
MITRA: Byzantine Fault-Tolerant Middleware for
Transaction Processing on Replicated Databases

Aldelir Fernando Luiz
Federal University of Santa

Catarina – Brazil
aldelir.luiz@posgrad.ufsc.br

Lau Cheuk Lung
Federal University of Santa

Catarina – Brazil
lau.lung@ufsc.br

Miguel Correia
University of Lisboa – IST,

INESC-ID – Portugal
miguel.p.correia@tecnico.ulisboa.pt

ABSTRACT
Replication is often considered a cost-effective solution
for building dependable systems with off-the-shelf hard-
ware. Replication software is usually designed to tole-
rate crash faults, but Byzantine (or arbitrary) faults such
as software bugs are well-known to affect transactional
database management systems (DBMSs) as many other
classes of software. Despite the maturity of replica-
tion technology, Byzantine fault-tolerant replication of
databases remains a challenging problem. The paper
presents MITRA, a middleware for replicating DBMSs
and making them tolerant to Byzantine faults. MITRA
is designed to offer transparent replication of off-the-
shelf DBMSs with replicas from different vendors.

1. INTRODUCTION
For many years, relational database management

systems, often called simply database management
systems (DBMSs), have been a key component of
applications of a wide-range of business areas. We
believe this will continue to be true for many ap-
plications for years ahead. Applications based on
DBMSs usually rely on the reliability of transac-
tion processing and on the availability of the data
stored in the database. Therefore, fault tolerance is
a desirable property for DBMSs.

Replication is a well-known approach to make ser-
vices fault-tolerant, which has already been applied
to DBMSs [8, 18]. The idea is that the service is
executed in a set of servers in such a way that if
some of them fail, the service as a whole stays op-
erational and clients continue to be able to execute
transactions. However, DBMS vendors usually do
not provide native support for replication or hooks
for third-party replication protocols. This puts on
third-parties the burden of either modifying DBMS
source code (if available) or to develop middleware
that intercepts client requests and delivers them to
the servers. The latter is the approach followed in
this paper.

The replication of databases has been studied both

in the databases and distributed systems research
communities. Although Gray commented that it
can be hard to achieve strong consistency in repli-
cated databases [8], Schiper and Raynal have shown
that transactions on replicated databases have com-
mon properties with group communication primi-
tives such as ordering and atomicity [15]. After
that result, several researchers studied the use of
group communication systems and middleware to
support database replication [12, 4, 10, 16, 6, 13].
Most of the solutions for database replication tole-
rate only crash faults [12, 4, 10]. Although these are
arguably the most common faults, Byzantine or ar-
bitrary faults are also common in today’s systems.
Faults such as data corruption in disk or RAM due
to physical effects or in software due to bugs are
Byzantine faults, not crashes. Interestingly, many
bugs have historically been found in DBMSs [7].

In the literature there are a few proposals of By-
zantine fault-tolerant (BFT) protocols to replicate
databases [7, 16, 6, 13]. However, they are focused
on a specific problem, based on assumptions hard
to substantiate in practice, or simply not the best
for certain applications. Specifically, [7] does not
allow concurrent transactions; HRDB [16] depends
on a centralized controller; Byzantium [6] adopts a
consistency criterion that may cause anomalies vio-
lating the semantics of some applications (snapshot
isolation); and BFT-DUR [13] does neither handle
relational databases nor Byzantine clients.

This paper presents the design of a middleware
for BFT database replication, MITRA (Middleware
for Interoperability on TRAnsactional replicated da-
tabases). MITRA supports design diversity [14],
i.e., different replicas can run different DBMSs. This
is an important mechanism to avoid common mode
failures caused, e.g., by a bug existing in all replicas.
The middleware supports concurrent transactions,
has no centralized components, and provides serial-
izability. The paper does not delve into the details
of the protocol at the core of the middleware, which
has already been presented elsewhere [11], but on its

32 SIGMOD Record, March 2014 (Vol. 43, No. 1)

design and architectural aspects.
MITRA is modular in the sense that it does not

require changes on the DBMSs and it encapsulates
all complexity of the BFT replication. The middle-
ware is written in Java and modularity is achieved
by following the Java Database Connectivity (JDBC)
specification. The rest of this paper is organized as
follows: Section 2 discusses some concepts on data-
base replication; Section 3 introduces MITRA and
its design; in Section 4, we describe some imple-
mentation details and an experimental evaluation;
Section 5 concludes the paper.

2. DATABASE REPLICATION
There are several taxonomies of database repli-

cation schemes in the literature [8, 17]. A particu-
larly interesting one classifies protocols in terms of
their update propagation strategy, i.e., of the way
in which they make the state of the replicas con-
verge. This taxonomy classifies database replica-
tion schemes in three classes: synchronous (or ea-
ger replication), asynchronous (or lazy replication),
and certification-based.

A synchronous or eager replication protocol prop-
agates the updates of a transaction by applying
them on the replicas before the transaction com-
mits [8]. More specifically, such a scheme provides
strong consistency and fault tolerance by ensuring
that updates are stable at multiple replicas before
replying to the clients.

An asynchronous or lazy replication protocol ex-
ecutes and commits each transaction at a single
replica, delaying the propagation of updates until
the transaction has committed [8]. Lazy replication
tends to perform better than eager replication be-
cause it avoids the communication overhead of the
later during normal execution. However, lazy repli-
cation can let replicas diverge and lose the effects
of some transactions [18].

A certification-based protocol uses group commu-
nication primitives such as total order multicast for
ordering transactions and propagating write and
read sets to the group of replicas [12, 18]. This
approach is optimistic since reads and updates are
first executed on a single replica without any syn-
chronization with the rest, being a transaction com-
mitted only if there are no conflicting updates. MI-
TRA follows this approach since it has shown good
performance in the past [12, 10].

3. THE MITRA MIDDLEWARE
As explained, MITRA is a middleware that aims

to tolerate Byzantine faults on database systems fol-
lowing the certification-based replication approach.

It encapsulates the fault tolerance mechanisms by
implementing the JDBC API specification, in order
to provide a heterogeneous and replicated environ-
ment that appears to the clients as a single virtual
DBMS. The ability to support DBMS diversity is
important because different systems are unlikely to
share the same bugs or vulnerabilities [7].

DB 1 DB 2 DB 3 DB 4

MITRA middleware

Native DBMS Driver

Proxy

Application

Proxy

Application

Proxy

Application
JDBC
API

JDBC
API

Native DBMS Driver Native DBMS Driver Native DBMS Driver

Figure 1: Basic architecture of MITRA

Figure 1 presents the basic architecture of MI-
TRA. The client application interacts with the da-
tabase through a proxy that exports the JDBC API
and replaces what would normally be a DBMS-
specific JDBC driver (e.g., a MySQL or a Post-
greSQL JDBC driver). The middleware is imple-
mented essentially on the server-side, meaning that
the protocol is mostly executed by the servers where
the database is replicated. The figure represents
it abstractly in the form of a mid-layer, but there
are server-side replication processes running in all
the servers and communicating through the net-
work. The middleware at each server makes calls
to a DBMS driver – again a JDBC driver – that
hides the specifics of the DBMS from the replica-
tion process. These drivers are readily available
for a wide range of DBMSs (http://devapp.sun.com/

product/jdbc/drivers). The use of different DBMSs
in different servers provides diversity.

3.1 Assumptions
We consider a system composed of an arbitrary,

finite, set of clients C = {c1, c2, ..., cn} and a set of
n replicas S = {r1, r2, ..., rn}. These entities com-
municate by message passing, through the network.
We assume that an unlimited number of clients and
up to f = bn−1

3 c replicas can be faulty, i.e., can de-
viate arbitrarily from their specification (Byzantine
faults).

Let a database be a collection of data items D =
{x1, x2, ..., xn}. A transaction is a sequence of read
and/or write operations on these data items, initi-
ating by a begin transaction operation and ending
with a commit or an abort operation. To support
certification-based database replication, we make
some assumptions about the replica DBMSs: (i)
they are relational and transactional; (ii) they sup-
port rollback of operations; (iii) they implement

SIGMOD Record, March 2014 (Vol. 43, No. 1) 33

Point&to&point
communica,on

Total/Order/Mul,cast
communica,on

Client

Server/1

Server/2
(leader)

Server/3

Server/4

beginning/phase execu,on/phase

Ce
rti

fic
at

io
n

an
d

Co
m

m
itm

en
t

of
 th

e
Tr

an
sa

ct
io

n

termina,on/phase

1 2 3 4 5

6

73 4

Figure 2: MITRA’s replication protocol with its three phases.

strict two-phase locking and serializable isolation;
(iv) statements modify the database atomically, with-
out side effects.

As mentioned, MITRA is based on a group com-
munication primitive. Specifically, MITRA uses a
BFT total order multicast primitive based on a con-
sensus protocol [3]. We make a weak assumption
about the synchrony of the system to ensure the ter-
mination of this primitive: communication delays
do not grow exponentially. This is required by the
impossibility of solving consensus deterministically
in asynchronous systems [5]. We also assume the
existence of a collision-resistant cryptographic hash
function and a message authentication function to
ensure the integrity and authenticity of messages.

3.2 Replication Protocol
The replication strategy adopted in MITRA is an

extension of the original certification-based repli-
cation scheme [18] to handle Byzantine faults. In
this sense, MITRA operates by letting transactions
execute first on a single replica in an optimistic
way; when the termination of the transaction is
requested, that replica total order multicasts the
transaction’s reads and writes to the rest of the
replicas for certification and commitment. The use
of this multicast primitive guarantees that all repli-
cas execute these operations in the same order de-
spite the existence of concurrency [1]. This section
briefly presents the protocol (details in [11]).

The execution of MITRA’s protocol for a single
transaction is represented in the time diagram of
Figure 2. For each transaction, a replica is selected
to be the leader and the rest are followers. The
protocol has three phases that we explain next: be-
ginning, execution, and commitment.

Beginning. A transaction begins with a client open-
ing a connection to the database. The client-side

part of the middleware sends a begin transaction
message to all replicas using the total order multi-
cast primitive (step 1). Upon delivering this mes-
sage, every replica applies a deterministic criterion
to select a single replica to be the leader and ex-
ecute the transaction’s operations in a speculative
way. Then, every replica sends an acknowledgement
to the client with the identifiers of the leader and
the transaction, concluding this phase (step 2).

Execution. Figure 2 illustrates this phase in steps
3 and 4, which are repeated for all the statements
of the transaction. On receiving the begining-phase
acknowledgment from at least f + 1 replicas, the
client becomes aware of which replica is the transac-
tion’s leader. The client connects to the leader and
submits its read and write operations to that replica
(step 3). After receiving a statement, the leader ex-
ecutes it and returns the result to the client (step
4). Note that during this phase, there is no inter-
action among replicas since our protocol relies on
optimistic concurrency control [9]; the other repli-
cas do not even receive the statements. This phase
ends when the client requests the commitment of
the transaction.

Termination. To request commitment of a trans-
action, the client totally order multicasts a request
commit message to all replicas (step 5). This mes-
sage carries the statements issued in the transac-
tion and a hash of the results received by the client.
Upon delivering the request commit message, every
replica changes the transaction to a state indicating
that it is ready to commit. Then, the leader to-
tally order multicasts to all replicas a message with
the following data (step 6): a hash of the trans-
action’s statements received and processed; a hash
of the transaction’s state; the transaction’s readset
and writeset. Upon delivering the commit message,
all replicas verify the data in the request commit

34 SIGMOD Record, March 2014 (Vol. 43, No. 1)

and commit messages. If they match, every replica
starts a certification test where it checks the valid-
ity of transaction’s readset in the database. These
checks are needed to guarantee the transaction in-
tegrity and validity, and to preserve the serializabil-
ity. These checks also prevent a Byzantine client
from either forging a transaction or committing a
spurious transaction. If any of the checks fails, the
transaction is aborted.

If the transaction passes these checks and there
is a concurrent transaction (or more), the termina-
tion still involves another certification step. Con-
sider two transactions, Ti and Tj . We say that Ti

precedes Tj if the commit message for Ti is deliv-
ered by the replicas before they deliver the request
commit message for Tj . We say that these trans-
actions are concurrent if neither Ti precedes Tj nor
Tj precedes Ti. The transaction Ti being commit-
ted passes the certification test iff for any concur-
rent transaction Tj , readset(Ti)∩writeset(Tj) = ∅.
When the transaction passes this test, we can be
assured that it does not violate serializability, so
its writes are applied in the databases at all repli-
cas. The certifications test is deterministic so every
replica will reach the same outcome for Ti.

The protocol and the transaction end when all
non-faulty replicas reply to the client with the out-
come of the transaction (step 7). The client accepts
the outcome if it receives the same reply from at
least f+1 distinct replicas. No more than f replicas
are faulty, so this avoids that the client accept the
outcome of a faulty replica that unilaterally com-
mits a non-serializable transaction.

A final remark. In a serializable execution where
Tj is executed before a concurrent transaction Ti,
Ti would see all of Tj ’s writes. Our approach is con-
servative in the sense that Ti and Tj could be exe-
cuted optimistically, concurrently, in different repli-
cas, but the certification test allows Ti to commit
only if Ti did not read any item written/updated
by Tj (a read-write conflict and dirty read).

3.3 Middleware Components
Figure 3 presents a detailed architecture of the

server-side of the middleware. Recall that the mi-
ddleware runs at each server, so the representation
of the middleware as a single box is an abstraction of
reality. The client-side is not detailed as it is much
simpler, e.g., it encapsulates calls to the database
as messages to the replication protocol.

Client Connection Manager. The client connec-
tion manager is the interface with the clients, i.e.,
it is the component that receives messages from the
clients and forwards them messages. It works at the

Lock Manager

Backend Database Management System
Connection Manager / Native Database Driver

Transaction
Certifier

Request Scheduler
Request

Preprocessor

Request Manager

Client Connection Manager

Authentication
Manager

Transaction
Manager

Transaction
Request Buffer
Result Cache

TO-Multicast Send Receive
Network

DB 1 DB 2 DB 3 DB 4

Client Client

« stm
t result »

« statement »

«
st

at
em

en
t »

« pre-parsed
statem

ent »

« pre-parsed statement »

«
st

at
em

en
t »

« stmt result »

« request/statement »
« request/statement reply »

«
re

qu
es

t

 s
tm

t »

« reply
stm

t »

« statement » ↑ « reply » ↓

« grant or reject locks »
« request locks »

« request
 dblocks »

« accepted or
rejected locks »

« transaction’s read- and write- sets »

« transaction’s outcome »

« client identity » « accepted or rejected »

«
tra

ns
ac

tio
n

co
nt

ro
l m

es
sa

ge
 d

el
ive

ry
 »

« reply »

« client identity »

 Communication ModuleByzantine Fault-Tolerant Total Order Multicast

1

4

5

6
7

13

2

3

8

14

15

9

8 / 10 9 / 11

12

1

2

3

4

5

6

11

7

10

«
en

tri
es

 →
 c

m
t /

 a
bt

 »

« outcom
e »

12

13

14

5 / 15

6 / 16

Figure 3: MITRA’s components.

level of communication abstractions such as sockets
and channels. Upon receiving a client’s message it
forwards it to the authentication manager, to ver-
ify if its content is valid and belongs to some active
transaction. If that is the case, it forwards the mes-
sage to the request manager for proper treatment;
otherwise, it discards the message and sends an ex-
ception to the client.

Request Manager. The request manager manages
all requests received by the server. When a state-
ment is received, the module does basic syntax check-
ing to verify if it is well-formed, then invokes the
next module to preprocess the statement. Then, it
invokes the transaction manager to link the state-
ment with its transaction, as there can be several
concurrent transactions being executed through the
middleware, and process it.

Request Preprocessor. This component is respon-
sible for the just mentioned syntax checking and
preprocessing. MITRA has to support diversity of
DBMSs, so there are compatibility issues that must
be solved. The middleware supports the standard
way of interaction with databases using SQL (Struc-
tured Query Language), so the use of different di-
alects of this language is a problem when diversity is
needed. A solution would be to restrict statements
to ANSI SQL, but our experience shows that this
is too limitative. Therefore, our middleware solves

SIGMOD Record, March 2014 (Vol. 43, No. 1) 35

this problem by translating the SQL statements is-
sued by the clients into the native SQL dialect of
the back-end database replica running at the server.
This translation is a complex task, but there are
software packages that are able to do it for most
SQL dialects, e.g., the SwisSQL API (http://www.
swissql.com/products/sql-translator/sql-converter.html)
or the SQL-Translator (http://search.cpan.org/∼frew/
SQL-Translator-0.11018).

Transaction Manager. This module controls trans-
action execution and keeps data concerning active
and committed transactions. This module is re-
sponsible for: (i) scheduling the statements’ execu-
tions in the database (by invoking the request sched-
uler); and (ii) executing the actions requested by
control messages. When the total order multicast
protocol delivers a control message, this message is
passed to the transaction manager that does the fol-
lowing: begin transaction – starts a new transaction
on the database; request commit – changes the state
of the transaction and sends a commit message if it
is the leader; commit – starts the transaction certi-
fication test in order to either commit or abort the
transaction.

Transaction Certifier. The transaction certifier ex-
ecutes two tasks: (i) checks the validity of every
data item read by a transaction; and (ii) checks
whether the data items read in an optimistic way
are up to date when commit is requested. These
tasks are done during the termination phase of the
protocol to ensure consistency and serializability. In
this way, the transaction certifier guarantees that a
transaction only commits if it is consistent, it has
read valid data items, and its reads do not con-
flict with writes of any concurrent transaction al-
ready committed (see Section 3.2). Note that both
tasks are necessary because a Byzantine replica may
send spurious data items to the client, or may reply
to statements with obsolete data. It is noteworthy
that due to the use of total order multicast all repli-
cas deliver the commit message to the same trans-
action in the same order, thus they can certify and
commit the transaction in the same way. Lastly,
since the transaction certifier does transaction cer-
tification and commitment in a serialized way, this
ensures determinism and that the replica’s states do
not diverge.

Lock Manager. The lock manager is responsible for
acquiring the read and write locks on the data items
of a given transaction against the database, accord-
ing to the read and write sets for that transaction.
This module acts as a scheduler for requesting the
locks in the database. All locks for a transaction

are requested and acquired in the same order in all
replicas, since this happens when these replicas de-
liver the commit message for that transaction. In
this way, the order in which all replicas do it is the
order imposed by the total order multicast protocol.

Request Scheduler. When the leader replica re-
ceives a valid read or write statement from a client,
it passes that statement to the request manager.
Next, the statement goes to the transaction man-
ager and, finally, to the request scheduler that ex-
ecutes it in the local database. The scheduler is
responsible for dealing with concurrency control is-
sues in cooperation with the local DBMS. All oper-
ations are executed synchronously, in the sense that
the scheduler waits for a result from the DBMS to
send it to the client (by replying to the transaction
manager that then sends it to the client connection
manager). The scheduler waits for a response for a
given interval of time and returns an exception to
the client if that time expires without receiving it.

Authentication Manager. The authentication man-
ager maps the authentication credentials provided
by the user – login and password in the current ver-
sion – with the credentials used to access the local
DBMS in the server. The login/password provided
by the user are not the ones used in the local data-
bases, but a form of access to the virtual database
provided by the middleware. This module also ver-
ifies the authenticity of the messages received from
the clients.

4. PROTOTYPE AND EVALUATION
We implemented the MITRA prototype fully in

Java, as a replicated middleware on top of database
replicas. As we said in Section 3, our implementa-
tion provides a standard JDBC interface, in order
to be transparent to client applications. MITRA’s
JDBC driver is the client-side part of the middle-
ware. It encapsulates the database requests in pro-
tocol messages that it forwards to the server-side
part of the middleware, the replicas. The replicas
access the databases through their native Type IV
JDBC drivers. As BFT total order multicast pro-
tocol we used BFT-SMaRt, a stable and efficient
BFT replication library written in Java (http://code.
google.com/p/bft-smart) [3]. Although the code was
implemented carefully, at this stage no attempt was
made to make it efficient to the point of being us-
able in real systems.

We present some experimental results of the exe-
cution of MITRA. Other evaluation aspects such
as message complexity can be found in [11]. We
evaluate MITRA with the industry standard Online

36 SIGMOD Record, March 2014 (Vol. 43, No. 1)

Transaction Processing TPC-C benchmark (http:
//www.tpc.org/tpcc). In our evaluation, we compare
MITRA, HRDB (with CBS configuration), Byzan-
tium (our own implementation with single-master
configuration) and standalone DBMSs. We did not
run BFT-DUR because it relies on a key/value data-
base, and the TPC benchmarks are not compatible
with this type of databases.

All experiments were done in a LAN with nine
machines running CentOS 5.8 and IBM’s JDK 6.0,
each with 4GB of RAM, an Intel Core 2 Duo E8400
2.67GHz CPU and an Intel 82567LM-3 Gigabit Eth-
ernet interface. The replicas and the clients were
attached to the same network switch (Gigabit Eth-
ernet). In order to have database diversity, we used
MySQL 5.5.8 (InnoDB) and Informix Innovator-C
Edition 11.70-UC1 with MITRA and PostgreSQL
8.4 with Byzantium. For the TPC-C experiments,
we loaded the databases (every replica) with 10
warehouses and 10 districts per warehouse. We con-
sider only the case of f = 1, which is the typical
value used in the evaluation of BFT protocols, as
replicas are expensive. Therefore, we executed both
MITRA and Byzantium with 4 replicas, and HRDB
with 3. The remaining 5 machines were used to run
up 50 clients issuing transactions with an interval
of 200 ms. The values reported in Figure 4 are the
averages of 25 experiments.

(a) Throughput without replication.

(b) Throughput with replication.

Figure 4: Experimental results for standard
TPC-C workload (with no batches).

Figure 4(a) aims to show the overhead introduced

by the middleware without replication. The label
Mid/MySQL corresponds to MITRA with MySQL
as DBMS and Mid/Ifmx to MITRA with Informix.
In both cases, the clients interact with a single da-
tabase server through MITRA. These two config-
urations are not fault-tolerant so they aim simply
to provide a lower bound on the performance that
our prototype can achieve. The experiments labeled
MySQL, Informix and PostgreSQL were obtained
through the native JDBC drivers for these DBMSs
without involving the middleware. A brief compar-
ison of MITRA’s JDBC driver and native DBMSs
JDBC drivers shows that the overhead introduced
by the middleware is at most 35%, depending on the
DBMS. We believe this overhead can be reduced by
better engineering the source code, but at this stage
our objective was only to have a proof-of-concept
prototype.

Figure 4(b) presents the results of running TPC-
C with MITRA, HRDB, and our own implementa-
tion of Byzantium, with 50 clients producing trans-
actions. In these experiments, both MITRA and
HRDB used MySQL as DBMS, while Byzantium
used PostgreSQL. We used different DMBSs for MI-
TRA and Byzantium because they have different
requirements. MITRA needs DBMSs that supports
serializable isolation, whereas Byzantium needs a
DBMS that supports snapshot isolation. The fig-
ure shows that MITRA has a slightly worse perfor-
mance than the rest, which was expected for the
following reasons. HRDB relies on a centralized co-
ordinator, so it does not need to use a multicast
between replicas or to run a certification in every
replica, reducing much the overhead involved. How-
ever, the benefits of MITRA in relation to HRDB
are clear: the failure of up to any f servers does not
preclude our middleware from continuing to process
transactions; in HRDB the failure of the coordina-
tor stops the system. Byzantium scales better for
three reasons, all related to snapshot isolation: it
needs only write sets to certify transactions; it needs
just one atomic multicast to do commit; it does
not need to acquire locks on read operations. How-
ever, snapshot isolation is weaker than serializabil-
ity and under certain circumstances, it can produce
incorrect results by violating integrity constraints
[2], which not happen in MITRA.

5. FINAL REMARKS
The paper presented a flexible middleware for By-

zantine fault-tolerant replication of databases using
heterogeneous DBMSs. Due to the use of JDBC,
MITRA is compatible with applications that use
this interface to interact with the database, being

SIGMOD Record, March 2014 (Vol. 43, No. 1) 37

transparent to the DBMSs, except for issues related
to dialects of SQL. Although MITRA is not the only
solution for BFT database replication, none of the
alternatives provides simultaneously serializability
and full distribution. The performance of MITRA
is slightly worse than others, which was expected
due to the characteristics of that protocol and the
fact that we did not make a strong effort to make
the prototype efficient. Nevertheless, the results are
promising and the costs seem to provide an ade-
quate tradeoff with the benefits, at least for some
applications. We believe that these overheads are
not overly onerous, especially given the increased
robustness and fault tolerance that MITRA offers
for an application.

Acknowledgments. This work was partially sup-
ported by the CAPES through project Lead Clouds
(A039 2013) and by the CNPq through PDI 560258/
2010-0 and by the FCT through contract PEst-OE/
EEI/LA0021/2013 (INESC-ID).

6. REFERENCES
[1] D. Agrawal, G. Alonso, A. E. Abbadi, and

I. Stanoi. Exploiting atomic broadcast in
replicated databases. In Proceedings of the 3rd
International European Conference on
Parallel Processing, pages 496–503, 1997.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A Critique of ANSI
SQL Isolation Levels. ACM SIGMOD Record,
24(2):1–10, 1995.

[3] A. Bessani, J. Sousa, and E. Alchieri. State
Machine Replication for the Masses with
BFT-SMaRt. In Proceedings of the
IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014.

[4] E. Cecchet, J. Marguerite, and
W. Zwaenepoel. C-JDBC: Flexible database
clustering middleware. In Proceedings of the
USENIX Annual Technical Conference, pages
9–18, 2004.

[5] M. J. Fischer, N. A. Lynch, and M. S.
Paterson. Impossibility of distributed
consensus with one faulty process. Journal of
the ACM, 32(2):374–382, 1985.

[6] R. Garcia, R. Rodrigues, and N. Preguiça.
Efficient middleware for Byzantine
fault-tolerant database replication. In
Proceedings of the 6th European Conference
on Computer Systems, pages 107–122, 2011.

[7] I. Gashi, P. T. Popov, and L. Strigini. Fault
tolerance via diversity for off-the-shelf
products: A study with SQL database servers.
IEEE Transactions on Dependable and Secure

Computing, 4(4):280–294, 2007.
[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha.

The dangers of replication and a solution. In
Proceedings of the ACM SIGMOD
International Conference on Management of
Data, pages 173–182, 1996.

[9] H. T. Kung and J. T. Robinson. On
optimistic methods for concurrency control.
ACM Transactions on Database Systems,
6:213–226, 1981.

[10] Y. Lin, B. Kemme, M. P. no Mart́ınez, and
R. Jiménez-Peris. Middleware based data
replication providing snapshot isolation. In
Proceedings of the ACM SIGMOD
International Conference on Management of
Data, pages 419–430, 2005.

[11] A. F. Luiz, L. C. Lung, and M. Correia.
Byzantine fault-tolerant transaction
processing for replicated databases. In
Proceedings of the 10th IEEE International
Symposium on Network Computing and
Applications, pages 83–90, 2011.

[12] F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach. Distributed
and Parallel Databases, 14(1):71–98, 2003.

[13] F. Pedone, N. Schiper, and
J. Armendáriz-Iñigo. Byzantine fault-tolerant
deferred update replication. In Proceedings of
the 5th Latin-American Symposium on
Dependable Computing, pages 7–16, 2011.

[14] B. Randell. System structure for software
fault tolerance. IEEE Transactions on
Software Engineering, 1(2):221–232, 1975.

[15] A. Schiper and M. Raynal. From group
communication to transactions in distributed
systems. Communications of the ACM,
39:84–87, 1996.

[16] B. Vandiver, H. Balakrishnan, B. Liskov, and
S. Madden. Tolerating Byzantine faults in
transaction processing systems using commit
barrier scheduling. In Proceedings of 21st
ACM Symposium on Operating Systems
Principles, pages 59–72, 2007.

[17] M. Wiesmann, F. Pedone, A. Schiper,
B. Kemme, and G. Alonso. Database
replication techniques: a three parameter
classification. In Proceedings of the 19th IEEE
Symposium on Reliable Distributed Systems,
pages 206–215, 2000.

[18] M. Wiesmann, F. Pedone, A. Schiper,
B. Kemme, and G. Alonso. Understanding
replication in databases and distributed
systems. In Proceedings of the 20th
International Conference on Distributed
Computing Systems, pages 464–474, 2000.

38 SIGMOD Record, March 2014 (Vol. 43, No. 1)

