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ABSTRACT

A combination of factors render the transportation sec-
tor a highly desirable area for data management re-
search. The transportation sector receives substantial
investments and is of high societal interest across the
globe. Since there is limited room for new roads,
smarter use of the existing infrastructure is of essence.
The combination of the continued proliferation of sen-
sors and mobile devices with the drive towards open
data will result in rapidly increasing volumes of data
becoming available. The data management community
is well positioned to contribute to building a smarter
transportation infrastructure. We believe that efficient
management and effective analysis of big transportation
data will enable us to extract transportation knowledge,
which will bring significant and diverse benefits to so-
ciety. We describe the data, present key challenges re-
lated to the extraction of thorough, timely, and trustwor-
thy traffic knowledge to achieve total traffic awareness,
and we outline services that may be enabled. It is thus
our hope that the paper will inspire data management re-
searchers to address some of the many challenges in the
transportation area.

1. INTRODUCTION

Transportation adversely affects many people’s daily
lives, and increasingly so. For example, as cities con-
tinue to grow, congestion gets worse and affects more
and more people. And emissions from vehicles are re-
sponsible for high concentrations of airborne particles
that increasingly threaten the health of people. For ex-
ample, air pollution is believed to have contributed to
as many as 1.2 million and 600,000 premature deaths
in China and India in 2010'. Emissions also contribute
to the greenhouse effect associated with the accelerating
global warming that threatens to considerably affect the
conditions for life on Earth.

Rapidly growing volumes of data that captures the
state of a transportation infrastructure are becoming
available, due to several developments. Infrastructure

'nttp://tinyurl.com/bl48£q2
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users increasingly carry mobile devices capable of con-
tributing data. The infrastructure is increasingly be-
ing instrumented with data acquisition devices, e.g., in-
frared counting devices, Bluetooth and Wi-Fi base sta-
tions that “see” mobile devices, and cameras. As the
movement towards open public data continues, it is a
safe bet that such data will become available in large
volumes.

An important and challenging goal is to use this data
to achieve total traffic awareness. Individual data sources
generally cover only a limited part of a transportation
infrastructure. To enable global awareness of an entire
infrastructure, the integration, or fusion, of multiple and
diverse data sources is essential. To enable up-to-date
awareness, new query processing techniques are called
for that are capable of ingesting rapid streams of data,
reflecting the data in query results with near-zero la-
tency. The resulting total traffic awareness enables im-
proved as well as new applications and services.

The availability of very interested stakeholders and
large volumes of data allows empirical evaluations of
the feasibility, effectiveness, and efficiency of data man-
agement proposals.

We note that the transportation setting is markedly
different from that of the so-called smart dust, which
was proposed in the beginning of the 1990’s and gained
substantial attention in the early 2000’s. A key idea was
to disperse large quantities of tiny sensing and com-
munication devices in some environment, e.g., a rain
forest, in order to monitor that environment. The de-
vices would organize into a wireless sensor network that
would stream data to users. While this is a compelling
vision, the sizes of deployments are tiny. We are (luck-
ily) unaware of any rain forests having been littered by
large quantities of devices. In contrast, the “sensor net-
work” of transportation is already up and running, and
the continued operation of cities increasingly depend on
the effective use of the data being generated.

We proceed to characterize available transportation
data in Section 2. Then we describe challenges inher-
ent in achieving total traffic awareness in Section 3, and

SIGMOD Record, September 2014 (Vol. 43, No. 3)



Types Techniques Accuracy Cost Dynamic Properties Objects
CANBus High Low Fuel consumption Moving,
Individual GNSS High Low Instantaneous velocities, | stationary
latitude-longitude locations
PS Low Low Travel times,
Collective Cameras High High average velocities, Stationary
LDs High High traffic flow
LBSNs Low Low Instant events, Moving,
Media Radio High Low scheduled events, stationary
Web High Low weather conditions

Table 1: Dynamic Data Gathering Techniques

we outline applications and services that this enables in
Section 4.

2. TRANSPORTATION DATA

Transportation data describes properties of station-
ary and moving objects that influence travel. Stationary
objects include elements of a transportation infrastruc-
ture, e.g., road segments, intersections, points of interest
(POIs), and regions of interest (ROIs). Moving objects
includes vehicles, pedestrians, and location-based social
network (LBSN) users. Both types of objects have static
and dynamic properties.

Stationary objects have static properties, which may
be described in static data sources. For example, the
length, speed limit, and toll cost of a road segment may
be recorded in digital maps and web pages of road au-
thorities. The management of such data calls for spatial-
data integration, e.g., location entity matching [1] and
geospatial data fusion [2]. Moving objects also have
static properties, such as, sizes, weights, or engine types
of vehicles.

Dynamic properties of stationary and moving objects
are described by dynamic data that can be gathered in
different ways. For example, an important dynamic prop-
erty of a road segment is its time-dependent travel time
distribution across a day and a week, which can be ob-
tained from data collected by Bluetooth and Wi-Fi sen-
sors installed along the roads. We categorize three types
of dynamic data gathering techniques in Table 1.

Individual gathering techniques capture individual
moving objects’ dynamic properties. A controller area
network bus (CANBus) is an in-vehicle network that
connects sensors that measure a variety of vehicle-
related data, e.g., fuel consumption, at some frequency.
A Global Navigation Satellite System (GNSS), e.g.,
GPS or Galileo, is able to capture a moving object’s
instantaneous velocities and latitude-longitude locations
at some frequency (up to every 0.02 seconds?). The ac-

http://tinyurl.com/m7wgerc
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curacies of the reported properties are high. For exam-
ple, fuel consumption can be recorded with error rates
between -2% and +2%°.

The data collected by individual moving objects also
relates to different stationary objects. Thus, it is possi-
ble to infer travel times or fuel consumptions associated
with the traversals of road segments.

Collective gathering techniques are deployed at fixed
locations in a transportation network, and they excel at
capturing dynamic properties of stationary objects, e.g.,
the traffic flow of a particular road segment. Presence
sensing (PS) techniques (e.g., Bluetooth, Wi-Fi, RFID,
and Infrared), cameras, and loop detectors (LDs) are
able to detect occurrences of moving objects at fixed lo-
cations where devices are deployed. Given the distance
between, e.g., two cameras, and timestamps of vehicles’
occurrences, the average speeds of road segment can be
derived.

These techniques vary according to the fraction of ob-
jects they are able to detect. Cameras and LDs are able
to capture almost all moving objects that pass by, while
PS techniques are only able to capture some 20 to 30%*
of the objects that pass by. However, deployment and
maintenance costs of PS techniques are relatively low.

Media gathering techniques rely on humans to con-
tribute data, e.g., about an accident, a scheduled event
such as a football match, or the weather. These tech-
niques generally report on dynamic properties of sta-
tionary and moving objects.

Location-Based Social Networks (LBSNs) are good
at capturing instant and scheduled events, e.g., in the
form of check-ins and user-generated content (UGGC)
such as geo-tagged tweets and photos. The density of
captured events depends on the density of users and on
how frequently they post on LBSNs. The accuracy can
vary greatly.

Radio stations can broadcast data on instant and sched-

‘http://tinyurl.com/op6trtx
*http://tinyurl.com/low8vgs
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Figure 1: From Transportation Data to Thorough, Timely, and Trustworthy Transportation Knowledge

uled events and weather conditions. The accuracy is rel-
atively high, and the deployment cost is relatively low.
The web is also a good resource of schedules events and
weather conditions, and accuracy is high and cost is low.

Finally, dynamic data can be classified into real-time,
batch, and historical data. Real-time data is delivered
immediately after being collected, batch data is accu-
mulated and then delivered in batches according to some
protocol, and historical data is delivered some time after
it is collected.

3. TOTAL TRAFFIC AWARENESS

To support different applications and services, we en-
vision a system that transforms data into transportation
knowledge; see the architecture in Figure 1.

3.1 Knowledge Representation and Prop-
erties

Transportation knowledge takes the forms of facts,
statistics, rules, and models. We assume that trans-
portation data is cleaned and pre-processed before being
passed through the modules in Figure 1.

Facts describe stationary and moving objects’ dy-
namic properties, such as the average velocity of a ve-
hicle passing through a segment. Facts are the product
of integration and consolidation of dynamic data across
different data sources. Thus, the fact extraction module
integrate data elements that describe the same property
of an object but are stored in different sources. It is often
appropriate to associate facts with an estimated reliabil-
ity.

Statistics are temporal and spatial aggregations on
dynamic data and facts, such as the distribution of travel
times with which vehicles pass through a road segment
or the frequent routes that a user traverses between home
and work during April. The statistics computation mod-
ule must ensure the integrity of data and facts while de-
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scribing them more compactly.

Rules make it possible to infer stationary-object prop-
erties from the properties of moving objects, and vice
versa. For example, if at least 2% of detected vehicles
having velocities smaller than y then a road segment is
considered as congested. And if a road segment is con-
gested, the time needed to traverse it exceeds z minutes.
Rules are produced by the rule extraction module.

Models describe stochastic processes that represent
possible evolutions of objects across time. For example,
given the current vehicle density at a road segment, a
model may predict possible densities at the segment and
adjacent segments 15 minutes into the future. Given an
object’s past trajectories, a model may predict the the
object’s future trajectories. The model learning mod-
ule derives such models that are subsequently fed with
real-time dynamic data to infer possible dynamic, future
properties.

Next, transportation knowledge can be classified ac-
cording to its temporal aspect. Historical knowledge
describes past traffic and is obtained from the historical
transportation data. Instant knowledge describes cur-
rent or near-past traffic. It is derived by means of fact
extraction, statistics computation, and reasoning from
streaming real-time, dynamic data. Examples include
the current vehicle density of a road segment and the
congestion status of a road segment. Future knowledge
infers future traffic, e.g., whether a segment is congested
or clear 15 minutes from now. This knowledge is ob-
tained from models and real-time dynamic data.

Three aspects are essential to achieve total traffic aware-
ness. First, thoroughness relates to the spatial, tempo-
ral, and property coverage. Spatial coverage is thorough
if the knowledge covers an entire transportation infras-
tructure; temporal coverage is thorough if the knowl-
edge covers an entire period of interest; and property
coverage is thorough if the knowledge fully covers the
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traffic properties of interest (e.g., travel times, fuel con-
sumption). Next, timeliness implies that the available
knowledge is up-to-date. For example, a self-driving
car requires knowledge as to whether it can go across
an intersection to be at most milliseconds old, while a
few seconds of delay may be acceptable for a contin-
uous routing service. Third, trustworthiness means that
the knowledge is sufficiently accurate and reliable for its
use, even if it is derived from inaccurate and uncertain
data. The knowledge should come with a quantification
of its accuracy and reliability.

3.2 Challenges

To achieve total traffic awareness, it is necessary to
effectively and efficiently utilize the available static and
dynamic transportation data. Table 2 offers an overview
of key challenges.

Thoroughness: Any single type of dynamic data is
unable to offer thoroughness by itself. For example,
camera data can only cover the locations where cameras
are deployed. Thus, data integration is of essence. Tra-
ditional techniques, e.g., schema alignment [3] and data
fusion [4], need to be adapted to the spatial-temporal as-
pects. Further, integration must contend with the general
characteristics of transportation data. Recent techniques
for big data integration [5,6] can be helpful. Major chal-
lenges relate to sparsity and duplicate detection.

Sparsity: Although integrating various types of dy-
namic data increases thoroughness, spatial, temporal,
and property data sparsity must be addressed.

Spatial sparsity occurs because some roads lack suf-
ficient data. For example, no data is available for a
road with no PS, LDs, or camera deployment if no ve-
hicle with a contributing GNSS devices has traversed it.
Borrowing data from nearby and topologically similar
roads [7, 8] may be useful for obtaining knowledge for
such roads.

Extrapolation-related techniques may be used for ad-
dressing temporal sparsity. Knowledge for a road during
a period when no data is available can be inferred from
data from nearby periods [9], from data from nearby
roads that have data for the relevant period [8], or from
data from nearby or similar roads with data from nearby
periods [10, 11].

Property sparsity occurs when no data captures a de-
sired property. In such cases, it may be possible to
exploit related data. For example, if only GNSS data
is available for a road segment, but fuel consumption
is desired, it is possible to feed the GNSS data to en-
vironmental impact models to derive fuel consumption
data [12].

To fully contend with sparsity, major challenges re-
main. Many existing methods rely on complex math-
ematical optimizations that do not scale to big trans-
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portation data. Scalable solutions to solving complex
optimizations are missing. Alternatively, novel problem
formulations that exploit scalable techniques, e.g., scal-
able matrix operations, are needed.

Second, existing methods often assume static scenar-
ios rarely consider real-time data. In contrast, our set-
ting calls for techniques that are able to adapt to real-
time data.

Third, existing techniques consider the three sparsity
aspects individually, and typically rely on one type of
data (primarily GNSS data). Techniques that are able
to consider all the three sparsity aspects and to exploit
multiple data sources in a holistic manner are called for.

Duplicate detection: If a moving object is detected
by more than one data gathering technique, duplicate
records are generated. For example, assume that we
want to know the number of vehicles passing through
a road segment during a short period. GNSS records
may suggest 5, while PS records may suggest 7. Simply
adding 5 and 7 is wrong if one vehicle is detected by
both techniques.

Duplicate detection aims to identify the data that de-
scribes same moving objects, where the data is collected
by different techniques. A simple heuristic for identi-
fying duplicates is that if trajectories provided by dif-
ferent techniques are highly consistent, they may refer
to the same moving object. However, the heterogeneity
of trajectories is not addressed well in most of existing
trajectory clustering methods [13]. Recent advances in
duplicate detection in dynamic settings [14] may offer a
good starting point, but cannot be applied directly.

Timeliness: Ensuring up-to-date traffic awareness
presents several challenges.

Incremental maintenance: Historical knowledge,
e.g., amodel for predicting the travel time on a segment,
is built from historical data. As such data accumulates,
the historical knowledge may change. When and how
the historical knowledge would change are usually un-
known and cannot be predicted. This calls for an ef-
ficient and effective approach to incrementally update
and maintain historical knowledge.

While we expect that it will be relatively easy to con-
tend with facts and rules, the real challenge lies in how
to maintain models. One possibility is to adopt an on-
line learning approach, where models are updated fre-
quently using very recent data. However, this approach
may be sensitive to unscheduled traffic events, such as
accidents or road construction. Another strategy may
be to update the historical knowledge only when recent
data disagrees significantly with the existing historical
knowledge. To summarize, incremental maintenance
challenges include: (1) how to efficiently and effectively
identify the (dis)agreement between the existing histor-
ical knowledge and recent data; (2) how to efficiently
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Properties Challenges Historical Instant Future
Knowledge | Knowledge | Knowledge
Thoroughness Dealing with sparsity v v v
Duplicate detection v v v
Incremental maintenance v
Timeliness Efficient retrieval v
Efficient processing v v
Conflict reconciliation v v
Trustworthiness | Veracity enhancement v v
Accurate prediction v

Table 2: Total Traffic Awareness Challenges

and effectively differentiate the two cases; and (3) how
to address disagreements.

Efficient retrieval: We consider the efficient retrieval
of historical knowledge. While some techniques for effi-
cient historical knowledge retrieval do exist, we face the
specific challenge that our knowledge is spatio-temporal
and takes four forms.

There is a need for efficient retrieval that involves
comparisons between historical knowledge and stream-
ing real-time data. For instance, when an accident hap-
pens, it is of interest to predict the spatio-temporal ex-
tent of the congestion in the road network that is caused
by the of the accident. Facts and statistics from a sim-
ilar past accident that happened in a similar situation
(e.g., same region, at a similar time of day, under simi-
lar weather condition) may provide reliable predictions.
Rules (e.g., if an intersection is congested, its X% adja-
cent segments and its Y% 2-nd adjacent segments will
be congested) and models (e.g., prediction of the dura-
tion of congestion) at the current accident location may
also help predict the impact of the accident. How to
efficiently retrieve historical facts, statistics, rules, and
models that are relevant to given dynamic real-time data
is an important challenge.

Efficient processing: It should be possible to gener-
ate instant and future knowledge efficiently from histor-
ical knowledge and dynamic real-time data so that up-
to-date knowledge is available to applications.

The generation of facts, statistics, and traffic statuses
from rules must contend with the specifics of transporta-
tion data and therefore faces challenges akin to this cov-
ered for real-time data integration [15]. As the data
sources that provide transportation data keep changing,
additional challenges result. Also, the solutions to the
thoroughness problems should also be addressed effi-
ciently.

Using models to predict future traffic is another chal-
lenge. Some proposals, e.g., [10, 16], address this prob-
lem. However, whether these proposals are scalable and
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work in a rea-time manner is unknown.

Trustworthy: Different types of data have different
veracity. For example, camera and loop detectors cap-
ture all or nearly all vehicles, while Bluetooth and Wi-
Fi base stations do not. Our setting is faced with large
amounts of low-veracity data. However, the extracted
transportation knowledge should be trustworthy. This
causes a number of challenges, including the following.

Conflict reconciliation: Data from different sources
may disagree on the same property of a moving ob-
ject. For example, GNSS data may suggest that a ve-
hicle travels at 50 km/h, while PS data may suggest
55 km/h. The challenge is how to derive a single, trust-
worthy value for a property given conflicting data, and
how to quantify the trustworthiness.

Methods considering data source trustworthiness (e.g.,
weighted voting) [17, 18] can be adopted. Here, each
type of data is associated with a weight reflecting how
trustworthy it is. Using the weights, a single trustwor-
thy value for a property can be determined. The key is
how to determine the weights. Sometimes, the weight
of a technique may vary due to, e.g., weather condi-
tions. A method that can automatically assign appro-
priate weights and update weights when necessary is
highly desired. A possible solution is to use high-veracity
data, e.g., camera data, as training data, and to assign
and update the weights of other types.

Veracity enhancement: Veracity enhancement aims
to extract high-veracity knowledge from low-veracity
data from multiple sources. An interesting solution may
be to utilize social knowledge (e.g., social media data
that mentions traffic, or crowdsourcing) to help increase
veracity [19]. A challenge is how to utilize social knowl-
edge in an on-line setting.

Accurate prediction: It is challenging to use histor-
ical model knowledge to accurately predict near-future
traffic. This may call for novel types of models capable
of accommodating traffic dynamics and that are robust
enough to deal with low veracity data, e.g., by automat-
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ically dropping outlier data.

4. APPLICATIONS

Total traffic awareness enables a range of applications
and services, a few of which we review here.

Routing: Given a source-destination pair, a routing
service suggests routes. Eco-routing provides routes
that minimizes greenhouse gas emissions. Eco-routing
needs historical knowledge to construct time-varying
eco-weights that describe emissions on road segments
across time and may also need instant and future knowl-
edge to update eco-weights. Concerns for travel time
and distance may also be integrated into eco-routing,
yielding multi-criteria routing [20]. Next, continuous-
routing utilizes current and future knowledge to provide
up-to-date routes, e.g., the fastest route, from a driver’s
current location to the driver’s destination as traffic con-
ditions change. Finally, in context aware, personal-
ized routing, different drivers are provided with different
routes that best match their current preferences.

Parking: The objective is to help drivers find
parking. Capacity notification uses current and fu-
ture knowledge of parking availability to help drivers.
Nearby parking suggests the nearest available parking.
This requires historical knowledge of parking spaces
that are not recorded in digital maps (e.g., on-street
parking [21]) and also needs instant knowledge of cur-
rent availability.

Event Response: This relates to how to respond to an
event, e.g., a traffic accident or a football match. Event
detection concerns the discovery of events. A scheduled
event, e.g., a football match, can be identified from, e.g.,
web pages or social media. An unscheduled event, e.g.,
an accident, needs to be detected from instant knowl-
edge. Event effect predicts the spatio-temporal effect
of an event from historical, instant, and future knowl-
edge. Event notification aims to notify travelers of rel-
evant events in advance. This calls for comparison of a
traveler’s movement with the extent of an event. This
requires instant and future knowledge.
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