of data, if he believes the result to be suspect.  
We have built an elaborate system that does exactly that, 
exploiting the semantics of relational and array operators 
to be able to efficiently work backwards, using a notion of 
fine-grained provenance [7]. We are also currently inves-
tigating visualization and other tools to help users under-
stand data quality [20]. 

2.3.  Matrix Calculations 

Many big data analytic applications will need to combine 
data management with linear algebra in the same query, 
for example, finding the covariance between the historical 
times series of all pairs of stocks that have a market capi-
talization over $1B.  This is a filter operation (at most an 
operation that is linear in the matrix size) followed by a 
covariance computation (cubic in the array size).  Obvi-
ously, the “high pole in the tent” is the matrix calculation 
underneath covariance.  There is a 105 difference (or more) 
in performance between coding such an operation in Py-
thon and in carefully optimized C++.  Performance differ-
ences can be even greater when considering parallel im-
plementations of such operations, and building efficient 
implementations can require many man-years of labor. Since 
there exist carefully optimized implementations of array-
parallel operations (e.g., ScaLAPACK for dense arrays and 
ARPack for sparse arrays), we believe it makes sense for a 
DBMS to reuse to these libraries (as user-defined functions) 
whenever possible.  Using optimized matrix code should 
move composite queries to be less dramatically CPU bound.   
However, resource management is a problem in this hy-
brid world, because both the database system and ScaLA-
PACK are trying to be elastic and take advantage of oth-
erwise idle resources.  However, each system uses re-
sources as though it has full control of the system, and does 
not access memory or disk in a way that is “friendly” to the 
other system.   Hence, we are working on a meta-resource 
manager to mediate the resource demands of each system. 

2.4. Graph Data 
It is also clear that RDBMSs are a poor fit for graph data, 
although Facebook has continued to make them work for 
their problem.  We are working on a number of different 
tasks in this area. 
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First, Carlos Guestrin has written a graph processing system 
(GraphLab) supported by a custom processing engine.  This 
engine, which started as a single node main-memory sys-
tem, has been extended to support distributed main memory 
and independently to support a single node disk environ-
ment. To truly scale, it must be further extended to distrib-
uted rotating storage. This will be the performance baseline, 
against which any other engine can be compared.  One 
thrust is to implement graphs as sparse matrices. One of our 
team members (Jeremy Kepner) has a graph-processing 
engine supported by sparse arrays [24], which we plan to 
test against the baseline on a GraphLab benchmark.  

To complement this activity, we are also working on a graph-
specific storage system.   We plan to compare these systems, 
to see if the above sparse matrix simulation of graphs is com-
petitive with a native graph engine.  We will also bake off 
GraphLab on top of Hadoop (and perhaps Pregel).  We are 
skeptical that any Hadoop-based scheme will be competitive. 

2.5. Visualization 

The traditional form-based user interface (UI) technology 
is mostly useless in the problem domains of Section 2.1.  
Instead one needs a visualization system.  Our focus is on 
scalability issues, not on the pixel representation on the 
screen.  For example, MODIS users want an array brows-
er to look through the gridded data that results from do-
main-specific transformations.  Pointed at California, 
such a browser would overwhelm a conventional screen 
with data cells (in other words, the screen would be paint-
ed black).  Instead, middleware software should perform 
resolution reduction to deliver to the visualization system 
an understandable amount of data.  Our initial system that 
leverages query optimizer prediction of result sizes is 
described in [21].  We are working on a much more elab-
orate system, and are also working on predictive middle-
ware to do intelligent prefetching and caching [22].  In 
parallel we are also investigating client side caching and 
how two optimization systems can work together [25]. 

2.6.   Scalable Algorithms 

We are working on several new, scalable algorithms, in-
cluding a new, parallel streaming implementation of the 
widely used Locality Sensitive Hashing [2] and a new, 
scalable language for scientific computation called Julia. 

PLSH: The goal of the PLSH (Parallel Locality Sensitive 
Hashing) project is to extend the widely used idea of Lo-
cality Sensitive Hashing to run in parallel on Intel multi-
core chips, distributable across several machines, and to 
support streaming updates as new data arrives and is 
hashed.  We are planning to deploy it this spring on a col-
lection of 1 billion tweets, looking at applications ranging 
from finding pairs of users who tweet about similar things 
to hash tags that a given user should follow. 

Julia: Julia is a high-level, high-performance dynamic 
programming language for technical computing, with 

syntax that is familiar to users of other technical compu-
ting environments. It provides a sophisticated compiler, 
distributed parallel execution, numerical accuracy, and an 
extensive mathematical function library.  In addition, the 
Julia developer community is contributing a number 
of external packages through Julia’s built-in package man-
ager at a rapid pace. Julia programs are organized around 
multiple dispatch; by defining functions and overloading 
them for different combinations of argument types, which 
can also be user-defined. We plan to integrate Julia with 
SciDB, so that SciDB applications can be written in Julia. 

3.  “Big State - Little Pattern” High Velocity Problems 

As noted above, the second major thrust of our research is 
in high throughput processing of operations over large 
amount of state. 

3.1.  Motivation 

High velocity data means drinking from a fire hose, using 
online transaction processing (OLTP). Obviously, the 
only way to do this is with a parallel OLTP engine with 
very high node performance.  Our thinking in this area is 
motivated by our work in [3], which showed that tradi-
tional RDBMSs suffered from high overhead, specifically 
in the implementation of dynamic locking, write-ahead 
logging, buffer pool management and multi-threading.  
Only perhaps 10% of the cycles contributed to useful 
work; the rest goes into the overhead associated with the 
above four issues.  Clearly, one must remove all four of 
the above sources of overhead to perform dramatically 
better than traditional systems.  Based on these criteria, 
we designed the H-Store OLTP-oriented DBMS a few 
years ago (see http://hstore.cs.brown.edu).  It solved the four 
problems by eliminating the buffer pool, executing transac-
tions in timestamp order, implementing command logging 
rather than data logging, and dividing main memory 
among the various cores, so there is no multi-threading. H-
Store has been shown to be about two orders of magnitude 
faster than traditional RDBMSs on TPC-C [3].  However, 
there are substantial issues remaining, as we discuss below. 

3.2. “Anti-caching” 

We are working on relaxing the requirement that all H-
Store data fit in the collective main memory of the allo-
cated nodes. H-Store does not work well in this situation, 
as the only option is to allow the virtual memory manager 
on the underlying OS to page data to disk, which is ex-
tremely slow.  Instead, we are investigating “anti-caching”.   

When memory is nearly exhausted, we package up the 
least-used (“coldest”) tuples and write them to disk, to-
gether with a map of their location.  As a result, the most 
used (“hottest”) data resides in main memory and the cold 
data is on disk (but in main memory format).  H-Store has 
been modified to make a “pre-pass” for any command to 
ensure needed tuples are in main memory.  If not, they are 
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fetched, and the transaction is delayed until all needed 
data is main memory resident.  Then, the command is 
executed normally.  We have worked out eviction poli-
cies, fetch policies, and disk rearrangement policies for 
this model and have benchmarked it against a traditional 
RDBMS (MySQL). Additionally, we have benchmarked 
our system against MySQL with a Memcached main 
memory cache.  Our system is dramatically faster than 
either system on almost all workloads, and H-Store de-
grades very slowly as the database becomes larger and 
larger.  A paper on this effort has been submitted [16]. 

3.3. Concurrency Control 

With the advent of interest in high performance main 
memory transactional data bases and the realization that 
traditional record-level locking is too slow to be used, 
there have been numerous ideas for high performance 
concurrency control, including deterministic time stamp 
ordering with speculative execution (H-Store), determin-
istic scheduling via pre-resolving conflicts [17], and mul-
ti-version concurrency control (NuoDB, Hekatron).  We 
plan to study these algorithms to see if there are work-
loads on which one or another is preferred. Such studies 
were popular in the 1980’s for disk-based DBMSs [18]. 

3.4. Integration of OLTP and Stream Processing 

In the past, some of us have worked on complex event 
processing (CEP) engines.  We have built the StreamSQL 
engine [9] as well as high performance pattern matching 
systems [4][5][6].  In effect, these are query processing 
engines that maintain a main memory state (the current 
partial satisfaction of temporal matches).   There is much 
commonality between a CEP engine and an OLTP engine 
like H-Store.  Each has a set of metadata catalogs, an exe-
cution engine, and the need for services such as high 
availability and crash recovery.  As such, it would make 
perfect sense to combine a CEP engine with an OLTP 
engine.  The composite would have broader applicability 
as well as allowing the sharing of quite a bit of functional-
ity.  Hence, we plan to start a project in this area. 

4.   Implications of “Big Data” on Computer Architecture 

Both “big volume” and “big velocity” have implications 
for computer architecture as we explain below.   

4.1. Big Volume Issues 

At the heart of complex analytics lie algorithms with high 
computational complexity.  Additionally data access pat-
terns are often highly irregular, as in simple breadth first 
search of very large social network graphs.  Addressing 
the architectural needs of a big-data compute platform is 
therefore quite challenging.  Our immediate goal is to 
assess the new Intel® Xeon Phi™ chips for their capabili-
ties in an end-to-end system, composed of both Intel® 
Xeon Phi™ and Intel® Xeon® chips. 
Our first cut is to run the data management code on the 
Intel® Xeon® chips and ScaLAPACK on the Intel® Xeon 

Phi™ chips. The result should be a dramatic speedup in the 
matrix calculations.  Opinions abound as to what the “high 
pole” will be in this configuration.  Clearly, the matrix cal-
culations will be improved significantly, which may result 
in an I/O bound or network bound composite system.   

To support this work, we require a standard benchmark, 
which can be run on various hardware configurations and 
on other DBMSs and stat packages.  We have developed a 
genomics benchmark [19] and are in the process of run-
ning it on hardware configurations, ranging from low end 
server clusters to the Stampede supercomputer at the Uni-
versity of Texas, which has thousands of nodes, each 
composed of Intel® Xeon Phi™ and Intel® Xeon®  chips.  
In addition, we plan to test a variety of solutions capable 
of executing combined DBMS and statistics workloads. 

This work could have substantial ramifications for the 
design of future high performance computers. Many ex-
isting supercomputers have a compute cluster, which is 
distinct from a companion file system cluster.  Instead, we 
are proposing a much tighter integration of computation 
and storage management.  Also, one can vary the compu-
tational resources of nodes by varying the ratio of Intel® 
Xeon Phi™ boards to Intel® Xeon® boards. 

The genomics benchmark noted above has two instantia-
tions, one is a dense array of genome values, while the oth-
er is an array of popular genomic sequences (SNPs).  Since 
humans possess only some of these sequences, the array is 
quite sparse. Our benchmark requires covariance, bicluster-
ing and linear regression on such arrays. Optimizing dense 
array calculations for Intel® Xeon Phi™ is being done by 
Jack Dongarra, while others in the Intel Lab in Santa Clara 
are optimizing these operations for sparse matrices. 

Additionally, we are working on using GPUs (including 
the Intel® Xeon Phi™) to efficiently render visualizations 
of massive scale data, using techniques such as transpar-
ency, heat maps, and other techniques to aggregate to-
gether many data points and present them most effective-
ly.  As a part of this effort, we are looking at pushing 
some kinds of common data filtering and processing op-
erators into these types of co-processors. 

Lastly, fixed function hardware can deliver orders of 
magnitude improvement in energy efficiency with respect 
to its programmable counterpart.  We foresee opportuni-
ties for such acceleration for repeatedly used primitives 
like, data compression and basic operations on repeatedly 
used core data structures like a binary tree.  This task is aimed 
at proper identification and abstraction of these functions such 
that hardware cost is minimized and the ease/portability of 
software development is not compromised. 

4.2.  Big Velocity Issues 

There are three projects we are investigating in the big veloc-
ity realm.  The first concerns thread movement, the second 
deals with flash memory as a replacement for disk, while 
the third concerns making main memory persistent. 
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We believe that there is an opportunity for hardware 
and/or operating system support for moving threads 
among the CPUs in a cluster.  We are working on the de-
tails of doing this ultra-efficiently, possibly using new 
hardware we are developing [23].  If thread movement 
can be made efficient enough, then we need to revisit the 
standard DBMS scheme of “move the query to the data”.  
Specifically, current H-Store execution decomposes a 
command into a tree of operations divided into phases.  
During each phase, a sub-command is executed at each of 
perhaps several modes and then reshuffling of data is per-
formed.  This strategy is reasonable when the cost of 
thread migration is expensive.   

Cheap thread migration allows us to rethink query execu-
tion.  In particular, one could have a collection of threads 
that move from node to node, exchanging synchronization 
and data messages when necessary.  Moreover, a different 
execution scheme might allow other concurrency control 
schemes or in “tilting the playing field” toward one or 
another of the known schemes. 

Many enterprises are currently investigating flash 
memory as a persistence mechanism to replace slower 
rotating magnetic storage.  The primary reason is to im-
prove the performance of secondary storage.   Our second 
project is to explore the use of flash in H-Store.  This can 
be performed in two different ways.  It is a “drop on” to 
replace the disk in our anti-caching system with flash 
memory that is block addressable.  However, our anti-
caching system would rather have byte addressable flash 
system so finer granularity objects could be moved back 
and forth.  We could even try putting the whole data base 
on flash; thereby using flash as a main memory replace-
ment.  We plan to address the performance of all of these 
configurations on a standard benchmark. 

Looking further into the future, our third task is to explore 
the potential for emerging non-volatile (persistent), byte-
addressable memory technologies, such as phase change 
memory (PCM). This technology offers DRAM-like ac-
cess speed while being non-volatile, without the huge 
energy overhead and performance degradation of disks.  
We expect this technology to be better suited for main 
memory replacement than flash, which would eliminate 
the need for elaborate recovery schemes when power to 
DRAM is lost.  Intel will provide us with a PCM emulator 
through which we can test the implications of this tech-
nology, both in a conventional H-Store setting as well as 
in an anti-caching setting.  A paper on the performance of 
these memory systems is in preparation. 

5.  Summary  

This paper has described the newest Intel ISTC focused 
on big data.  As we explained, we are working on both 
big volume and big velocity issues, leaving big variety as 
a future topic.  Our approach is to develop and leverage 
DBMS technology, as opposed to file systems.  In all cas-

es there are significant implications to the design of future 
computer systems.  For more information about the Intel 
Science and Technology Center in Big Data, visit our 
website at http://istc-bigdata.org. 
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