Approaches and Challenges in
Database Intrusion Detection

Ricardo Jorge Santos
CISUC - DEI - FCTUC
University of Coimbra
3030-290 Coimbra — Portugal
lionsoftware.ricardo@gmail.com

ABSTRACT

Databases often support enterprise business and store
its secrets. This means that securing them from data
damage and information leakage is critical. In order to
deal with intrusions against database systems, Database
Intrusion Detection Systems (DIDS) are frequently
used. This paper presents a survey on the main
database intrusion detection techniques currently
available and discusses the issues concerning their
application at the database server layer. The identified
weak spots show that most DIDS inadequately deal
with many characteristics of specific database systems,
such as ad hoc workloads and alert management issues
in data warehousing environments, for example. Based
on this analysis, research challenges are presented, and
requirements and guidelines for the design of new or
improved DIDS are proposed. The main finding is that
the development and benchmarking of specifically
tailored DIDS for the context in which they operate is a
relevant issue, and remains a challenge. We trust this
work provides a strong incentive to open the discussion
between both the security and database research
communities.

1. INTRODUCTION

Databases are of vital importance to nearly all
enterprises. They support the business’ operational and
analytical requirements, and often store its secrets. For
example, Data Warehouses (DWs) store extremely
sensitive business information, making them a major
target for attackers. Therefore, securing their data from
damage or leakage is a critical issue. To manage this,
enterprises typically implement several layers of
protection between users and data, working at the
network, host, and database levels.

Most solutions for data protection at the database layer
consist of Database Intrusion Detection Systems
(DIDS), well-defined data access policies and
encryption. Although data access policies and standard
encryption algorithms are widely used, and relatively
simple to configure in today’s DataBase Management
Systems (DBMS), choosing which DIDS to use in
certain environments is not a trivial task.

36

Jorge Bernardino
CISUC — DEIS - ISEC
Polytechnic Institute of Coimbra
3030-190 Coimbra — Portugal
jorge@isec.pt

Marco Vieira
CISUC - DEI - FCTUC
University of Coimbra
3030-290 Coimbra — Portugal
mvieira@dei.uc.pt

This paper describes and analyzes the main techniques
for DIDS, and discusses their practical limitations. For
example, since most database intrusion detection
techniques rely on command-syntax analysis for user
profiling (which typically consists of determining usual
data access patterns and dependencies), the ad hoc
nature of significant portions of data warehousing
workloads makes distinguishing abnormal from normal
user activity an extremely difficult task. Moreover,
most DIDS are incapable of preventing or stopping a
user action before it finishes its execution, i.e., they
lack intrusion response capability. Given the value of
data in many business contexts, these are critical issues
that might make the currently available DIDS
inefficient or even unfeasible solutions in many
database systems.

The main contributions of this work are the description
of the distinct existing intrusion detection techniques
and a discussion on how these DIDS are applicable to
each database context, pointing out their weak spots
considering the typical user workload and the specific
characteristics of each type of environment. Based on
those weaknesses, we present the existing research
challenges and opportunities, and propose a set of
requirements and guidelines to drive the development
of new and/or improved DIDS specifically designed for
those environments. We argue that this is a pertinent
issue and remains a challenge.

Another important finding is that despite the
importance of the role played by benchmarks in testing
and comparing systems, until this moment no
benchmark has been proposed for evaluating the
performance of DIDS at the database level.

2. DATABASE INTRUSION
DETECTION SYSTEMS

Detecting illicit access and malicious actions are the
main goals of Intrusion Detection Systems (IDS).
There are mainly two approaches: misuse detection,
looking for well-known attack patterns; and anomaly
detection, looking for deviations from typical user
behavior. The first approach works efficiently against
previously known and expected intrusion actions.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

However, it is incapable of acting against intrusions
that reveal new forms of attack or malicious user
actions that seem “normal”. To overcome these issues,
anomaly detection techniques have been proposed.

In these systems there is typically a learning or training
phase (i.e., previous to intrusion detection), in which
database logs and/or command datasets assumed as
having “normal” or intrusion-free activity are used in
order to build the user behavior profiles [21]. After this
learning phase, the intrusion detectors match user
actions against those profiles to find significant
deviations which are signaled as potential intrusions.

The main requirements that intrusion detection systems
need to cope with are:

1) Adequately defining and building profiles that
accurately represent “normal” user behavior or
workloads, as well as identifying attack
signatures;

2) Given those profiles and/or attack signatures,
define which behavioral features as well as which
techniques and models maximize the performance
and accuracy of the intrusion detection processes;

3) Reporting system status to security staff and
notifying them about generated alerts;

4) Promote a way of stopping or preventing the
attack whenever an intrusion alert is raised (this
feature may or not be present in the IDS; if it is
the case, literature often refers the IDS as an
Intrusion Detection and Response System, or
Intrusion Detection and Prevention System).

From an impersonation perspective, an intruder can be
one of the following [30]:

o An authorized user, which is someone belonging to
the enterprise that has regular access to authorized
database interfaces and acts with malicious intent
(commonly referred as an insider threat);

o A masqueraded user, which is someone that
obtains the credentials of an authorized user and
impersonating that user takes control of an
authorized interface (also referred as an insider
threat when the attacker is someone from within the
enterprise but without regular authorized database
access, and refers to an outsider threat when it
comes from someone outside the enterprise that
manages to obtain the credentials);

An external attacker (commonly referred to as the
outsider threat), which is someone from outside the
enterprise that is able to bypass database security
and gain direct database access using SQL injection
or other vulnerability exploiting techniques.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

Considering the intruders’ intentions, there are mainly
three types of attacks mobilized against databases [8]:

e Attacks aiming at corrupting data (integrity
attacks). In these types of attack, the intruder seeks
access to the database for executing actions that
compromise its integrity, such as corrupting or
deleting the data in a given database object (e.g.
such as modifying the contents of a table);

e Attacks aiming at stealing information
(confidentiality attacks). In these attacks, the
intruder focuses on breaking confidentiality issues,
such as stealing business information, rather than
damaging data;

o Attacks aiming at making the database unavailable
(availability attacks). These attacks aim on making
database services unavailable to users, i.e., they are
mainly Denial of Service (DoS) attacks (e.g.
flooding database services and bandwidth with a
large number of requests, crashing database server
instances, deleting database objects, etc).

In the past, several types of database intrusion
detection techniques have been proposed. This section
presents a descriptive analysis of selected samples from
each different type of approach and/or technique for
dealing with all types of attacks, in order to
characterize the broad scope of existing solutions
against both insider and outsider threats.

2.1 Temporal Analysis

These techniques focus on temporal features such as
the time span between user actions and the duration of
those actions. The approach in [18] uses a mean and
standard deviation model built from time signatures to
check for outliers within a predefined range in real-
time database systems. This solution considers a
transaction as a set of read and/or write actions for each
data object which is executed in predefined update time
periods.

For example, updating a temporal data object (event)
can trigger a rule such that the update time is checked
against the expected update time (condition) and
rejects the update (action) if the predicate returns false,
considering it an intrusion. The training period occurs
until a significant mean with 99% confidence level of a
normal distribution is obtained for each object/update
pair. Database behavior is monitored by sensors at the
transaction level, which are assumed to be small in size
and have fixed semantics such as write-only operations
and well-defined data access patterns. If a transaction
tries to update a temporal data object that has already
been updated in that period, an alarm is raised.

37

2.2 Dependency and Relation Analysis
Intrusion detection techniques based on dependency
and relation analysis compute dependencies and/or
relations among the distinct sets of user actions and/or
accessed data to find out which columns, rows, tables,
etc. and/or commands are usually issued or processed
together.

The DEMIDS system [4] builds user profiles based on
their activity by determining frequent itemsets from
feature/value pairs and computes distance measures of
user activity against the learnt frequent itemsets to
detect intrusions, given a threshold. The features are
typically based on the syntactical analysis of user
commands, where the itemset domains are the sets of
attributes issued together.

Another approach using frequent itemset mining is
presented in [33]. This approach summarizes each user
command into a tuple <Op, F, T, C> where Op is the
type of SQL command (insert, select, etc), F is the set
of attributes, T is the set of tables, C is the constrained
condition set. An algorithm mines user query profiles
using these tuples, based on the pattern of the
submitted queries at the transaction level. The
algorithm adapts the support and confidence of
association rule mining by adding query structure and
attribute relations to the computation.

The Role-Based Access Control DIDS proposed in
[11] improves a previous approach [1] using features
named quiplets for summarizing each user command.

Considering a generic command SELECT {Target-
List} FROM {Relation-List} WHERE

{Qualification}, a quiplet is defined as (C, PR,
PA, SR, SA) where C is the SQL main command
(insert, select, etc.), PR is the Projection-Relation
information, PA is the Projection-Attribute information,
SR is the Selection-Relation information, and SA is the
Selection-Attribute information.

The authors define three types of quiplets with different
granularities: given a relation (alias table) R1 with
attributes A1, B1, C1, D1 and a relation R2 with

attributes A2, B2, c2, D2 and a user command SELECT
R1.A1,R1.C1,R2.B2, R2.D2 FROM R1,R2 WHERE

R1.B1=R2.B2, they generate the coarse c-quiplet
(select,<2>,<4>,<2>,<2>), medium m-quiplet
(select,<1,1>,<2,2>,<1,1>,<1,1>) and fine f-
quiplet (select,<1,1>,<[1,0,1,01,10,1,0,11>
,<1,1>,<[0,1,0,01,[0,1,0,01>).

For anomaly detection when the database has role-
based users (i.e., it is possible to link each user action
to a given role), a Naive Bayes Classifier (NBC) is
used as follows: for all queries in the audit logs, and for
each role, the classifier for each type of quiplet is built

38

(training phase); for each submitted query, if any of its
classifiers is different from the ones in its roles, the
action is considered an intrusion and an alert is
generated (testing phase).

If role-based access policies are not implemented in the
database, they propose unsupervised anomaly
detection. In this case, positional and distance
functions are defined for the quiplets and clustering
techniques (k-centers and k-means) map every user to
its representative cluster, which is the cluster with the
highest number of training records for that user after
the clustering phase (training phase). For each new
query to test, two approaches can be used: 1) given the
determination of its representative cluster, use the NBC
as in the Role-Based anomaly detection to perform a
similar test; or 2) verify if the new query is a statistical
outlier using the MAD (Median of Absolute
Deviations) test [24], which if true considers the action
as an intrusion and generates an alert.

2.3 Sequence Alignment Analysis

Sequence alignment mainly consists in determining
common sequences of events (such as commands, data
attributes, accessed values, etc). DIDS using this type
of techniques typically learn and identify the repeatable
series of events with significant length and eventually
break them into smaller-sized subsets to label or
classify those sequences and their subsets as normal
user behavior. In the detection phase, each sequence of
new events is matched against the learnt user sequences
and their subsets for measuring how they differ in order
to evaluate its probability of being an intrusion.

The solution presented in [15] identifies sequences of
accessed attributes, commands and tables for building
user profiles. The proposed features are the command
types (insert, select, update, etc.), attributes designated
as sensitive, all attributes, operations on attributes, and
mixes of all features. This work also defines criteria to
choose among user-based, role-based or organization-
based profiles, given the working context of the
database. In the learning phase, it builds sequence
models given a threshold for determining the maximum
number of differences. In the detection phase, it also
uses a threshold for computing the highest number of
differences allowed between the tested sequences and
those retained in the learning phase, to consider the
sequences as normal or abnormal.

2.4 Integrating Dependency with
Sequence Alignment Analysis

An approach for finding dependency relationships
among transaction-level attributes with high support
and confidence rules is proposed in [10]. They assume
that whenever an attribute is updated, this action is

SIGMOD Record, September 2014 (Vol. 43, No. 3)

linked to a sequence of other events logged in the
database (e.g. due to an update of a given attribute,
other attributes are also read or written). Thus, each
update is defined by three sets: the read set, a set of
attributes that have been read because of the update;
the pre-write set, a set of attributes that have been
written before the update and because of it; and the
post-write set, a set of attributes that have been written
after the update as a consequence of it. Transactions
that do not follow any of the mined data dependency
rules are marked as malicious.

The work in [28, 29] improves that of [10] by
considering attribute sensitivity, i.e., giving a measure
of importance to each attribute. It proposes three levels
of attribute sensitivity, given its support in the analyzed
transactions: high, medium and low. A weighted data
mining algorithm is used to mine the dependencies
between database attributes and generate rules that
reflect that dependency, given the measured sequences
of operations (read, write) and the sensitivity of each
attribute. Any transaction not following these rules is
identified as malicious. The authors also propose an
extension to the Entity-Relationship (E-R) model to
syntactically capture the sensitivity of the attributes.

A learning algorithm for representing transactions by
directed graphs describing execution paths is proposed
in [9]. New transaction sets that deviate from the learnt
execution paths are seen as unauthorized sequences of
SQL commands. The features used to build the
execution paths are the command type (select, insert,
delete, etc.), target objects (tables) and selected
columns, and restriction attributes, all of which are
obtained from typical DBMS audit entries [21] storing
information on the UserID, SessionlD, CommandID,
TransactionID, user command, object owner, and a
timestamp of its execution.

2.5 Statistical Analysis

Statistical analysis is used in several DIDS for
computing user activity statistics. The approach in [27]
makes use of statistical functions on reference values
obtained from the data in relations (alias tables) and A-
relations (changes of the values of the monitored
objects/attributes for all reference values, per attribute,
between two runs of the DIDS) for anomaly detection.
An extension is defined as the set of all rows of an
insertion/modification of data and a relation refers to a
table or view. The reference values include count,
minimum, maximum, average, standard deviation,
ranges, computed ratios, zero length checking, and bit
counting. A misuse detection method is also included,
which works by examining database objects (Database,
Function, Index, Privilege, Procedure, Rule, Schema,
Statistics, Table, Trigger, and View) and all operations

SIGMOD Record, September 2014 (Vol. 43, No. 3)

on them. This is done by previously defining if each
pair <Database object, operation> is dangerous or not.

The work proposed in [19] is based on computing
summarized statistics such as counting, maximum,
minimum, mean, median, standard deviation and
cardinality values of each attribute from the dataset
resulting or affected by each user command. These
statistics are stored in a vector with fixed dimension
named as S-Vector, regardless of how large the
command’s result dataset may be. When the dataset for
obtaining the S-Vector is large, the authors propose
sampling the dataset by fetching the first initial & tuples
or a subset of randomly picked k tuples to maintain
performance and scalability. The set of each user’s S-
Vectors is then used for applying techniques such as
clustering, naive Bayes, support vector machines or
decision trees in order to obtain models that represent
the user’s normal behavior given those S-Vectors. In
the intrusion detection phase, statistical deviation and
outlier verification is applied to inspect each user
command and classify it as normal or abnormal.

2.6 Information-Theoretic Analysis
Approaches using information-theoretic analysis
compute measures such as entropy and information
gain for characterizing user profiles and compare them
with those of subsequent actions to see how they differ
from the original ones.

The work in [17] describes such an information-
theoretic solution. Features are composed by a tuple of
audit data with n variables for each data object (e.g. IP
address, message size, etc). Entropy is used as a
measure of regularity of audit data (e.g. event types
such as a list of commands), where each record
represents a class; the smaller the entropy, the fewer
the number of distinct records (i.e., there is a higher
number of redundancies), indicating more regular audit
datasets. The fact that many events are repeated (or
redundant) in a dataset suggests that they are likely to
appear in the future. Anomaly detection models built
from datasets with small entropy will likely be simpler
and have better detection performance.

Conditional entropy is used to define temporal
sequences of audit data. H(X|Y) shows how much
uncertainty remains for the remaining audit events in a
sequence X after seeing Y. For anomaly detection, it is
used as a measure of regularity of sequential
dependencies. If the audit trail is a sequence of events
of the same type, then the conditional entropy is 0 and
the event sequences are deterministic. Conversely,
large conditional entropy indicates that the sequences
are not as deterministic and hence much harder to
model.

39

Relative conditional entropy between distributions is
used to measure regularities (distance) between two
audit datasets, where the training dataset is a validated
audit dataset and the tested dataset is the one to be
inspected. Once again, the best solution is the one with
smaller relative conditional entropy. Information gain
is introduced to aid the feature selection and
construction process to improve the detection
performance because of its direct connection with
conditional entropy. The higher information gain
owned by the feature, the smaller conditional entropy,
and hence the better detection performance.

2.7 Command Template Analysis

Command modeling DIDS use a command log to
analyze all regular user commands and build
summarized templates that generically represent the
typical user workloads.

In [16], an algorithm summarizes a set of supposed
“legitimate” queries into SQL templates that represent
the models of all the queries. Each conditional filtering
variables in the WHERE clause of similar commands
are considered as parameters. To see if an unbounded
variable or a finite list of values should be used for
each parameter, a Kolmogorov-Smirnov test is done at
a 90% confidence level. The algorithm also tabulates
the frequency of each learnt fingerprint, i.e., how often
it occurs in the set of SQL statements.

Taking a new fingerprint F and a previously defined
fingerprint F/, F is considered legitimate if F differs
from F’ only by: 1) any extra conditions in the
WHERE clause of F that are missing from F’ are
joined with the AND operator; and 2) F selects an
equal or fewer number of columns than F’ . This work
also proposes a method to deduce missing fingerprints
(i.e., ranges of queries similar to the database log
queries used in the learning phase), based on mixing
the possible combination of conditions in the WHERE
clause from the previously acquired fingerprints. In the
testing phase, each command significantly differing
from the computed fingerprints is considered abnormal.

In [2] the authors propose applying a grammar-based
analysis using tree-kernel based machine-learning
techniques instead of commonly used vector-based
data. This approach uses the parse-tree structure of
SQL for correlating commands with applications and to
differentiate between benign and malicious ones by
inspecting changes in command syntax trees. They
derive a distance measure induced by a tree-kernel
function to measure the similarity of SQL commands
using their parse-trees. Support vector machines are
used in the learning phase and clustering is applied for
distinguishing benign from malicious commands by

40

outlier detection. This method promotes a context
sensitive similarity that enables locating the nearest
non-intrusive command for a malicious statement,
which helps in root cause analysis.

3. INTRUSION RESPONSE AND
PREVENTION

In what concerns intrusion response and prevention,
which is the capability of stopping the intrusion action
when it occurs or even before it occurs, it can be seen
that several solutions enable full intrusion prevention,
while others can only partially accomplish this.

In [18], the temporal analysis technique detects any
queries that request execution outside a predefined
time schedule and may therefore deny their execution
and prevent the intrusion action. The sequence analysis
technique used in [15] may enable intrusion prevention
by avoiding subsequent user actions when it detects a
suspicious sequence of actions. However, it needs to
wait for a significant amount of actions that make up
that sequence, meaning that it will probably only detect
the intrusion after some of those actions have finished
their execution, which makes it only capable of partial
intrusion prevention.

All the solutions based on dependency and relational
analysis that were described [1, 4, 11, 33] are fully
capable of enabling intrusion prevention, since they
may check each individual user command syntax and if
they find those commands suspicious their execution
can be stopped before their execution occurs. The
solutions integrating a mix of dependency and
sequence analysis such as [9, 10, 28, 29] are capable of
performing only partial intrusion prevention, for the
same reasons pointed out in the previous paragraph
concerning the solution proposed in [15].

The work in [12] proposes a DIDS with intrusion
detection and response mechanisms, improving a
previous proposal in [11]. They propose defining
database response policies and deal with potential
intrusions using policy matching. The authors propose
set of SQL-like rules in a syntax as ON {Event} IF
{Condition} THEN {Action} CONFIRM {Confirmation
Action} ON SUCCESS {Resolution Action} ON
FAILURE {Failure Action} that will enable security
staff to define those policies and determine what sort of
actions the DIDS should take against intrusions.

The anomaly attributes used as intrusion detection
features are the Userld, his/her role, client application,
source IP address, and date/time of each user action,
and the database, schema, object type (table, view, etc),
the SQL command and its attributes. An administration
model is included to manage the response policies and
present algorithms for efficiently searching the policies

SIGMOD Record, September 2014 (Vol. 43, No. 3)

matching an anomalous user request in the policy
database. The possible responses to intrusion actions
can be {Do nothing, Log anomaly details, Send
notification, Taint or Suspend user action, Abort or
Disconnect user, Revoke or Deny user privileges}.

The solutions presented in [19, 27], based on statistical
analysis, are mostly incapable of intrusion prevention,
as they mostly rely on analyzing the changes in data or
execution results after they have been processed. This
means they can only detect the intrusion a posteriori to
the attack. However, the approach in [27] can be
adapted to check a priori statistical data concerning the
rows requested to be processed, enabling partial
intrusion prevention capabilities. For this same reason,
the information-theory analysis approach presented in
[17] may also accomplish partial intrusion prevention.

The solutions based on command and template analysis
in [2, 16] can fully enable intrusion prevention due to
same reason as those previously mentioned for
dependency and relational analysis [1, 4, 11, 33].

Besides the previously described specific intrusion
detection techniques and approaches that can be used
in databases, other research works have been published
that can also contribute to this intrusion detection field.
For example, although it does not present itself as a
DIDS, the work in [20] describes a method for auditing
SQL queries to measure their suspiciousness from a
privacy and confidentiality perspective that may be
useful for intrusion detection purposes. A generic
survey on how data mining techniques can be applied
to intrusion detection is shown in [23], and an
extensive survey on SQL injection is given in [14].

Table 1 summarizes the techniques described in this
section, referring each type of technique along with the

actions and user action elements that can be analyzed.
It also shows if each approach allows implementing
intrusion prevention, i.e., if it enables stopping the
intrusion action a priori to its execution.

4. APPLICATION OF INTRUSION

DETECTION IN DATABASES

The applicability of DIDS in database systems depends
on the type of environment in which they are supposed
to operate. Understanding the characteristics inherent
to the typical workloads of each type of environment is
critical to determine which type or class of Intrusion
Detection (ID) techniques can be more efficient given
the nature of those workloads and thus, be considered
as more adequate for the specific database system.

4.1 Transactional versus Analytical

Database Systems

In an enterprise, the transactional (alias operational)
systems typically consist of a set of applications and
data sources that enable accomplishing and storing
business transactions, and guarantee their operability
[13]. Transactional databases are designed to manage
the data required in supporting individual business
transaction instead of cross-enterprise business
analysis. Transactional systems typically consist of
many users reading and writing small amounts of data.
For example, an ATM bank system can have hundreds
or thousands of users accessing their account balances
at the same time or withdrawing/transferring a given
amount of money. Another characteristic of the system
is that it does not require keeping long periods of
historical data; it only needs the current balance and
latest movement records to be able to adequately
support user requests and business transactions.

Table 1. Database intrusion detection techniques and their coverage

Elements that can be analyzed Intrusion
Technique Reference Command | Accessed |Processed| Result |Prevention
9 Syntax | Columns Rows Dataset | Capability
Temporal Analysis Lee, 2000 [18] X Yes
Chung, 1999 [4] X X Yes
Dependency and Relation Zhong, 2004 [33] X X X Yes
Analysis Bertino, 2005 [1] X X Yes
Kamra, 2008 and 2010 [11, 12] X X Yes
Sequence Alignment Analysis Kundu, 2010 [15] X Partial
. Hu, 2004 [10] X X Partial
'Sr:eiit;d A?iezf::ftn;‘r’]:l”?i‘s Srivastava, 2006 [28, 29] X X Partial
4 & y Fonseca, 2008 [9] X X Partial
e . Spalka, 2005 [27] X X X Partial
Statistical Anal
atistical Analysis Mathew, 2010 [19] X X X No
Information-Theoretic Analysis Lee, 2001 [17] X Partial
. Lee, 2002 [16] X X Yes
C dT late Anal
ommangd femplate Analysis Bockermann, 2009 [2] X X Yes
SIGMOD Record, September 2014 (Vol. 43, No. 3) 41

In contrast, analytical systems are usually accessed by
fewer users that query large amounts of data to obtain
business analysis information to aid decision making.
Using the same bank ATM system as an example, the
difference is that the people from the bank that need to
make decisions regarding the business (i.e., managers,
administrators, etc.) want to know the average balance
for the last six months or a year for the accounts within
a certain geographical region, for instance, in order to
aid strategic decisions like opening a new branch office
or encourage people to increase their investments by
offering better interest rates. To execute this kind of
query, the system needs to keep historical data of the
balances plus it would read millions of records of all
clients within a certain region to compute that average.

This type of analytical actions result in very demanding
data access patterns, that if running on top of a
transactional database can lock large amounts of data
and consume computational resources in a way that
could compromise the transactional system’s
availability. Ultimately, this could make it incapable of
supporting the business transactions.

To relieve resource consumption, reduce operational
risk in the transactional applications that support
business and provide an optimized data structure for
analytical cross-enterprise decision support purposes,
Data Warchouses (DWs) are used. DWs clearly
separate the analytical business processes from the
transactional business processes. According to [13], we
can assume the following distinct characteristics
between transactional and analytical systems:

e From a perspective attending to its purpose, a DW
is mainly a database system specifically designed
for providing decision support information and
business knowledge, while an operational system is
specifically designed to support individual business
transactions. Given that the business often requires
the operational system to be online in order to
accomplish a transaction, operational system
requirements focus on enabling high availability to
avoid risk in the accomplishment of the transactions
themselves. On the other hand, since most decision
support queries often require processing a large
amount of data, DWs focus on fast query
performance with high data throughput [13].

From a perspective attending to the size and shape
of its contents, a DW is composed of consolidated
historical business data, mostly conformed within
data schemas that optimize the execution of
analytical queries. Generally, storing the business
history implies taking up a very large amount of
storage space, which often ranges from gigabytes to
terabytes. In contrast, operational systems aim to

42

keep their data sources “light”, i.e., small in size to
minimize processing efforts and consequently keep
their availability as high as possible. Transactional
systems therefore keep only the exact amount of
data which is required to support current and near-
future business transactions.

In what concerns their data schemas, transactional
databases mostly have highly normalized schemas
with a large number of tables and relationships
amongst them, mainly to avoid data redundancy and
keep each table small-sized, while DWs have
denormalized schemas. Most DW database schemas
are based on star schemas, where business facts are
stored in a central table called fact table (e.g. sales
table) and tables containing the business descriptors
are called dimension tables (e.g. customer and
product tables) [13]. Dimension tables link to the
fact table by their primary keys (e.g. CustomerID,
ProductID), are usually small in size (typically less
than 10% of total storage space) and have a small
amount of rows (up to tens of thousands), when
compared with fact tables, which are typically very
large in size and a huge amount of rows (millions or
billions). Business facts are mainly stored in
numerical-typed attributes within fact tables; since
fact tables typically take up at least 90% of the DW
total storage size [13].

Considering his/her responsibility in the business,
the DW user is typically a business manager or
someone having a role of responsibility in the
enterprise, while the typical user of operational
systems are mainly transactional operators with low
responsibility and few or none decision making
privileges. Since they mainly consist of business
managers and decision makers, the number of DW
users it typically low (a few tens), while in many
transactional systems the number of users is
relatively high (tens to thousands).

While end users of operational systems typically
execute intensive read and write instructions, DW
end users only execute read-only instructions, while
DBAs and ETL (Extract-Transform-Load) users
may insert or modify data. More than 90% of
actions in DWs are typically analytical queries (i.e.
SELECT statements), mainly executed against fact
tables [13]. Reporting (i.e. periodically running
reports for answering predefined decision support
queries) is typical in DWs. Besides reporting, in
many cases a very significant amount of decision
support queries are ad hoc, which makes them
mostly unpredictable in their syntax and frequency.
In operational systems the queries are mainly
simple, predefined and repetitive.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

e Although analytical queries may typically access
huge amounts of data, their response usually results
in small datasets with a few hundred bytes and a
relatively low number of columns (no more than a
few tens). Most queries in DWs are CPU intensive
and can take up to hours, while operational system
queries are intended to be computationally fast and
deliver very small response time.

Table 2 summarizes the main differences between
operational systems and DWs, based on [13]. We shall
now discuss how each type of ID technique is able to
handle the characteristics inherent to each distinct type
of database system.

4.2 Applying Intrusion Detection to

Database Systems

As shown in Table 1, most DIDS focus on analyzing
user command syntax (i.e., parsing the SQL-expression
syntax of queries to construct user profiles). As pointed
out in [19], the most common problems with this type
of approach are:

o Regular user queries may differ widely in syntax yet
produce “normal” (i.e., good non-intrusive) output,
which generates false positives (i.e., false alarms);

e Queries may be crafted by the attacker to differ
slightly in syntax from the “normal” user behavior
profiles yet produce “abnormal” (i.e., malicious and
intrusive) output, which generates false negatives
(i.e., attacks that pass undetected).

Given the expressiveness of the SQL language and the
need to determine query equivalence or similarity,
syntax analysis is complex and very difficult to perform

correctly. In fact, query containment and equivalence is
NP-complete for conjunctive queries and uncertain for
queries involving negation [19].

In databases where typical user workloads have a well-
defined number of distinct commands that are issued
repetitively, relying on command syntax analysis may
be feasible to achieve high ID efficiency. This is
typically what occurs in transactional systems.
However, in analytical systems such as DW’s many
actions are ad hoc and have variable execution times
with variable data access patterns and dimension-size
frequencies and thus, are mostly unpredictable and
broad-scoped. This makes distinguishing between
normal and abnormal commands in DWs an extremely
difficult task. In such analytical databases, limiting ID
to command syntax analysis by simply modeling SQL
command templates or static frequent data access
patterns (e.g. which tables or columns are accessed) is
unreliable or, at least, minimalist.

Regarding the characteristics of DW user workloads,
the ID solutions relying on temporal analysis such as
presented in [18] are inadequate and mostly produce
very poor ID results due to the unpredictable rate and
execution time of those workloads. Due to the ad hoc
nature of most of those workloads, ID solutions such as
[2, 16] that are based on command template analysis
lack the necessary dynamics to efficiently perform the
ID processes and therefore also produce poor ID
results. In transactional systems, temporal analysis is
very efficient when the user actions occur within well-
defined time periods and have predictable processing
times. Otherwise, it suffers from the same issues with
temporal analysis as those in DWs.

Table 2. Differences between Operational Systems and Data Warehouses

Operational Systems

Data Warehouses

Workload nature/purpose

Transactional

Analytical

Temporal nature of the data

Current

Historical and current

Typical database storage size

As small as possible

Very large to huge

Typical number of tables Medium to high Small

Typical data schema type Highly normalized Denormalized

Typical number of users Medium to large Small

Typical user’s business responsibility | Low High

Typical type of command Read/Write of small amounts of data Read-only on large amounts of data
Typical command complexity Simple Medium to High

Typical operation dynamics

Static, predefined, predictable, repetitive

Reporting + Dynamic, ad hoc, iterative

Typical command response time

Small

Large

Typical command action

Read/write of a single row or few rows

Reporting and aggregation on many rows

Amount of data typically processed
by each command

Small

Large or Very Large

Typical data update frequency

Often in a given period of time

Once periodically

Dataset size typically resulting from
a command execution

Small

Variable (often Small)

SIGMOD Record, September 2014 (Vol. 43, No. 3)

43

Although the approach proposed in [19] adds a data-
centric analysis of each user command execution’s
resulting dataset, the analysis is a posteriori to that
execution. Given the time span between the start of the
intrusion and its detection, together with resource
consumption and sensitivity of the targeted data, many
enterprises can suffer huge losses in case the intrusions
compromise the system’s availability or leak out
business secrets, if their DIDS either takes too long to
alert a malicious intrusion or is unable to prevent or
stop its execution. In this sense, approaches a
posteriori are not efficient solutions for ID in both
transactional databases as well as DWs.

Conclusively, the unpredictable execution frequency
and ad hoc nature of DW user workloads make time-
based and SQL modeling ID approaches such as [2, 16,
18] mostly inadequate. Alternatively, DIDS performing
ID at a coarse-grained basis such as database sessions
or transaction command sets, instead of a fine-grained
basis such as analyzing each SQL command, risk that a
series of malicious commands may be executed before
the intrusion can be dealt with. Therefore, data
dependency and sequence alignment approaches such
as [4, 33] that are able to inspect each user command a
priori to its execution but only after a considerable
amount of actions have been executed, should be
carefully used according to each database context.

Data-centric techniques such as [19, 27] are capable of
adding value to a priori ID techniques by executing an
a posteriori analysis of the data affected by the user
action. Combining these techniques with data access
pattern analysis techniques such as [1, 11, 12], that
deem the processed data, seem the most feasible and
efficient DIDS for both types of database systems.

5. RESEARCH CHALLENGES
Considering the discussed issues, this section points
out research challenges and guidelines for evaluating,
developing and improving DIDS.

5.1 Intrusion Activity and Data Coverage
Command syntax-centric approaches focus on attack
syntax, while data-centric approaches focus on its
semantics. Distinguishing attack queries that have
resulting datasets whose columns and resulting rows
significantly differ from those of normal queries is
covered by both syntax-centric and data-centric
approaches, while data-centric approaches mostly
capture attack queries that have similar columns but
process or display different row contents from those of
normal queries. Attack queries that are similar in both
columns and resulting datasets are more easily
discovered by syntax-centric approaches than by data-
centric approaches.

44

To determine user intent, DIDS should not only focus
on how, but also what data is accessed and processed
(i.e., which tables and columns, as well as which rows,
are involved in the command’s execution), and also
generated as a result (i.e., the resulting dataset’s rows
and columns). Besides the user command, the accessed
and processed data and resulting datasets should be
object of analysis. As far as we know, there is no DIDS
approach mixing these items and covering this type of
integrated broad-scope analysis.

5.2 Alert Management

Regardless of the ID technique, thresholds are typically
used to define the probability of a certain action being
an intrusion or compute if a particular alert should be
considered significant or not. The main issue in these
procedures is that high thresholds may allow many
intrusions to pass undetected, while low thresholds may
generate huge amounts of alerts, most of which
probably refer to false alarms (alias false positives).

Given the sensitivity of data in many database systems,
it is preferable to have low thresholds because the
potential cost of non-detection is often too high or
unacceptable. However, even slight changes to the
parameters used in data mining and statistical DIDS
may result in a huge, even exponential, increase of
generated alerts. In this case, the number of false
alarms is often so large that it leads to wasting
immense time and resources, or the amount of alerts is
so high that they are not possible to check in practice
[25, 26, 28, 29]. This lowers the DIDS’ efficiency and
jeopardizes its feasibility, usefulness, and credibility.

Alert correlation techniques such as [6, 22, 25, 26, 31]
have been proposed to deal with large amounts of
generated alerts and decrease false positive rates, by
grouping sets of alerts in order to apply some sort of
classification that allows them to conclude which alerts
are most probable of referring a true alert. Although
they effectively reduce the number of alerts to check as
well as the number of false alarms, we argue that they
are not the best choice for alert management.

Since these techniques rely on filtering alerts, they may
allow critical true intrusions — capable of producing a
high amount of damage - to pass undetected, although
they were initially flagged. We argue that no alert
should be discarded and all alerts should be considered
using alert ranking techniques instead, assessing the
impact to the enterprise that might be caused by the
intrusion to which the alert refers. Ranking the alerts
improves damage or leakage containment by pointing
out the intrusions that might cause more damage to the
enterprise, so they can be rapidly dealt with.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

5.3 Intrusion Impact Evaluation

To the best of our knowledge, there is no DIDS that
evaluates the potential impact (i.e., damage) that each
potential intrusion is capable of doing to the database
and/or enterprise. Given the business value of many
database systems (e.g. data warehouses), this is a
decisive issue to enable quickly dealing with threats
representing high risk to the enterprise. Although
approaches such as [28, 29] consider a measure of
sensitivity for each attribute, no DIDS enables the
assessment of the data itself that can be damaged or
affected by the intrusion.

Besides detecting intrusions, DIDS should be able to
measure or estimate a measure of the impact that could
be produced by the intrusion. The main challenge is to
determine how sensitive is the data targeted by the
attack. Having the capability of measuring the impact
of a given intrusion would allow classifying each
intrusion action as tolerable or critical to the enterprise.
As we previously mentioned, this could play a very
important role in alert management in environments
where large amounts of alerts are generated. Given that
most alerts in these environments refer to false alarms,
focusing on those that are in fact the most important
ones would potentiate an efficient administration of
intrusion response actions and resources.

5.4 Real-time Intrusion Detection,

Response and Prevention Capabilities

Many DIDS execute the ID process a posteriori, i.e.,
after the intrusion action has finished its execution, or
are able to detect the intrusion while it occurs but are
not able to stop it. Once again, given the value of data
in many database systems and the potential costs of
damage or information leakage, we consider the
capability of a DIDS to detect and respond to
intrusions in real-time as a critical requirement, i.e., it
must be capable of responding to an intrusion while it
occurs and preferably before it produces any damage.

5.5 Evolution of ID Efficiency

DIDS should be able to automatically tune their ID
algorithms in order to improve their efficiency by
learning from their false positive and false negative
results. They should enable calibrating their features,
statistical functions and tests, classifiers and any other
element belonging to the DIDS, and propose a method
as how to achieve this. Such an approach for network
ID has been proposed in [32], but as far as we know no
similar solution has been proposed for automatically
tuning DIDS. Machine learning techniques or other
techniques that enable incrementally adjusting their ID
parameters for improving their efficiency are advisable.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

Another approach to improve DIDS is focusing on the
typical characteristics of the database system in which
they operate, i.e., separating DIDS meant for
operational systems from those meant for analytical
systems. Given the distinct workloads between
transactional and analytical databases, specifically
tailored ID techniques for highly transactional
environments as opposed to ID techniques for DWs
should be able to achieve higher efficiency than those
referred to as “all-in-one” general solutions.

5.6 Database Intrusion Detection

Benchmarking

We acknowledge the fact that an experimental
evaluation of a database intrusion workload setup using
the ID techniques described in this paper would bring
added value to this work, as well as support its
discussion and conclusions. However, the datasets and
attack loads used in database ID research are mostly
synthetic and several came from proprietary real-world
datasets, which makes them unusable for third parties.
In fact, the only benchmark commonly used by several
solutions was the KDD99 [5]; all the remaining used
synthetically generated workloads and datasets or
specific datasets from real-world scenarios.

This is the main reason why we do not discuss ID
efficiency results from these publications. Furthermore,
although the use of advanced techniques such as
Support Vector Machines and artificial neural networks
might suggest obtaining better results than simpler ones
such as statistical measures, this is not clear or
demonstrable at this point for the same reasons.
Therefore, benchmarks are an essential instrument in
the development and implementation of many systems.
They are widely used for two main reasons:

e Benchmarks provide a mean to test those systems
and supply solution providers and clients with
measures that enables a meaningful comparison
between different alternatives;

e They also provide relevant feedback to developers
which enables them to improve those solutions.

Since the KDD99 benchmark focuses on intrusions at
the network and operating system (OS) level, in what
concerns databases a need arises for dealing with
intruders that are able to bypass ID mechanisms
working at the network and OS level. In spite of the
criticality of protecting data against intrusions and the
importance of having available benchmarks for testing
and improving DIDS, there is no benchmark focusing
on workloads at the database command level.

45

6. CONCLUSIONS

We have presented a survey on the available ID
techniques and approaches used in DIDS and pointed
out the issues that concern their usage. We argue that
distinct database systems have unique user and data
processing requirements that differ from each other and
require distinctively tailored ID approaches. The
difficulty in accurately profiling user behavior, the
overstated number of alerts and false alarms generated
by most ID techniques, the potentially low reliability
on correlation techniques and the hypothesis that many
intrusions may only be detected and dealt with a
posteriori to the attacks and without any knowledge on
the type of damage that the intrusions might produce,
jeopardize the credibility and feasibility of DIDS in
many specific high sensitive data contexts such as data
warehousing environments [2, 25, 26].

Considering the typical very specific user workloads of
distinct types of database systems and the importance
of databases for enterprises, we conclude that specific
DIDS should be developed, pursuing the following
requirements and guidelines:

o Although role or session profiling can be used, a
DIDS should be more accurate and efficient if it is
able to manage individual user profiles;

All user actions must be traceable, i.e., the DIDS
must be able to trace the user and IP address it
comes from and the session to which it belongs;

Perform real-time intrusion action analysis and
have near real-time intrusion prevention and
response mechanisms, as in [7, 12], preferably
before each user command is executed;

User action analysis for building profiles and
executing ID must focus on fourfold items: user
commands, accessed data, processed data, and
execution results;

Impact evaluation, i.e., measuring the damage to the
enterprise that might occur as a result of the
intrusion action should be wused for alert
management for optimizing intrusion response;

The ID techniques should be able to evolve through
time, i.e., they should be able to learn from each
confirmed intrusion alert or false alarm and tune
algorithms or models to increase detection rates and
decrease false alarm rates;

The availability and correct operation of the DIDS
and the database must be mutually verifiable;

When the DIDS is unable to prevent the execution
of intrusive actions, it should consider the execution
of a recovery-from-attack type solution, such as [3];

46

o Given the database performance issues in very large
database systems such as DWs, the DIDS security
aptitudes must seamlessly operate in settings with
strict performance and scalability requirements.

To the best of our knowledge, no DIDS has been
proposed that has been proved capable of efficiently
complying with all the referred requirements and
guidelines proposed in this paper.

Additionally, a DIDS benchmark for each type of
database system should be developed and proposed by
both the research community and industry. We
acknowledge that defining benchmarks is not a trivial
task and that there are always discussable issues
concerning the objectivity and effectiveness of each
proposal. A DIDS benchmark should provide a wide
coverage of possible intrusion activity according to the
several distinct user workloads, while simulating their
execution in a realistic-like environment. Given the
importance of ID in specific contexts such as DWs and
the lack of standard benchmarks for testing DIDS at the
SQL level, we believe that the issues presented in this
paper are worthy of notice and hope that our work may
motivate the discussion around the subject in both
database and intrusion detection research communities,
possibly driving the development of a standard
benchmark for this purpose.

7. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers of
the ACM SIGMOD Record for their helpful comments.
This paper was partially supported by project iCIS —
Intelligent Computing in the Internet Services
(CENTRO-07-ST24 — FEDER - 002003), Portugal.

8. REFERENCES

[1] Bertino, E., Kamra, A., Terzi, E. and A. Vakali.
“Intrusion Detection in RBAC-Administered
Databases”, Annual Computer Security
Applications Conference (ACSAC), 2005.

[2] Bockermann, C., Apel, M. and M. Meier,
“Learning SQL for Database Intrusion Detection
using Context-Sensitive Modeling”, International
Conference on Knowledge Discovery and
Machine Learning (KDML), 2009.

[3] Chakraborty, A., Majumdar, A. K. and S. Sural,
“A Column Dependency-Based Approach for
Static and Dynamic Recovery of Databases from
Malicious Transactions”, International Journal of
Information Security (9), 2010.

[4] Chung, C. Y., Gertz, M. and K. Levitt,
“DEMIDS: A Misuse Detection System for
Database Systems”, IFIP TC11 WG11.5 Conf. on
Integrity and Internal Control in Information
Systems, Kluwer Academic Publishers, 1999.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

DARPA archive, Task Description of the KDD99
Benchmark, available at http://www.kdd.ics.uci.
edu/databases/kddcup99/task.html.

Debar, H., and A. Wespi, “Aggregation and
Correlation of Intrusion-Detection Alerts”, Recent
Advances in Intrusion Detection (RAID), 2001.
Dia, J., and H. Miao, “D DIPS: An Intrusion
Prevention System for Database Security”, Int.
Conference on Information and Communications
Security (ICICS), 2005.

Douligeris, C. and A. Mitrokotsa, “DDoS Attacks
and Defense Mechanisms: Classification and
State-of-the-Art”, Int. Journal of Computer
Networks (IJCN), Elsevier B. V., 44, 2004.
Fonseca, J., Vieira, M. and H. Madeira, “Online
Detection of Malicious Data Access using DBMS
Auditing”. ACM Int. Symposium on Applied
Computing (SAC), 2008.

Hu, Y. and B. Panda, “A Data Mining Approach
for Database Intrusion Detection”. ACM Intern.
Symposium on Applied Computing (SAC), 2004.
Kamra, A., Terzi, E. and E. Bertino, “Detecting
Anomalous Access Patterns in Relational
Databases”. Springer VLDB Journal, 17, 2008.
Kamra, A. and E. Bertino, “Design and
Implementation of an Intrusion Response System
for Relational Databases”, IEEE Transactions on
Knowledge and Data Engineering (TKDE), Vol.
23, No. 6, June 2011.

Kimball, R. and M. Ross, The Data Warehouse
Toolkit, 3" Ed. Wiley & Sons, Inc., 2013.

Kindy, D. A. and A. K. Pathan, “A Detailed
Survey on Various Aspects of SQL Injection:
Vulnerabilities, Innovative Attacks and
Remedies”, Int. Journal of Communication
Networks and Information Security (IJCNIS),
Vol. 5, No. 2, August 2013.

Kundu, A., Sural, S. and A. K. Majumdar,
“Database Intrusion Detection Using Sequence
Alignment”. International Journal of Information
Security (9), 2010.

Lee, S. Y., Low, W. L. and P. Y. Wong,
“Learning Fingerprints for a Database Intrusion
Detection System”. Euro Symposium on Research
in Computer Security (ESORICS), 2002.

Lee, W. and D. Xiang, “Information-Theoretic
Measures for Anomaly Detection”, IEEE
Symposium on Security and Privacy, 2001.

Lee, V. C. S., Stankovic, J. A. and S. H. Son,
“Intrusion Detection in Real-time Database
Systems via Time Signatures”. Real-time
Technology and App. Symposium (RTAS), 2000.
Mathew, S., Petropoulos, M., Ngo, H. Q. and S.
Upadhyaya, “A Data-Centric Approach to Insider
Attack Detection in Database Systems”.
International Conference on Recent Advances in
Intrusion Detection (RAID), 2010.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

Motwani, R., Nabar, S. U. and D. Thomas,
“Auditing SQL Queries”, Int. Conf. on Data
Engineering (ICDE), 2008.

Newman, A. C., “Intrusion Detection and Security
Auditing in Oracle”. Application Security Inc.
White Paper, 2011.

Ning, P., Cui, Y. and D. S. Reeves, “Analyzing
Intensive Intrusion Alerts via Correlation”,
Recent Advances in Int. Detection (RAID), 2002.
Pei, J., Upadhyaya, S. J., Farooq, F. and V.
Govindaraju, “Data Mining for Intrusion
Detection: ~ Techniques, Applications and
Systems”, Int. Conf. on Data Engineering (ICDE),
2004.

Pham-Gia, T. and T. L. Hung, “The Mean and
Median Absolute Deviations”, International
Journal on Mathematical and Computer
Modelling”, Vol. 34, Issues 7-8, October 2001.
Pietraszek, T., “Using Adaptive Alert
Classification to Reduce False Positives in
Intrusion Detection”. Int. Conf. on Recent
Advances in Intrusion Detection (RAID), 2004.
Pietraszek, T. and A. Tanner, “Data Mining and
Machine Learning — Towards Reducing False
Positives in Intrusion Detection”. Inf. Security
Technical Report, 10(3), 2005.

Spalka, A. and J. Lehnhardt, “A Comprehensive
Approach to Anomaly Detection in Relational
Databases”. IFIP Int. Conf. Data and Applications
Security and Privacy (DBSec), 2005.

Srivastava, A., Sural, S. and A. K. Majumdar,
“Database Intrusion Detection using Weighted
Sequence Mining”. Journal of Computers, Vol. I,
No. 4, 2006.

Srivastava, A., Sural, S. and A. K. Majumdar,
“Weighted Intra-Transactional Rule Mining for
Database Intrusion Detection”. Int. Pacific-Asia
Conference on Knowledge Discovery in
Databases (PAKDD), 2006.

Treinen, J. and R. Thurimella, “A Framework for
the Application of Association Rule Mining in
Large Intrusion Detection Infrastructures”,
International Conference on Recent Advances in
Intrusion Detection (RAID), 2006.

Valdes, A. and K. Skinner, “Probabilistic Alert
Correlation”. International Conference on Recent
Advances in Intrusion Detection (RAID), 2001.
Yu, Z., Tsai, J. P. and T. Weigert, “An
Automatically Tuning Intrusion Detection
System”. IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 37, No. 2, 2007.

Zhong, Y. and X. Qin, “Database Intrusion
Detection Based on User Query Frequent Itemsets
Mining with Item Constraints”, Information
Security Conf. (InfoSecu), 2004.

47

