A Survey on XML Fragmentation

Vanessa Braganholo
Fluminense Federal University, UFF

Brazil
vanessa@ic.uff.br

ABSTRACT

Efficient document processing is a must when large
volumes of XML data are involved. In such criti-
cal scenarios, a well-known solution to this problem
is to distribute (map) the data among several process-
ing nodes, and then distribute the processing accord-
ingly, taking advantage of parallelism. This is the ap-
proach taken by distributed databases and MapReduce
environments. Fragmentation techniques play an im-
portant role in these scenarios. They provide a way to
“cut” the database into pieces and distribute the pieces
over a network. This way, queries can also be “cut” into
sub-queries that run in parallel, thus achieving better
performance when compared to the centralized environ-
ment. However, there is no consensus in the database
community as to what an XML fragment is. In fact,
several approaches in literature present definitions of
XML fragments. In addition to query processing, us-
ing XML fragmentation techniques may also be helpful
when managing XML documents distributed along the
web or clouds. This paper surveys the existing XML
fragmentation approaches in literature, comparing their
features and highlighting their drawbacks. Our contri-
bution resides in establishing a map of the area.

1. INTRODUCTION

Efficient document processing is a must when
large volumes of XML data are involved [35, 56].
To achieve good performance in query processing,
lots of initiatives focus on indexing [13, 14, 18, 20,
21, 34, 57] and query optimization [15, 16, 29, 55,
74]. In addition to these initiatives, distributed
query processing can further improve the perfor-
mance when large collections of documents are in-
volved. In critical analytical scenarios, complex
queries, such as OLAP (On-Line Analytical Pro-
cessing), cannot effectively benefit from indexing
techniques since queries involve several attributes
and are ad-hoc.

MapReduce [22, 23] and Hadoop! have been

"http://hadoop.apache.org

24

Marta Mattoso
Federal University of Rio de Janeiro, COPPE/UFRJ

Brazil
marta@cos.ufrj.br

extensively used to execute operations in parallel
based on ad-hoc sub-sets of data. Originally de-
fined for searching web log datasets, MapReduce is
being progressively used for other types of datasets.
Horizontal data fragmentation, allocation and in-
dexing techniques [26] have been proposed to im-
prove Hadoop’s performance and experiments have
been performed over a variety of data, including
TPC-H OLAP queries [71]. Other types of fragmen-
tation have also been used to process large XML
datasets using Hadoop [17]. In fact, MapReduce
has been compared [24, 25, 61, 67] and combined
[3, 71] with Parallel Databases approaches, always
aiming at achieving better response times for query
processing. Such strategies can be used to process
large XML datasets if XML documents are correctly
fragmented and reconstructed.

The term XML fragment appeared in the begin-
ning of the last decade denoting a well-formed piece
of an XML document [69, 60] (in fact, the first draft
related to the W3C candidate recommendation ap-
peared in June of 1999). The main goal at that
time was to ease the communication between appli-
cations, so they could exchange pieces of documents
instead of entire ones. After that, the term XML
fragment was used (with several different defini-
tions) in the context of distributed databases [2, 12,
47, 64], and distributed query processing issues be-
gan to raise researchers’ interest. In essence, these
definitions can be summarized as follows: an XML
fragment is a (not necessarily well-formed) piece of
an XML document or subset of an XML collection.

Fragmentation techniques provide a way to “cut”
the database into pieces (fragments). This way,
queries can also be “cut” into sub-queries that
run in parallel over smaller portions of data, thus
achieving better performance when compared to its
serial execution over the whole document. Success-
ful parallel query processing in relational databases
has been directly achieved through table fragmen-
tation. By using the relational algebra to define

SIGMOD Record, September 2014 (Vol. 43, No. 3)



fragments, algebraic query processing on these frag-
ments can be done with correctness rules [58]. How-
ever, there is no consensus in the database commu-
nity as to what an XML fragment precisely is. In
fact, several approaches in literature present defini-
tions of XML fragments [4, 8, 11, 12, 39, 42, 41,
43, 47, 62]. They can be classified according to the
way they fragment the data. Regardless of the frag-
mentation type, the fragmentation unit is usually
a collection of elements, which can be of Multiple
Documents (MD) or Single Document (SD) [75].

Given the large amount of approaches that pro-
pose fragmentation alternatives in literature, in this
paper we survey the existing approaches, compar-
ing their features and establishing a timeline, so the
reader can understand the evolution of the proposed
solutions, their characteristics, pros and cons. It is
important to note that, when we refer to distribu-
tion, we are not considering distributed query pro-
cessing in data integration scenarios [5, 33, 44, 6],
since their main goal is to provide data access, not
necessarily in a high performance fashion. We also
do not consider approaches that fragments the doc-
ument solely for internal query processing [40, 53,
72]. Instead, we focus on approaches that aim to
improve the performance on processing collections
of documents by distributing data to several nodes
in a network and use parallel processing strategies
such as MapReduce.

The remaining of this paper is organized as fol-
lows. Section 2 provides intuitive definitions for
XML fragmentation, and Section 3 formalizes them.
Section 4 discusses fragmentation techniques, while
Section 5 discusses their main features, comparing
them regarding several aspects. Finally, we discuss
open problems in Section 6.

2. AN INTUITIVE GRASP ON XML
FRAGMENTATION

Data fragmentation is characterized by physical
changes to the dataset, that is, the dataset is frag-
mented and allocated to multiple computational
nodes [4, 8, 12, 39, 42, 41, 43, 47]. In their book [58],
Ozsu and Valduriez present a detailed introduction
to the subject of XML distributed query process-
ing and XML fragmentation. They classify frag-
mentation in two groups: ad-hoc and structured.
Ad-hoc fragmentation does not take the document
schema into consideration. Edges are arbitrarily re-
moved from the document. Structured fragmenta-
tion, on the other hand, is one that uses schema
property(ies) to define the fragments [58]. In this
work we are focused on large-scale distributed and
parallel query processing. In structured fragmen-
tation, each fragment is usually defined by using

SIGMOD Record, September 2014 (Vol. 43, No. 3)

) [
e

Relational Model

XML Model

Selection (o) Data unit = trees

Figure 1: Horizontal fragmentation in the re-
lational model and in the XML model

Projection ()

Relational Model

@s)

Figure 2: Vertical fragmentation in the rela-
tional model and in the XML model

set operations (i.e. algebraic selection, projection)
over the dataset. In this case, the specification of
queries and fragments share the same operations,
which makes it easier to automatically decompose
queries to run in parallel over the fragments.

To help the intuitive grasp on XML fragments
we refer to fragmentation in the relational model
[58], where horizontal fragments are those obtained
by table selection operations. This means that
horizontal fragments are restricted by the selection
predicate and follow the same schema of the orig-
inal table. Vertical fragments, on the other hand,
are defined by projection operations, and thus fol-
low a different schema of the original table. The
same principle can be applied to XML databases
[4, 42]. Figure 1 and Figure 2 establish a parallel
between data fragmentation in the relational and in
the XML models.

In distributed databases, queries are executed
over one specific target fragment or in parallel by
accessing different fragments of the dataset inde-
pendently. Data fragmentation can be very effec-
tive in distributed query processing where there is
a well-known set of frequent queries. Such queries
must be analyzed so that a corresponding fragmen-
tation design? can be achieved [6, 8, 42, 48]. A

Projection ()

2The process of deciding on how to fragment the

25



good fragmentation design is one that benefits the
frequent queries, thus allowing for gains in perfor-
mance. Gains are focused on locality of access and
data pruning rather than parallel processing. The
price to be paid is poor performance for some of the
non-frequent queries and limited opportunities for
high performance parallel queries.

To illustrate, assume an XML collection COrders
that contains information about customer’s orders.
Queries are usually targeted at regions as follows:
South America, North America or Other Continent.
Assume also that the collection is physically frag-
mented into three fragments, based on their loca-
tion: one containing orders of customers from North
America (allocated at node nl1), one containing or-
ders of customers from South America (allocated at
node n2), and a third one containing orders from
other Continents (allocated at node n3).

Now, assume that customers from North Amer-
ica buy items usually over 1,000 dollars. On the
other hand, South American customers’ orders are
usually around 500 dollars. Now, suppose we want
to run a query to retrieve the average total of or-
ders with items above 1,000. This query will be
distributed to the three fragments: sub-query sI
will be executed over the North America fragment,
sub-query s2 will query the South America frag-
ment, and sub-query s3 will run over the remaining
fragment. Since there are a lot more orders from
customers in North America that satisfy this query
predicate, s2 and s8 will probably finish their pro-
cessing way before sI. Thus, the total query pro-
cessing time will be highly influenced by si, and
there is nothing n2 and n8 can do to help n! pro-
cessing s1, since they do not have the required data.
If there is a following operation for these intermedi-
ate results, skew continues to be propagated. Even
if the fragments are replicated, since the sub-query
s1 is already running in nI over the whole North
America fragment there is no way to stop this sub-
query (assuming query processing follows a static
optimized execution plan) and redistribute the ele-
ments of this long processing fragment to idle nodes.

This type of fragmentation favors the distributed
processing with the goal of restricting the access
to a subset of the data by using pruning strategies.
This happens in cases where a query accesses a sub-
set of the fragments (orders from North America
with items above 2,000 dollars, for instance). When
the goal is high performance, horizontal and verti-
cal fragmentation can still be used. The idea in this
case is to generate uniform fragments, with similar

database (how each fragment should be defined) is
called fragmentation design.

26

number of tuples/elements each. The goal is to fa-
vor parallel processing by using the largest possible
number of processing units. Still in this case, data
skew is a problem, since the query processing time
will also be highly influenced by selectivity factors
and the node that contains the largest number of tu-
ples/elements that satisfy the query predicate can
be overloaded.

3. FORMAL DEFINITIONS

Based on the intuition of XML fragmentation
presented in the previous section, we now formalize
the main concepts related to XML fragmentation.
As mentioned in the introduction, there is no con-
sensus in the literature as to what an XML fragment
exactly is. In this section, we present the definitions
proposed in [4] as an illustrative example.

XML Document. XML documents consist of
trees with nodes labeled by element names, at-
tribute names or constant values. Let £ be the set
of distinct element names, A the set of distinct at-
tribute names, and D the set of distinct data val-
ues. An XML data tree is denoted by the expression
A := (t,£,V), where: t is a finite ordered tree, ¢ is
a function that labels nodes in ¢ with symbols in
LU A; and ¥ maps leaf nodes in ¢ to values in D.
The root node of A is denoted by roota. We as-
sume nodes in A do not have mixed content; if a
given node v is mapped into D, then v does not
have siblings in A. Notice, however, that this is
not a limitation, but rather a presentation simpli-
fication. Furthermore, nodes with labels in A have
a single child whose label must be in D. An XML
document is a data tree.

Types. Basically, names of XML elements corre-
spond to names of data types, described in a DTD
or XML Schema. Let S be a schema. We say that
document A := (t,¢, V) satisfies a type T, where
7€ S, iff (¢,0) is a tree derived from the grammar
defined by S such that ¢(roota) — 7. A collec-
tion C of XML documents is a set of data trees.
We say it is homogeneous if all the documents in
C satisfy the same XML type. If not, we say the
collection is heterogeneous. Given a schema S, a
homogeneous collection C'is denoted by the expres-
sion C := (S, Troot), Where T,.o0 is a type in S and
all instances A of C satisfy 7,00;. Figure 3 shows
the SOrders schema that was used in the example
given in Section 2. Over this schema, we can define
collections such as COrders := (SOrders, order),
or Cltems := (SOrders,items), both of Multiple
Documents.

Path Expression. A path expression P is a se-
quence /ei/.../{ex | @y}, where e,€ L, 1 < z < k,

SIGMOD Record, September 2014 (Vol. 43, No. 3)



customer H ==

Figure 3: SOrders sample schema

[k

and a,€ A. P may optionally contain “+” to in-
dicate any element, and “//” to indicate any se-
quence of descendant elements. Besides, the term
e[i] may be used to denote the i-th occurrence of
element e. The evaluation of a path expression
P in a document A represents the selection of
all nodes with label e, (or a;) whose steps from
roota satisfy P. P is said to be terminal if the
content of the selected nodes is simple (i.e., if
they have domain in D). On the other hand, a
simple predicate p is a logical expression: p :=
P O value | ¢(P)Ovalue | ¢p(P) | @Q, where P is
a terminal path expression, 6 € {=, <, >, #,<, >},
value € D, ¢, is a function that returns values in
D, ¢y is a boolean function and ) denotes an arbi-
trary path expression. In the latter case, p is true
if there are nodes selected by @ (existential test).
The following XML fragmentation definition
builds on the semantics of the operators from the
TLC (Tree Logical Classes) algebra [59], since it is
one of the few XML algebras [30, 32, 37, 63, 76,
77] that operates on sets of data trees, which are
natural operands for set fragmentation operations.

XML Fragment. A fragment F' of a homoge-
neous collection C' is a collection represented by
F := (C,~), where v denotes an operator defined
over C. F is horizontal if v denotes a selection; ver-
tical, if operator « is a projection; or hybrid, when
there is a composition of select and project.
Instances of a fragment F' are obtained by ap-
plying v to each document in C. The collection
of the resulting documents form the fragment F,
which is valid if all documents generated by ~ are
well-formed (i.e., they must have a single root).

Horizontal Fragmentation. A horizontal frag-
ment F' of a collection C is defined by the selec-
tion operator (o) [59] applied over documents in C,
where the predicate of ¢ is a boolean expression
with one or more simple predicates. Thus, F has
the same schema of C.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

FCustomer := <C’O7“ders7 7r/o7'der,{/orde’r/items}>
Fltems := <C’Orders,7r order/items {}

Figure 5: Example of vertical fragments

Let p be a conjunction of simple predicates over a
collection C. The horizontal fragment of C' defined
by p is given by the expression F' := (C,0,), where
o, denotes the selection of documents in C that sat-
isfy u, that is, F' contains documents of C for which
u is true. Figure 4 shows the definition of the hori-
zontal fragments we used in Section 2. Notice that
the third fragment is defined as the complement of
the other two.

Notice that, by definition, SD repositories may
not be horizontally fragmented, since horizontal
fragmentation is defined over trees (instead of
nodes). However, the elements in an SD repository
may be distributed over fragments using a hybrid
fragmentation, as described later.

Vertical Fragmentation. A vertical fragment is
obtained by applying the projection operator ()
[59] to “split” a data structure into smaller parts
that are frequently accessed in queries. Observe
that, in XML repositories, the projection operator
has a quite sophisticated semantics: it is possible to
specify projections that exclude subtrees whose root
is located in any level of an XML tree. A projection
over a collection C retrieves, in each document of C
(notice that C' may have a single document, in case
it is of type SD), a set of subtrees represented by a
path expression, which are possibly pruned in some
descendant nodes.

Let P be a path expression over collection C'. Let
I':={FE1,...,E,} bea (possibly empty) set of path
expressions contained in P (that is, path expres-
sions in which P is a prefix). A vertical fragment
of C defined by P is denoted F' := (C,7wpr), where
mpr denotes the projection of the subtrees rooted
by nodes selected by P, excluding from the result
the nodes selected by the expressions in I'. The set
I is called the prune criterion of F. As an exam-
ple, we could separate customers from items, plac-
ing them in different fragments, as shown in Figure
5. Note that this is an alternative fragmentation,
non-related to the one shown in Figure 4.

It is worth mentioning that the path expression
P cannot retrieve nodes that may have cardinality
greater than one, except when the element order
is indicated. This restriction assures that the frag-
mentation results in well-formed documents, with-
out the need of generating artificial elements to re-
organize the subtrees projected in a fragment.

Hybrid Fragmentation. The idea of hybrid frag-
mentation is to apply a vertical fragmentation fol-
lowed by a horizontal fragmentation, or vice-versa.

27



FNorthAmerica 1= <COT‘d€TS, O /order/customer/region="NorthAmerica”
FsouthAmerica = <COrders, O Jorder/customer/region="SouthAmerica”
Fothercontinent = <COT‘d€T‘S, O Jorder /customer/region<>” NorthAmerica” and /order/customer/region<>” SouthAmerica” >

Figure 4: Example of horizontal fragments

An interesting use of this technique is to normalize
the schema of XML collections in SD repositories,
thereby allowing horizontal fragmentation.

Let o0, and mpr be selection and projection
operators, respectively, defined over a collection
C. A hybrid fragment of C is denoted by F :=
(C,mpr ®0,), where mpr 0, denotes the selection
of the subtrees projected by mp that satisfy pu.

Correctness Rules. Consider that a collection
C is decomposed into a set of fragments ® :=
{Fy, ..., F,}. The following rules must be verified
to guarantee the correct fragmentation of C:

Completeness: each data item in C' must appear
in at least one fragment F; € ®. In the horizontal
fragmentation, the data item consists of an XML
document, while in the vertical fragmentation, it is
a node.

Disjointness: for each data item d in C, if d € F},
F; € &, then d cannot be in any other fragment
Fj € P, j 7é 7.

Reconstruction: it must be possible to define an op-
erator V such that C' := VF;, VF; € ®, where V
depends on the type of fragmentation. For hori-
zontal fragmentation, the union (U) operator [37]
is used (TLC is an extension of TAX [37]), and for
vertical fragmentation, the join () operator [59] is
used.

These rules are important to guarantee that
queries are correctly translated from the centralized
environment to the corresponding fragmented one,
and that results are correctly reconstructed.

4. FRAGMENTATION TECHNIQUES

In the next subsection we discuss ad-hoc frag-
mentation alternatives and then we focus on sev-
eral approaches for structured fragmentation, fol-
lowing Ozsu and Valduriez [58] fragmentation clas-
sification.

4.1 Ad-hoc Fragmentation

Ad-hoc fragmentation approaches do not take the
schema into consideration when defining the frag-
ments. To generate the fragments, they either arbi-
trarily cut the document and mark it in a way that
it can be reconstructed later, or use some kind of
constraint over the document. We call these alter-
natives holes and fillers, and constraint-based, re-
spectively.

Holes and Fillers. Bose et al propose a fragmen-

28

tation model for stream data [11]. Using this frag-
mentation model, Bose and Fegaras [10] focus on
processing fragmented data streams using a system
they call XFrag. In this context, the goal is to frag-
ment stream data and send it through the network.
XFrag uses the concept of holes and fillers to frag-
ment XML documents that will be sent over the
network as data streams. The original document
is divided into several smaller documents called
fillers. FEach fragment may contain one or more
holes, where other fragments (the fillers) may fit.
Such holes are marked with special tags stream:hole,
which reference the ID of its corresponding filler.
The information about the structure of the original
document is called tag structure. Roughly speaking,
it describes the DTD of the XML document that is
to be fragmented and assigns an id to each element
type.

Lee, Kim and Kang [45] analyze the classical
holes and fillers approaches for stream query pro-
cessing [10, 36] and claim they are inefficient in
terms of memory consumption. To overcome this
limitation, they propose to use a labeling scheme to
connect vertical fragments of an XML document.
In a XML tree, a labeling schema (such as global
order or Dewey encoding [70]) can be used to con-
nect parent and child. In the same way, Lee, Kim
and Kang use a labeling schema to connect vertical
fragments, where each fragment is a subtree of the
original tree. Despite the ad-hoc nature of this ap-
proach, the authors mention the importance of the
reconstruction property for correctness. Although
there are not an explicit notion of holes and fillers
in this approach, each fragment carries an id that
is used to connect it to its parent, which is similar
to the other holes and fillers approaches.

The query processing technique is also different
from the ones applied to stored data. If we were to
apply traditional distributed query processing tech-
niques with the fragmentation schema proposed in
[11], query processing would be inefficient, since it
would be necessary to completely reconstruct the
document before processing the query. This is be-
cause XFrag does not distinguish between horizon-
tal, vertical and hybrid fragmentation. Also, it is
not possible to describe fragments using predicates,
which makes it impossible to define horizontal or
hybrid fragments.

The ad-hoc fragmentation proposed by Abiteboul
et al. [1, 2] use remote function calls (web ser-

SIGMOD Record, September 2014 (Vol. 43, No. 3)



vices) to fragment XML documents. The approach
is called Active XML, and the goal is to guar-
antee that documents are up-to-date with respect
to the ever-augmenting dynamic issues in current
distributed and parallel computing environments.
From time to time, or at query time, the web ser-
vices are called and the results are embedded as
XML fragments into the Active XML document.
Thus, in this approach, web service calls represent
cross-fragment edges [58]. Note that this can be
seen as a holes and fillers approach, where web ser-
vice calls are considered holes, which mark fragmen-
tation spots, and their results are considered fillers.

Constraint-based. Bonifati and Cuzzocrea [§]
propose a fragmentation approach based on struc-
tural constraints of the XML document: size, tree-
width, and tree-depth. Given values for these three
constraints, their approach finds ways of fragment-
ing the original tree to satisfy the constraints. The
approach is based on a set of heuristics, and it
is called SimpleX. There is no separation of frag-
mentation types, and no correctness rules. The
approach was designed to work with stream data,
but can be applied over stored data as well. The
problem is that there are several possible ways of
fragmenting a database while respecting the con-
straints. In this sense, Waldvogel, Kramis and Graf
[73] propose five split algorithms and evaluate their
performance, with the aim at finding the one that
produces the most effective fragments.

Choi et al [17] use MapReduce to process a set
of small XPath queries in parallel over large XML
documents in an approach called HadoopXML. The
input XML file is fragmented so that data blocks of
equal size are produced. This is similar to the size
constraint proposed by Bonifati and Cuzzocrea [8],
and, as such, there is also no correctness rules or
a formal concept of fragment type. The main goal
of HadoopXML is to process as many small queries
as possible in parallel. High-cost ad-hoc queries are
not addressed.

4.2 Structured Fragmentation

According to Ozsu and Valduriez, ad-hoc frag-
mentation works well when data is already dis-
tributed. However, since there is no clear fragmen-
tation predicate, there is less opportunity for dis-
tributed query optimization. An alternative that
addresses this issue is structured fragmentation,
which is based on the concept of fragmenting an
XML data collection according to some properties
of the schema [58].

Structured fragmentation can be performed in
several ways. In this survey, we classify the ex-

SIGMOD Record, September 2014 (Vol. 43, No. 3)

isting approaches according to the way they define
the fragments, which can be: hybrid, XPath-based,
and set-oriented.

Hybrid. Ma and Schewe [47] base their XML
fragments definition on ideas from fragmentation
of object databases. In fact, a previous publica-
tion of Schewe contrasts fragmentation for these two
models [64]. In their work, Ma and Schewe pro-
pose three types of XML fragmentation: horizon-
tal, which groups elements of an XML document ac-
cording to some selection criteria; vertical, which re-
structures a document by unnesting some elements;
and a special type named split, that breaks an XML
document into a set of new documents. Despite the
use of the names horizontal and vertical, their frag-
ments are not purely based on selection and pro-
jection. For example, horizontal fragmentation in-
volves data restructuring and elements projection,
thus yielding fragments with different schema def-
initions. Also, vertical fragmentation requires the
specification of artificial elements to restructure the
document, and artificial attributes to properly con-
nect document fragments (for reconstruction pur-
poses). Even though the user can define fragments
from several XML documents, their approach is not
suitable for MD repositories. In this case, to define
horizontal fragments, the user must first integrate
all XML documents into an SD view. It is impor-
tant to note that they followed up with their work
[49, 50] by proposing a cost model to help the frag-
ments design aiming at reducing the query process-
ing time [48, 52, 51].

XPath-based. Bremer and Gertz [12] propose an
approach for distributed XML design, covering both
data fragmentation and allocation. Fragments are
defined using XF, a subset of XPath. Each fragment
definition consists of two parts: a selection fragment
and optionally a set of exclusion fragments. The se-
lection fragment is applied to the XML database,
resulting in a set of nodes N. Then, the exclusion
fragments are applied over N. The results are the
desired fragments. It is clear that this formalism
does not distinguish between horizontal and verti-
cal fragmentation, which are combined into a hy-
brid type of fragment definition. Nevertheless, their
approach only addresses SD repositories. They
ailm to maximize local query evaluation by repli-
cating global information, and distributing some
index structures. They present important perfor-
mance improvements, but their empirical evaluation
focuses on the benefits of such indexes. Although
Bremer and Gertz mention correctness rules, they
do not present a reconstruction rule, which is cru-
cial for automatic query processing.

29



Bonifati et al. [9] also define vertical fragments
using XPath expressions. In the fragments defini-
tion, path expressions may contain child axes and
positional filters. One fragment may possibly refer-
ence many fragments: a single super fragment, that
is an ancestor of the current fragment, and (pos-
sibly many) child fragments. Child fragments are
connected to their parent through sub tags that are
artificially inserted into the parent fragment. Each
sub tag references a child fragment. These defini-
tions are used in a DHT (distributed hash table)
P2P (peer-to-peer) system that supports XPath
lookup queries. Since no selection predicate is al-
lowed in the fragment definition, this approach does
not consider horizontal nor hybrid fragmentation.
An extended version of this paper, including exper-
imental results, appeared in a journal paper in 2006
[7]. The main goal of the experiment was to measure
the number of hops needed to find a query answer in
the DHT, assuming the data is fragmented accord-
ing to their definitions. Note that this approach
has also the idea of holes and fillers, but it is classi-
fied as structured since it uses XPath to define the
fragments.

The approach of Jeong et al. [38] also resembles
the idea of holes and fillers. It splits the XML tree
into subtrees with the goal of easing the processing
of keyword-based queries. Fragments are defined
using XPath and connected in a tree of fragments
that is called Fragment Object Tree. There is no
clear distinction between fragment types, but it is
possible to use filters in the XPath expressions to
define fragments (which plays the role of selections),
and each of the several XPath expressions that de-
fine the Fragment Object Tree plays the role of a
projection. Thus, we could classify this approach
as providing a hybrid fragmentation.

Fegaras et al. [29] propose a declarative lan-
guage to specify MapReduce jobs over XML doc-
uments called MRQL [28]. They propose a frag-
mentation technique based on the Hadoop input
format. Fragments are defined by synchronization
nodes and XPath expressions that are applied over
these nodes. There are no correctness rules, but
there is an algebra behind MRQL that is used to
perform query optimization.

Set-oriented. Andrade et al. [4] defined horizon-
tal, vertical and hybrid XML fragments inspired by
the analogous definitions for the relational model
[58]. Their approach is called PartiX and explores
the analogy between relations and collections of
trees (both are sets). It supports both SD and MD
databases. Fragments are defined by XML alge-
bra expressions [59]. A horizontal fragment is de-

30

fined by a selection operation, while a vertical frag-
ment is defined by a projection, plus an optional
set of path expressions that point to subtrees to be
pruned out of the fragment. A hybrid fragment is
defined by a selection followed by a projection, or
vice-versa. The definitions presented on Section 4
are extracted from this work, which is pioneer in
the sense of formally defining correctness rules for
the fragmentation definition. As in the relational
model, the same algebra is used to define fragments
and query predicates, which helps query decompo-
sition and predicate matching. By using the same
algebra and correctness rules, they were able to de-
fine a query processing methodology that is capable
of automatically processing queries over distributed
and fragmented databases [59].

Kido, Amagasa and Kitagawa [39] proposed hor-
izontal and vertical fragmentation for XML data
that was also inspired by the relational model. In
their work, they use Data Guides [34] as the schema
definition for the XML database. Their fragments
are then specified over the Data Guide, which can
be represented as a graph. A vertical fragment is a
sub-graph of the graph that represents the database
schema. A horizontal fragment is defined over a ver-
tical fragment. When compared to the approach of
Andrade et al. [4], the horizontal fragment of Kido,
Amagasa and Kitagawa [39] is similar to the hybrid
fragment of Andrade et al. They do not have a spe-
cific horizontal fragment as presented in PartiX [4],
and no reconstruction rule either.

Kling, Ozsu and Daudjee [41] propose vertical
fragmentation for XML databases. Their defini-
tion of vertical fragments is similar to that of [39].
However, they do not define horizontal nor hybrid
fragments, although they mention they should be
defined by selections (horizontal fragments) and se-
lection plus projections or vice-versa (hybrid frag-
ments).

This, in fact, is done in their following work [42],
where Kling, Ozsu and Daudjee present definitions
for horizontal and vertical fragments. The revised
ideas in [42] are equivalent to those of Andrade et al.
[4]. A horizontal fragmentation algorithm is defined
over MD collections by using selection predicates
and minterm?® combinations, resulting in homoge-
neous fragments. Vertical fragments are defined by
partitioning the schema of the documents into dis-
joint subgraphs, and can be applied to either SD
or MD collections. Finally, horizontal and vertical
fragments can be combined into hybrid fragments.
The focus of their fragmentation design technique,
however, is on pruning fragments for distributed

3A minterm is a conjunction of simple predicates [58].

SIGMOD Record, September 2014 (Vol. 43, No. 3)



query processing rather than on high performance
parallel processing. It is targeted on a previously
known frequent set of queries.

A common problem to [4] and [42] is that the
use of minterms lead to a fixed number of frag-
ments, disregarding the number of available pro-
cessing units. This approach applies to distributed
databases, but not to parallel query processing,
since the number of fragments is typically much
smaller than the current available processing units,
which leads to idle processors and load unbalance.
Since the number of processing units can be very
dynamic, any design with a fixed number of frag-
ments will require additional techniques to provide
for high performance.

S. DISCUSSION

Now that we have discussed the main approaches
on physical XML fragmentation, in this section we
study the impact they had in literature by establish-
ing a timeline. Finally, we analyze the features of
each of the proposed approaches, summarizing their
differences. Our goal is to try to obtain a uniform
view on the XML fragments definitions and show
the benefits of the different fragmentation design
techniques so the designer can choose according to
the target query-processing scenario.

In the timeline, shown in Figure 6, we analyze
when each of the approaches was proposed. Ad-hoc
approaches are shown in green, while structured ap-
proaches are shown in blue. White rectangles de-
note derived approaches. We consider a paper to be
derived from a previous one if it discusses new fea-
tures based on previous definitions. For instance,
Figueiredo, Braganholo and Mattoso [31] used the
definition of Andrade et al. [4] to propose a method-
ology for distributed XML query processing, and
thus it is shown in white in the Figure. For de-
rived approaches, we use a solid line to point to the
original approach (either a green or blue rectangle).
This way we can analyze the impact and continu-
ity of each of the individual approaches. The dot-
ted line that connects Ma and Schewe’s approach
with Schewe’s approach denotes a previous work
that pavements the subject, but do not present the
fragments definitions themselves.

Additionally, each approach is positioned into a
lane, according to its classification as constraint-
based, holes and fillers, XPath-based, set-oriented
or hybrid. This helps one to have a better under-
standing of how each type of approach evolved over
time. While the timeline evidences that the subject
has been continuously investigated throughout the
years, Table 1 and Table 2 summarize the features
of each of the approaches for structured (Table 1)

SIGMOD Record, September 2014 (Vol. 43, No. 3)

and ad-hoc (Table 2) fragmentation, shown in Fig-
ure 6.

The first interesting feature to note is that, from
all of the approaches, only two support fragmenta-
tion of MD collections [4, 42]. These two approaches
are equivalent in terms of ideas. The only differ-
ence resides in the formalism that is used to present
them. Ma and Schewe [47] also mention support to
MD collections, but this needs to be done by first
defining a single SD view, and then applying the
fragmentation over this SD view. This maneuver
could be applied to the other approaches as well,
but it creates an artificial layer that needs to be
handled by the user (that needs to create the views),
and also at query processing time (it may decrease
query performance). All of the approaches support
fragmentation of SD collections.

Regarding the fragmentation types, most of the
approaches allow a hybrid type of fragment [4, 12,
28, 38, 39, 42, 47]. In fact, in [39], a horizontal frag-
ment is a subset of instances conforming to a verti-
cal fragment. Thus, to be able to achieve horizontal
fragmentation, one needs first to vertically fragment
the database. Due to that reason, we consider this
to be a hybrid fragment instead of a horizontal one.
In a similar line of thought, Ma and Schewe [47]
define their horizontal fragments by using selection
and projection operations. In this paper, we con-
sider them to be hybrid fragments, since horizontal
fragments are classically defined only by selection
operations [58]. However, we classified both [47]
and [39] as allowing horizontal fragments in Table
1, preserving the classification given by the paper
authors. According to this discussion and reclassi-
fication of fragmentation types, only [4, 42] support
pure horizontal fragmentation.

As for vertical fragments, four out of nine struc-
tured approaches [4, 39, 42, 41] support pure verti-
cal fragmentation. Ma and Schewe allow a special
type of projection that unnests elements and ar-
range then into new artificial elements in the XML
document. Thus, they do not use pure projections
to define the vertical fragments. Additionally, they
require artificial attributes to be created to support
document reconstruction. Such attributes contain
references to connecting fragments. Similarly, Boni-
fati et al. require an artificial element called sub to
connect vertical fragments. Thus, we do not con-
sider it to use pure projections.

Since ad-hoc fragmentation does not rely on an
explicit fragmentation specification, Table 2 does
not present the fragmentation types.

As mentioned before, in the same way as in the re-
lational model [10], correctness rules are needed for

31



Constraint-based Holes and Filllers ' XPath-based ' Set-oriented Hybrid '
— | | Lo ]
2003 | Abiteboul Abiteboul Bose : Bremer & : ! Ma, Schewe :

E etal. [2] etal. etal. [11] : Gertz [12] i i (48] :
2004 :: iBonifati etal. [9] i i é
! Fegaras ' : :
2006 i ! Bonifati, i Andrade Kido, i Ma, Schewe, i
; : Cuzzocrea 1| etal.[41 Amagasa, : Wang |
H H 1 K Kit: 40 1 1
2007 Bonifati & ! tJeong et al. [39] ! faeonl0] ! Ma, Schewe, !
Cuzzocrea [8] ; v : : Wang |
2008 Waldvogel et al. [73] ; § §
2009 i i
2010 i Lee, Kim, i E Figueiredo, Kling, Ozsu, '\ Ma, Schewe :
! Kang [46] ! | Braganholo Daudjee [42] | ! !
: ! i| & Mattoso 3
2011 | Fegaras et al [29] Kling., Ozsu, |
b ] Daudjee [43] | |
2012| | choietal. [17] i 1
v H H i

Figure 6: Timeline of the XML fragmentation approaches

automatic distributed query processing. When we
use the same XML algebraic operations in fragmen-
tation definition and query processing, automatic
mappings from centralized to distributed fragments
can be achieved following on correctness rules. Ma
and Schewe [47] mention the need of creating arti-
ficial attributes for reconstruction purposes. How-
ever, only three of the proposed approaches present
or mention correctness rules [4, 12, 39]. The ap-
proach in [39], however, does not present them
formally, and does not include the reconstruction
rule, which is crucial for reconstructing the original
database from its fragments and vice-versa, thus al-
lowing a correct mapping from centralized database
to the corresponding distributed database. This al-
lows for automatic distributed query processing on
top of the mapped fragments. Bremer and Gertz’s
approach [12], on the other hand, does mention the
importance of a reconstruction rule, but does not
define it. Only [4] formally defines the three cor-
rectness rules. In fact, these rules are then explored
in their following work [59] to automatically process
distributed queries over the fragmented database.
Finally, most of the approaches deal with stored
data [2, 4, 8, 12, 28, 38, 39, 42, 41, 47] instead of
streams, and use native XML databases to store the
data [2, 4, 8, 12, 38, 42, 41, 47]. Approaches based
on MapReduce use HDF'S to store the data [17, 28].

6. OPEN PROBLEMS

Based on our analysis of previous work in XML
fragmentation, we have identified a list of open
problems, which we discuss next.

32

Fragmentation Design. When fragmentation de-
sign is used, the most frequent queries must be
known to derive a good fragmentation schema - one
that benefits the most frequent queries. Experi-
ments in literature show that queries that do not
benefit from the fragmentation design suffer large
impacts on performance [39, 59]. Only a few work
in literature present algorithms for XML fragmen-
tation design [6, 8, 42, 48, 66]. However, these al-
gorithms were not used in parallel query processing
and they do not present correctness rules for the
resulting fragmentation. This makes it difficult to
check the correctness of the fragmentation schema
designed by the algorithms.

Even in cases where fragmentation design was
performed, it cannot be easily adapted to changes in
the query processing environment (for example, the
addition of processing nodes). Additionally, prun-
ing irrelevant fragments limits parallelism and per-
formance gains, since several computational nodes
remain idle when they have fragments that are ir-
relevant to the query that is being processed. In
fact, experimental results [42] show that the prun-
ing algorithm does not improve query performance.

Implementation. The absence of correctness rules
also affects query processing. Most of the ap-
proaches show evaluation performance of query pro-
cessing, and thus they implemented a prototype
that is capable of processing queries. However,
due to the absence of correctness rules, their pro-
totype becomes a black box, very complex to be
re-implemented by people outside their research
group. This also prevents these approaches from

SIGMOD Record, September 2014 (Vol. 43, No. 3)



Table 1: Summary of the approaches for

structured fragmentation

MD | SD | horizontal vertical hybrid ﬁzf;:ctness sd(::;ce storage
Ma, Schewe [47] N Y i)'erloejct:;?il;l)n + artificial elements | — - stored native
selection
Bremer, Gertz [12] | N Y - - fragments disjointness, stored native
’ + exclusion | completeness
fragments
Bonifati et al. [9] N Y — projection and ar-| - stored native
tificial elements
selection -+ disjointness,
Andrade et al. [4] | Y Y selection projection roiection completeness, | stored native
proJ reconstruction
Kido, Amagasa, subsgt of the subgraph of a disjointness, .
. N Y vertical frag- . - stored relations
Kitagawa [39] ments dataGuide completeness
Jeong et al. [38] N Y - - sele.ctlo.n - stored native
projection
Kling, Ozsu, subset of a .
Daudjee [41] N Y schema graph stored native
Kling, Ozsu, . L. selection 4+ .
Daudjee [42] Y Y selection projection projection - stored native
Fegaras et al. [29] | N Y - - Is)erlojS(:(lziirclm T stored HDFS
Table 2: Summary of the approaches for ad-hoc fragmentation
MD | SD | correctness rules source data storage
Abiteboul et at. [2] N Y - stored or stream native
Bose at al. [11] N Y - stream -
Bonifati, Cuzzocrea [8] | N Y - stored or stream native
Lee, Kim, Kang [45] N Y - stream -
Choi et al. [17] N Y - stored HDFS

being used in Map-Reduce settings. We have un-
successfully searched for publicly available imple-
mentations of each of the approaches, but only
found one of Fegaras et al. [28]. In fact, it is
currently an incubated project at Apache, which
is available at http://lambda.uta.edu/mrql. As
for the ad-hoc approaches, only Active XML is
publicly available at the OW2 open source portal
(http://forge.ow2.org/projects/activexml).

Virtual Fragmentation. The approaches we dis-
cuss in this paper can all be classified as physical
fragmentation, since they physically break the XML
tree into several pieces. Virtual fragmentation [54]
is an alternative to physical fragmentation, and con-
sists of replicating the database into several nodes
and distributing the query into subqueries so that
each node runs over a different portion of the data.
Virtual fragmentation approaches [62] do not suffer
from problems related to the physical fragmenta-
tion design, since data is replicated in all nodes,
and queries run over all available nodes, each over
a small non-overlapping portion of the data. The
sub-queries are run in parallel, thus achieving gains
in performance when compared to centralized ap-
proaches.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

Virtual fragmentation is trickier in the XML
model than in the relational model because of the
lack of keys in the former. In fact, in the relational
model, the sub-queries are built by adding selection
predicates that range over the domain of the table
key. The XPath function position() is a good re-
placement for the table key because it is unique (a
given element in an XML document has a unique
position in the context of its parent). However, this
is not enough. In the same way that virtual frag-
mentation in the relational model needs the help
of clustered indices, another feature of the Native
XML databases is crucial for the virtual fragment
to work properly - each element must be indexed
by its position, so that the query processor can go
directly and only access the desired elements when
processing a sub-query. Full scans must be avoided
at all costs. In fact, experimental results by Silva
et al. [65] show that, in general, native DBMSX in-
dex XML elements by their position. Thus, virtual
fragmentation is a promising technique, especially
in dynamic environments such as clouds, but needs
further investigation.

Parallelism. One of the main problems in obtain-
ing acceleration in parallel query processing is load

33




balance, which is a problem in almost all scenarios.
Load balance is very important for efficient query
processing, and is not taken into account in exist-
ing approaches, not even in virtual fragmentation
[62]. MapReduce tries to deal with load balancing
by submitting backup tasks when the whole process
is close to completion. This way, only the answer
provided by the task that finishes first is considered
[23]. This does not solve the problem, but it is a
start. Recent work has been done on the issue of op-
timizing XML query processing in MapReduce [27,
28, 29]. Others leave the fragmentation technique
open [19]. The authors of [62] suggest using adap-
tive virtual fragmentation [46] to solve this issue.
This, however, has not been done yet.

Acknowledgements. We would like to thank Luiz
Augusto Matos da Silva for helping in the biblio-
graphic search. We would also like to thank CNPq
and FAPERJ for partially supporting this research.

7. REFERENCES

[1] S. Abiteboul, A. Bonifati, G. Cobena, C. Cremarenco,
F. Dragan, I. Manolescu, T. Milo, and N. Preda.
Managing distributed workspaces with active XML. In
VLDB, pages 1061-1064, 2003.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic XML documents with
distribution and replication. In SIGMOD, pages
527-538, 2003.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. HadoopDB: an
architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. PVLDB,
2(1):922-933, 2009.

[4] A. Andrade, G. Ruberg, F. Baido, V. Braganholo, and
M. Mattoso. Efficiently processing XML queries over
fragmented repositories with PartiX. In DATAX, pages
150-163, 2006.

[5] C. Baru, A. Gupta, B. Ludascher, R. Marciano,

Y. Papakonstantinou, P. Velikhov, and V. Chu.
XML-based information mediation with MIX.
SIGMOD Record, 28(2):597-599, 1999.

[6] L. Birhanu, S. Atnafu, and F. Getahun. Native XML
document fragmentation model. In SITIS, pages 233
~240, 2010.

[7] A. Bonifati and A. Cuzzocrea. Storing and retrieving
XPath fragments in structured P2P networks. DKE,
59(2):247-269, 2006.

[8] A. Bonifati and A. Cuzzocrea. Efficient fragmentation
of large XML documents. In DEXA, pages 539-550,
2007.

[9] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and
M. Jain. XPath lookup queries in P2P networks. In
WIDM, pages 48-55, 2004.

[10] S. Bose and L. Fegaras. XFrag: a query processing
framework for fragmented XML data. In WebDB,
pages 97-102, 2005.

[11] S. Bose, L. Fegaras, D. Levine, and V. Chaluvadi. A
query algebra for fragmented XML stream data. In
DBPL, pages 195-215, 2003.

[12] J.-M. Bremer and M. Gertz. On distributing XML
repositories. In WebDB, pages 73—78, 2003.

[13] J.-M. Bremer and M. Gertz. Integrating document and
data retrieval based on XML. The VLDB Journal,

34

14]

[15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27)

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

15(1):53-83, 2006.

S. Chaudhuri, M. Datar, and V. Narasayya. Index
selection for databases: a hardness study and a
principled heuristic solution. IEEE TKDE, 16(11):1313
— 1323, 2004.

D. Che, K. Aberer, and T. Ozsu. Query optimization
in XML structured-document databases. The VLDB
Journal, 15(3):263-289, 2006.

D.-R. Che. Accomplishing deterministic XML query
optimization. Journal of Computer Science and
Technology, 20(3):357-366, 2005.

H. Choi, K.-H. Lee, S.-H. Kim, Y.-J. Lee, and

B. Moon. HadoopXML: a suite for parallel processing
of massive XML data with multiple twig pattern
queries. In CIKM, pages 2737-2739, 2012.

C.-W. Chung, J.-K. Min, and K. Shim. APEX: an
adaptive path index for XML data. In SIGMOD, pages
121-132, 2002.

G. Cong, W. Fan, A. Kementsietsidis, J. Li, and

X. Liu. Partial evaluation for distributed XPath query
processing and beyond. ACM TODS, 37(4):32:1-32:43,
2012.

B. F. Cooper, N. Sample, M. J. Franklin, G. R.
Hjaltason, and M. Shadmon. A fast index for
semistructured data. In VLDB, pages 341-350, 2001.
D. Dash, N. Polyzotis, and A. Ailamaki. CoPhy: a
scalable, portable, and interactive index advisor for
large workloads. PVLDB, 4(6):362-372, 2011.

J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In OSDI, pages
137-150, 2004.

J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. CACM,
51(1):107-113, 2008.

J. Dean and S. Ghemawat. MapReduce: a flexible data
processing tool. CACM, 53(1):72-77, 2010.

J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin,
V. Setty, and J. Schad. Hadoop++: making a yellow
elephant run like a cheetah (without it even noticing).
PVLDB, 3(1-2):515-529, 2010.

J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh,
A. Jindal, and J. Schad. Only aggressive elephants are
fast elephants. PVLDB, 5(11):1591-1602, 2012.

L. Fegaras. Supporting bulk synchronous parallelism in
map-reduce queries. In SC Companion: High
Performance Computing, Networking Storage and
Analysis, pages 1068—-1077, 2012.

L. Fegaras, C. Li, and U. Gupta. An optimization
framework for map-reduce queries. In EDBT, pages
26-37, 2012.

L. Fegaras, C. Li, U. Gupta, and J. J. Philip. XML
query optimization in map-reduce. In WebDB, pages
1-6, 2011.

M. Fernandez, J. Simeon, and P. Wadler. An algebra
for XML query. In FST TCS, pages 11-45, 2000.

G. Figueiredo, V. Braganholo, and M. Mattoso.
Processing queries over distributed XML databases.
JIDM, 1(3):455-470, 2010.

F. Frasincar, G.-J. Houben, and C. Pau. XAL: an
algebra for XML query optimization. Australasian
Computer Science Communications, 24(2):49-56, 2002.
G. Gardarin, A. Mensch, T.-T. Dang-Ngoc, and

L. Smit. Integrating heterogeneous data sources with
XML and XQuery. In DEXA, pages 839-846, 2002.

R. Goldman and J. Widom. DataGuides: enabling
query formulation and optimization in semistructured
databases. In VLDB, pages 436-445, 1997.

G. Gou and R. Chirkova. Efficiently querying large
XML data repositories: A survey. IEEE TKDE,
19(10):1381 —1403, 2007.

SIGMOD Record, September 2014 (Vol. 43, No. 3)



[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

H. Huo, G. Wang, X. Hui, R. Zhou, B. Ning, and

C. Xijao. Efficient query processing for streamed XML
fragments. In Database Systems for Advanced
Applications, volume 3882 of Lecture Notes in
Computer Science, pages 468-482. 2006.

H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava,
and K. Thompson. TAX: a tree algebra for XML. In
DBPL, pages 149-164, 2001.

C.-H. Jeong, Y. Choi, D.-S. Jin, M. Lee, S.-P. Choi,
K. Kim, M.-H. Cho, W.-K. Joo, H.-M. Yoon, J.-H.
Seo, and J. Kim. Service-centric object fragmentation
for efficient retrieval and management of huge XML
documents. In PDCAT, pages 118-124, 2007.

K. Kido, T. Amagasa, and H. Kitagawa. Processing
XPath queries in PC-Clusters using XML data
partitioning. In ICDE Workshops, pages 114-119,
2006.

J. Kim and H.-J. Kim. A partition index for XML and
semi-structured data. DKE, 51(3):349-368, 2004.

P. Kling, M. Ozsu, and K. Daudjee. Generating
efficient execution plans for vertically partitioned XML
databases. PVLDB, 4(1):1-11, 2010.

P. Kling, M. Ozsu, and K. Daudjee. Scaling XML
query processing: distribution, localization and
pruning. Distributed and Parallel Databases,
29(5):445-490, 2011.

H. Kurita, K. Hatano, J. Miyazaki, and S. Uemura.
Efficient query processing for large XML data in
distributed environments. In AINA, pages 317-322,
2007.

K. Lee, J. Min, and K. Park. A design and
implementation of XML-Based mediation framework
(XMF) for integration of internet information
resources. In HICSS, pages 202-202, 2002.

S. Lee, J. Kim, and H. Kang. Memory-efficient query
processing over XML fragment stream with fragment
labeling. Computing and Informatics, 29(5):757-782,
2010.

A. Lima, M. Mattoso, and P. Valduriez. Adaptive
virtual partitioning for OLAP query processing in a
database cluster. JIDM, 1(1):75-88, 2010.

H. Ma and K.-D. Schewe. Fragmentation of XML
documents. In SBBD, pages 200-214, 2003.

H. Ma and K.-D. Schewe. Heuristic horizontal XML
fragmentation. In CAISE, pages 131-136, 2005.

H. Ma and K.-D. Schewe. Fragmentation of XML
documents. JIDM, 1(1):21-34, 2010.

H. Ma and K.-D. Schewe. Revisiting ”Fragmentation of
XML documents”. JIDM, 1(1):35-36, 2010.

H. Ma, K.-D. Schewe, and Q. Wang. A heuristic
approach to cost-efficient fragmentation and allocation
of complex value databases. In ADC, pages 183-192,
2006.

H. Ma, K.-D. Schewe, and Q. Wang. A heuristic
approach to cost-efficient derived horizontal
fragmentation of complex value databases. In ADC,
pages 103-111, 2007.

I. Machdi, T. Amagasa, and H. Kitagawa. XML data
partitioning strategies to improve parallelism in
parallel holistic twig joins. In ICUIMC, pages 471-480,
2009.

M. Mattoso. Virtual partitioning. In L. Liu and M. T.
Ozsu, editors, Encyclopedia of Database Systems,
pages 3340-3341. 2009.

J. McHugh and J. Widom. Query optimization for
XML. In VLDB, pages 315-326, 1999.

M. M. Moro, V. Braganholo, C. F. Dorneles,

D. Duarte, R. Galante, and R. S. Mello. XML: some
papers in a haystack. SIGMOD Record, 38(2):29-34,
2009.

SIGMOD Record, September 2014 (Vol. 43, No. 3)

[57)

[58]

[59]

[60]

[61]

(62]

(63]

[64]

[65]

(6]

[67)

(68]

(69]

[70]

(71]

[72]

73]

[74]

[75]

[76]

[77)

W. Ng and J. Cheng. An efficient index lattice for
XML query evaluation. In DASFAA, pages 753-767,
2007.

M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. 3 edition, 2011.

S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree logical classes for efficient evaluation of
XQuery. In SIGMO, pages 71-82, 2004.

Paul Grosso and Daniel Veillard. XML fragment
interchange. W3C candidate recommendation 12
february 2001., 2001. W3C Candidate
Recommendation 12 February 2001.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In SIGMOD, pages 165-178, 2009.

C. Rodrigues, V. Braganholo, and M. Mattoso. Virtual
partitioning ad-hoc queries over distributed XML
databases. JIDM, 2(3):495-510, 2011.

C. Sartiani and A. Albano. Yet another query algebra
for XML data. In Database Engineering and
Applications Symposium, pages 106—-115, 2002.

K.-D. Schewe. Fragmentation of object oriented and
semistructured data. In BalticDB, pages 253-266,
2002.

L. Silva, L. Silva, M. Mattoso, and V. Braganholo. On
the performance of the position() XPath function. In
DocFEng, 2013.

T. Silva, F. Baiao, J. Sampaio, M. Mattoso, and

V. Braganholo. Towards recommendations for
horizontal XML fragmentation. JIDM, 4(1):27-36,
2013.

M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. MapReduce and
parallel DBMSs: friends or foes? CACM, 53:64-71,
2010.

D. Suciu. Distributed query evaluation on
semistructured data. ACM TODS, 27(1):1-62, 2002.
B. Surjanto, N. Ritter, and H. Loeser. XML content
management based on object-relational database
technology. In WISE, pages 70-79, 2000.

I. Tatarinov, E. Viglas, K. Beyer,

J. Shanmugasundaram, and E. Shekita. Storing and
querying ordered XML using a relational database
system. In SIGMOD, 2002.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using hadoop. In ICDE,
pages 996-1005, 2010.

Z. Vagena, M. Moro, and V. Tsotras. Efficient
processing of XML containment queries using
partition-based schemes. In IDEAS, pages 161-170,
2004.

M. Waldvogel, M. Kramis, and S. Graf. Distributing
XML with focus on parallel evaluation. In DBISP2P,
pages 5567, 2008.

Y. Wu, J. M. Patel, and H. V. Jagadish. Structural
join order selection for XML query optimization. In
ICDE, pages 443-454, 2003.

B. B. Yao, M. T. Ozsu, and J. Keenleyside. XBench - a
family of benchmarks for XML DBMSs. In Efficiency
and Effectiveness of XML Tools and Techniques and
Data Integration over the Web-Revised Papers, pages
162-164, 2003.

M. Zhang and J. T. Yao. XML algebras for data
mining. In Data Mining and Knowledge Discovery:
theory, tools and technology, pages 209-217, 2004.

X. Zhang, B. Pielech, and E. A. Rundesnteiner. Honey,
i shrunk the XQuery!: an XML algebra optimization
approach. In WIDM, pages 15-22, 2002.

35



