Intel “Big Data” Science and Technology
Center Vision and Execution Plan

Michael Stonebraker, Sam Madden, Pradeep Dubey
stonebraker@csail.mit.edu, madden@csail.mit.edu, pradeep.dubey@intel.com
http://istc-bigdata.org

Abstract

Intel has moved to a collaboration model with universities
consisting of “Science and Technology Centers” (ISTCs).
These are located at a “hub” university with participation from
other universities, contain embedded Intel personnel, and are
focused on some research theme. Intel held a national com-
petition for a 5th Science and Technology center in 2012 and
selected a proposal from M.1.T. with a theme of “Big Data”.
This paper presents the big data vision of this technology cen-
ter and the execution plan for the first few years.

1. Introduction
Others have categorized “big data” in three ways:

Big volume. The size of the database is too large to man-
age with current tools.

Big velocity. The data is arriving too fast for software to
cope. This has been labeled as “drinking from a fire hose”.

Big variety. The data is coming from too many disparate
sources, and there is a massive data integration problem.

The members of the ISTC big data team believe that the
“big volume” category must be subdivided into two com-
ponents. Some users want to run conventional SQL ana-
Iytics on massive data sets. In our opinion, this market is
well served by the commercial data warehouse vendors,
who are adept at managing peta-scale databases on multi-
hundred node server farms, with on-line replication and
failover and full transaction support. In fact, we know of
adozen or so installations at this scale from multiple ven-
dors. Hence, we do not see the necessity of a research
initiative in this area.

In contrast, we see an emerging need for complex analyt-
ics (machine learning, data clustering, predictive modeling,
data categorization, etc.) on massive data sets. This market
is not well served by the data warehouse crowd. In fact,
most of the underlying algorithms are expressed as se-
quences of linear algebra operations on matrices. Hence,
the relational model of data is a poor fit to this class of
problems. Obviously, there is a need to mix complex
analysis operations with data management (filtering, joins,
etc.). Assuch, statistical packages provide only part of the
needed functionality. Therefore, we are performing a major
initiative in this area, as will be discussed in Section 2.

In the “big velocity” space, we require a corresponding
subdivision. Some applications, for example electronic

44

trading, must consume a “fire hose”, looking for complex
patterns in the stream of data. For example, if the trading
engine thinks stocks A, B and C are correlated, then it
would look for movement in any two of the three, and
then trade the third based on the expected correlation.
Complex event processing (CEP) engines are focused on
this use case. The DBMS research community focused on
this application area during the last decade, (see for ex-
ample [8] and [9]), and it is not clear that a major new
initiative is warranted in this area.

The second “big velocity” problem is processing the fire
hose as before, but dealing with updating a persistent
state, rather than searching for patterns. Maintaining the
state of massively multiplayer Internet games is an exam-
ple of this second use case. Here, applications look more
like very high performance On-Line Transaction Pro-
cessing (OLTP) problems. We know of many areas (e.qg.,
maintaining leader boards, ad placement on web pages,
maintaining real time risk exposure in trading engines)
where there is considerable pain because of high velocity
input. In Section 3, we indicate our initiative in this area.

In both areas, we propose end-to-end research programs,
which span visualization technology, DBMS technology,
and algorithm development, as will be explained in Sections
2 and 3 of this paper. Obviously, Intel is interested in the
implications of big data on CPU and storage architectures;
hence, we have research tasks in both areas dealing with
hardware implications. These will be covered in Section 4.

We believe the “big variety” problem to be exceedingly
important. In fact, some of us are active in this area [10].
In the future this ISTC will likely expand its scope into
this facet of big data. Also, there are several aspects of
“big data” that we are not addressing, largely because
other Intel ISTCs are addressing them. These issues in-
clude security and privacy, being addressed by the ISTC
at Berkeley, and cloud-oriented aspects of big data being
tackled by the ISTC at CMU.

2. Complex Analytics — Big Volume

2.1 Motivation

We are motivated by four real world problems, which we
briefly describe in this section.

Problem 1: Earth Science and satellite imagery. On
the ISTC team are two researchers (Jim Frew and Bill
Howe) who deal with Earth Science research using satel-

SIGMOD Record, March 2013 (Vol. 42, No. 1)

lite imagery. Frew uses such imagery to analyze snow
depth in the Sierra Nevada Mountains to help manage
water in the state of California, while Howe works with
an oceanography group looking at water quality issues in
Puget Sound. Both groups want to do transformations on
massive amounts of imagery (MODIS in their case) and
then browse the resulting data sets. The requirement is a
scalable visualization system connected to a scalable da-
tabase holding many terabytes of MODIS data.

Problem 2: Medical records and ICU data. Another
ISTC member (Peter Szolovits) is interested in predictive
modeling of medical data. We have access to 1600 pa-
tient days of intensive care unit (ICU) monitoring data,
along with corresponding patient records. The goal is
predictive modeling of medical events (for example code
blues), so early intervention can be taken. This task re-
quires complex prediction on a sea of data. Additionally,
we have teamed with the Massachusetts General Hospital
(MGH) and have access to their cancer patient database,
which contains treatments and test results for all MGH
cancer patients for the last 20 years. We are exploring a
range of questions from modeling the relationship be-
tween cost and outcomes to the effectiveness of early
screening and preventative medicine programs like
mammograms and flu shots.

Problem 3: Large industrial machine maintenance.
We are still looking for a partner in this area, but can de-
scribe the task as follows. Consider a complex piece of
machinery (jet engine, helicopter, chemical plant, agricul-
tural combine, etc.) Appropriate companies have the en-
tire maintenance history on each piece of equipment and
often real time monitoring data. The goal is to predict
unscheduled maintenance problems, so they can be dealt
with during a previous scheduled maintenance event.
Problem 3 is the same kind of predictive modeling as
Problem 2, but in a different domain.

Problem 4: Graph data. In the semantic web, Twitter,
Facebook, and many science communities, there is a pre-
ponderance of graph data. What is needed is complex
analytics on very large graphs. As an example, consider
finding the average distance between any two humans in
the Facebook graph. Other operations include minimum
cut sets, reachability, etc.

We have (or expect to have) large amounts of data in each
area on a server at MIT. In aggregate, we hope to have
about 500 terabytes (0.5 petabytes) of data under man-
agement. Although others might suggest storing 0.5
petabytes in a file system, we believe that is the wrong
approach to massive data sets. Database Management
Systems (DBMSs) offer a range of useful services not
addressed by file systems, including a schema (to control
data semantics), a query language (to access subsets of
data), sophisticated access control (on data granules), data
consistency services (integrity control and transactions),
compression (to reduce storage space), and indexing (to

SIGMOD Record, March 2013 (Vol. 42, No. 1)

speed query performance). In our opinion, everybody with a
big data problem should use DBMS technology. Hence, the
file system is merely the storage layer used by the DBMS.

All of the sample problems in Section 2.1 are array or
graph data and are ill-suited to the relational model. Asa
result we are studying two other options. First, we are
exploring array databases, such as SciDB [11]*, as an ob-
vious representation for much of the above data. In addi-
tion, we are exploring how to manage graph data. Our
options include building a native graph DBMS, simulat-
ing graph data as sparse arrays in an array DBMS and a
commercial graph DBMSs, such as Neo4J. We are also
exploring visualization of large data sets and efficient
algorithms for complex analysis.

2.2. Array Databases

We are investigating a variety of issues surrounding array
DBMSs, including the following.

Array query languages. The success of the relational
model has been helped immensely by a standard notation
for queries and updates (SQL). In fact, other technolo-
gies, for example object-oriented databases and the entire
“NoSQL” movement, have been hampered by a lack of
standards. Some of us (Stan Zdonik and David Maier) are
working on a standard query language for array data.
Our approach is to define a standard abstract algebra of
the semantics of operations (e.g. join, restriction, etc.).
Then we plan to solicit agreement from the popular array-
based DBMSs, including SciDB, Rasdaman and SciQL.
Once we have agreement on the meaning of basic opera-
tions, we can move on to formalizing an SQL-like nota-
tion for arrays. A necessity for such an array query lan-
guage (AQL) is to operate on arrays with integer dimen-
sions (the standard ones in programming languages) as
well as ones with dimensions of other data types (say lati-
tude and longitude). As such the data model must allow
arbitrary dimensions of user-defined data types, along
with cell values that can be arbitrary vectors. It is also
possible that we will extend our work to cover arrays with
cell values that are complex data types. Our initial efforts
are detailed at http://www.xlIdb.org/arrayql/.

Another standardization effort builds on the universality
of the R statistical environment. R includes computation
and visualization, as well as statistics. Hence, itis widely
used as a programming and execution model for scientific
computation. One of the pet peeves of many R users is the
absence of scalability and data management functionality.
Hence, we have built an extension of R that allows it to
perform scalable execution by passing commands to an
array database backend. This system is described in [12].

! One goal of our work in the ISTC is to release all code under
an MIT or BSD open-source license. Because SciDB is GPL,
our implementations do not make use of any SciDB code, and
are designed to be able to operate independently from it.

45

Physical layout of array data in storage. There has been
considerable research on the best ways of allocating rela-
tional data to storage blocks. However, most commercial
RDBMSs allow a table to be sequenced, and that makes it
aone-dimensional array. General arrays, on the other hand,
can have multiple dimensions, and this allow more oppor-
tunities for storage optimization than do tables or se-
quenced tables. Hence, the best way to “chunk” multi-
dimensional arrays onto storage blocks is a question we
are working on. This problem gets more interesting if
arrays are sparse and have a multitude of holes (nulls).
Even harder is the case where arrays are sparse and the
empty cells are skewed. For example imagine a two di-
mensional array with a cell value for every person in the
United States. Obviously the density of people in Manhat-
tan is 5 orders of magnitude higher than that in Montana.

We are investigating fixed size chunking systems, which
would define a “stride” in one or more dimensions as the
size of a “chunk”. Such a layout makes query processing
straight-forward, but will have problems with sparse and
skewed data. On the other hand, we are also considering
hierarchically decomposable systems based on splitting
chunks, for example using quad trees. This will support
skewed data using a regular, but variable size chunking sys-
tem. Finally, we could also use a hierarchical chunk splitting
scheme, for example based on R-trees, whereby all chunks
become variable in size and irregular. The more flexible
schemes deal with sparseness and skew more effectively,
but make processing of joins more difficult. Lastly, we
are investigating a scheme to group fixed-size chunks into
“super chunks”. Our initial results are presented in [13].

No overwrite and versioning of data. In many scientific
applications it is important to be able to go back to earlier
versions and compare the results of computations. Our
approach is to add an extra dimension onto all arrays,
which records wall clock time. Then, updates to array data
merely add cells in this extra dimension. Hence, arrays
have a dimension that grows without bound. This, of
course, makes chunking strategies even more challenging,
and our initial work in this direction is presented in [1][14].

Seamless on-line reprovisioning. A goal of all DBMSs
is to support dynamic reprovisioning. In other words, if a
data base is currently allotted X nodes, and more horse-
power is needed, then the software should be able to add
another Y nodes of storage and processing and then seam-
lessly move to utilizing all X + Y nodes for storage and
processing. There have been extendible techniques de-
veloped for record data (e.g., Chord) as well as ones that
make no attempt to organize the data for fast access (e.g.,
Hadoop). We are starting an effort to do the same thing for
the chunk-oriented data we see in array-based systems.

Query optimizers. Optimization of SQL commands for
relational data has been investigated for years, and ap-
pears to be well understood. There are well known strat-
egies for performing joins of tables spread across multiple

46

nodes in a computer system. However, array DBMSs
present additional challenges. For example, if two arrays
are joined using equality on all of the dimensions, then a
straightforward chunk-to-chunk join can be performed.
This generalizes the standard merge-sort used in relational
systems. In addition, an array system must also perform
joins where the join predicate entails matching cell values
as well as ones that have a mix of cell values and dimen-
sion values. Just as with storage optimization, array sys-
tems present a more complex challenge than the simpler
relational systems that have preceded array DBMSs.

Provenance. In most of our applications in Section 2.1,
there is the possibility of incorrect data. Hence, whenever
a result is calculated, a user should be able to trace the
derivation of data, if he believes the result to be suspect.
We have built an elaborate system that does exactly that,
exploiting the semantics of relational and array operators
to be able to efficiently work backwards, using a notion of
fine-grained provenance [7]. We are also currently inves-
tigating visualization and other tools to help users under-
stand data quality [20].

2.3. Matrix Calculations

Many big data analytic applications will need to combine
data management with linear algebra in the same query,
for example, finding the covariance between the historical
times series of all pairs of stocks that have a market capi-
talization over $1B. This is a filter operation (at most an
operation that is linear in the matrix size) followed by a
covariance computation (cubic in the array size). Obvi-
ously, the “high pole in the tent” is the matrix calculation
underneath covariance. There is a 10° difference (or more)
in performance between coding such an operation in Py-
thon and in carefully optimized C++. Performance differ-
ences can be even greater when considering parallel im-
plementations of such operations, and building efficient
implementations can require many man-years of labor. Since
there exist carefully optimized implementations of array-
parallel operations (e.g., ScaLAPACK for dense arrays and
ARPack for sparse arrays), we believe it makes sense for a
DBMS to reuse to these libraries (as user-defined functions)
whenever possible. Using optimized matrix code should
move composite queries to be less dramatically CPU bound.
However, resource management is a problem in this hy-
brid world, because both the database system and ScaL A-
PACK are trying to be elastic and take advantage of oth-
erwise idle resources. However, each system uses re-
sources as though it has full control of the system, and does
not access memory or disk in a way that is “friendly” to the
other system. Hence, we are working on a meta-resource
manager to mediate the resource demands of each system.

2.4. Graph Data

Itis also clear that RDBMSs are a poor fit for graph data,
although Facebook has continued to make them work for
their problem. We are working on a number of different
tasks in this area.

SIGMOD Record, March 2013 (Vol. 42, No. 1)

First, Carlos Guestrin has written a graph processing system
(GraphLab) supported by a custom processing engine. This
engine, which started as a single node main-memory sys-
tem, has been extended to support distributed main memory
and independently to support a single node disk environ-
ment. To truly scale, it must be further extended to distrib-
uted rotating storage. This will be the performance baseline,
against which any other engine can be compared. One
thrust is to implement graphs as sparse matrices. One of our
team members (Jeremy Kepner) has a graph-processing
engine supported by sparse arrays [24], which we plan to
test against the baseline on a GraphLab benchmark.

To complement this activity, we are also working on a graph-
specific storage system. We plan to compare these systems,
to see if the above sparse matrix simulation of graphs is com-
petitive with a native graph engine. We will also bake off
GraphLab on top of Hadoop (and perhaps Pregel). We are
skeptical that any Hadoop-based scheme will be competitive.

2.5. Visualization

The traditional form-based user interface (UI) technology
is mostly useless in the problem domains of Section 2.1.
Instead one needs a visualization system. Our focus ison
scalability issues, not on the pixel representation on the
screen. For example, MODIS users want an array brows-
er to look through the gridded data that results from do-
main-specific transformations. Pointed at California,
such a browser would overwhelm a conventional screen
with data cells (in other words, the screen would be paint-
ed black). Instead, middleware software should perform
resolution reduction to deliver to the visualization system
an understandable amount of data. Our initial system that
leverages query optimizer prediction of result sizes is
described in [21]. We are working on a much more elab-
orate system, and are also working on predictive middle-
ware to do intelligent prefetching and caching [22]. In
parallel we are also investigating client side caching and
how two optimization systems can work together [25].

2.6. Scalable Algorithms

We are working on several new, scalable algorithms, in-
cluding a new, parallel streaming implementation of the
widely used Locality Sensitive Hashing [2] and a new,
scalable language for scientific computation called Julia.

PLSH: The goal of the PLSH (Parallel Locality Sensitive
Hashing) project is to extend the widely used idea of Lo-
cality Sensitive Hashing to run in parallel on Intel multi-
core chips, distributable across several machines, and to
support streaming updates as new data arrives and is
hashed. We are planning to deploy it this spring on a col-
lection of 1 billion tweets, looking at applications ranging
from finding pairs of users who tweet about similar things
to hash tags that a given user should follow.

Julia: Julia is a high-level, high-performance dynamic
programming language for technical computing, with

SIGMOD Record, March 2013 (Vol. 42, No. 1)

syntax that is familiar to users of other technical compu-
ting environments. It provides a sophisticated compiler,
distributed parallel execution, numerical accuracy, and an
extensive mathematical function library. In addition, the
Julia developer community is contributing a number
of external packages through Julia’s built-in package man-
ager at a rapid pace. Julia programs are organized around
multiple dispatch; by defining functions and overloading
them for different combinations of argument types, which
can also be user-defined. We plan to integrate Julia with
SciDB, so that SciDB applications can be written in Julia.

3. “Big State - Little Pattern” High Velocity Problems

As noted above, the second major thrust of our research is
in high throughput processing of operations over large
amount of state.

3.1. Motivation

High velocity data means drinking from a fire hose, using
online transaction processing (OLTP). Obviously, the
only way to do this is with a parallel OLTP engine with
very high node performance. Our thinking in this area is
motivated by our work in [3], which showed that tradi-
tional RDBMSs suffered from high overhead, specifically
in the implementation of dynamic locking, write-ahead
logging, buffer pool management and multi-threading.
Only perhaps 10% of the cycles contributed to useful
work; the rest goes into the overhead associated with the
above four issues. Clearly, one must remove all four of
the above sources of overhead to perform dramatically
better than traditional systems. Based on these criteria,
we designed the H-Store OLTP-oriented DBMS a few
years ago (see http://hstore.cs.brown.edu). It solved the four
problems by eliminating the buffer pool, executing transac-
tions in timestamp order, implementing command logging
rather than data logging, and dividing main memory
among the various cores, so there is no multi-threading. H-
Store has been shown to be about two orders of magnitude
faster than traditional RDBMSs on TPC-C [3]. However,
there are substantial issues remaining, as we discuss below.

3.2. “Anti-caching”

We are working on relaxing the requirement that all H-
Store data fit in the collective main memory of the allo-
cated nodes. H-Store does not work well in this situation,
asthe only option is to allow the virtual memory manager
on the underlying OS to page data to disk, which is ex-
tremely slow. Instead, we are investigating “anti-caching”.

When memory is nearly exhausted, we package up the
least-used (“coldest”) tuples and write them to disk, to-
gether with a map of their location. As a result, the most
used (“hottest”) data resides in main memory and the cold
data is on disk (but in main memory format). H-Store has
been modified to make a “pre-pass” for any command to
ensure needed tuples are in main memory. If not, they are

47

fetched, and the transaction is delayed until all needed
data is main memory resident. Then, the command is
executed normally. We have worked out eviction poli-
cies, fetch policies, and disk rearrangement policies for
this model and have benchmarked it against a traditional
RDBMS (MySQL). Additionally, we have benchmarked
our system against MySQL with a Memcached main
memory cache. Our system is dramatically faster than
either system on almost all workloads, and H-Store de-
grades very slowly as the database becomes larger and
larger. A paper on this effort has been submitted [16].

3.3. Concurrency Control

With the advent of interest in high performance main
memory transactional data bases and the realization that
traditional record-level locking is too slow to be used,
there have been numerous ideas for high performance
concurrency control, including deterministic time stamp
ordering with speculative execution (H-Store), determin-
istic scheduling via pre-resolving conflicts [17], and mul-
ti-version concurrency control (NuoDB, Hekatron). We
plan to study these algorithms to see if there are work-
loads on which one or another is preferred. Such studies
were popular in the 1980’s for disk-based DBMSs [18].

3.4. Integration of OLTP and Stream Processing

In the past, some of us have worked on complex event
processing (CEP) engines. We have built the StreamSQL
engine [9] as well as high performance pattern matching
systems [4][5][6]. In effect, these are query processing
engines that maintain a main memory state (the current
partial satisfaction of temporal matches). There is much
commonality between a CEP engine and an OLTP engine
like H-Store. Each has a set of metadata catalogs, an exe-
cution engine, and the need for services such as high
availability and crash recovery. As such, it would make
perfect sense to combine a CEP engine with an OLTP
engine. The composite would have broader applicability
as well as allowing the sharing of quite a bit of functional-
ity. Hence, we plan to start a project in this area.

4. Implications of “Big Data”” on Computer Architecture

Both “big volume” and “big velocity” have implications
for computer architecture as we explain below.

4.1. Big Volume Issues

At the heart of complex analytics lie algorithms with high
computational complexity. Additionally data access pat-
terns are often highly irregular, as in simple breadth first
search of very large social network graphs. Addressing
the architectural needs of a big-data compute platform is
therefore quite challenging. Our immediate goal is to
assess the new Intel® Xeon Phi™ chips for their capabili-
ties in an end-to-end system, composed of both Intel®
Xeon Phi™ and Intel® Xeon® chips.

Our first cut is to run the data management code on the
Intel® Xeon® chips and ScaLAPACK on the Intel® Xeon

48

Phi™ chips. The result should be a dramatic speedup in the
matrix calculations. Opinions abound as to what the “high
pole” will be in this configuration. Clearly, the matrix cal-
culations will be improved significantly, which may result
in an 1/0 bound or network bound composite system.

To support this work, we require a standard benchmark,
which can be run on various hardware configurations and
on other DBMSs and stat packages. We have developed a
genomics benchmark [19] and are in the process of run-
ning it on hardware configurations, ranging from low end
server clusters to the Stampede supercomputer at the Uni-
versity of Texas, which has thousands of nodes, each
composed of Intel® Xeon Phi™ and Intel® Xeon® chips.
In addition, we plan to test a variety of solutions capable
of executing combined DBMS and statistics workloads.

This work could have substantial ramifications for the
design of future high performance computers. Many ex-
isting supercomputers have a compute cluster, which is
distinct from a companion file system cluster. Instead, we
are proposing a much tighter integration of computation
and storage management. Also, one can vary the compu-
tational resources of nodes by varying the ratio of Intel®
Xeon Phi™ boards to Intel® Xeon® boards.

The genomics benchmark noted above has two instantia-
tions, one is a dense array of genome values, while the oth-
erisan array of popular genomic sequences (SNPs). Since
humans possess only some of these sequences, the array is
quite sparse. Our benchmark requires covariance, bicluster-
ing and linear regression on such arrays. Optimizing dense
array calculations for Intel® Xeon Phi™ is being done by
Jack Dongarra, while others in the Intel Lab in Santa Clara
are optimizing these operations for sparse matrices.

Additionally, we are working on using GPUs (including
the Intel® Xeon Phi™) to efficiently render visualizations
of massive scale data, using techniques such as transpar-
ency, heat maps, and other techniques to aggregate to-
gether many data points and present them most effective-
ly. As a part of this effort, we are looking at pushing
some kinds of common data filtering and processing op-
erators into these types of co-processors.

Lastly, fixed function hardware can deliver orders of
magnitude improvement in energy efficiency with respect
to its programmable counterpart. We foresee opportuni-
ties for such acceleration for repeatedly used primitives
like, data compression and basic operations on repeatedly
used core data structures like a binary tree. This task is aimed
at proper identification and abstraction of these functions such
that hardware cost is minimized and the ease/portability of
software development is not compromised.

4.2. Big Velocity Issues

There are three projects we are investigating in the big veloc-
ity realm. The first concerns thread movement, the second
deals with flash memory as a replacement for disk, while
the third concerns making main memory persistent.

SIGMOD Record, March 2013 (Vol. 42, No. 1)

We believe that there is an opportunity for hardware
and/or operating system support for moving threads
among the CPUs in a cluster. We are working on the de-
tails of doing this ultra-efficiently, possibly using new
hardware we are developing [23]. If thread movement
can be made efficient enough, then we need to revisit the
standard DBMS scheme of “move the query to the data”.
Specifically, current H-Store execution decomposes a
command into a tree of operations divided into phases.
During each phase, a sub-command is executed at each of
perhaps several modes and then reshuffling of data is per-
formed. This strategy is reasonable when the cost of
thread migration is expensive.

Cheap thread migration allows us to rethink query execu-
tion. In particular, one could have a collection of threads
that move from node to node, exchanging synchronization
and data messages when necessary. Moreover, a different
execution scheme might allow other concurrency control
schemes or in “tilting the playing field” toward one or
another of the known schemes.

Many enterprises are currently investigating flash
memory as a persistence mechanism to replace slower
rotating magnetic storage. The primary reason is to im-
prove the performance of secondary storage. Our second
project is to explore the use of flash in H-Store. This can
be performed in two different ways. It is a “drop on” to
replace the disk in our anti-caching system with flash
memory that is block addressable. However, our anti-
caching system would rather have byte addressable flash
system so finer granularity objects could be moved back
and forth. We could even try putting the whole data base
on flash; thereby using flash as a main memory replace-
ment. We plan to address the performance of all of these
configurations on a standard benchmark.

Looking further into the future, our third task is to explore
the potential for emerging non-volatile (persistent), byte-
addressable memory technologies, such as phase change
memory (PCM). This technology offers DRAM-like ac-
cess speed while being non-volatile, without the huge
energy overhead and performance degradation of disks.
We expect this technology to be better suited for main
memory replacement than flash, which would eliminate
the need for elaborate recovery schemes when power to
DRAM is lost. Intel will provide us with a PCM emulator
through which we can test the implications of this tech-
nology, both in a conventional H-Store setting as well as
in an anti-caching setting. A paper on the performance of
these memory systems is in preparation.

5. Summary

This paper has described the newest Intel ISTC focused
on big data. As we explained, we are working on both
big volume and big velocity issues, leaving big variety as
a future topic. Our approach is to develop and leverage
DBMS technology, as opposed to file systems. In all cas-

SIGMOD Record, March 2013 (Vol. 42, No. 1)

es there are significant implications to the design of future
computer systems. For more information about the Intel
Science and Technology Center in Big Data, visit our
website at http://istc-bigdata.org.

References

[1] A. Seering, P. Cudre-Mauroux, S. Madden, and M. Stonebraker.
Efficient Versioning for Scientific Array Databases. In ICDE 2012.

[2] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High
Dimensions via Hashing. In VLDB 1999.

[3] S.Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker.
OLTP Through the Looking Glass, And What We Found There.
In SIGMOD 2008.

[4] Y.Mei, and S. Madden. ZStream: A Cost-based Query Processor
for Adaptively Detecting Composite Events. In SIGMOD 2009.

[5] R. Newton, L. Girod, M. Craig, S. Madden, and G. Morrisett.
Design and Evaluation of a Compiler for Embedded Stream Pro-
grams. In LCTES 2008.

[6] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamlt: A
Language for Streaming Applications. In ICCC 2002.

[7]1 E.Wu, S. Madden, and M. Stonebraker. SubZero: a Fine-
Grained Lineage System for Scientific Databases. In ICDE 2013.

[8] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M.
Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query
Processing Resource Management and Approximation in a Data
Stream Management System. In CIDR 2003.

[9] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherni-
ack, J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis
Stream Processing Engine. In CIDR 2005.

[10] M. Stonebraker, D. Bruckner, I. llyas, G. Beskales, M. Cherni-
ack, S. Zdonik, A. Pagan, and S. Xu. Data Curation at Scale: The
Data Tamer System. In CIDR 2013.

[11] M. Stonebraker. The Architecture of SciDB. In SSDBM 2011.

[12] P. Leyshock. Agrios: A Hybrid Approach to Scalable Data
Analysis Systems. In XLDB 2012.

[13] E. Soroush, M. Balazinska, and D. Wang. ArrayStore: A Storage
Manager for Complex Parallel Array Processing. In SIGMOD 2011.

[14] E. Soroush, and M. Balazinska. Time Travel in Scientific Array
Databases. In ICDE 2013.

[15] N. Malviya, S. Madden, and M. Stonebraker. Rethinking Main
Memory OLTP Recovery. (submitted for publication)

[16] J. DeBrabant, A. Pavlo, M. Stonebraker, S. Tu, and S. Zdonik.
The Traditional Wisdom is all Wrong. (submitted for publication)

[17] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D.
Abadi. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In SIGMOD 2012.

[18] M. Carey, and M. Stonebraker. The Performance of Concurrency
Control Algorithms for Database Management Systems. In VLDB
1984.

[19] M. Vartek, and R. Taft. A DBMS Benchmark for Complex
Analytics. (in preparation)

[20] E. Wu, S. Madden, and M. Stonebraker. A Demonstration of
DBWipes: Clean as You Query. In VLDB 2012.

[21] L. Battle. Resolution Reduction to Augment Visualizations.
(submitted for publication).

[22] J. DeBrabant, L. Battle, U. Cetintemel, M. Stonebraker, and S.
Zdonik. Caching and Prefetching to Support Massive Data
Visualization. (in preparation).

[23] M. Lis, K. Shim, M. Cho, O. Khan, and S. Devadas. Directoryless
Shared Memory Coherence Using Execution Migration. In ICPDC 2011.

[24] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P.
Michaleas, A. Prout, A. Reuther, A. Rosa, and C. Yee. Dynamic
Distributed Dimensional Data Model (D4M) Database and
Computation System. In ICASSP 2012.

[25] Z. Liu, B. Jiang, and J. Heer. ImMens: Real-Time Visual Query-
ing of Big Data. (submitted for publication)

49

