
Stratos	Idreos	Speaks	Out	on		
Database	Craking	

	
Marianne	Winslett	and	Vanessa	Braganholo	

Stratos Idreos

http://stratos.seas.harvard.edu/

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community.
I’m Marianne Winslett, and today we are in Phoenix, site of the 2012 SIGMOD and PODS conference. I have here
with me Stratos Idreos, who is the 2011 recipient of the SIGMOD Jim Gray Dissertation Award for his thesis
entitled Database Cracking: Towards Auto-tuning Database Kernels. Stratos's advisors were Stefan Manegold and
Martin Kersten, and his PhD is from the University of Amsterdam. Stratos is currently a tenure-track researcher at
the Dutch National Research Institute for Mathematics and Computer Science (CWI)1. So, Stratos, welcome!

1 Stratos is currently an Assistant Professor at the Harvard University.

46 SIGMOD Record, December 2016 (Vol. 45, No. 4)

Tell me what your thesis is about.

My thesis introduced the concept of database cracking.
The main idea is that every query that comes through
the database system will be used as an advice on how
data should be stored on disk and on memory. So
basically, the system creates indexes incrementally and
on the fly during query processing. Normally, database
systems would need enough idle time and workload
knowledge to create indexes. Now, with database
cracking, indexes are created automatically without
you having to worry about all these preparations.

So when you say incrementally, do you mean you
create the whole index while queries are running, or
you create part of a traditional index?

Exactly, that is a very good question. So, creating the
whole index while queries are running, this is online
indexing. There’s a couple of works by Surajit
Chaudhuri and Nico Bruno at Microsoft that do online
indexing. In addition, there is the work by Alkis
Plyzotis which came at about the same time. Our work
is about incremental indexing. We create only parts of
the index during query processing. So, let me give you
a more representative example. I create part of indexes
within select operators, for example. So if you have a
select operator of a query that says give me everything
from this table where values of attribute A are between
20 and 30, then we would take the column of attribute
A and we would split it in three parts: from 0-20, from
20-30, from 30-whatever. Then you have introduced
range partitioning by splitting the table in three pieces,
and that is enough information to improve future
queries.

So, then if you want to use an index in the future, you
start by checking if the data is covered…

If this partition exists, you can use it, you can explore
it, you can refine it even more. So these little pieces
that you create, they become smaller and smaller with
every other query. And every other query introduces
more and more partitioning, which means more
knowledge about how data is laid on disk, and then
you can explore it. And by pieces becoming smaller,
performance becomes better.

So when you say smaller, what do you mean smaller? I
would think they would become larger over time.

Larger in terms of how many they are, smaller in terms
of how many tuples they have inside.

I see, so they get divided into finer grained courses.

Yes, and if you think about it, at every range select
operator you have to touch at most two pieces, because
you only have to check the boundaries of the range,
and that’s at most two pieces. And by pieces becoming
smaller, you have to analyze less tuples with every
other query.

Doesn’t this make query optimization harder?

Yes and no. No because you have chosen to always use
indexes. So every query will use indexes, there is no
decision about that. You blindly go and use the same
database plan with every query. You could think about
it as if you always created clustered indexes, basically.
It’s not secondary indexes.

I see. When you say it is not secondary indexes, do you
mean you rearrange the data on disc to match…?

Yes. We rearrange the actual data. We create copies of
the data, and we rearrange these copies. So at the first
time that you query, for example, if you want to select
over attribute A, we create a copy of this column and
we start rearranging this column. And then every query
that wants to select on A will go directly there, and
won’t touch the base data anymore.

So, later queries on attribute B make another copy
with B, and not the whole tuple, just the tuple ID is
there?

Exactly. It’s attribute B and the tuple ID.

But what about updates?

Updates, that’s a tricky business. But what we do with
updates is that we defer them. When updates come, we
just keep them aside. And we only merge them when a
relevant query comes. So let’s go back to the previous
example: attribute A, between 0-10, 20-30 and so on.
Then if another query comes and says, okay, I want
values between 20-25, if and only if there are pending
updates within this range, then we merge them on the
fly during query processing. So the select operator
would not only fine grain the partitioning information,
but it would also merge updates.

I	stopped	taking	rejected	
[papers]	reviews	very	

religiously.		

SIGMOD Record, December 2016 (Vol. 45, No. 4) 47

And if I understood correctly, if the query is over
attributes A and B, you’ll have a little index that’s just
for that range of A and B?

Yes.

Hmmm, very interesting. So how did you show that’s
better than the alternatives?

First of all, let me clarify that this kind of ideas, this
kind of research, is applicable for exploratory dynamic
workloads. So in the case that you know exactly what
you are looking for, you have enough idle time to
prepare your indexes for that, you should not be using
database cracking, there’s no sense. But in the case
where you don’t have enough knowledge about the
workload, and you don’t have enough idle time to
prepare, then is when you should be using database
cracking. So what we always do in our experiments is
we compare database cracking with a plain, non-
indexing approach, where you have to scan your data,
and we always compare it with the perfect indexes,
which in the case of column-stores is when you have
basically sorted arrays. And that is the equivalent of
offline indexing, in this case, because, in order to sort
an array, you need time to do the sorting, and you need
to know that this array is useful when sorted. What we
typically see in these examples is that the performance
of database cracking starts with the first query being
almost as expensive as a scan (just a little bit more
expensive), and then it quickly improves performance,
and after a few queries, it reaches the optimum
performance of an index. But the offline indexing
approach takes typically 10 times more in order to
create the index. So if you don’t have idle time, you
first have to pay this 10 times more overhead.

Ok, that’s interesting.

Maybe a more representative example would be
queries of TPC-H, for example. In order to create the
optimal indexes for the columns in TPC-H in this
particular machine that we used and everything, we
needed about 3 hours. With cracking we could answer
all queries, getting to optimum performance in a matter
of seconds, basically.

And then, so if you just did cracking with no previous
knowledge of the TPC-H workload, versus if you had
created the perfect indexes beforehand, what’s the
difference in performance at run time of the
transactions?

So, we havent’t studied extensively the performance of
transactions, we typically do only analytical read
queries. But the difference compared to the optimal
index is basically zero. You reach the optimal
performance. You don’t expect optimal performance as
of query one. In the case of TPC-H (it is actually a
good case for us because the workload is skewed), you
reach optimal performance in a matter of 5-10 queries,
and the good point is that as of query number two, you
are way below the performance of a no index
approach. But then as of query 5-10, you reach the
optimal performance of a perfectly tuned database.
Now, if you devise micro-benchmarks, where you have
random workloads basically, this optimum
performance comes after thousands of queries, not
after 5 or 6.

Do you have any words of advice for today’s PhD
students?

I would have many. My main lesson that I try to
remember now after my PhD is that I stopped taking
rejected [papers] reviews very religiously. So one big
mistake that I think that I made over the years is that
sometimes I got reject reviews (and I got many of
them), and then I thought that “okay, I should react
very very seriously based on this review”, and
sometimes I ended up basically just destroying papers
and making them very dense, just because I was trying
to put every little detail in there. So I think this would
be good, although we should take rejects very
seriously, and put comments to use, but maybe we
should also take a step back, and think about it again.

Is there another piece of advice you would like to
share?

Yeah, I’ll say that it’s not only about research, we
should also take good care of yourself as well, so
maybe sometimes take a step back, don’t do so much
research, do some physical activities.

Very good! Thank you very much for talking with us
today!

Thank you!

Take	good	care	of	yourself,	
(…)	do	some	physical	

activities.	

48 SIGMOD Record, December 2016 (Vol. 45, No. 4)

