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SIGMOD Edgar F. Codd Innovations Award

For innovative and highly significant contributions of enduring value to the development, understanding, or use
of database systems and databases. Formerly known as the "SIGMOD Innovations Award", it now honors Dr.
E.F. (Ted) Codd (1923 - 2003) who invented the relational data model and was responsible for the significant
development of the database field as a scientific discipline. Recipients of the award are the following:

Michael Stonebraker (1992) Jim Gray (1993) Philip Bernstein (1994)
David DeWitt (1995) C. Mohan (1996) David Maier (1997)

Serge Abiteboul (1998) Hector Garcia-Molina (1999) Rakesh Agrawal (2000)
Rudolf Bayer (2001) Patricia Selinger (2002) Don Chamberlin (2003)
Ronald Fagin (2004) Michael Carey (2005) Jeffrey D. Ullman (2006)
Jennifer Widom (2007) Moshe Y. Vardi (2008) Masaru Kitsuregawa (2009)
Umeshwar Dayal (2010) Surajit Chaudhuri (2011) Bruce Lindsay (2012)
Stefano Ceri (2013) Martin Kersten (2014) Laura Haas (2015)

Gerhard Weikum (2016)

SIGMOD Systems Award
For technical contributions that have had significant impact on the theory or practice of large-scale data
management systems.

Michael Stonebraker and and Lawrence Rowe (2015) Martin Kersten (2016)
SIGMOD Contributions Award

For significant contributions to the field of database systems through research funding, education, and
professional services. Recipients of the award are the following:

Maria Zemankova (1992) Gio Wiederhold (1995) Yahiko Kambayashi (1995)
Jeffrey Ullman (1996) Avi Silberschatz (1997) Won Kim (1998)

Raghu Ramakrishnan (1999) Michael Carey (2000) Laura Haas (2000)

Daniel Rosenkrantz (2001) Richard Snodgrass (2002) Michael Ley (2003)

Surajit Chaudhuri (2004) Hongjun Lu (2005) Tamer Ozsu (2006)
Hans-Jorg Schek (2007) Klaus R. Dittrich (2008) Beng Chin Ooi (2009)
David Lomet (2010) Gerhard Weikum (2011) Marianne Winslett (2012)
H.V.Jagadish (2013) Kyu-Young Whang (2014) Curtis Dyreson (2015)

Samuel Madden (2016)

SIGMOD Jim Gray Doctoral Dissertation Award
SIGMOD has established the annual SIGMOD Jim Gray Doctoral Dissertation Award to recognize excellent
research by doctoral candidates in the database field. Recipients of the award are the following:

= 2006 Winner: Gerome Miklau. Honorable Mentions: Marcelo Arenas and Yanlei Diao.

= 2007 Winner: Boon Thau Loo. Honorable Mentions: Xifeng Yan and Martin Theobald.

= 2008 Winner: Ariel Fuxman. Honorable Mentions: Cong Yu and Nilesh Dalvi.

= 2009 Winner: Daniel Abadi. Honorable Mentions: Bee-Chung Chen and Ashwin Machanavajjhala.
= 2010 Winner: Christopher Ré. Honorable Mentions: Soumyadeb Mitra and Fabian Suchanek.

= 2011 Winner: Stratos Idreos. Honorable Mentions: Todd Green and Karl Schnaitterz.

= 2012 Winner: Ryan Johnson. Honorable Mention: Bogdan Alexe.

= 2013 Winner: Sudipto Das, Honorable Mention: Herodotos Herodotou and Wenchao Zhou.

= 2014 Winners: Aditya Parameswaran and Andy Pavlo.

= 2015 Winner: Alexander Thomson. Honorable Mentions: Marina Drosou and Karthik Ramachandra
= 2016 Winner: Paris Koutris. Honorable Mentions: Pinar Tozun and Alvin Cheung

A complete list of all SIGMOD Awards is available at: http://sigmod.org/sigmod-awards/
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Editor’s Notes

Welcome to the December 2016 issue of the ACM SIGMOD Record!

This issue opens with the 2016 Dagstuhl Report that outlines some of the most important research
directions in the area of Principles of Data Management (PDM). In April 2016, a group of research-
ers in the PDM area joined in a workshop at the Dagstuhl Castle in Germany, which was organized
jointly by the Executive Committee of the ACM Symposium on Principles of Database Systems
(PODS) and the Council of the International Conference on Database Theory (ICDT). As summarized
in this report, the workshop identified research challenges for PDM around seven core themes,
namely, Managing Data at Scale, Multi-model Data, Uncertain Information, Knowledge-enriched Da-
ta, Data Management and Machine Learning, Process and Data, and Ethics and Data Management. In
addition, the workshop highlighted two accelerating trends: the increasing embrace of neighboring
disciplines, including especially Machine Learning, Statistics, Probability, and Verification; and the
increased focus on obtaining positive results to enable the use of mathematically-based insights in
practical settings. These trends are expected to continue in the years to come.

The Database Principles column continues with an article by Koutris and Suciu on a formal analysis
of multiway join processing in massively parallel systems. The article introduces a theoretical mod-
el, called the MPC (Massively Parallel Computation) model, which characterizes the number of syn-
chronization points and the maximum load per machine as observed in popular Hadoop and Spark
systems. Using the MPC model the article shows the design of novel algorithms for multiway join
and theoretical results that prove their optimality through tight lower bounds.

The Vision column features two articles. The first article, by Kamat and Nandi, studies variance im-
plementations in real-world database systems given their increased importance in big data analyt-
ics. The article reports that some major database systems use a representation that suffers from
floating point precision loss, then reviews literature on variance calculation in both the statistics
and database communities, and finally gives recommendations on implementing variance functions
in various query processing settings. The second article, by Vartak et al., studies visualization rec-
ommendation systems. With the advent of large, high-dimensional datasets and significant interest
in data science, there is a growing need for tools that can support rapid visual analysis. This article
presents the vision of a new class of visualization systems that can automatically identify and inter-
actively recommend visualizations relevant to an analytical task. The article describes the key re-
quirements for such a visualization recommendation system as well as the challenges in realizing
this vision, and finally presents several approaches to address the challenges.

The Distinguished Profiles column features Rick Hull, a distinguished researcher, and Stratos Idre-
os, a recent recipient of the SIGMOD Jim Gray Dissertation Award. Rick Hull is currently a research-
er at IBM. Before joining IBM, he was a professor at the University of Southern California for many
years and managed a research group at Bell Labs. Rick is an ACM Fellow and a coauthor of the clas-
sic database theory book, “Foundations of Databases.” In this interview, Rick talks about his work
experiences in different institutes and highlights a few research topics such as artifact-centric busi-
ness process models and cognitive computing. The second interview features Stratos Idreos, the
2011 recipient of the SIGMOD Jim Gray Dissertation Award. Stratos’ thesis addresses Database
Cracking, that is, auto-tuning of database kernels. Stratos is currently an Assistant Professor at the
Harvard University.
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The Reports column features a report on the First International Workshop on Reproducible Open
Science (RepScience2016), which was organized in conjunction with the 20th edition of the Inter-
national Conference on Theory and Practice of Digital Libraries. The goal of the workshop was to
provide a forum for constructively exploring foundational, organizational, and systemic challenges
towards the implementation of Open Science publishing principles. The workshop brought together
skills and experiences in the form of invited talks and paper presentations, focusing on the defini-
tion and establishment of the next generation scientific communication ecosystem.

On behalf of the SIGMOD Record Editorial board, I hope that you enjoy reading the December 2016
issue of the SIGMOD Record!

Your submissions to the SIGMOD Record are welcome via the submission site:
http://sigmod.hosting.acm.org/record

Prior to submission, please read the Editorial Policy on the SIGMOD Record’s website:
https://sigmodrecord.org

Yanlei Diao

December 2016

Past SIGMOD Record Editors:

loana Manolescu (2009-2013)  Alexandros Labrinidis (2007-2009) Mario Nascimento (2005-2007)

Ling Liu (2000-2004) Michael Franklin (1996-2000) Jennifer Widom (1995-1996)
Arie Segev (1989-1995) Margaret H. Dunham (1986-1988) Jon D. Clark (1984-1985)
Thomas J. Cook (1981-1983) Douglas S. Kerr (1976-1978) Randall Rustin (1974-1975)

Daniel O’Connell (1971-1973) Harrison R. Morse (1969)
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Research Directions for
Principles of Data Management (Abridged)

Serge Abiteboul Marcelo Arenas

Pablo Barceld

Meghyn Bienvenu

Diego Calvanese  Claire David Richard Hull Eyke Huillermeier
Benny Kimelfeld  Leonid Libkin Wim Martens Tova Milo
Filip Murlak Frank Neven = Magdalena Ortiz  Thomas Schwentick
Julia Stoyanovich Jianwen Su Dan Suciu
Victor Vianu Ke Yi

In April 2016, a community of researchers work-
ing in the area of Principles of Data Management
(PDM) joined in a workshop at the Dagstuhl Castle
in Germany. The workshop was organized jointly
by the Executive Committee of the ACM Sympo-
sium on Principles of Database Systems (PODS)
and the Council of the International Conference on
Database Theory (ICDT). The mission of the work-
shop was to identify and explore some of the most
important research directions that have high rele-
vance to society and to Computer Science today,
and where the PDM community has the potential to
make significant contributions. This article presents
a summary of the report created by the workshop
[4]. That report describes the family of research
directions that the workshop focused on from three
perspectives: potential practical relevance, results
already obtained, and research questions that ap-
pear surmountable in the short and medium term.
The report organizes the identified research chal-
lenges for PDM around seven core themes, namely
Managing Data at Scale, Multi-model Data, Uncer-
tain Information, Knowledge-enriched Data, Data
Management and Machine Learning, Process and
Data, and Fthics and Data Management. Since new
challenges in PDM arise all the time, we note that
this list of themes is not intended to be exclusive.

The Dagstuhl report is intended for a diverse
audience, ranging from funding agencies, to universi-
ties and industrial research labs, to researchers and
scientists who are exploring the many issues that
arise in modern data management. The report is
also intended for policy makers, sociologists, and
philosophers, because it re-iterates the importance
of considering ethics in many aspects of data cre-
ation, access, and usage, and suggests how research
can help to find new ways for maximizing the bene-
fits of massive data while nevertheless safeguarding
the privacy and integrity of citizens and societies.

SIGMOD Record, December 2016 (Vol. 45, No. 4)

The field of PDM is broad. It has ranged from the
development of formal frameworks for understanding
and managing data and knowledge (including data
models, query languages, ontologies, and transaction
models) to data structures and algorithms (includ-
ing query optimizations, data exchange mechanisms,
and privacy-preserving manipulations). Data man-
agement is at the heart of most I'T applications today,
and will be a driving force in personal life, social
life, industry, and research for the foreseeable future.
We anticipate on-going expansion of PDM research
as the technology and applications involving data
management continue to grow and evolve.

PDM played a foundational role in the relational
database model, with the robust connection be-
tween algebraic and calculus-based query languages,
the connection between integrity constraints and
database design, key insights for the field of query
optimization, and the fundamentals of consistent
concurrent transactions. This early work included
rich cross-fertilization between PDM and other disci-
plines in mathematics and computer science, in-
cluding logic, complexity theory, and knowledge
representation. Since the 1990s we have seen an
overwhelming increase in both the production of
data and the ability to store and access such data.
This has led to a phenomenal metamorphosis in the
ways that we manage and use data. During this
time, we have gone (1) from stand-alone disk-based
databases to data that is spread across and linked
by the Web, (2) from rigidly structured towards
loosely structured data, and (3) from relational data
to many different data models (hierarchical, graph-
structured, data points, NoSQL, text data, image
data, etc.). Research on PDM has developed during
that time, too, following, accompanying and influ-
encing this process. It has intensified research on
extensions of the relational model (data exchange,
incomplete data, probabilistic data, ... ), on other
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data models (hierachical, semi-structured, graph,
text, ...), and on a variety of further data man-
agement areas, including knowledge representation
and the semantic web, data privacy and security,
and data-aware (business) processes. Along the way,
the PDM community expanded its cross-fertilization
with related areas, to include automata theory, web
services, parallel computation, document processing,
data structures, scientific workflow, business process
management, data-centered dynamic systems, data
mining, machine learning, information extraction,
etc.

Looking forward, three broad themes in data man-
agement stand out where principled, mathematical
thinking can bring new approaches and much-needed
clarity. The first relates to the overall lifecycle of
so-called “Big Data Analytics”, that is, the applica-
tion of statistical and machine learning techniques
to make sense out of, and derive value from, mas-
sive volumes of data. As documented in numerous
sources, so-called “data wrangling” can form 50%
to 80% of the labor costs in an analytics investi-
gation. As discussed in the Dagstuhl report, the
PDM research areas of Managing Data at Scale,
Knowledge-enriched Data, Multi-model Data, Un-
certain Information, and Data Management and
Machine Learning are all relevant to supporting
Big Data Analytics. The second broad theme of
data management where principled thinking can
help stems from new forms of data creation and pro-
cessing, especially as it arises in applications such as
web-based commerce, social media applications, and
data-aware workflow and business process manage-
ment. The PDM research areas of Multi-model Data,
Knowledge-enriched Data, Uncertain Information,
and Process and Data are all relevant to this theme.
These are providing approaches that make it easier
to understand and process the myriad kinds of data
and updates involved, and to enable higher degrees
of confidence in transactional software that is used
to process the data. The third broad theme, which is
just beginning to emerge, is the development of new
principles and approaches in support of ethical data
management. Emerging research suggests that the
use of mathematical principles in research on Ethics
and Data Management can lead to new approaches
to ensure data privacy for individuals, a broader
perspective on notions of “fair” data dissemination
and analysis, and compliance with government and
societal regulations at the corporate level.

The findings of the Dagstuhl report differ from,
and complement, the findings of the 2016 Beckman
Report [1] in two main aspects. Both reports stress
the importance of “Big Data” as the single largest
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driving force in data management usage and re-
search in the current era. The current report focuses
primarily on research challenges where a mathemat-
ically based perspective has had and will continue
to have substantial impact. This includes for ex-
ample new algorithms for large-scale parallelized
query processing and Machine Learning, and mod-
els and languages for heterogeneous and uncertain
information. The current report also considers ad-
ditional areas where research into the principles of
data management can make growing contributions in
the coming years, including for example approaches
for combining data structured according to different
models, process taken together with data, and ethics
in data management.

The remainder of this article includes overviews
of the seven PDM research areas mentioned above,
and a concluding section with comments about the
road ahead for PDM research. The interested reader
is referred to the full Dagstuhl Report [4] for more
detail and references.

1. MANAGING DATA AT SCALE

Volume is still the most prominent feature of Big
Data. The PDM community, as well as the general
theoretical computer science community, has made
significant contributions to efficient data processing
at scale. Still, however, we face important practical
challenges such as the following:

New Paradigms for Multi-Way Join Processing.

A celebrated result by Atserias, Grohe, and Marx
[17] has sparked a flurry of research efforts in re-
examining how multi-way joins should be computed.
In all current relational database systems, a multi-
way join is processed in a pairwise framework using
a binary tree (plan), which is chosen by the query
optimizer. However, the recent theoretical studies
have discovered that for many queries and data in-
stances, even the best binary plan is suboptimal by
a large polynomial factor. Several worst-case algo-
rithms have been designed in different computation
models [70, 51, 20, 6], all of which have abandoned
the binary tree paradigm, while adopting a more
holistic approach. In particular, leapfrog join [87]
has been implemented inside a full-fledged database
system. We believe that these newly developed al-
gorithms have a potential to change how multi-way
join processing is currently done in database sys-
tems. Of course, this can only be achieved with
significant efforts for designing and implementing
new query optimizers and cost estimation under the
new paradigm.

SIGMOD Record, December 2016 (Vol. 45, No. 4)



Approximate Query Processing.

The area of online aggregation [49] studies new
algorithms that allow to return approximate results
(with statistical guarantees) for analytical queries at
early stages of the processing, so that the user can
terminate it as soon as the accuracy is acceptable.
Recent studies have shown encouraging results [48,
61], but there is still much room for improvement:
(1) The existing algorithms have only used simple
random sampling or sample random walks to sample
from query results. More sophisticated techniques
based on Markov Chain Monte Carlo might be more
effective. (2) The streaming algorithms community
has developed many techniques to summarize large
data sets into compact data structures while pre-
serving properties of the data. These summarization
techniques can also be useful in approximate query
processing. (3) Integrating these techniques into
data processing engines is still a significant chal-
lenge.

These practical challenges raise the following the-
oretical challenges:

The Relationship Among Various Big Data Com-
putation Models.

The theoretical computer science community has
developed many beautiful models of computation
aimed at handling data sets that are too large for the
traditional random access machine (RAM) model,
the most prominent ones including parallel RAM
(PRAM), external memory (EM) model, streaming
model, the BSP model and its recent refinements
to model modern distributed architectures. Several
studies seem to suggest that there are deep connec-
tions between seemingly unrelated Big Data compu-
tation models for streaming computation, parallel
processing, and external memory, especially for the
class of problems interesting to the PDM community
(e.g., relational algebra) [80, 45, 58]. Investigating
this relationship would reveal the inherent nature
of these problems with respect to scalable computa-
tion, and would also allow us to leverage the rich set
of ideas and tools that the theory community has
developed over the decades.

The Communication Complexity of Parallel Query
Processing.

New large-scale data analytics systems use massive
parallelism to support complex queries on datasets.
These systems use clusters of servers and proceed in
multiple communication rounds. In these systems,
the communication cost is usually the bottleneck,
and therefore has become the main measure of com-
plexity for algorithms designed for these models.

SIGMOD Record, December 2016 (Vol. 45, No. 4)

Recent studies (e.g., [20]) have established tight
bounds on the communication cost for computing
join queries, but many questions remain open: (1)
The existing bounds are tight only for one-round
algorithms. However, new large-scale systems like
Spark have greatly improved the efficiency of multi-
round iterative computation, thus the one-round
limit seems unnecessary. The communication com-
plexity of multi-round computation remains largely
open. (2) The existing work has only focused on a
small set of queries (full conjunctive queries), while
many other types of queries remain unaddressed.
Broadly, there is great interest in large-scale machine
learning using these systems, thus it is important
to study the communication complexity of classical
machine learning tasks under these models. This is
developed in more detail in Section 5, which sum-
marizes research opportunites at the crossroads of
data management and machine learning.

We think that the following techniques will be use-
ful in handling these challenges: statistics, sampling
and approximation theory, communication complex-
ity, information theory, and convex optimization.

2. MULTI-MODEL DATA: AN OPEN
ECOSYSTEM OF DATA MODELS

Over the past 20 years, the landscape of available
data has dramatically changed. While the huge
amount of available data is perceived as a clear
asset, exploiting this data meets the challenges of
the “4 V’s” mentioned in the Introduction.

One particular aspect of the wvariety of data is
the existence and coexistence of different models for
semi-structured and unstructured data, in addition
to the widely used relational data model. Examples
include tree-structured data (XML, JSON), graph
data (RDF, property graphs, networks), tabular
data (CSV), temporal and spatial data, text, and
multimedia. We can expect that in the near future,
new data models will arise in order to cover particu-
lar needs. Importantly, data models include not only
a data structuring paradigm, but also approaches
for queries, updates, integrity constraints, views,
integration, and transformation, among others.

Following the success of the relational data model,
originating from the close interaction between theory
and practice, the PDM community has been working
for many years towards understanding each one of
the aforementioned models formally. Classical DB
topics—schema and query languages, query evalu-
ation and optimization, incremental processing of
evolving data, dealing with inconsistency and incom-
pleteness, data integration and exchange, etc.—have
been revisited. This line of work has been successful



from both the theoretical and practical points of
view. As these questions are not yet fully answered
for the existing data models and will be asked again
whenever new models arise, it will continue to offer
practically relevant theoretical challenges. But what
we view as a new grand challenge is the coexistence
and interconnection of all these models, complicated
further by the need to be prepared to embrace new
models at any time.

The coexistence of different data models resem-
bles the fundamental problem of data heterogeneity
within the relational model, which arises when se-
mantically related data is organized under different
schemas. This problem has been tackled by data
integration and data exchange, but since these clas-
sical solutions have been proposed, the nature of
available data has changed dramatically, making the
questions open again. This is particularly evident
in the Web scenario, where not only the data comes
in huge amounts, in different formats, is distributed,
and changes constantly, but also it comes with very
little information about its structure and almost no
control of the sources. Thus, while the existence and
coexistence of various data models is not new, the
recent changes in the nature of available data raise
a strong need for a new principled approach for deal-
ing with different data models: an approach flexible
enough to allow keeping the data in their original
format (and be open for new formats), while still
providing a convenient unique interface to handle
data from different sources. It faces the following
four specific practical challenges.

Modelling Data.

How does one turn raw data into a database?
Could we create methodologies allowing engineers
to design a new data model?

Understanding Data.

How does one make sense of the data? Could we
help the user and systems to understand the data
without first discovering its structure in full?

Accessing Data.
How does one extract information? How can we
help users formulate queries in a more uniform way?

Processing Data.
How does one evaluate queries efficiently?

These practical challenges raise concrete theoret-
ical problems, some of which go beyond the tradi-
tional scope of PDM. Within PDM, the key theoret-
ical challenges are the following.
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Schema Languages.

Design flexible and robust multi-model schema
languages. Multi-model schema languages should
offer a uniform treatment of different models, the
ability to describe mappings between models (im-
plementing different views on the same data, in
the spirit of data integration), and the flexibility to
seamlessly incorporate new models as they emerge.

Schema Extraction.

Provide efficient algorithms to extract schemas
from the data, or at least discover partial struc-
tural information (cf. [23, 26]). The long-standing
challenge of entity resolution is exacerbated in the
context of finding correspondences between data sets
structured according to different models [85].

Visualization of Data and Metadata.

Develop user-friendly paradigms for presenting
the metadata information and statistical properties
of the data in a way that helps in formulating queries.
This requires understanding and defining what the
relevant information in a given context is, and rep-
resenting it in a way allowing efficient updates as
the context changes (cf. [30, 15]).

Query Languages.

Go beyond bespoke query languages for the spe-
cific data models [13] and design a query language
suitable for multi-model data, either incorporating
the specialized query languages as sub-languages or
offering a uniform approach to querying, possibly
at the cost of reduced expressive power or higher
complexity.

Evaluation and Optimization.

Provide efficient algorithms for computing mean-
ingful answers to a query, based on structural in-
formation about data, both inter-model and intra-
model; this can be tackled either directly [56, 46] or
via static optimization [21, 33].

All these problems require strong tools from PDM
and theoretical computer science in general (com-
plexity, logic, automata, etc.). But solving them will
also involve knowledge and techniques from neigh-
boring communities. For example, the second, third
and fifth challenges naturally involve data mining
and machine learning aspects (see Section 5). The
first, second, and third raise knowledge representa-
tion issues (see Section 4). The first and fourth will
require expertise in programming languages. The
fifth is at the interface between PDM and algorithms,
but also between PDM and systems. The third raises
human-computer interaction issues.
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3. UNCERTAIN INFORMATION

Incomplete, uncertain, and inconsistent informa-
tion is ubiquitous in data management applications.
This was recognized already in the 1970s [32], and
since then the significance of the issues related to
incompleteness and uncertainty has been steadily
growing: it is a fact of life that data we need to han-
dle on an everyday basis is rarely complete. How-
ever, while the data management field developed
techniques specifically for handling incomplete data,
their current state leaves much to be desired, both
theoretically and practically. Even after 40+ years of
relational technology, when evaluating SQL queries
over incomplete databases one gets results that make
people say “you can never trust the answers you get
from [an incomplete] database” [34]. In fact we know
that SQL can produce every type of error imaginable
when nulls are present [63].

On the theory side, we appear to have a good
understanding of what is needed in order to pro-
duce correct results: computing certain answers to
queries. These are answers that are true in all com-
plete databases that are compatible with the given
incomplete database. This idea, that dates back to
the late 1970s as well, has become the way of provid-
ing query answers in all applications, from classical
databases with incomplete information [53] to new
applications such as data integration and exchange
[59, 14|, consistent query answering [22], ontology-
based data access [29], and others. The reason these
ideas have found limited application in mainstream
database systems is their complexity. Typically, an-
swering queries over incomplete databases with cer-
tainty can be done efficiently for conjunctive queries
or some closely related classes, but beyond the com-
plexity quickly grows to intractable — and sometimes
even undecidable, see [62]. Since this cannot be tol-
erated by real life systems, they resort to ad hoc
solutions, which go for efficiency and sacrifice correct-
ness; thus bizarre and unexpected behavior occurs.

While even basic problems related to incomplete-
ness in relational databases remain unsolved, we now
constantly deal with more varied types of incomplete
and inconsistent data. A prominent example is that
of probabilistic databases [81], where the confidence
in a query answer is the total weight of the worlds
that support the answer. Just like certain answers,
computing exact answer probabilities is usually in-
tractable, and yet it has been the focus of theoretical
research.

The key challenge in addressing the problem of
handling incomplete and uncertain data is to pro-
vide theoretical solutions that are usable in practice.
Instead of proving more impossibility results, the
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field should urgently address what can actually be
done efficiently.

Making theoretical results applicable in practice
is the biggest practical challenge for incomplete and
uncertain data. To move away from the focus on
intractability and to produce results of practical
relevance, the PDM community needs to address
several challenges.

RDBMS Technology in the Presence of Incomplete
Data.

It must be capable of finding query answers one
can trust, and do so efficiently. But how do we
find good quality query answers with correctness
guarantees when we have theoretical intractability?
For this we need new approximation schemes, quite
different from those that have traditionally been
used in the database field. Such schemes should
provide guarantees that answers can be trusted, and
should also be implementable using existing RDBMS
technology.

Models of Uncertainty.

What is provided by current practical solutions
is rather limited. Looking at relational databases,
we know that they try to model everything with
primitive null values, but this is clearly insufficient.
We need to understand types of uncertainty that
need to be modeled and introduce appropriate rep-
resentation mechanisms.

Benchmarks for Uncertain Data.

What should we use as benchmarks when working
with incomplete/uncertain data? Quite amazingly,
this has not been addressed; in fact standard bench-
marks tend to just ignore incomplete data, making
it hard to test efficiency of solutions in practice.

Handling Inconsistent Data.

How do we make handling inconsistency (in partic-
ular, consistent query answering) work in practice?
How do we use it in data cleaning? Again, there
are many strong theoretical results here, but they
concentrate primarily on tractability boundaries and
various complexity dichotomies for subclasses of con-
junctive queries, rather than practicality of query
answering techniques. There are promising works
on enriching theoretical repairs with user prefer-
ences [78], or ontologies [44], along the lines of ap-
proaches described in Section 4, but much more
foundational work needs to be done before they can
get to the level of practical tools.

Handling Probabilistic Data.



The common models of probabilistic databases are
arguably simpler and more restricted than the mod-
els studied by the Statistics and Machine Learning
communities. Yet common complex models can be
simulated by probabilistic databases if one can sup-
port expressive query languages [55]; hence, model
complexity can be exchanged for query complex-
ity. Therefore, it is of great importance to develop
techniques for approximate query answering, on ex-
pressive query languages, over large volumes of data,
with practical execution costs.

The theoretical challenges can be split into three
groups.

Modeling.

We need to provide a solid theoretic basis for the
practical modeling challenge above; this means un-
derstanding different types of uncertainty and their
representations. As with any type of information
stored in databases, there are lots of questions for
the PDM community to work on, related to data
structures, indexing techniques, and so on.

Reasoning.

There is much work on this subject; see Section
4 concerning the need to develop next-generation
reasoning tools for data management tasks. When
it comes to using such tools with incomplete and
uncertain data, the key challenges are: How do we
do inference with incomplete data? How do we
integrate different types of uncertainty? How do we
learn queries on uncertain data? What do query
answers actually tell us if we run queries on data that
is uncertain? That is, how results can be generalized
from a concrete incomplete data set.

Algorithms.

To overcome high complexity, we often need to
resort to approximate algorithms, but approxima-
tion techniques are different from the standard ones
used in databases, as they do not just speed up
evaluation but rather ensure correctness. The need
for such approximations leads to a host of theoreti-
cal challenges. How do we devise such algorithms?
How do we express correctness in relational data
and beyond? How do we measure the quality of
query answers? How do we take user preferences
into account?

4. KNOWLEDGE-ENRICHED DATA
MANAGEMENT

Over the past two decades we have witnessed a
gradual shift from a world where most data used
by companies and organizations was regularly struc-
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tured, neatly organized in relational databases, and
treated as complete, to a world where data is het-
erogenous and distributed, and can no longer be
treated as complete. Moreover, not only do we have
massive amounts of data; we also have very large
amounts of rich knowledge about the application
domain of the data, in the form of taxonomies or
full-fledged ontologies, and rules about how the data
should be interpreted, among other things. Tech-
niques and tools for managing such complex infor-
mation have been studied extensively in Knowledge
Representation, a subarea of Artificial Intelligence.
In particular logic-based formalisms, such as descrip-
tion logics and different rule-based languages, have
been proposed and associated reasoning mechanisms
have been developed. However, work in this area
did not put a strong emphasis on the traditional
challenges of data management, namely huge vol-
umes of data, and the need to specify and perform
complex operations on the data efficiently, including
both queries and updates.

Both practical and theoretical challenges arise
when rich domain-specific knowledge is combined
with large amounts of data and the traditional data
management requirements, and the techniques and
approaches coming from the PDM community will
provide important tools to address them. We discuss
first the practical challenges.

Providing End Users with Flexible and Integrated
Access to Data.

A key requirement in dealing with complex, dis-
tributed, and heterogeneous data is to give end users
the ability to directly manage such data. This is a
challenge since end users might have deep expertise
about a specific domain of interest, but in general
are not data management experts. Ontology-based
data management has been proposed recently as a
general paradigm to address this challenge.

Ensuring Interoperability at the Level of Systems
Exchanging Data.

Enriching data with knowledge is not only rele-
vant for providing end-user access, but also enables
direct inter-operation between systems, based on
the exchange of data and knowledge at the system
level. A specific area where this is starting to play
an important role is e-commerce, where standard
ontologies are already available [50].

Personalized and Context-Aware Data Access and
Management.

Information is increasingly individualized and only
fragments of the available data and knowledge might
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be relevant in specific situations or for specific users.
Heterogeneity needs to be dealt with, both with re-
spect to the modeling formalism and with respect to
the modeling structures chosen to capture a specific
real-world phenomenon.

Bringing Knowledge to Data Analytics and Data
Extraction.

Increasing amounts of data are being collected
to perform complex analysis and predictions. Cur-
rently, such operations are mostly based on data
in “raw” form, but there is a huge potential for
increasing their effectiveness by enriching and com-
plementing such data with domain knowledge, and
leveraging this knowledge during the data analytics
and extraction process.

Making the Management User Friendly.

Systems combining large amounts of data with
complex knowledge are themselves very complex,
and thus difficult to design and maintain. Appro-
priate tools that support all phases of the life-cycle
of such systems need to be designed and developed,
based on novel user interfaces for the various com-
ponents.

To provide adequate solutions to the above prac-
tical challenges, several key theoretical challenges
need to be addressed, requiring a blend of formal
techniques and tools traditionally studied in data
management, with those typically adopted in knowl-
edge representation in Al.

Development of Reasoning-Tuned DB Systems.

Such systems will require new/improved database
engines optimized for reasoning over large amounts
of data and knowledge, able to compute both crisp
and approximate answers, and to perform distributed
reasoning and query evaluation.

Choosing/Designing the Right Languages.

The languages and formalisms adopted in the var-
ious components of knowledge-enriched data man-
agement systems have to support different types of
knowledge and data, e.g., mixing open and closed
world assumption, and allowing for representing tem-
poral, spatial, and other modalities of information
[27, 18, 25, 16, 69].

New Measures of Complexity.

To appropriately assess the performance of such
systems and be able to distinguish easy cases that
seem to work well in practice from difficult ones, al-
ternative complexity measures are required that go
beyond the traditional worst-case complexity. These
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might include suitable forms of average case or pa-
rameterized complexity, complexity taking into ac-
count data distribution (on the Web), and forms of
smoothed analysis.

Next-Generation Reasoning Services.

The kinds of reasoning services that become neces-
sary in the context of knowledge-enriched data man-
agement applications go well beyond traditional rea-
soning studied in knowledge representation, which
typically consists of consistency checking, classifi-
cation, and retrieval of class instances. The forms
of reasoning that are required include processing of
complex forms of queries in the presence of knowl-
edge, explanation (which can be considered as a
generalization of provenance), abductive reasoning,
hypothetical reasoning, inconsistency-tolerant rea-
soning, and defeasible reasoning to deal with excep-
tions.

Incorporating Temporal and Dynamic Aspects.

A key challenge is represented by the fact that
data and knowledge is not static, and changes over
time, e.g., due to updates on the data while taking
into account knowledge, forms of streaming data,
and more in general data manipulated by processes.
Dealing with dynamicity and providing forms of
inference (e.g., formal verification) in the presence
of both data and knowledge is extremely challenging
and will require the development of novel techniques
and tools [28, 16].

In summary, incorporating domain-specific knowl-
edge to data management is both a great opportunity
and a major challenge. It opens up huge possibili-
ties for making data-centric systems more intelligent,
flexible, and reliable, but entails computational and
technical challenges that need to be overcome. We
believe that much can be achieved in the coming
years. Indeed, the increasing interaction of the PDM
and the Knowledge Representation communities has
been very fruitful, particularly by attempting to un-
derstand the similarities and differences between the
formalisms and techniques used in both areas, and
obtaining new results building on mutual insights.
Further bridging this gap by the close collaboration
of both areas appears as the most promising way of
fulfilling the promises of Knowledge-enriched Data
Management.

S. DATA MANAGEMENT AND MACHINE

LEARNING

We believe that Data Management (DM) and Ma-
chine Learning (ML) can mutually benefit from each
other. Nowadays, systems that emerge from the
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ML community are strong in their capabilities of
statistical reasoning, and systems that emerge from
the DM community are strong in their support for
semantics, maintenance and scale. This complemen-
tarity in assets is accompanied by a difference in the
core mechanisms: the PDM community has largely
adopted methodologies driven by logic, while the
ML community centralized around probability and
statistics. Yet, modern applications require systems
that are strong in both aspects, providing a thor-
ough and sophisticated management of data while
incorporating its inherent statistical nature.

We envision a plethora of research opportunities
in the intersection of PDM and ML. We outline
several directions, which we classify into two cate-
gories: DM for ML and ML for DM. The required
methodologies and formal foundations span a vari-
ety of related fields such as logic, formal languages,
computational complexity, statistical analysis, and
distributed computing.

Category DM for ML

Key challenges in this area are as follows.

Feature Generation and Engineering.

Feature engineering refers to the challenge of de-
signing and extracting signals to provide to the
general-purpose ML algorithm at hand, in order
to properly perform the desired operation. This is a
critical and time-consuming task [57], and a central
theme of modern ML methodologies. Unlike usual
ML algorithms that view features as numerical val-
ues, the database has access to, and understanding
of, the queries that transform raw data into these
features. Thus, PDM can contribute to feature en-
gineering in various ways, especially on a semantic
level, and provide solutions to problems such as the
following: How to develop effective languages for
query-based feature creation? How to use such lan-
guages for designing a set of complementary features
optimally suited for the ML task at hand? Is a given
language suitable for a certain ML task? Important
criteria for the goodness of a feature language in-
clude the risks of under/overfitting the training data,
as well as the computational complexity of evalu-
ation. The PDM community has already studied
problems of a similar nature [47].

The promise of deep (neural network) learning
brings substantial hope for reducing the effort in
manual feature engineering. Is there a general way
of solving ML tasks by applying deep learning di-
rectly to the database (as has already been done, for
example, with semantic hashing [74])? Can database
queries (of different languages) complement neural
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networks by means of expressiveness and/or effi-
ciency?

Large-Scale Machine Learning.

Machine learning is nowadays applied to massive
data sets of considerable size, including potentially
unbounded streams of data. Under such conditions,
an effective data management and the use of ap-
propriate data structures that offer the learning
algorithm fast access to the data are major prereq-
uisites for realizing model induction and inference
in an efficient manner [72]. Research along this di-
rection has amplified in recent years and includes,
for example, the use of hashing [88], Bloom filters
[31], tree-based data structures [38] in learning al-
gorithms. Related to this is work on distributed
machine learning, where data storage and compu-
tation is accomplished in a network of distributed
units [7], and the support of machine learning by
data stream management systems [67].

Complexity Analysis.

The PDM community has established a strong
machinery for fine-grained analysis of querying com-
plexity; see, e.g., [10]. Complexity analysis of such
granularity is highly desirable for the ML commu-
nity, especially for analyzing learning algorithms
that involve various parameters like I/O dimension,
and number of training examples [54]. Results along
this direction, connecting DM querying complex-
ity and ML training complexity, have been recently
shown [75].

Category ML for DM

Data management systems support a core set of
querying operators (e.g., relational algebra, group-
ing and aggregate functions, recursion) that are con-
sidered as the common requirement of applications.
We believe that this core set should be revisited, and
specifically that it should be extended with common
ML operators.

Incorporating ML features is a natural evolution
for PDM. Database systems with such features have
already been developed [77, 12]. Query languages
have traditionally been designed with emphasis on
being declarative: a query states how the answer
should logically relate to the database, not how it is
to be computed algorithmically. Incorporating ML
introduces a higher level of declarativity, where one
states how the end result should behave (via exam-
ples), but not necessarily which query is deployed
for the task. In that spirit, we propose the following
directions for PDM research.
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Unified Models.

An important role of the PDM community is in es-
tablishing common formalisms and semantics for the
database community. It is therefore an important op-
portunity to establish the “relational algebra” of data
management systems with built-in ML /statistics op-
erators.

Lossy Optimization.

From the early days, the focus of the PDM commu-
nity has been on lossless optimization, i.e., optimiza-
tion that does not modify the final result [76, 89]. As
mentioned in Section 1, in some scenarios it makes
sense to apply lossy optimization that guarantees
only an approximation of the answer. Incorporating
ML into the query model gives further opportunities
for lossy optimization, as training paradigms are
typically associated with built-in quality (or “risk”)
functions. Hence, we may consider reducing the
execution cost if it entails a bounded impact on the
quality of the end result [9].

Confidence Estimation.

Once statistical and ML components are incor-
porated in a data management system, it becomes
crucial to properly estimate the confidence in query
answers [77]. It is then an important direction to
establish probabilistic models that capture the com-
bined process and allow to estimate probabilities of
end results. For example, by applying the notion
of the VC-dimension, an important theoretical con-
cept in generalization theory, to database queries,
Riondato et al. [73] provide accurate bounds for their
selectivity estimates that hold with high probability.
This direction can leverage the past decade of re-
search on probabilistic databases [82], which can be
combined with theoretical frameworks of machine
learning, such as PAC learning [86].

6. PROCESS AND DATA

Many forms of data evolve over time, and most
processes access and modify data sets. Industry
works with massive volumes of evolving data, primar-
ily in the form of transactional systems and Business
Process Management (BPM) systems. Over the past
half century, computer science research has studied
foundational issues of process and of data mainly
as separated phenomena, but research into basic
questions about systems that combine process and
data has been growing over the past decade. Two
key areas where data and process have been stud-
ied together are scientific workflows and data-aware
BPM [52].

In the 1990’s and 00’s, foundational research in sci-
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entific workflow helped to establish the basic frame-
works for supporting these workflows, to enable the
systematic recording and use of provenance informa-
tion, and to support systems for exploration that
involve multiple runs of a workflow with varying
configurations [36].

Foundational work on data-aware BPM began
in the mid-00’s [24, 41], enabled in part by IBM’s
“Business Artifacts” model for business process [71],
that combines data and process in a holistic manner.
Deutch and Milo [39] provide a survey and compari-
son of several of the most important early models
and results on process and data. One variant of the
business artifact model has provided the conceptual
basis for the recent OMG Case Management Model
and Notation (CMMN) standard [65]. Rich work
on verification for data-aware processes has emerged
[28, 40], and the artifact-based perspective is en-
abling an approach to managing the interaction of
business processes and legacy data systems [83].

Foundational work in the area of process and data
has the potential for continued and expanded impact
in the following six practical challenge areas.

Automating Manual Processes.

While many business processes have been auto-
mated using techniques from the BPM field, there
are many other processes that are still manual — of-
ten because high levels of variation make it cost
prohibitive to automate using current techniques.

Evolution and Migration of Business Processes.

Managing change of business processes remains
largely manual, highly expensive, time consuming,
and risk-prone.

Business Process Compliance and Correctness.

Compliance with government regulations and cor-
porate policies is a rapidly growing challenge, e.g.,
as governments attempt to enforce policies around
financial stability and data privacy. Ensuring com-
pliance is largely manual today, and involves un-
derstanding how regulations can impact or define
portions of business processes, and then verifying
that process executions will comply.

Business Process Interaction and Interoperation.

Managing business processes that flow across en-
terprise boundaries has become increasingly impor-
tant with globalization of business and the splinter-
ing of business activities across numerous companies.
The recent industrial interest in shared ledger tech-
nologies, e.g., Blockchain, highlights the importance
of this area.
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Business Process Discovery and Understanding.

The field of Business Intelligence, which provides
techniques for mining and analyzing information
about business operations, is essential to business
success, but is today based on a broad variety of
largely ad hoc and manual techniques [37].

Workflow and Business Process Usability.

Enabling people to understand and work effec-
tively to manage large numbers of process definitions
and process instances remains elusive, especially
when considering the interactions between process,
data (both newly created and legacy), resources, the
workforce, and business partners.

The above practical BPM challenges raise key re-
search challenges that need to be addressed using
approaches that include mathematical and algorith-
mic frameworks and tools.

Verification and Static Analysis.

Because of the infinite state space inherent in
data-aware processes [28, 40|, verification currently
relies on faithful abstractions reducing the prob-
lem to classical finite-state model checking. Further
work is needed to develop more powerful abstrac-
tions, address new application areas, enable incre-
mental verification techniques, and enable modular
styles of verification that support “plug and play”
approaches.

Tools for Design and Synthesis.

Although compilers and relational database de-
sign have both benefited from solid mathematical
foundations (context free grammars and dependency
theory, respectively), there is still no robust frame-
work that supports principled design of business
processes in the larger context of data, resources,
and workforce.

Models and Semantics for Views, Interaction, and
Interoperation.

A robust theory of views for data-aware business
processes has the potential to enable substantial
advances in the simplification of process comparison,
process composition, process interoperation, process
out-sourcing, and process privacy (e.g., see [3]).

Analytics for Business Processes.

The new, more holistic perspective of data-aware
processes can help to provide a new foundation for
the field of business intelligence, including new ap-
proaches for instrumenting processes to simplify data
discovery [64], and new styles of modularity and hi-
erarchy in both the processes and the analytics on
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them.

Research in process and data will require on-going
extensions of the traditional approaches, on both the
database and process-centric sides, and also exten-
sions along the lines just mentioned. A new foun-
dational model for modern BPM may emerge, which
builds on the artifact and shared-ledger approaches
but facilitates a multi-perspective understanding,
analogous to the way relational algebra and calculus
provide two perspectives on data querying.

One cautionary note is that research in the area
of process and data today is hampered by a lack of
large sets of examples, e.g., sets of process schemas
that include explicit specifications concerning data,
and process histories that include how data sets
were used and affected. More broadly, increased col-
laboration between PDM researchers, applied BPM
researchers, and businesses would enable more rapid
progress towards resolving the concrete problems in
BPM faced by industry today.

7. HUMAN-RELATED DATA & ETHICS

More and more “human-related” data is massively
generated, in particular on the Web and in phone
apps. Massive data analysis, using data parallelism
and machine learning techniques, is applied to this
data to generate more data. We, individually and
collectively, are losing control over this data. We
do not know the answers to questions as important
as: Is my medical data really available so that I get
proper treatment? Is it properly protected? Can a
private company like Google or Facebook influence
the outcome of national elections? Should I trust
the statistics I find on the Web about the crime rate
in my neighborhood?

Although we keep eagerly consuming and enjoying
more new Web services and phone apps, we have
growing concerns about criminal behavior on the
Web, including racist, terrorist, and pedophile sites;
identity theft; cyber-bullying; and cyber crime. We
are also feeling growing resentment against intrusive
government practices such as massive e-surveillance
even in democratic countries, and against aggres-
sive company behaviors such as invasive marketing,
unexpected personalization, and cryptic or discrimi-
natory business decisions.

Societal impact of big data technologies is receiv-
ing significant attention in the popular press [11],
and is under active investigation by policy mak-
ers [68] and legal scholars [19]. It is broadly rec-
ognized that this technology has the potential to
improve people’s lives, accelerate scientific discovery
and innovation, and bring about positive societal
change. It is also clear that the same technology
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can in effect limit business faithfulness to legal and
ethical norms.And while many of the issues are polit-
ical and economical, technology solutions must play
an important role in enabling our society to reap
ever-greater benefits from big data, while keeping it
safe from the risks.

We believe that the main inspiration for the data
management field in the 21st century comes from
the management of human-related data, with an em-
phasis on solutions that satisfy ethical requirements.

In the remainder of this section, we will present
several facets of ethical data management.

Responsible Data Analysis.

Human-related data analysis needs to be “respon-

sible” — to be guided by humanistic considerations
and not simply by performance or by the quest for
profit. The notion of responsible data analysis is
considered generally in [79] and was the subject of a
recent Dagstuhl seminar [5]. We now outline several
important aspects of the problem, especially those
where we see opportunities for involvement by PDM.
Fairness. Responsible data analysis requires that
both the raw data and the computation be “fair”,
i.e. not biased [43]. There is currently no consensus
as to which classes of fairness measures, and which
specific formulations, are appropriate for various
data analysis tasks. Work is needed to formalize the
measures and understand the relationships between
them.
Transparency and accountability. Responsible data
analysis practices must be transparent [35, 84], al-
lowing a variety of stakeholders, such as end-users,
commercial competitors, policy makers, and the
public, to scrutinize the data collection and analysis
processes, and to interpret the outcomes. Interest-
ing research challenges that can be tackled by PDM
include using provenance to shed light on data col-
lection and analysis practices, supporting semantic
interrogation of data analysis methods and pipelines,
and providing explanations in various contexts, in-
cluding knowledge-based systems and deep learning.
Diversity. Big data technology poses significant risks
to those it overlooks [60]. Diversity [8, 42] requires
that not all attention be devoted to a limited set
of objects, actors or needs. The PDM community
can contribute, for instance, to understanding the
connections between diversity and fairness, and to
develop methods to manage trade-offs between di-
versity and conventional measures of accuracy.

Verifying Data Responsibility.

A grand challenge for the community is to de-
velop verification technology to enable a new era of
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responsible data. One can envision research towards
developing tools to help users understand data anal-
ysis results (e.g., on the Web), and to verify them.
One can also envision tools that help analysts, who
are typically not computer scientists nor experts in
statistics, to realize responsible data analysis “by
design”.

Data Quality and Access Control on the Web.

The evaluation of data quality on the Web is an
issue of paramount importance when our lives are
increasingly guided and determined by data found
on the Web. We would like to know whether we can
trust particular data we found. Research is needed
towards supporting access control on the Web. It
may build for instance on cryptography, blockchain
technology, or distributed access control [66].

Personal Information Management Systems.

A Personal Information Management System is a
(cloud) system that manages all the information of a
person. By returning part of the data control to the
person, these systems tend to better protect privacy,
re-balance the relationship between a person and
the major internet companies in favor of the person,
and in general facilitate the protection of ethical
values [2].

Ethical data management raises new issues for
computer science in general and for data manage-
ment in particular. Because the data of interest is
typically human-related, the research also includes
aspects from other sciences, notably, cognitive sci-
ence, psychology, neuroscience, linguistics, sociology,
and political sciences. The ethics component also
leads to philosophical considerations. In this setting,
researchers have a chance for major societal impact,
and so they need to interact with policy makers
and regulators, as well as with the media and user
organizations.

8. LOOKING FORWARD

As illustrated in the preceding sections, the princi-
pled, mathematically-based approach to the study of
data management problems is providing conceptual
foundations, deep insights, and much-needed clarity.
This report describes a representative, but by no
means exhaustive, family of areas where research
on the Principles of Data Management (PDM) can
help to shape our overall approach to working with
data as it arises across an increasingly broad array
of application areas.

The Dagstuhl workshop highlighted two important
trends that have been accelerating in the PDM com-
munity over the past several years. The first is the
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increasing embrace of neighboring disciplines, includ-
ing especially Machine Learning, Statistics, Prob-
ability, and Verification, both to help resolve new
challenges, and to bring new perspectives to them.
The second is the increased focus on obtaining posi-
tive results, that enable the use of mathematically-
based insights in practical settings. We expect and
encourage these trends to continue in the coming
years.

The need for precise and robust approaches for
increasingly varied forms of data management con-
tinues to intensify, given the fundamental and trans-
formational role of data in our modern society, and
given the continued expansion of technical, concep-
tual, and ethical data management challenges. There
is an associated and on-going expansion in the family
of approaches and techniques that will be relevant to
PDM research. The centrality of data management
across numerous application areas is an opportunity
both for PDM researchers to embrace techniques
and perspectives from adjoining research areas, and
for researchers from other areas to incorporate tech-
niques and perspectives from PDM. Indeed, we hope
that this report can substantially strengthen cross-
disciplinary research between the PDM and neigh-
boring theoretical communities and, moreover, the
applied and systems research communities across
the many application areas that rely on data in one
form or another.
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1. INTRODUCTION

Over the last decade, there has been an enor-
mous increase in the volume of data that is being
stored, processed and analyzed. In order to im-
prove the performance of query processing on such
amounts of data, many modern data management
systems (e.g. Spark [23, 28], Hadoop [13, 9, 24], and
others [19, 14]) have resorted to the power of paral-
lelism to speed up computation. Parallelism enables
the distribution of computation for data-intensive
tasks into hundreds, or even thousands of machines,
and thus significantly reduces the completion time
for several crucial data processing tasks.

In this paper, we present a survey on recent re-
sults [18, 4, 5, 17] that study the computational
complexity of mulitway join processing in such mas-
sively parallel systems. Our goal is twofold. First,
we introduce a simple theoretical model, called the
MPC (Massively Parallel Computation) model, that
allows us to rigorously analyze the computational
complexity of various parallel algorithms for query
processing. Second, using the MPC model as a the-
oretical tool, we show how we can design novel algo-
rithms and techniques for multiway join processing,
and how we can prove their optimality through tight
lower bounds. Our analysis provides a deeper un-
derstanding of how much synchronization, commu-
nication and data load is required when we compute
a multiway join query, and informs of what is pos-
sible to achieve under specific system constraints.

Organization. We first present the MPC model
in Section 2. Equipped with the model, we describe
and rigorously analyze the behavior of several al-
gorithms for the natural join query (Section 3) and
the triangle query (Section 4). These two queries
cover most of the techniques and algorithms we use
for general multiway join queries, which we subse-
quently describe in Sections 5 and 6. We conclude
in Section 7 by discussing some key takeaways of
our results.
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2. THE MPC PARALLEL MODEL

We introduce here the Massively Parallel Com-
putation model, or MPC. We will use MPC to an-
alyze the parallel complexity of various multiway
join algorithms, as well as prove lower bounds on
the amount of communication and synchronization.

In the MPC model, computation is performed by
a cluster of p machines using a shared-nothing archi-
tecture. The shared-nothing paradigm is widely ap-
plied in modern big data management systems [25].
The computation proceeds in rounds: each round
consists of some local computation followed by global
exchange of data between the machines. At the end
of each round, the machines have to synchronize,
i.e. wait for all machines to finish before proceed-
ing to the next round.

The input data of size m (in tuples) is initially
evenly distributed among the p machines, i.e. each
machine stores m/p data (this captures how input
relations are typically distributed in a distributed
file system like HDFS [22]). After the computation
is complete, the output result is present in the union
of the output of the p machines.

The complexity of an algorithm in the MPC model
is characterized by two parameters:

number of rounds (r) This parameter captures
the number of synchronization points that an
algorithm requires during execution. A smaller
number of rounds means that the algorithm
can run with less synchronization.

maximum load (L) This parameter is defined as
the maximum amount of data that a machine
can receive at any round during computation.
A smaller load means that data is more evenly
distributed, and the amount of data commu-
nicated is smaller.

An ideal algorithm uses a single round (r = 1)
and distributes the data evenly without any repli-
cation, hence achieving maximum load L = m/p.
Since this is rarely possible, algorithms for query
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processing need to use more rounds, have an in-
creased maximum load, or both. An algorithm with
load I = m does not exploit data parallelism at all,
since we can send all input data to a single machine
and do processing locally. In general, for the prob-
lems we will discuss in this paper, the load will be
of the form L = m/p'~¢, for some 0 < ¢ < 1; we
call the parameter ¢ the space exponent. The chal-
lenge is to identify the optimal tradeoff between the
number of rounds and maximum load for various
computational tasks.

Other Parallel Models. There has been a plethora
of parallel computation models proposed over the
years [1, 15, 11]. The MPC model is closer to the
BSP model [26], which also describes synchronous
computation; the main difference is that MPC ig-
nores the computation cost as a parameter, and fo-
cuses instead on the amount of data communicated
at each machine.

3. JOINS IN PARALLEL

We first present how we can compute a natural
join between two binary relations,

J((E,y, Z) = R(x,y), S(yv Z)

Let mgr,mg be the sizes of R, S respectively, and
assume that initially both R and S are uniformly
distributed on the p machines in the cluster; thus,
the input load per machine is m/p, with m = mg+
mg. We discuss several algorithms that all work
using a single round, and analyze in detail the load
L they can achieve.

3.1 Hash Join

Let h be a random hash function that maps at-
tribute values (U) to the domain [p] = {1,---,p}.
To partition the tuples, every machine iterates over
its local tuples and sends every tuple R(a,b) to ma-
chine h(b), and every tuple S(c,d) to machine h(c).
After receiving the tuples, each machine computes
the join locally. This basic one-round algorithm was
pioneered since the earliest parallel database sys-
tems [10] and can be found today in virtually all
parallel join implementations [9, 19, 7, 29, 27].

Load Analysis. Since we are distributing m tu-
ples over p machines, one may hope the load to be
m/p; unfortunately, this is not always the case. We
rule out bad hash functions with many collisions:
there is a lot of work on designing good hash func-
tions and we assume to have one. In particular,
we will assume that h is a perfectly random hash
function: this means that h is drawn uniformly at
random from the set of hash functions that map the
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universe U to [p]. Such a hash function guarantees
that (i) for any value v € U and every hash bucket
s € [p], P(h(x) = s) = 1/p, and (4i) for any distinct
values v1, v, ..., the hash buckets h(vy), h(va),...
are independent [20, pp.107].}

OBSERVATION 1. The expected load for any ma-
chine s is m/p, since each input tuple in R or S
is sent to the machine with probability 1/p over the
random choices of the hash function.

Define the degree d; of a value v; € U as the
number of tuples R(x,y) or S(y, z) with y = v. We
say that the value is skewed if its degree is > m/p.

OBSERVATION 2. If the input has a skewed value,
then for any choice of hash function h, there exists
an overloaded machine with load > m/p. Indeed, all
input tuples having the skewed value must be hashed
to the same machine, which becomes overloaded.

Thus, the ideal load is m/p, but if the input is
skewed then the load exceeds m/p. It turns out that
the converse also holds: if the database is skew-free,
then the maximum load is O(m/p) with high prob-
ability. However, in the rigorous analysis we must
pay an additional In(p) factor, either by allowing
the load to grow to In(p) - m/p, or by requiring the
maximum degree to be < m/(p-1In(p)). The rest of
this subsection provides the full formal analysis, for
readers interested in the detailed argument.

Suppose U = {vy,...,vn} is the universe of pos-
sible values; let d; = 0 if v; does not occur in the
input. The input size is m =), d;.

THEOREM 3.1. [6, 12] Let Xq,...,Xn € {0,1}
be independent and identically distributed (i.i.d.) ran-
dom wariables such that P(X; = 1) = 1/p. Let
d =maxY , d;. Then, for any 6 > 0:

N m
P (Z diX; > (1+ 5)7”/]9) < exp (_pdh(d))

i=1

where h(0) = (14 6)In(1+0) — 4.

We use Theorem 3.1 to analyze the load of the
Hash Join algorithm. Fix some machine, and de-
note X; the random variable that is 1 if the value
v; 18 hashed to that server, and 0 otherwise. Then
P(X; =1) = 1/p, and the load at that machine is
>; d;X;. The probability that the maximum load
L, over all machines, exceeds the expected load m/p

! In practice, we can choose a good enough hash func-
tion, for example by having a fixed function hg, choosing
a random seed r, and define h(v) = ho(v xor r).
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by a factor 14 § follows from Theorem 3.1 and the
union bound:

PL> (1t /) < pexp (= 25106))
The main result for Hash Join follows:

PROPOSITION 3.2. The mazimum load L for the
Hash Join algorithm is bounded as follows:

(1) If d =1 (the degree of every value is 1), then
forany d <1, P(L> (1+0)m/p) < pexp(fwg—f);
this probability decreases exponentially fast in the
mput size m.

(2) If d < m/(3plu(p)), then for any § > 1,
P(L > (14 8&)m/p) < p'=°; this probability de-
creases polynomially in the number of machines p.

(3) If d < m/p, P(L > In(p)m/p) < p~'; this
probability also decreases polynomially in the num-
ber of machines p.

PROOF. Ttem (1) follows from the fact that for
§ < 1, we have that h(5) > 62/3. Item (2) follows
from h(8) > 6/3 and pexp(—In(p)s) = p*~°. Ttem
(3) follows from setting 1 + & = Inp. Then, since
(140) In(14+6)—9 > 2(149) whenever In(1+9) > 3,
we have pexp(—2In(p)) =p~1. O

Even though the above analysis is for the case of
a simple join, all algorithms in this paper that use
one or more hash functions to partition data val-
ues into buckets can also be analyzed in a similar
way, using a generalization of Theorem 3.1. The
main takeaway is that skew-free input means that
the maximum load is close to the expected load; on
the other hand, skewed input can cause the maxi-
mum load to be much larger than the expected load.
The particular threshold that determines when a
value becomes skewed depends on (7) the query, and
(i) the sizes of the relations.

3.2 Broadcast Join

A simple join algorithm that is immune to skew
is the Broadcast Join, where each machine broad-
casts all its local S-tuples to all other machines.
There is no need to reshuffle R, and after the com-
munication step all machines can compute the join
locally. This algorithm is also implemented in sev-
eral systems [21], and performs best when the size
of S is much smaller than that of R. The load is
mpg/p+mg, regardless of whether the data is skewed
or not; this becomes O(m/p) when mg = O(mpg/p).

3.3 Cartesian Join

The worst behavior for the Hash Join algorithm
occurs when both R and S exhibit worst-case skew,
i.e. they have a single y-value. Then the algorithm
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Figure 1: Depiction of the Cartesian Join al-
gorithm. The p machines are organized into
a p; X p, rectangle.

will send all tuples of R and S to the same ma-
chine, whose load will be L = m. In this case, the
join degenerates to a cartesian product: R(x)x S(z)
(we drop the attribute y since it is constant), and
requires a different algorithm.

Let p;,p. be two integers such that p, - p. = p;
we call these numbers shares [2]. We organize the
p machines into a p, X p, rectangle, where each
server is uniquely identified by a pair of numbers
(4,7) € [pz] X [p.] (see Figure 1). Let hy, h, be two
random hash functions with domains [p,] and [p.]
respectively. The Cartesian Join works as follows.
Initially, it sends every tuple R(v) to all machines
of the form (h;(v),*), and every tuple S(w) to all
machines (*, h,(w)). In other words the algorithm
broadcasts R(v) to the entire row hy(v), and broad-
casts S(w) to the entire column h,(w), as seen in
Figure 1. After the communication step, each ma-
chine computes the cartesian product of its local
tuples. The algorithm is correct, because every an-
swer (v,w) of the cartesian product will be in the
output of some machine, namely the machine at
(hy(v), ho(w)). There is no skew, since every data
value has degree 1 (R and S are sets).

Load Analysis. Since R is partitioned into p,
buckets, each machine receives O(mp/p,) tuples
from R, and similarly O(mg/p.) tuples from S. The
load is then

m m mprm 1/2 mprm 1/2
L 522<RS> 2<RS)
Y Dz PxD2z p

where equality holds when the two terms mp/ps,
mg/p. are equal. This implies that the optimal
values for p,,p, are:

When mp = mg, the algorithm organizes the p ma-
chines in a \/p X /p square. Otherwise, it allocates
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more shares to the larger relation. Since we have to
ensure that p,,p, > 1, if mr < mg/p, we set p, =
1,p, = p, in which case the algorithm degenerates
to the Broadcast Join (R is broadcast) and the load
becomes O(mg/p). Similarly, if mg < mp/p, we
set p, = p,p. = 1 and the load becomes O(mpg/p).

The load of the Cartesian Join will be:

oo (e 525 (25) 7)o

We should note that so far we have ignored any
rounding issues for the (integer) shares; rounding
is challenging problem in practice, and we refer the
reader to [8] for further discussion.

Lower Bound. It is easy to see that the above
allocation of shares is optimal. We will provide a
brief sketch of the argument. Suppose that machine
Jj receives mp j, mg,; tuples from R and S respec-
tively. Then, it can output at most mp ; - mg; <
(mpj + ms;)?/4 = L}/4 tuples. Since we have
p machines, the total output >, L3/4 must be at
least mrpmg. Therefore,

mpmg <> L2/4<Y L*/4=pL*/4
J J

where the last inequality follows from L = max; L;.
Thus, L > 2(mpmg)'/?/p'/2.

3.4 Skew Join

All algorithms discussed so far achieve the opti-
mal load only if the data has no skew. To achieve
the optimal load in the case of skew, we follow a dif-
ferent approach: we treat the heavy (skewed) and
light (non-skewed) values separately.

Heavy Hitters. Recall that the analysis of the
Hash Join algorithm fails if some value y = v oc-
curs more than m/p times in R and S, in which
case we say it is a heavy hitter. We explain briefly
how to compute these values. Fix a machine, and
call a local value v a candidate if its local degree
is > m/p?. Each machine computes its candidates
and their local degrees. All candidates are broad-
cast to all machines, and then each machine com-
putes the global degrees of all candidates by adding
up the local degrees; the heavy hitters are those
candidates with a global degree > m/p. Although
we need one round to compute the heavy hitters, we
will not count this step towards the total number
of communication rounds, because the size of data
exchange is much smaller, and in many cases the
heavy hitters are known already.

The Skew Join Algorithm. Let H be the set of
heavy hitters, and th, df be the degrees of y = h in
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R(z,y) and S(y, z) respectively. Notice that value
h may be skewed only in R, or only in .S, or in both.
Skew Join computes in parallel (1) the join on the
light hitters, and (2) the join on the heavy hitters.
The light hitters are computed using the Hash
Join; Proposition 3.2 tells us that the load will be
O(In(p)m/p) = O(m/p); we will use O to hide any
logarithmic factors. For the heavy hitters, we assign
to each value h € H an exclusive group of p, ma-
chines such that p = >, pp, which we use to com-
pute the residual query corresponding to the heavy
hitter value y = h. The residual query q[h/x] is ob-
tained by substituting  with the constant h; in this
case, it is the cartesian product R(z,h) x S(h, z).
According to Eq. (1), we can compute g[h/x] with
load Ly, = max{d?/pp,, d /p, (dfdf/ph)lm}. Since
the maximum load is L = maxy, Ly, to minimize L
we choose the p to make all Ly equal:
dy dy _djdy }

mgr’ mg’ Y. dd3

ph:p~max{
773

The maximum load of Skew Join becomes:

L =0 | max @7%7 7Zhd§d5
p p b

By extending the argument from the previous sec-
tion, it can be shown that this load is optimal, given
the degree distribution for th, df .

Discusstion. We end this section by discussing two
special cases of interest. The first is when there is
a single heavy hitter h which occurs in all tuples in
R and in S, in other words dff = mpg, d = ms.
In this case p, = p, and Skew Join degenerates
to a Cartesian Join. In this scenario of extreme
skew, the speedup is reduced from linear (é(m /D))
to sublinear (O(m/p'/?)). The second special case
is when the skew is one-sided, i.e. when only val-
ues in R are skewed. Then df < mg/p for all h,
and the reader can verify that the load becomes
O(max{mpr/p,ms/p}) = O(m/p). In other words,
a join with one-sided skew is no more expensive than
a skew free-join, and has linear speedup.

4. TRIANGLES IN PARALLEL

Our next query is the triangle query:
Az,y,z) = R(z,y),S(y,2),T(z,x).

We denote the sizes of R, S,T by mg, mg, mp re-
spectively. A traditional parallel query execution
engine typically computes the triangle query in two
rounds. In the first round, it computes the natu-
ral join U = R(z,y), S(y, z) using the parallel Hash

21



(ha(a); by (b), h-(c))—— =/ [l 5(b:¢) = (5, hy (), h=(c))

[

T

I's

y T(c,a) = (hz(a), *, h.(c))

Figure 2: Depiction of the HC algorithm for
the triangle query. The p machines are orga-
nized into a p, X py X p, cube.

Join algorithm. In the second round, it joins the
intermediate relation U(x,y, z) with T(z,z) using
again a parallel Hash Join. The issue with such
an execution strategy is that the intermediate re-
lation U can be much larger than the input, and
shuffling U to join with T can be a costly operation
in terms of communication. Motivated by this, we
present here two one-round algorithms that com-
pute A: one for skew-free input, and the other for
skewed data.

4.1 The HyperCube Algorithm

The HyperCube (HC) algorithm was first intro-
duced by Afrati and Ullman [2] in the MapReduce
context, with the name SHARES. It first organizes
the p machines into a 3-dimensional cube (one di-
mension per variable). Let p,,p,,p. be the sizes
of the dimension for variables x,y, z respectively,
called shares. Each machine is represented by a
distinct point in P = [p] % [py] x [p.]. Since we
have p available machines, we have p, - p, - p, < p.

The algorithm makes use of three hash functions
hz, hy, hy, which map values from the domain U to
[pz), [py], [p2] respectively. During the communi-
cation phase of the first round, each tuple R(a,b)
is sent to all machines of the form (hg(a), hy(b), *).
Notice that every tuple is replicated p, times, since
it is sent to p, machines. We distribute the tuples
from S, T similarly: S(b, c) is sent to (x, hy(b), h.(c))
and T'(c, a) to (hy(a),*,h.(c)). The communication
pattern is depicted in Figure 2. During the compu-
tation phase, each machine simply performs a local
computation of the query A on the data fragments
it has received.

The correctness of the algorithm comes from the
fact that any output triangle A(a, b, ¢) will be com-
puted and output on the machine with coordinates
(hz(a), hy(b),h.(c)), since that machine will have
all necessary input data sent to it.
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Load Analysis. The above algorithm works in one
round, and outputs the correct result. We next an-
alyze how to choose the shares and how to compute
the maximum load L.

We first focus on how R is distributed. The key
observation is that R is partitioned into p, -p, buck-
ets. Assuming that R is skew-free (here this means
that the degree of each z-value is < mpg/p, and of
each y-value < mpg/p,), each bucket will be of ap-
proximately the same size, and thus the load sent
to a machine will be O(mg/(pyp,)). Similarly, the
load for S will be O(ms/(p,p-)), and for T' it will
be O(my/(pep=)). The total load L will be at least
the maximum of the three quantities. To find the
optimal shares, we can construct an optimization
problem, where the objective is to minimize L un-
der the constraints that L > mp/(pg - py) (similarly
for S,T), and also p; - py - p» < p.

In order to solve the above optimization program,
we transform it into a linear program (LP) by tak-
ing logarithms with base p on both sides. Let A =
log, L and e; = log,p; for i = {z,y,2}. Since
pi = p°, we call e; the share exponent. The LP
takes the following form:

minimize A\
subject to e, +e, + A >log, mp
ey +e;+A> logpmg
ey t+ ey +A> logme
e +ey,+e, <1

€z, €y, €z, A>0

The solution of the above LP obtains the best pos-
sible share exponents for the particular sizes of the
input relations for the skew-free case. By using the
principle of LP duality, the optimal load can also
be expressed as the maximum value of the follow-
ing (non-linear) optimization problem:

maximize <mqll:ing‘s my" > Yuntustur)
p
subject to wup +ug <1
usg +ur <1
ur +upr <1

UR,us,ur > 0

The vector (ug, ug, ur) forms a fractional edge pack-
ing of the query A; we will explain in the next sec-
tion how this notion is defined for any multiway
join query. By examining the vertices of the poly-
tope formed by the edge packings, we can show that
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the optimal load is:

~ 1/3
L=0 (max {mR ms mr (mngﬂ;T) })
p p’p p?/
The first three terms are obtained through the edge
packings (1,0,0), (0,1,0) and (0,0, 1) respectively,
while the last term through (1/2,1/2,1/2).

Discussion. To keep the discussion simple, let us
consider the case where mg < mg = mpr = m.
There are two cases:

e p < m/mp. In this case, the optimal packing
is either (0,1,0), or (0,0,1), and the load be-
comes O(m /p). To achieve this linear speedup,
the HC algorithm allocates shares p, = p, =
1, p, = p, i.e. it performs a parallel Hash Join
of S, T on z, and broadcasts R.

e p > m/mpg. In this case, the optimal packing
is (1/2,1/2,1/2), and the load becomes L =
(mpmsmr)'/3/p?/3. To achieve this load, the
HC algorithm allocates shares as follows: p, =
Py = (mR/m)l/Bpl/g, Py = (m/mR)2/3p1/3.

In the case where all input relations have the
same size, i.e. mr = mg = mr = m, the shares
are equal: p, = py = p, = p'/3, and the load be-
comes O(m/p*/3). The speedup now is not linear;
however, as we will see in Section 5, this is the best
we can hope for among one-round algorithms.

4.2 Triangles with Skew

The HC algorithm is optimal only for skew-free
data. But how do we define skewed values (heavy
hitters) for the triangle? For the sake of simplicity,
assume that all relations have size equal to m. A
value for x,y or z is a heavy hitter if it has degree
> m/p'/? for any of the two relations it belongs;
otherwise, it is light. To achieve optimal load for
skewed data, we follow the same approach as the
Skew Join algorithm, by treating heavy and light
values separately.

The algorithm will deal with the light values by
running the vanilla HC algorithm, achieving maxi-
mum load O(m/p?/?). To handle the heavy hitters,
we distinguish two cases.

Case 1. In this case, we handle the tuples that have
values with degree > m/p in at least two variables.
Without loss of generality, suppose that both x,y
are heavy in at least one of the two relations they
belong to. The observation is that there are at most
2p such heavy values for each variable, and hence
we can send all tuples in R with both x,y heavy
(at most 4p?) to all machines. Then, it remains to
compute the query S’(y, z),T'(z, z), where z and y
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can take only p values. We can do this by running
the standard Hash Join algorithm; since the degree
of z-values will be at most p for each relation, there
is no skew and the maximum load will be O(m/p).

Case 2. In this case, we handle the remaining out-
put: this includes the tuples where one value has
degree > m/p*/3, and the other values have degree
< m/p. Without loss of generality, assume that we
want to compute the query for the z-values that
are heavy in either R or T. Observe that there are
at most 2p*/? such heavy hitters. If H, denotes the
set of heavy hitter values for variable x, the residual
query g[h/z] for each h € H, is:

q[h/l’] = R<hay)’ S(y7 2),T(2, h)

which is equivalent to computing the query ¢, (y, 2) =
R'(y),S(y,2),T'(z) with input sizes dff,m,d} re-
spectively. As with the Skew Join, we allocate an
exclusive group of py, servers to compute ¢[h/z] for
each h € H,. Having Case 1 ensures that the input
to the residual query is skew-free, hence the load Ly,
for a particular value h is given by:

didl
L; = O [ max ﬁ7 —hh
Pn Pn

We can now set pp similar to how we chose the
values for the Skew Join:

= pma { 1 dRds }
h=DP" XY 13°'~ RIS
P Y e, s

This assignment obtains the following load:

=06 maxd ™ [2ndidi
P’ p

Summing up all the cases, we obtain that the load
of the 1-round algorithm for computing triangles is:

O | max m Zhdfdf Zhdfdg Zhdgd{
P’ p p p

The above algorithm is optimal for computing tri-
angles in one round when the degree distribution is
given. Observe that in the case of extreme skew,
the load increases from O(m/p*/?) in the skew-free
case to O(m/p'/?).

S. GENERAL JOINS IN ONE ROUND

We have seen so far how to analyze parallel al-
gorithms for computing the join and triangle query.
In this section, we generalize our techniques to com-
pute general multiway join queries in one round.
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5.1 The General HyperCube Algorithm

The algorithm we present here is a generalization
of the HyperCube algorithm for triangles. We will
consider a multiway join query without projections,
called also a full conjunctive query:

q(xl, - ,l‘k) = Sl(fl), R Sg(:fg)

Throughout this section, the size of relation S; will
be m;. The HC algorithm assigns to each vari-
able x;, where ¢ = 1,...,k, a share p;, such that
Hle p; = p. Each machine is then represented by
a distinct point y € P, where P = [p1] X -+ X [p];
in other words, machines are mapped into points of
a k-dimensional hypercube.

During communication, we use k independently
chosen hash functions h; : U — [p;] and send each
tuple ¢ of relation S;(x;,,...,x;,) to all machines
in the destination subcube of ¢:

D(t) ={y € P |Vm € [a] : hi,, (t[im]) = yi,, }

Then, each machine locally computes the query ¢
for the subset of the input that it has received.

The correctness of the HC algorithm follows from
the observation that, for every potential output tu-
ple (ai,...,ax), machine (hy(a1),...,hx(ax)) con-
tains all the necessary information to decide whether
it belongs in the answer or not. Observe also that
the choice of p1, .. ., pr gives a different parametriza-
tion of the HC algorithm. To analyze the load of
the HC algorithm for a particular choice of shares,
we will use a generalization of Proposition 3.2.

DEFINITION 5.1. Let p = (p1,...,pr) be a vector
of shares. If for every relation S; and every tuple
of values t over A C Z; the degree of t in S; is at
most m;/ [1,,ec4Pi, we say that the input is skew-
free w.r.t. p.

PROPOSITION 5.2. Let p = (p1,...,pk) be shares
of the HC algorithm. If the input is skew-free w.r.t
p, the mazimum load is (with high probability)

~ m
O | max — "9
J Hi:wiesj bi

The above analysis provides us with a tool to
choose the best shares for the HC algorithm. Re-
call from Section 4 that we can write p; = p®, where
e; € [0,1] is called the share exponent for x;, and let
A =log, L. Then, we compute the optimal shares
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by optimizing the following LP:
minimize A
subject to Z —e; > —1
i€ k]

Vi€l > et A>log,(m)
;€S

Vie[k]e; >0, A>0 (2)

Observe that this is the general form of the LP in
Section 4. We can now describe our main result on
the performance of the HC algorithm. A fractional
edge packing of a query ¢ is a non-negative weight
assignment u = (u1,...,u;) to each relation S; such
that for every variable z;, Zj:m,:esj u; < 1. Let

pk(g) be the set of all edge packings for g.

THEOREM 5.3 (UPPER BOUND [4]). Given a
query q and p machines, let € = (e1,...,ex) be the
optimal solution to (2). Let p; = p, and sup-
pose that the input data is skew-free w.r.t. to p =
(p1,-..,pk). Then the HC algorithm with shares p
achieves w.h.p.

l wi\ 1/ D uj
r 6 (Tl—m> ’

u€pk(q) p

A case of special interest is when all input rela-
tions have the same cardinalities, i.e. my = mg =
---=1my = m. In this case the load is O(m/p'/7").
Here, 7* is the fractional edge packing number, de-
fined as 7% = maxy,cpi(q) Zj uj.

5.2 Optimality

The HC algorithm is optimal (up to logarithmic
factors) among one-round algorithms. Indeed, we
can show that there exists a family of skew-free in-
puts with maximum degree one (called matching
databases) such that no one-round algorithm can
achieve a bound better than the one in Theorem 5.3.

THEOREM 5.4 (LOWER BOUND [5]). Given a
query q, any (randomized) algorithm that computes
q correctly in one round with p machines must have
maximum load

14 uj 1/ Zj U

M

Lol max (L=’
u€epk(q) p

5.3 Dealing with Skew

If the input data is not skew-free with respect
to the optimal share allocation, the HC algorithm
does not achieve the optimal anymore. Instead, we
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have to use techniques described in the previous
two sections to deal with skew, by separating the
heavy and light hitters and considering the resid-
ual queries. We refer the interested reader to [5]
for further details on how to approach general join
queries. It still remains an open problem to find
a load-optimal one-round algorithm for any input,
where optimality in this case is defined with respect
to a fixed degree distribution of the input.

6. BEYOND ONE ROUND

In this section, we discuss the analysis of multi-
way join algorithms for multiple rounds. Through-
out this section, we assume that all input relations
have the same size m.

6.1 A Worst-Case Lower Bound

We first present a lower bound for the best pos-
sible load of any multi-round algorithm. Atserias,
Grohe, and Marx [3] have shown the following re-
sult, known as the AGM bound: if all input relations
have size < m, then the size of the query is < m*",
where p* is the fractional edge covering number of
the query gq. Moreover, the AGM bound is tight,
in the sense that there exists a “worst case” in-
put database with relation sizes < m, on which the
query returns an answer of size m? . The fractional
edge covering number is defined as the maximum
value of }_ . u;, where the numbers u; > 0 are as-
sociated to the input relations R;, and must sat-
isfy the following conditions, for every variable x;:

Zj:ziGRj Uj Z L.

THEOREM 6.1  ([17]). Let q be a join query.
Then, there exists a family of instances where re-
lations have the same size m, such that every MPC
algorithm that computes q with p machines using a

constant number of rounds requires load Q(m/p*/*").

PROOF SKETCH. Assume that an algorithm .4
computes ¢ with load L in r rounds. Since each
machine receives at most r - L tuples from each re-
lation S;, we can use the AGM bound to argue that
the total number of output tuples will be at most
p(r- L)?". If the input database is the worst case
input (or close to it), then A must output m? tu-
ples and therefore p(r - L)?" > m*", or equivalently
L>m/(rp'/?"). O

For the triangle query, since p* = 3/2, any algo-
rithm with a constant number of rounds must use
load Q(m/p?/?). Notice that for the triangle query,
T = p* = 3/2, and thus we can use the 1-round
algorithm from the previous section to compute the

query on skew-free data with load O(m/p*/3).
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Recall that m/ p'/7" is the optimal load for one-
round algorithms and skew-free data, while m/ pl/e’
is a lower bound for multi-round algorithms and ar-
bitrary data. In general, there is no relationship
between 7* and p*: for example, the join query has
7* =1 < p* = 2, while the query R(x), S(z,v),T(y)
has 7* =2 > p* = 1.

The upper bound for multi-rounds and arbitrary
data is open, except for the case when all input
relations are binary: in this case 7 < p* and it has
been shown [16] that the optimal load is precisely
O(m/p*/*"). Intuitively, after using one round to
compute the query on the skew-free data fragment
with a load m/ pl/™" we can exploit the additional
rounds to compute the query on the skewed data
values with load m/p*/?". We illustrate this idea
next on the triangle query.

6.2 The Triangle Revisited

Recall that the HC algorithm computes A on
skew-free data with load O(m/p?/3) in one round.
We will show here that we can compute the query
on arbitrary data using the same load in 2 rounds.
The main component is a parallel algorithm that
computes a semi-join query optimally in a single
round, independent of skew.

PROPOSITION 6.2 ([17]). The semi-join query
@1(z,y) = R(x),S(z,y) can be computed in one
round with mazimum load O(m/p). Query qa(z,y) =
R(z),S(z,y), T(y) can be computed in two rounds
with load O(m/p).

PrOOF SKETCH. To compute g; we use Skew Join,
outlined in Section 3.4. The data is skewed only
on one side, because R(x) is a set; therefore, Skew
Join has a load of O(m/p). To compute g, in
the first round we compute the semi-join A(z,y) =
R(x), S(z,y): importantly, the size of the result is
no larger than m. In the second round, we compute
the semi-join ¢(z,y) = A(z,y),T(y). Both steps

have a load of O(m/p). O

We now describe the 2-round algorithm for com-
puting A on arbitrary input data. Recall from Sec-
tion 4 that a value h is a heavy hitter if for some
relation the degree of h exceeds m/pl/ 3. For the
light values, we can run the HC algorithm in one
round and obtain load O(m/p?/3).

It remains to output the tuples for which at least
one variable has a heavy value. Without loss of gen-
erality, consider the case where variable x has heavy
values and observe that there are at most 2p'/3 such
heavy values for = (p'/? for R and p'/? for T'). For
each heavy value h, we assign an exclusive set of
p’ = p*/? servers to compute the query ¢[h/z] =
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R(h,y),S(y, 2),T(z, h), which is equivalent to com-
puting the residual query ¢’ = R'(y), S(y, 2), T'(2).
Recall that in the analysis of Section 4, it was ex-
pensive to compute this residual query in a sin-
gle round. However, by Proposition 6.2 using two
rounds we can compute each ¢’ with load O(m/p’) =
O(m/p*/3). We have thus shown:

THEOREM 6.3. The triangle query A on input with
relation sizes equal to m can be computed by an
MPC algorithm in two rounds with O(m/p*'®) load,
under any input data distribution.

The 2-round algorithm achieves a better load than
any l-round algorithm in the worst-case scenario.
Indeed, there exists an Q(m/p'/?) lower bound for
l-round algorithms on arbitrary data. By using
an additional round, we can beat this bound and
achieve a lower load. This confirms our intuition
that with more rounds we can reduce the maximum
load, even in the case of skewed data.

6.3 General Join Queries

Recall that every algorithm, regardless of the num-
ber of rounds, must have load Q(m/p'/?"). Tt is
currently not known whether this load is optimal
for general join queries, but it has been proven to
be optimal in [17, 16] for queries where all relations
have arity 2.

Our algorithm for computing the triangle query
suggests the following general strategy for comput-
ing an arbitrary query on arbitrary (possibly skewed)
data: (1) compute the query on the light hitters,
using one round and load O(m/p'/7"). (2) com-
pute the query on the heavy hitters using multiple
rounds. If 7% < p* and step (2) can be done with a
load of m/p'/*" | this algorithm is optimal.

Recall that 7* and p* are the fractional edge pack-
ing number, and the fractional edge covering num-
ber of the query respectively. If all relations in the
query have arity 2, then the query hypergraph is a
graph, and in that case 7° < p*.  [17] described
an algorithm for step (2) with load O(m/p'/?") for
chain queries and for cycles (including the algorithm
for the triangle query that we discussed earlier).
[16] described a non-trivial extension of this algo-
rithm to arbitrary queries where all relational sym-
bols have arity 2, still having load O(m/p'/*"). In
all these cases the algorithm consisting of steps (1)
and (2) is optimal, since 7* < p*.

It is currently open how to compute optimally
queries when 7* > p*. If the optimal load is indeed
m/pl/ P” then we need an entirely new approach
to compute the query over the light hitters, with a
better load than the HC algorithm. To see such an
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example, consider the query

q3(x1, x2, 23, Y1,2,y3) = R(x1, 22, 23), S1(x1,91),
52(x23 yZ)v 53(133793)»T(yhy2>y3)’

where 7* = 3 and p* = 2. When applied to the light
hitters, the HC algorithm allocates equal shares of
p'/% to all variables, thus the load is O(m/p'/3); this
load is also a lower bound for one round algorithms.
Yet for multiple rounds the best lower bound is
Q(m/p'/?") = Q(m/p'/?): it is open whether g3
can be computed with this load in multiple rounds.

7. CONCLUSION

In this paper, we presented recent results on the
communication cost of algorithms for computing
multiway join queries in modern big data analyt-
ics systems. We conclude by discussing some of the
key takeaways of our results.

1. The communication cost for 1-round join queries
can be reduced by using multi-dimensional hash-
partitioning. Each variable x is allocated a share
Pz, and the values of x are hash partitioned into p,,
buckets. When all relations have the same size m,
then the optimal load of any 1-round algorithm is
O(m/p*/™"), where 7* is the value of the optimal
fractional edge packing.

2. In any partitioning scheme of a relation R, the
expected number of tuples received by a machine is
the relation size divided by the number of buckets
into which it is partitioned. For example, for the tri-
angle query, R(z,y) is partitioned into pyp, = p2/3
buckets, hence the load is m/p?/3.

3. Skew occurs when a data value for some vari-
able x overflows one of its buckets. In a multi-
dimensional hash-partitioning scheme, tuples with
the same z-value are distributed to fewer buckets
than the entire relation, which makes the algorithm
quite resilient to skew. For example, in a triangle
query a value for variable z is skewed if it occurs
more than m/pl/ 3 times. For concrete numbers,
assuming p = 1000 machines, R is partitioned into
100 buckets, yet we can tolerate values with degree
up to m/10, much larger than the expected bucket
size of m/100. There are at most 10 skewed z-values
(heavy hitters), regardless of the size of R.

4. Multiple communication rounds can be used
effectively to compute queries over skewed data.
It is currently open what the optimal load of a
multi-round algorithm is. The best lower bound
is Q(m/p/P"), and this bound is known to be opti-
mal for queries where all relations have arity 2 and
the same size.

SIGMOD Record, December 2016 (Vol. 45, No. 4)



8. REFERENCES

[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and
J. D. Ullman. Upper and lower bounds on the
cost of a map-reduce computation. PVLDB,
6(4):277-288, 2013.

[2] F. N. Afrati and J. D. Ullman. Optimizing
joins in a map-reduce environment. In EDBT,
pages 99-110, 2010.

[3] A. Atserias, M. Grohe, and D. Marx. Size
bounds and query plans for relational joins. In
FOCS, pages 739-748, 2008.

[4] P. Beame, P. Koutris, and D. Suciu.
Communication steps for parallel query
processing. In PODS, pages 273-284, 2013.

[5] P. Beame, P. Koutris, and D. Suciu. Skew in
parallel query processing. In PODS, pages
212-223, 2014.

[6] P. Beame, P. Koutris, and D. Suciu.
Communication cost in parallel query
processing. CoRR, abs/1602.06236, 2016.

[7] R. Chaiken, B. Jenkins, P. Larson,

B. Ramsey, D. Shakib, S. Weaver, and

J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB,
1(2):1265-1276, 2008.

[8] S. Chu, M. Balazinska, and D. Suciu. From
theory to practice: Efficient join query
evaluation in a parallel database system. In
SIGMOD, pages 63-78, 2015.

[9] J. Dean and S. Ghemawat. Mapreduce:
Simplified data processing on large clusters.
In OSDI, pages 137-150, 2004.

[10] D. J. DeWitt, S. Ghandeharizadeh, D. A.
Schneider, A. Bricker, H. Hsiao, and
R. Rasmussen. The gamma database machine
project. IEEFE Trans. Knowl. Data Eng.,
2(1):44-62, 1990.

[11] J. Feldman, S. Muthukrishnan,
A. Sidiropoulos, C. Stein, and Z. Svitkina. On
distributing symmetric streaming
computations. In SODA, pages 710-719, 2008.

[12] E. Gribkoff and D. Suciu. Slimshot:
In-database probabilistic inference for
knowledge bases. PVLDB, 9(7):552-563, 2016.

[13] Hadoop. http://hadoop.apache.org/.

[14] D. Halperin, V. T. de Almeida, L. L. Choo,
S. Chu, P. Koutris, D. Moritz, J. Ortiz,
V. Ruamviboonsuk, J. Wang, A. Whitaker,
S. Xu, M. Balazinska, B. Howe, and D. Suciu.
Demonstration of the myria big data
management service. In SIGMOD, pages
881-884, 2014.

[15] H. J. Karloff, S. Suri, and S. Vassilvitskii. A
model of computation for mapreduce. In

SIGMOD Record, December 2016 (Vol. 45, No. 4)

SODA, pages 938-948, 2010.

[16] B. Ketsman and D. Suciu. A worst-case
optimal multi-round algorithm for parallel
computation of conjunctive queries, 2017. To
appear in PODS.

[17] P. Koutris, P. Beame, and D. Suciu.
Worst-case optimal algorithms for parallel
query processing. In ICDT, pages 8:1-8:18,
2016.

[18] P. Koutris and D. Suciu. Parallel evaluation of
conjunctive queries. In PODS, pages 223-234,
2011.

[19] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: Interactive analysis of web-scale
datasets. PVLDB, 3(1):330-339, 2010.

[20] M. Mitzenmacher and E. Upfal. Probability
and computing - randomized algorithms and
probabilistic analysis. Cambridge University
Press, 2005.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar,
and A. Tomkins. Pig latin: a not-so-foreign
language for data processing. In SIGMOD
Conference, pages 1099-1110, 2008.

[22] K. Shvachko, H. Kuang, S. Radia, and
R. Chansler. The hadoop distributed file
system. In MSST, pages 1-10, 2010.

[23] Apache spark. http://spark.apache.org/.

[24] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao,

P. Chakka, S. Anthony, H. Liu, P. Wyckoff,
and R. Murthy. Hive - a warehousing solution
over a map-reduce framework. PVLDB,
2(2):1626-1629, 2009.

[25] M. S. University and M. Stonebraker. The
case for shared nothing. Database
Engineering, 9:4-9, 1986.

[26] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103-111,
1990.

[27] J. Wang, T. Baker, M. Balazinska,

D. Halperin, B. Hayes, B. Howe,

D. Hutchinson, S. Jain, R. Maas, P. Mehta,
D. Moritz, B. Myers, J. Ortiz, D. Suciu,

A. Whittaker, and S. Xu. The Myria big data
management and analytics system and cloud
services, 2017. To appear in CIDR.

[28] R. S. Xin, J. Rosen, M. Zaharia, M. J.
Franklin, S. Shenker, and I. Stoica. Shark:
SQL and rich analytics at scale. In SIGMOD,
pages 13-24, 2013.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. In HotCloud,
2010.

27



A Closer Look at Variance Implementations
In Modern Database Systems

Niranjan Kamat

Arnab Nandi

Computer Science & Engineering
The Ohio State University
{kamatn,arnab}@cse.osu.edu

ABSTRACT

Variance is a popular and often necessary component of
aggregation queries. It is typically used as a secondary
measure to ascertain statistical properties of the result
such as its error. Yet, it is more expensive to compute
than primary measures such as SUM, MEAN, and COUNT.

There exist numerous techniques to compute variance.
While the definition of variance implies two passes over
the data, other mathematical formulations lead to a single-
pass computation. Some single-pass formulations, how-
ever, can suffer from severe precision loss, especially for
large datasets.

In this paper, we study variance implementations in
various real-world systems and find that major database
systems such as PostgreSQL and most likely System X,
a major commercial closed-source database, use a repre-
sentation that is efficient, but suffers from floating point
precision loss resulting from catastrophic cancellation.
We review literature over the past five decades on vari-
ance calculation in both the statistics and database com-
munities, and summarize recommendations on imple-
menting variance functions in various settings, such as
approximate query processing and large-scale distributed
aggregation. Interestingly, we recommend using the math-
ematical formula for computing variance if two passes
over the data are acceptable due to its precision, paral-
lelizability, and surprisingly computation speed.

1. INTRODUCTION

New large-scale distributed data management and
analytics systems are being developed at a rapid
pace, with the scalability aspect of computation be-
ing their predominant development focus (except-
ing [10]). Comparatively lesser efforts have been ex-
pended on ensuring numerical correctness and sta-
bility of algorithms. While such an approach can
result in the queries being answered more quickly,
it can also cause the computation to have a higher
level of numerical imprecision.

The concern of achieving numerical stability and
precision is pertinent in numerous computational
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Figure 1: Effect of Variance Error on T-Test Con-
fidence Intervals: As the magnitude of values in-
creases (x-axis, true margin of error is kept con-
sistent for each dataset), mean is expected to in-
crease, and size of error bars is expected to stay the
same. However, PostgreSQL and System X error
bars (« = 0.05) vary widely, while System Y has
correct error bars (details in Section 1.1).

scenarios; it is especially important in variance cal-
culation, which has an ubiquitous presence in large-
scale analytics and is known to suffer from precision
issues [4]. Variance is an important aggregate func-
tion and an essential tool in sampling-based aggre-
gation queries. Typically used as a secondary mea-
sure, it augments measures such as AVERAGE and
provides an insight into data distribution beyond
the primary measure. Computation of variance,
however, is susceptible to precision loss when the
variance is much smaller than the mean [1].

There exist several techniques to compute vari-
ance. The standard formula uses two passes and
provides an accurate estimate (Two Pass). Due to
its perception of being more expensive, other tech-
niques have been developed that require a single
pass over the data. One such formula, while fast, is
known to suffer from precision loss ( Textbook One
Pass) due to catastrophic cancellation [4], an un-
desirable effect of a floating point operation that
causes relative error to far exceed absolute error.
Figure 1 demonstrates this problem. As a side note,
this problem affects calculators as well [4].
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Another formula ( Updating), as recommended by
Knuth [8], has found a strong foothold in the database
community, with numerous implementations citing
him. However, this formula is constrained by the
fact that it can only incorporate a single value into
the current running estimates. It is unable to com-
bine the estimates from different subsets of data.

Given the rise of large-scale data processing, mas-
sive multi-core support and availability of GPUs, it
is prudent to consider representations such as Pair-
wise Updating, that can combine partial results at
a larger scale instead of incrementally incorporat-
ing a single data point. Further, Pairwise Updating
is also known to provide better precision for both
single ( [1]) and double precision input (Section 4).

Contributions & Outline:

e We catalog usage of different variance formulas
in various open source database systems (Table 2).
e  We experiment with different closed source and
open source databases to investigate precision loss
issues. We find that precision of PostgreSQL and
System X deteriorates the most. After looking at
the PostgreSQL source code, we can verify that it
uses Textbook One Pass, and hypothesize that Sys-
tem X does so as well.

e We empirically study the accuracy of the dif-
ferent representations under varying additive shifts
and dataset sizes including a hitherto unstudied one,
which we call Total Variance.

e We recommend using Two Pass if performing
two passes over the data is acceptable (Section 5),
which seems counter-intuitive, but works due to its
computational simplicity.

In the next subsection, we look at the adverse
effects of imprecise variance calculation. Section 2
presents different variance representations and their
properties. We then note the representations used
by modern databases in Section 3. Section 4 lists
our analysis of the behavior of the different formu-
las (using double precision input compared with sin-
gle precision in Chan et al. [1]). We conclude with
our recommendations for choosing an appropriate
variance representation in current environments.

1.1 TImpact of Variance Calculations

Due to the pervasive use of variance, a loss of pre-
cision can have an impact in a variety of different
domains. In the following paragraphs, we look at
some use cases where the lack of precision in vari-
ance calculation can have adverse consequences.
Incorrect OQutput: It is possible to experimen-
tally observe the loss of precision as incorrect out-
put. To illustrate the pitfalls in using Textbook One
Pass, 100 values were generated from a Uni form(0, 1)
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distribution and shifted by 105t Ezponent for Gpift
Ezxponent varying from 1 to 15. The variance as
a result of data being shifted should be similar to
the one without any shift. We verify this by adding
and subtracting the shift exponent and note that
the variance of the resultant dataset was close to
the true sample variance. However, Figure 1, which
depicts the sample mean and confidence interval,
shows that PostgreSQL and System X suffer from
variance calculations being susceptible to precision
loss due to the shift. We know that PostgreSQL
uses Textbook One Pass and the pattern of the erro-
neous calculations displayed by both hints towards
System X using it as well. In contrast, other database
systems suffered minor precision loss as expected
(these results are not shown since they do not add
any additional information to the figure). It should
be noted that System Y was found to be highly im-
mune to precision loss.

Visualization: Erroneous variance calculation can
have a notable impact on visualizations as shown by
Figure 1. While error bars should be similar, they
instead vary widely and inaccurately for higher shift
values for PostgreSQL and System X. We also found
Datavore, which powers the Profiler visualization
system [7], to use Two Pass.

Negative Variance: It is possible for variance
to be negative while using Textbook One Pass —
a theoretically impossible result. We observed in
the PostgreSQL source code that variance is set to
zero, if negative. Figure 1 shows numerous values
of 0 (missing error bars) for PostgreSQL (shift ex-
ponent 8, 9, and 12) and System X (shift exponents
10 and 11), providing evidence of System X employ-
ing a similar strategy for handling negative variance
values and using Textbook One Pass.

Decision Support Systems: As a building block
in popular algorithms, flaws in variance implemen-
tations can have far-reaching impacts, e.g., in hy-
pothesis testing, which is an integral part of deci-
sion support systems. Having imprecise or incorrect
variance estimates can greatly change the result of
hypothesis testing.

Data Mining: Variance is an important tool in
statistical analysis and machine learning algorithms
such as Gaussian Naive Bayes, or Mixture of Gaus-
sians based algorithms such as background model-
ing, clustering, or topic modeling. For example, we
found usage of Textbook One Pass within a graph-
ics library of the R language. Similarly, MADIib [3]
was also found to have a call to the PostgreSQL
variance function: thus, an erroneous calculation of
variance can extend from the underlying databases
to the systems built on top of them.
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Table 1: Commonly used Formulas for Variance.

2. VARIOUS VARIANCE FORMULATIONS third pass, over the groups, the overall variance is

Table 1 presents the common variance represen-
tations [1]. We use a similar naming convention to
that used by Chan et al. [1]. S represents the sum of
squares. The sample variance can be given by %,
where N is the sample size. z; is the i*" data point.
Z is the sample mean. M,,, is the mean of the
data points from indexes m to n (both inclusive).
T, is the total of the data points from indexes m
to n (both inclusive). We have also provided To-
tal Variance (derivation in the technical report [6]).
In its formula, n;, m;, and v; represent the count,
mean, and variance respectively, of the ith group.

Textbook One Pass can be computational}l\?f dan-
gerous as the quantities Zfil a? and (3,1 :)?
can nearly cancel each other out. The Pairwise Up-
dating formula hierarchically combines pairs of vari-
ance values and uses O(log(N)) storage while reduc-
ing the relative errors from O(N) to O(log(N)) [1].
Updating-YC represents Youngs and Cramer for-
mula [13] and is essentially identical to Updating
Pairwise when m = 1 or n = 1. The Updating-
WWH formula refers to the nearly identical for-
mulas used by Welford et al. [11], West et al. [12],
and Hanson et al. [2] and has similar precision as
Updating-YC. We have used the Updating-WWH
representation for updates using a single data point,
and denote it by Updating. Shifting the data by an
exact or approximate value of Z (Shifted One Pass)
can also result in substantial accuracy gains [1].

2.1 Total Variance

Since this is the first paper to introduce the To-
tal Variance representation, we explain its steps in
more details below. In the first pass, which is over
the tuples, the variance (using one of the other for-
mulas), mean, and count, of individual groups are
computed. The second pass, over the groups thus
formed, finds the overall mean of the data. In the
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then found. Since the second and third passes are
over the groups obtained as a result of the first pass,
and different formulas can be used to compute vari-
ance of individual groups in the first pass, complex-
ity of the overall algorithm can vary widely. While
second and third passes are highly parallelizable, its
overall parallelizability is dependent upon the for-
mula used to find variance of the groups. It is de-
signed for combining variances of different groups
and is agnostic to the representation used in the
first pass — our implementation uses Updating.

Computing mean of individual groups is a well-
researched subject with Tian et al. [10] providing a
good overview. We use a single pass algorithm to
compute mean of individual groups and to combine
means of groups as well. To handle a large num-
ber of groups, one can look into using an aggrega-
tion tree to combine means. The usual technique of
mean estimation can be used in case the number of
groups is large, at the cost of decreased precision.

There does not appear to be a theoretically ideal
group size for Total Variance, and we could not
determine one experimentally either [6]. In dis-
tributed execution, one natural way is to consider
data across different nodes as groups. Further, data
within a node can be equally partitioned, so that
each core works on a single subgroup.

2.2 Properties of Different Representations

While Chan et al. [1] provide an overview of the
accuracy, passes, and storage required for most of
the formulas given in Table 1 (other than Total
Variance), their classification as being distributive,
and thus the ability to be parallelized, has not been
explicitly listed before, which we do. In Table 1,
the Storage column depicts the extra space needed
for computing variance, which is above and beyond
that needed to store the data itself.
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The accuracy of Shifted One Pass depends on
that of the mean estimate. Pairwise Updating is the
only representation providing accurate results while
being highly parallelizable and requiring a single
pass. Additionally, as we will see in Section 4, the
precision of Total Variance is slightly better than
that of Updating Pairwise, which has the best pre-
cision amongst all single pass algorithms. As a side
note, Two Pass, Total Variance and Textbook One
Pass are the only representations that can be repre-
sented using a standard SQL query. Note that Ta-
ble 2.1 of [1] succinctly enumerates the error bounds
of different formulations. Further, Kahan summa-
tion [5,10] can help improve their precision.

2.3 Data Conditioning

Data shifting and scaling are immensely useful in
improving accuracy of algorithms [4]. For exam-
ple, shifting the data by its mean is the basis for
Shifted One Pass. Indeed, Chan et al. [1] demon-
strate the usefulness of shifting by an approximate
mean computed using a sample of the data by prov-
ing that it reduces the bounds of the condition num-
ber. Further, techniques such as dividing by the
mean or using the log function [4] can be helpful
in improving the accuracy. However, along with
requiring additional computational resources these
techniques can also worsen the accuracy under mali-
cious datasets [1], and need careful user supervision.

2.4 Hybrid Formulae

It is clear that different implementations can be
used to find variance of different groups, and com-
bine partial results. Indeed, it has been brought
to our attention that a commercial system uses the
Updating-YC formula to compute variance at in-
dividual nodes, and combines them using Pairwise
Updating formula. Total Variance is a hybrid for-
mula as well. This provokes an interesting piece of
future work — choosing different representations at
different computation steps, based on factors such
as numerical precision, data partitioning, time for
first result, number of passes permissible (Section 5).
This idea is elaborated upon in Section 5.

2.5 Current Recommendation Guidelines

Chan et al. [1] provide detailed recommendation
guidelines for different variance formulas. They rec-
ommend usage of Pairwise Updating for combining
variances across multiple processors since it reduces
the errors and is massively parallelizable if extra
O(log(N)) space is available. Further, it is also the
safest (least precision loss) algorithm to use within
each processor, under the constraint of a single pass.
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2.6 Extensibility to Other Measures

Standard deviation, standard error, and coeffi-
cient of variation are important statistical measures,
and perform variance computation. Thereby, they
are also affected by the properties of the underlying
representation. Similarly, the properties will also
extend to any user-defined measure whose variance
can be expressed in a closed form as a function of
the variance of one of the measure dimensions. For
example, for a user-defined measure given by a =
AVG(agg) + b, where a and b are constants and agg
is a measure dimension, the variance of the measure
can be given in closed form as a?+«VARIANCE(agg).

3. VARIANCE IMPLEMENTATIONS
IN MODERN DATABASE SYSTEMS

We looked at the code of multiple open source
databases to find their variance representations. We
also conjecture about two closed source ones through
our experiments.

Database Formula
PostgreSQL Textbook One Pass
9.4.4
MySQL 5.7 Updating
Impala 2.1.5 Updating Pairwise
Hive 1.2.1 Updating Pairwise
Spark 1.4.1 Updating Pairwise
SQLite No Variance Support
System X | Textbook One-pass (Conjecture)
System Y Cannot Conjecture

Table 2: Variance Implementations in Databases.

PostgreSQL uses Textbook One Pass and is thus
susceptible to precision loss. MySQL uses Knuth’s
modification [8] of Welford’s updating formula. There-
fore, it can only process a single additional data
point, and cannot avail of the possible paralleliza-
tion. Spark 1.4.1 and Impala 2.1.5, on the other
hand, use a modified version of Updating Pairwise.

Although the source code for System X is not
available, we conjecture that it uses Textbook One
Pass as its precision behavior was similar to that
of PostgreSQL. System Y was found to have the
best precision. We hypothesize that it uses higher
precision variables, but cannot make any conjecture
about the exact representation.

4. EXPERIMENTAL ANALYSIS

Chan et al. [1] have looked at the precision of dif-
ferent algorithms using single precision input. We
present the precision results using double precision
input. We also evaluate the precision of Total Vari-
ance. We look at the precision in the variance cal-
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Figure 2: Two Pass not only has the highest precision, but also requires second lowest execution time.

culation offered by the different databases. We also
present the execution times of different algorithms
on data sizes up to 100 million tuples. The results
are the average over 100 runs. Experiments were
performed using Ubuntu 14.04.05 LTS with a 4 core,
2.4 GHz Intel CPU, with 16 GB RAM, and 256 GB
SSD storage, using a single execution thread.
Dataset: Although numerous benchmarks exist to
evaluate the accuracy of numerical algorithms, they
are constrained by their dataset size. For example,
the biggest dataset in the NIST StRD [9] bench-
mark consists of 5000 points. Furthermore, for this
dataset, the mean is not significantly larger than
the standard deviation (p = 4.5348, o = 2.8673).
Therefore, in a similar vein as Tian et al. [10], we
created synthetic datasets of different sizes using
Uni form(0,1) (variance being 7). They were shifted
by adding values ranging from 10' to 10%°.

4.1 Impact of Shift

Numerical precision was evaluated using varying
additive shifts, over a dataset of size 10000. Group
size was set at 10 for Total Variance. We present
our findings in Figure 2a, where Y-axis represents
the number of correct decimal digits (non-fractional
part of the result was 0). The results were as ex-
pected [1], with Two Pass having the best precision,
and Teztbook One Pass the worst.

4.2 Impact of Data Size

Since precision errors typically accumulate, we
tried datasets of sizes from 10 to 100 million. The
shift was set at 10°. Figure 2b shows that precision
generally worsens with increasing data size. Two
Pass again outperforms other algorithms. Textbook
One Pass consistently exhibits the worst precision.

Counter-intuitively, the precision of Total Vari-
ance and Updating Pairwise was found to increase
for the data size exponents from 2 to 6. We are un-
able to conjecture the reason behind this behavior.
The precision error for Updating Pairwise increases
as O(log(n)), while that for others (except Total
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Variance) increases as at least O(n) [1], where n
is the data size. Therefore, while we can expect
the error in Updating Pairwise to not increase at
the same rate as others, the error decrease is unex-
pected. In the absence of theoretical error bounds
for Total Variance, we cannot hypothesize about
the possible cause. To ensure there were no irregu-
larities, the experiment was repeated multiple times
with similar results.

4.3 Single-Threaded Execution Speed

We also looked at the execution time of different
algorithms with increasing data size (Figure 2c).
Results with lower data sizes have not been pre-
sented due to the computation taking minimal time.
Surprisingly, there was no discernible difference in
execution time between Two Pass and Shifted One
Pass.  Only Textbook One Pass took lesser time
than Two Pass. We attribute the low execution
time of Two Pass to simplicity of its computation.

4.4 TImpact of Shift on Different Databases

We look at
variance precision
for the different
databases under
varying additive
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Figure 3: Databases follow ex-
pected precision patterns.

have similar data
types. 100 points
were chosen from a Uniform(0,1) distribution.
Figure 3 shows that precision loss follows a simi-
lar pattern in System X and PostgreSQL. Impala
and MySQL have a similar error profile as well.

4.5 Miscellaneous Experiments

In one of the other experiments, details in [6], we
noted that changing group size in Total Variance
did not have a significant effect on the precision. In
another experiment, multi-threaded execution gave
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us expected speedups for the parallelizable formula-
tions. Finally, we inspected the mantissa of the two
terms that compose Textbook One Pass to demon-
strate the cause of catastrophic cancellation.

S. CONCLUSION & RECOMMENDATIONS

Precision issues associated with Textbook One Pass
have been well documented. However, we have seen
that databases such as PostgeSQL and likely Sys-
tem X still use it. We recommend from the per-
spective of safety to discontinue its usage. Though
there might be arguments for its continued usage
after warning the users in certain scenarios, the ar-
guments against it far outweigh the speedup bene-
fit and its ease of implementation. Although error
inherently exists in approximate query processing,
numerical precision errors are easy to eliminate and
hard to apportion and therefore should be avoided
whenever possible. Hence, we recommend to the
designers of databases, and statistics and analytics
packages, to discontinue its usage. Further, it would
be wise for users to perform a sanity check using ex-
periments similar to those given in Section 4.1.

Previous work has recommended Pairwise Updat-
ing from the perspective of precision, speed, and
parallelizability [1]. However, we have seen from
our experiments of up to 100 million data points,
that the most accurate algorithm, Two Pass, takes
lesser time than Updating, Updating Pairwise, and
Total Variance. Further, it takes around the same
amount of time as Shifted One Pass, which relies
on mean estimation. Two Pass is also easy to im-
plement and parallelize. Therefore, in the case that
performing two passes over the data is ac-
ceptable, Two Pass should be the preferred
algorithm. Determining whether two passes are
acceptable, however, is a nuanced decision. When
the data fits in memory, performing two passes over
the data is clearly acceptable as all representations
will incur the identical data read I/O cost. When
the data cannot fit in memory, summing up the es-
timated I/O and computation times can help deter-
mine whether Two Pass will need the least amount
of time, in which case it should be chosen.

In other cases, i.e., whenever Two Pass is
not estimated to require the least execution
time, there does not exist a clear winner, due
to different algorithms having different strengths
and weaknesses. Updating provides faster results
at lower precision, compared with Updating Pair-
wise, without needing additional memory. Updating
Pairwise is parallelizable, whereas Updating is not.
While Shifted One Pass provides quick results, its
accuracy is dependent on correctness of the mean
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estimate. Total Variance has good accuracy, al-
though it takes longer to execute, and is dependent
on the algorithm used to compute group statistics,
while also needing multiple passes. Hence, there
does not exist any algorithm that dominates every
other algorithm, resulting in there not being a clear
choice. We can see that a query planner that devises
hybrid formulas, while taking the data distribution,
estimated I/O and computation costs, and the over-
all strengths and weaknesses of different algorithms
into consideration, appears to be an important and
ideal piece of future work.
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ABSTRACT

Data visualization is often used as the first step while
performing a variety of analytical tasks. With the advent
of large, high-dimensional datasets and significant inter-
est in data science, there is a need for tools that can sup-
port rapid visual analysis. In this paper we describe our
vision for a new class of visualization systems, namely
visualization recommendation systems, that can auto-
matically identify and interactively recommend visual-
izations relevant to an analytical task. We detail the key
requirements and design considerations for a visualiza-
tion recommendation system. We also identify a number
of challenges in realizing this vision and describe some
approaches to address them.

1. INTRODUCTION

Data visualization is perhaps the most widely used
tool in a data analyst’s toolbox, but the state of the art
in data visualization still involves manual generation of
visualizations through tools like Excel or Tableau. With
the rise of interest in data science and the need to de-
rive value from data, analysts increasingly want to use
visualization tools to explore data, spot anomalies and
correlations, and identify patterns and trends [30, 14].
For these tasks, current tools require substantial man-
ual effort and tedious trial-and-error. In this paper, we
describe our vision for a new class of visualization rec-
ommendation (VISREC) systems that automatically rec-
ommend visualizations that highlight patterns or trends
of interest, thus enabling fast visual analysis.

Why Now? Despite the widespread use of visualization
tools, we believe that we are still in the early stages of
data visualization. We draw an analogy to movie rec-
ommendations: current visualization tools are akin to
a movie catalog; they allow users to select and view
the details of any movie in the catalog, and do so re-
peatedly, until a desired movie is identified. No current
tools provide functionality similar to a movie recom-
mendation system which gives users the ability to in-
telligently traverse the space of movies and identify in-
teresting movies, without getting bogged down by their

34

Tarique Siddiqui?

Samuel Madden!

ZUniversity of lllinois (UIUC)

{shuang86, tsiddig2, adityagp }@illinois.edu

sheer number or unnecessary details. On similar lines,
the goal of VISREC systems is to allow users to easily
traverse the space of visualizations and focus only on
the ones most relevant to the task. There are two rea-
sons why such visual recommendation tools are more
important now than ever before:

Size. While the size of datasets—in terms of number of
records and number of attributes— has been rapidly in-
creasing, the amount of human attention and time avail-
able to analyze datasets has stayed constant. With larger
datasets, users must manually specify and examine a
larger number of visualizations and must experiment with
more attributes and subsets of data before arriving at vi-
sualizations showing patterns of interest.

Varying Skill Levels. Users with varying levels of skill
in statistical and programming techniques are now per-
forming data analysis. As a result, there is a need for
easy-to-use analysis tools for domain-experts who have
limited data analysis expertise. Such tools can perform
the heavy-lifting for analyzing correlations and patterns,
and surface relevant insights in the form of accessible
and intuitive visualizations.

Limitations of Current Tools. Current visualization
tools such as Excel and Tableau provide a powerful set
of mechanisms to manually specify visualizations. How-
ever, as tools to perform sophisticated analyses of high-
dimensional datasets, they lack several features:

e Inadequate navigation to unexplored areas. Due to
the large number of attributes and values taken on by
each attribute, exploring all parts of a dataset is chal-
lenging with current tools. Often some attributes of
the dataset are never visualized, and visualizations
on certain portions of the dataset are never gener-
ated. This focus on a tiny part of the data is espe-
cially problematic if the user is inexperienced or un-
familiar with attributes in the dataset.

o Insufficient means to specify trends of interest. Cur-
rent tools lack the means to specify what the ana-
lyst is looking for, e.g., perhaps they want to find all
products that took a hit in February, or they want to
find all attributes on which two products differ. Us-
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ing current tools, the analyst must specify each can-
didate visualization individually and determine if it
satisfies the desired criteria.

o Poor comprehension of context or the “big picture”.
Existing tools provide users no context for the visu-
alization they are currently viewing. For instance,
for a visualization showing a dip in sales for Febru-
ary, current tools cannot provide information about
whether this dip is an anomaly or a similar trend is
seen in other products as well. Similarly, the tool
cannot indicate that another attribute (e.g. inclement
weather) may be correlated with the dip in sales. In
current tools, users must generate related visualiza-
tions manually and check if correlations or explana-
tions can be identified. There are also no means for
users to get a high-level summary of typical trends
in the visualizations of a dataset.

o Limited understanding of user preferences. Apart
from giving users the ability to re-create past visu-
alizations, existing tools do not take past user be-
havior into account while identifying relevant visu-
alizations. For instance, if the user typically views
only a handful of attributes from a dataset, maybe it
is worth recommending to this user other attributes
that may be correlated or similar to these attributes.

Recent work by us and others has attempted to propose
systems that address various aspects of visualization rec-
ommendations, e.g. [32, 40, 46, 37]. Commercial prod-
ucts are also beginning to incorporate elements of VIS-
REC into their tools [1, 2]. However, all of these tools
are far from being full-featured VISREC systems. This
position paper aims to detail the key requirements and
design considerations for building a full-feature VIs-
REC system. While we are inspired by traditional prod-
uct recommendation systems in developing the ideas in
this paper, our primary focus will be on aspects that are
unique to the VISREC setting. Throughout this paper,
we focus on the systems-oriented challenges of building
a VISREC system. There are many challenging user in-
terface and interaction problems that must be addressed
to build an effective VISREC system; these are, how-
ever, outside the scope of this vision paper.

We begin by discussing axes or dimensions that are
relevant in making a recommendation (Section 2), the
criteria for assessing quality of recommendations (Sec-
tion 3), and architectural considerations (Sections 4 and
5). We then describe our current work in this area (Sec-
tion 6) and conclude with a brief discussion of related
work (Section 7).

2. RECOMMENDATION AXES

Whether a visualization is useful for an analytical task
depends on a host of factors. For instance, a visualiza-
tion showing sales over time may be useful in a sales

SIGMOD Record, December 2016 (Vol. 45, No. 4)

projection task, while a visualization showing toy break-
down by color may be useful in a product design task.
Similarly, a visualization showing a dip in profit may be
of interest for a salesperson, while a visualization ex-
plaining the upward trend in auto accidents would be of
interest to auto-manufacturers. In this section, we out-
line five factors that we believe must be accounted for
while making visualization recommendations: we call
these recommendation axes.

I. Data Characteristics. In many ways, the goal of a vi-
sualization recommender system is to mine the data for
interesting values, trends, and patterns to speed up data
analysis. These patterns may be then presented to the
user at different stages of analysis, e.g. when they first
load the dataset, while performing some task, or view-
ing a particular visualization. There are a number of
data characteristics that a VISREC system can consider
while making recommendations, e.g.: a) summaries,
e.g., histograms or summary statistics [43], providing an
overview of the data distribution; b) correlations, e.g.,
Pearson correlation, Chi-squared test [43], providing an
understanding of correlated attributes; ¢) patterns and
trends, e.g., regression [43], association rules, or clus-
tering, providing an understanding of what is “typical”
in the dataset and enabling users to contextualize trends;
d) advanced statistics, e.g., tests like ANOVA, Wilcox
rank sum [43] aiding in deeper analysis.

II. Intended Task or Insight. Along with data, an im-
portant input to a VISREC system is the intent of the
user performing analysis: This includes the following
aspects: a) style of analysis: e.g. exploratory, compara-
tive, predictive, or targeted; b) subject of analysis: sub-
set of data and attributes of interest (e.g., adult males,
sweater products, color); c¢) goal of analysis: e.g. ex-
planations for a certain behavior (e.g., why is there a
spike in february in sales), comparison between sub-
sets of data (e.g., how are staplers doing compared to
two years ago), finding unusual or outlier patterns (e.g.,
are there any toy colors doing “differently”), or finding
specific patterns (e.g., chairs with high sales on Octo-
ber 15). While we may be able to obtain explicit task
information from the user (e.g. via a drop-down menu
or query language of sorts), we may also infer intent
through user actions. Finally, if we have information
about the user’s assumptions or biases regarding the data
or task, the VISREC system can also provide recommen-
dations to counter these biases.

II1. Semantics and Domain Knowledge. A large amount
of semantic information is associated with any dataset—
what data is stored, what information does each attribute
provide, how are the attributes related, how does this
dataset relate to others, etc. This semantic information
determines, in part, whether a visualization is “interest-
ing” or “unusual”. For instance, if a user is analyz-
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ing a dip in profits, semantics would indicate that vi-
sualizations showing attributes such as sales, revenue,
cost of goods sold, number of items sold would be use-
ful. An even more significant factor—and much harder
to capture—is domain knowledge. The user possesses

unique or domain-specific knowledge that guides the search

for attributes, trends and patterns. For example, a rec-
ommendation system that only considers data and task
may recommend a visualization showing that the OB-
GYN hospital unit has a disproportionately high per-
centage of female patients. A person with minimal do-
main knowledge would note that the trend shown in this
visualization is obvious and therefore the visualization
is unhelpful. Domain knowledge can include typical be-
havior of specific attributes or subsets of data (e.g., sales
always goes up around christmas time, or electronics
sales is always greater than stapler sales), or relation-
ships between groups of attributes, (e.g., sales and prof-
its are always proportional). It can also include external
factors not in the dataset, e.g., an earthquake may have
affected hard disk drive production.

IV. Visual Ease of Understanding. A dimension that is
completely unique to visualization recommendation is
what we call visual ease of understanding. This dimen-
sion ensures that data has been displayed in the most
intuitive way for easy understanding. Work such as [27,

28] proposes techniques to choose visual encodings, while

related work in information visualization includes a va-
riety of techniques to visualize data with varying dimen-
sionality and data types [26, 15, 23, 20].

V. User Preferences and Competencies. Multiple users
analyzing the same dataset may have attributes of com-
mon interest, while the same user analyzing different
datasets may prefer specific visualization types. Simi-
larly, certain views of a particular dataset may be most
intuitive or most relevant during a particular phase of
analysis, leading most users to prefer these visualiza-
tions. A VISREC system also needs to account for the
varying levels of visual literacy and statistical ability of
the user. There is a large body of work on extracting user
preferences (e.g., [16, 29]) as well as cognitive model-
ing (e.g., [13]), techniques from which can be adapted
for VISREC. Furthermore, these techniques can be com-
bined with assessments of visual and statistical literacy
(e.g. [11,9]) to tailor recommendations for each user.

Traditional recommendation systems focus mainly on
User Preference and to some extent on Intended Task;
however, the other axes enumerated above are tailored
to VISREC systems.

3. RECOMMENDATION CRITERIA

The previous section discussed factors that contribute
to the utility of visualizations. In this section, we discuss
criteria to measure quality of visualization recommen-
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dations. We find that some criteria are similar to tradi-
tional product recommendations (e.g. relevance) while
others are unique to VISREC (e.g. non-obviousness) or
are re-interpretations of existing criteria (e.g. surprise).

e Relevance: This metric measures whether the rec-
ommendation is useful to the user in performing the
particular analytic task. As discussed in the previous
section, many factors such as data, task, semantics
etc., play a role in determining relevance.

e Surprise: This metric measures the novelty or
unexpected-ness of a recommendation. For product
recommendations, this metric prefers items the user
didn’t explicitly ask for but are relevant. In VIs-
REC, this corresponds to visualizations that show
something out of the ordinary. For example, a dip
in sales of staplers may not be interesting by itself
but when juxtaposed with the booming sales of other
stationery items, it becomes interesting.

e Non-obviousness: This metric is specific to VIS-
REC. Non-obviousness measures whether the rec-
ommendation is expected given semantics and do-
main knowledge (as opposed to surprise which is
defined with respect to data). For instance, the OB-
GYN example discussed previously was surprising
from a statistical point of view, but was, in fact, ob-
vious to a user with minimal domain knowledge.

Since we expect the recommender system to recom-
mend multiple visualizations, the quality of the visual-
ization set is as important as the quality of individual vi-
sualizations. We note that the order of recommendations
is also important in this regard and we expect order to be
determined by relevance, along with measures related to
coherence over time and visualization set quality.

e Diversity. This metric measures how different are
the individual visualizations in the recommended col-
lection. Diversity may be measured with respect to
attributes, visualization types, different statistics, vi-
sual encodings, etc. A more subtle notion of diver-
sity would capture the “informativeness” of a col-
lection of visualizations relative to each other—the
conditional utility of a visualization given others.

e Coverage. This metric measures how much of the
space of potential visualizations and of the dataset
is covered by recommendations. While users par-
ticularly value coverage during exploration, during
analysis, users seek to understand how thorough are
the recommendations shown to them. For instance,
the user would like to understand whether the system
examined ten or ten thousand visualizations (and sim-
ilarly whether the system examined 10% or 100% of
the data) before recommending visualizations.

4. ADAPTING RECSYS TECHNIQUES
The task of building a VISREC system brings up a
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natural question: recommender systems is a rich area
of research; how much of existing work can we reuse?
Our goal in this section is to broadly identify problems
in VISREC that can be solved using existing techniques,
and those that require new techniques.

Existing methods for product recommendation broadly
fall into three categories [7, 4]: (i) content-based fil-
tering that predicts user preferences based on item at-
tributes; (ii) collaborative-filtering that uses historical
ratings to determine user or item similarity; and (iii)
knowledge-based filtering that uses explicit knowledge
models to make recommendations. Collaborative fil-
tering is probably the most popular technique currently
used in recommender systems (e.g. at Amazon [24]).
However, collaborative filtering (as well as content-based
filtering) assumes that there is historical rating data avail-
able for a large number of items. As a result, it suffers
from the traditional cold start problems when historical
ratings are sparse. Knowledge-based filtering [39], in
contrast, does not depend on history and therefore, does
not suffer from cold start problems.

VISREC differs from product recommendations in a
few key areas that impact the techniques that can be
used for recommendation. In VISREC, new datasets are
being analyzed by new users constantly. Furthermore,
each new task on a dataset can produce an entirely new
(and large) set of visualizations from which the system
must recommend, i.e., not only is the universe of items
large, it is generated on-the-fly. Consequently, VISREC
systems almost never have sufficient historical ratings to
inform accurate collaborative or content-based filtering.
Visualization recommenders must therefore rely on on-
the-fly, knowledge-based filtering. This is not to say that
techniques such as collaborative filtering cannot be used
to transfer learning across datasets; it means that while
such techniques can aid in recommendations, the heavy
lifting must be performed by knowledge-based filtering.

Applying knowledge-based techniques to VISREC brings

up several challenges that have not been addressed in the
recommender systems literature: (i) Models must be de-
veloped for capturing the effect of each recommendation
axis (Section 2) on visualization utility; (ii) Knowledge
models must be such that they can perform online pro-
cessing with interactive latencies. For example, along
the data axis, several of the existing data mining tech-
niques from Section 2 are optimized for offline process-
ing. As a result, these techniques must be adapted to
work in an online setting with small latencies; (iii) Effi-
cient ranking techniques and ensemble methods must be
developed for combining large number of models along
individual axes, and multiple axes.

VISREC systems also suffer from a problem not faced
by product recommendations, namely one of false dis-
coveries. When making automated visualization recom-
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mendations, a VISREC system evaluates many tens or
hundreds of visualizations before making recommenda-
tions. Since a visualization can (roughly) be thought of
as performing a hypothesis test, chances of finding spu-
rious patterns increase with increasing number of visu-
alizations. As a result, a VISREC system must account
for potential false discoveries in recommendations using
techniques such as Bonferroni [8] or FDR [6] correction.

Thus, while there is a rich body of work in recom-
mender systems, the unique challenges of VISREC re-
quire the development of new, and in many cases, online
and efficient recommendation techniques. In the next
section, we discuss the implications of the unique V1s-
REC requirements on system design and techniques that
can be used to meet these requirements.

S. ARCHITECTURAL CONSIDERATIONS

Making visualization recommendations, particularly
based on data, is computationally expensive. Therefore,
we find that the most important consideration in making
real-time recommendations is the data processing en-
gine. While traditional disk-resident databases can ac-
comodate large datasets, they cannot provide the inter-
active speeds necessary for visualization recommenda-
tion. As a result, a VISREC system must take advantage
of main-memory using techniques such as operating on
samples, pre-materializing views and using efficient in-
dexes. We now elaborate on some of these strategies.

Pre-computation. Many real-world recommender sys-
tems perform complex and expensive computation (e.g.
computations on the item-user matrix in collaborative
filtering [24]) in an offline phase. The results of this
computation are then used to make fast predictions dur-
ing the online phase. Since VISREC systems must em-
ploy knowledge-based filtering and the set of potential
visualization is not known upfront, opportunities to per-
form complex computations offline may be limited. How-
ever, some types of pre-computation, drawn from the
database systems literature, can be employed. For ex-
ample, data cubes can be used to precompute and store
aggregate views for visualization (e.g. Nanocubes [25]).
Along the lines of data cubes, a visualization recom-
mender can also perform offline computation of various
statistics and correlations that can inform subsequent ex-
plorations and construction of visualizations. Special-
ized indexes tailored to access patterns unique to visu-
alization recommendations (e.g. [22]) can be used to
further speed up online data access. Finally, traditional
caching approaches that have been used with great suc-
cess both on the client-side as well as the server-side can
be used to further reduce recommendation latency.

Online Computation. As discussed previously, visual
recommenders are in the unique position of having to
produce the space of potential recommendations on-the-
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fly. As a result, a significant part of the computations
must happen online. To avoid latencies in the hours,
online computation must perform aggressive optimiza-
tions while evaluating visualizations. Some of the tech-
niques include: (i) parallelism: faced with a large space
of potential visualizations that must be evaluated, we
can evaluate visualizations in parallel to produce a large
speedup; (ii) multi-query optimization: the computations
used to produce candidate visualizations are often very
similar; they perform similar operations on the same or
closely related datasets. Consequently, multi-query op-
timizations techniques [34, 31] can be used to intelli-
gently group queries and share computation; (iii) prun-
ing: while the above techniques can increase the speed
of execution, they do not reduce the search space of vi-
sualizations. Although hundreds of visualizations are
possible for a given dataset, only a small fraction of
the visualizations are actually useful. As a result, a sig-
nificant fraction of computational resources are wasted
on low-utility visualizations. Pruning techniques (e.g.
confidence-interval pruning [43], bandit resource allo-
cations [41]) can be used to discard low-utility views
with minimal computation; (iv) better algorithms: fi-
nally, there are opportunities to develop better and faster
algorithms to compute statistical properties.

Approximate Computation. Approximate query pro-
cessing [3, 5] has been shown to have tremendous promise
in reducing query latencies on large datasets. Techniques
based on different sampling strategies (e.g. stratified
sampling, coresets [10], importance sampling [38]) can
be used to further speed up computation, especially be-
cause users may be satisfied with imperfect results: both
imperfect visualizations [22] and imperfect recommen-
dations of visualizations. Sampling brings with it a few
challenges. For a given computation, we must choose
the right type of sample (based on size, technique etc).
Additionally, for a given sampling strategy, we must
provide users with measures of confidence in the results
(e.g. confidence intervals). These measures of quality
are particularly important in data analysis since they in-
form users how much they can trust certain results. Fi-
nally, while sampling may be useful to compute many
statistical properties, certain properties such as outliers
cannot be answered correctly with a sample.

6. OUR PRIOR AND CURRENT WORK

We now briefly describe some of our efforts towards
building VISREC systems and future work.

SEEDB. As a first attempt towards building a full-fledged

VISREC system, we built SEEDB [40] (Figure 1). SEEDB

is designed as a mixed-initiative [18] system that pro-
vides users the ability to both manually construct visu-
alizations (component “B”), and receive recommenda-
tions (component “D”). In judging utility, SEEDB deems
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a visualization to be interesting if it displays a large de-
viation from a reference. For example, a visualization
of sales of staplers over time may be interesting if a ref-
erence (e.g., sales of all products) is showing an oppo-
site trend. Our user study comparing SEEDB with and
without recommendations demonstrates that users are
3X more likely to find recommended visualizations use-
ful as compared to manually generated visualizations.

(o )

T

o [ al

Figure 1: SEEDB Frontend: (A) query builder, (B): visualization
builder, (C): visualization pane, (D) recommendations pane

200m 2Z00m

zenvisage. Our new visualization recommendation tool

is called Zenvisage—meaning to view (data) effortlessly [37,

36]. The goal of zenvisage (Figure 2) is to quickly iden-
tify interesting patterns or trends from large datasets via
one of two mechanisms: a simple drag-and-drop based
interactive interface with query sketching capabilities
(e.g., find a visualization where there is a spike at a cer-
tain point simply by drawing the desired visualization
on a canvas—Box 4 shows the result for the drawing
in Box 3, while Box 2 shows other typical visualiza-
tions for context) and a visual data exploration language
called ZQL for more complex requests (Box 5).

77 3. Sketching Canvas -
e L . ’

2: Typical Trends & Outliers

1
Attribute
Selection

e

4: Matches

Figure 2: zenvisage Frontend

7. RELATED WORK

Partial Automation of Visualizations.  Tools such
as Spotfire and Tableau have recently started providing
some features for automatically choosing visualizations
for a data set [1, 2]; however these features are restricted
to a set of aesthetic rules-of-thumb that guide visualiza-
tion. Profiler [19] detects anomalies in data and pro-
vides some visualization recommendation functionality.
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VizDeck [21] allows users to select from visualizations
presented on a dashboard.

VISREC Systems. Work such as [28, 27] focuses on
recommending visual encodings for a user-defined set of
attributes, thus addressing the visual ease of understand-
ing axis. Similar to SEEDB, [35, 45, 44] use different
statistical properties of the data to recommend visual-
izations. [12] monitors user behavior to mine for intent
and provides recommendations, while [42] uses task in-
formation and semantic web ontologies. Most recently,
the Voyager system [46] has been proposed to provide
visualization recommendations for exploratory search.

Finding patterns and trends. The data mining and ma-

chine learning community has developed a large swath

of statistical analysis tools such as Knime, RapidMiner,

SAS, and SPSS, and programming libraries [17, 33] for

doing complex analytics tasks such as classification, clus-
tering, and dimensionality reduction. While many of

these tools and libraries can be employed in VISREC

systems to mine for patterns in data, only expert users

with detailed knowledge of algorithmic details and pa-

rameterizations can use these tools effectively.

8. CONCLUSION

With increasing interest in data science and large num-
bers of high-dimensional datasets, there is a need for
easy-to-use, powerful visualization recommendation tools
to support visual analysis. While we are in the early
days of VISREC systems, we believe the directions out-
lined in this paper, as well as the analogies to and dif-
ferences with traditional recommendation systems can
lead to interesting, challenging, and impactful problems
for the database research community.
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Rick Hull Speaks Out on
Asking the New Question

Marianne Winslett and Vanessa Braganholo

g

Rick Hull

http://researcher.watson.ibm.com/researcher/view.php?person=us-hull

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community.
I'm Marianne Winslett, and today we are in Snowbird, Utah, USA, site of the 2014 SIGMOD and PODS conference.

I have here with me Rick Hull, who is a researcher at IBM. Before that, he was a professor at the University of
Southern California for many years. He also managed a research group at Bell Labs, where he was a Bell Labs
Fellow. Rick is an ACM Fellow and a coauthor of the classic database theory book Foundations of Databases. His

Ph.D. is from Berkeley. So, Rick, welcome!
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Thank you!

What could database theory researchers do to increase
their impact on the world?

Well, that’s a big question to get started with. I think
the challenges of data management today are really
expanding from what they were 20 and 30 years ago.
Data is so pervasive in our lives today, from social
media to ecommerce, and things like using weather
data for smarter farming, it goes on and on. We’ve
been discussing this in the PODS community broadly —
how to study the fundamental issues raised by new
kinds of data and new uses of it. I think the main thing
is to consider what are the problems today and then
what are the techniques that could be brought to bear.
So rather than using mathematical logic as the starting
point for most explorations, it is time to more fully
embrace additional frameworks, including probability,
statistics, etc.

But people have been telling me that there is still
plenty of room for logic.

Oh, absolutely. I’'m not saying that the logic is no
longer needed. I am just saying that we need to expand

[...] with that paper, we
were asking a new
question. This was part of
Seymour Ginsburg’s
mantra: always ask the
new question. It was an
unusual question, a non-
standard question.

the full range of techniques that we can bring to bear,
the kinds of models that we might look for. The logic
is still a very important foundational element. I know,
for example, some of the basic techniques in the
statistical approach start with counting all of the true
first order models of a given theory.

And is that happening now? Already happened? Or is
that the next step?

I think there are very positive signs in the past 2-3

years. Just at this conference, we had the Big Uncertain
Data workshop, which was a very deliberate attempt to
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bring together people from the database theory side
(especially work on probabilistic databases) with
people from the machine learning side.

What about the fact that there aren’t that many
commercial probabilistic databases?

It’s funny you should ask that. I am also concerned that
in the old days the data management activities,
including those that the database theory community
was contributing to, was a growing industry. It was
really a growing, very important field. Now, the big
growth seems to be in the big data, the analytics areas.
The machine learning community has been producing
artifacts that are useful to that industry, and I’'m hoping
that over time the database community broadly and the
database theory community can contribute into that
area as well. There is also important work in other
areas of data management, for example multimodal
data, incomplete data, data-centric workflow.

You stayed at Bell Labs for a very long time. What did
you enjoy about your time there?

It was about 12 years. Especially at the beginning it
was a very exciting place. The company was growing.
It was owned by Lucent at the time. It was my first
experience in an industrial research lab. It allowed me
to do both -- to continue with theoretical research and
advanced research, but it also gave me a chance to be
talking with customers, wrestling with the challenges
of how you take ideas and bring them into reality. How
do you bring some kind of value or capability or
something that will be used by the average person on
the street?

So that would be true of all industrial labs?

Each lab is different. You know, I’'m speaking of my
experiences with Bell Labs and then IBM Research.
Both I think offer this breadth of opportunity.

And you haven'’t gotten back to academia, so it seems
like you're voting with your feet that you really like
that connection to the customer.

You never know what might happen. I think the
opportunity to work in a larger group as well as
continuing with individual contributions is something
that I enjoy.

41



About the Alice book, that’s the nickname for your
database theory book. What was it like to write that
book?

That was a lot of fun. To understand the context, in the
early 1980°s I was at the University of Southern
California, and Victor Vianu and Serge Abiteboul were
there as well, and Seymour Ginsburg was the mentor
for all three of us. This was right at the beginning of
database theory and so we felt like we were on the
ground floor. We were learning some of the early
results. We were under Seymour’s guidance, starting to
build up our own body of results. So we wrote the
book about ten years after being together at the
University of Southern California.

When we were writing the book, it was a point where
the foundations of database theory, at least that the first
real era of database theory was, I feel, coming to a kind
of closure. Well, not a closure, but there was a feeling
of completeness to what had been studied. So the book
was at a perfect time to capture and encapsulate that
body of work and hopefully provide the foundation for
the next generations of work.

Well, that’s a good point because a reviewer on
Amazon says that although it was published in 1995, it
quote “it is still the gold standard... especially in
consideration of the fact that nothing much has
changed in database technology in the past 30 years or
so”. Do you agree with that?

No, I wouldn’t agree. I mean it’s nice to think that it’s
a gold standard for something. Maybe it is potentially a
gold standard for that period of the database theory and
the basic logical framework that was set up. At the
same time, since then there’s been a tremendous body
of work in database theory to understand XML as a
major area, connections with XML, automata,
constraints, etc., further advances in constraint
databases, description logics and data, and of course
now as we go into the big data period. So there has
been a lot of advancements.

Students often choose one of your papers from the
class reading list because it’s shorter than the other
options and then they just knock themselves out trying
to understand the paper. For example, many
researchers have been influenced by your PODS 1984
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paper about when two databases are equivalent'.
What’s so hard about that topic?

(Laughing) The information capacity paper and its
follow-ons... Yeah, with that paper, of course, we
were asking a new question. This was part of Seymour
Ginsburg’s mantra: always ask the new question. It
was an unusual question, a non-standard question. I
think that’s why conceptually it has been hard for
people to think along that line. Secondly, we had four
levels of relative information capacity and each level
called for some different techniques. So I think that
maybe that also makes it harder than some other papers
where there’s kind of one core technique and then it’s
just played out.

I think that whole direction was really important.
Nowadays, when query answers have some sort of
statistical aspect to them, in my group, we believe that
if two databases are equivalent you should get the
same answer no matter which one you run your
algorithm over, which is kind of a radical notion. But
we really believe that should be true and if you can’t
talk about what’s equivalent you can’t argue that you
should be getting the same answer. So that’s a nice
example paper [ think to pick out. It was back in ‘84
but it’s still important 30 years later.

What are artifact-centric business process models?

That’s a big question. Maybe the last four or five years
of my research work was in that area of what we call
business artifacts, or using business artifacts to support
business process models. So business artifacts are
really a great opportunity for the database community
and others to study a combination of data and process.
Kind of married as equal partners. You see traditional
business model management is focused on the process
side; flowcharts or maybe it’s based on Petri nets. A lot
of the research in that area has focused just on the
process and it has left the data as a second-class
citizen. But in reality, the business process is really
touching data right and left. So with business artifacts,
the core model really focuses on what we call key
business-relevant conceptual entities. Key conceptual
entities that progress through a business during normal
activity. So as an example, we talk about the FedEx
package delivery. Not the package, but the package
delivery, and think of it in terms of when the package
was first received by FedEx, the transportation, the
delivery, the sign-off, also the billing, how that goes.
With a business artifact model for that, you have an

! Richard Hull: Relative Information Capacity of Simple
Relational Database Schemata. PODS 1984: 97-109.
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information model that holds the relevant data that
may be obtained as that entity progresses through its
process. Also, you track the life cycle model, the
possible ways or possible activities that might happen
to the package.

I would argue that the database community does the
reverse of what you're saying the business process
people do. We care enormously about the data and we
don’t care at all about the process. So, is this where
we re supposed to meet, in the middle?

Definitely, it is one opportunity for the two sides to
meet. What we found is that the business artifact
perspective gives a very strong intuitively natural top-
down view of the business processes. Typically there
are 3-7 business artifact types that you need to model a
given process. They can be cross-cutting. So if your
business process is cutting across multiple different
silos of your business, often the business artifacts span
multiple silos and give that top-down end-to-end view
that’s lacking in so many other cases. Let me say that
there has been a body of research. There are probably
now 20 or 30 active researchers in the database
community, the Al community, and the business
process management community that have been
working on this model and its marriage in areas from
efficiency and distributed systems all the way up to
verification, really spanning the gamut from systems to
theory. Actually, the theory side was discussed in the
Diego Calvanese’s PODS keynote talk last year
(2013).

Is it getting traction in the business world?

I would say absolutely. The work on business artifacts,
which started at IBM Research in 2003, was, in fact,
the motivation for me to go to IBM Research. By about
2011, people came to realize that business artifacts
were actually very much a formalization of the case
management approach to business process modeling
and now the work we did at IBM Research has
provided the foundation for the OMG standard on case
management and also for the IBM case management
product.

Good! Great, it’s great to see that happening.
Speaking of IBM, what is next for IBM? They 've stayed
alive so long so there must be something new just
around the corner.

Well, they are very deliberate at the corporate
management level of steering the ship, always thinking
about what is next. You know we saw recently in the
past several years this initiative around this smarter
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planet, smarter cities, smarter education, and smarter
healthcare. Recently, the big topic area both in terms of
activity and in terms of the marketing is on cognitive
computing, as we call it. It’s building on the success of
the Watson deep question and answer system. People
may recall it had been featured on the Jeopardy
television game series maybe a couple of years ago.
There, it played against two Jeopardy champions and it
demonstrated the ability of a machine to have
processed just tons of both structured data and
unstructured data, to be able to reason about it, and to
be able to, in this case, formulate questions based on
all of that learning. Now there is a division of IBM that
is focused on Watson and applications of the Watson
technology. The research division has also been
reorganized a bit and there’s now quite a large activity
around what is the future of computing given that it
can take advantage of this unprecedented amount of
processing power and in particular, processing of the
unstructured data.

I enjoy being with people
and being able to have a
diverse set of challenges in
front of me.

What kind of applications are we likely to see coming
out of that?

I think we’re already seeing some of them and they’ll
just get stronger. I mean one area that even before it
was being labeled cognitive computing is in the
smarter healthcare area. For example, they are training
the Watson system to be able to take the medical board
examination. After medical school, the doctors take
some kind of exam. Well, they’re training Watson to
be able to take that exam and also to explain the
reasons behind whatever answers they are giving.
There’s also an activity where IBM is partnering with
Sloan Kettering, the Cancer Care Center, to help with
cancer diagnosis. That’s one area.

Another area that has kind of personally been
intriguing for me is in smarter education: enabling
students to experience personalized learning pathways.
This means they can be working on material that is
delivered over a tablet and through the use of analytics,
through deep analysis of text material, of the problems,
etc., you can really deliver to the student the next best
module for that student, his learning style, what he
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knows, where he is trying to go, in terms of his
academics or his career. We’re also seeing it in more
business settings, financial analysis, for example,
advising people on where to invest their money, how
to build their investment portfolio as they move
through their lives.

That could really be beneficial for math in the K-12
era education where kids think it has no application to

[...] take the time to really
work a problem, think
about the problem, try to
go deeper, try to ask the
next provocative question.

whatever they 're interested in and that is so completely
false. So if they’re interested in construction, there is
tons of math in construction, if they were interested in
baking or sewing, there’s tons of math in that and if
the problems they were given whether it's
trigonometry, algebra or whatever were tailored to
their interest... same formulas but expressed
differently then they would see how it connects to the
real world, but we don’t do a good job of that. Or if we
do it’s about trains traveling in different speeds and
different directions and where they will collide or
whatever.

Those are really good examples actually because the
idea is that you can start to tailor many aspects of what
is being taught to the interest of the kid and also to
their aspirations.

Okay, let’s see. Have you found it more satisfying to do
research or to manage research?

You know, I think it’s really the mix that is most
exciting for me. I like to have my hands into something
concrete, even if it’s a mathematical abstraction, it is in
a way concrete for me and you’re working puzzles
with it or you’re trying to figure out an algorithm that’s
going to work or prove that something is correct. At
the same time, I enjoy being with people and being
able to have a diverse set of challenges in front of me.
So in some of my most enjoyable periods both at Bell
Labs and IBM Research, that’s been the experience:
I’ve been managing, and I’ve been collaborating with
outside universities, maybe working on a project with a
customer, but also working out some little theorem to
help solidify the foundations of the concept.
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Are you still collaborating with Serge and Victor?

Not as much as I had. With Serge, it’s been a while.
With Victor, he has been involved with the business
artifact work. In fact, with Victor and Alin Deutsch,
we’ve started a line on verification of business artifact
properties and so that’s been quite enjoyable.

So the take home message for all the students reading
is that whoever your colleagues are on your grad
school days you may still be working with them many
vears later, so those relationships can really last a
long time.

You are perhaps the coolest person in the database
research community. Where did you get your cool?

That is a funny question. I wonder where you get those
questions... I’'m glad at least you think I might be cool.
You know, I’ll give you three possible factors. So, one
is when I was young, my father was into camping, the
outdoors and we would go camping or canoeing on the
river and be outdoors for two or three days at a time
and I think that kind of experience of being in nature
(this was long before cell phones, but it was also a time
away from a lot of distractions) it’s kind of an
interesting mindset to carry with me. Of course, being
an undergraduate at the University of California Santa
Barbara, on the beach, that was a big one. A third one
is, Europeans have a certain cool and coming back to
Serge and Victor I spent a lot of time with them and
then I was able to visit Serge in France for several
summers working at Inria and Victor was typically
there. It may be the exposure to Serge and Victor that
really put it over the top.

A shared cool. I did not make up that question myself. [
got it from one of your colleagues and same holds for
the next question, which is: tell us about your hair.
Can you show us your hair?

(Rick shows his hair.)

Look at all that hair! Ok, so what’s the story behind
that?

Well, I haven’t thought about that recently. I guess one
answer is that in research we’re always thinking about
something new, the new question, and the new
technique. At the same time, I still have my roots. |
like the old as well and I grew my hair out in the late
60s. It was kind of part of the peace movement back
then, and somehow I never cut it off.
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Do you have any words of advice for fledgling or
midcareer database researchers?

I think one word would be networking, get to know
your fellow researchers better, try to collaborate, that’s
just such a wealth of stimulation. I think another thing
is the power of the human mind. What I found at least
is that if I really live with a problem, work with a
problem, make time to think deeply, challenge myself,
that’s when the mind can really go to the deeper
insights. So I would recommend: take the time to
really work a problem, think about the problem, try to
go deeper, try to ask the next provocative question. I
think it’s so easy in this day and age to get distracted
by the next email, the next phone call, the next meeting
or whatever. So, you know, trust your mind and dig
deep.

They re under so much pressure to get that next paper
out so that they can get their first job or whatever that
it can be hard to do.

Yes, I agree, and I remember actually that the paper on
relative information capacity was published in PODS
then it was time to write the full journal version, then
there was a deadline, and I realized there was a bug
(you know, a minor bug). So I spent some long nights
wrestling that to the ground and on the one hand that is
fine, I did have the chance to think about it deeply and
met the deadline, but it was unfortunate to feel under
that pressure.

That means that if they choose that PODS paper for
their class because it’s shorter, that they should if they
really understand it, they should find a bug in there.

I wouldn’t want to go on record saying that they
should find a bug there, but I think a challenging
exercise may be for a very motivated student would be,
“What’s the difference between the journal version and
the conference version?”
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Ok, very good!

If you magically had enough extra time to do one
additional thing at work that you are not doing now,
what would it be?

Well, in addition to doing some more of that deep
thinking that I don’t seem to get a chance for anymore,
I would say reading other people’s work, I find that I
just don’t have enough time to read other stuff and to
work with other people’s material and really have a
strong understanding of it.

If you could change one thing about yourself as a
computer science researcher what would it be?

In my case, I grew up through a math major and my
Ph.D. was in math, although formal language theory,
so from a very mathematical perspective. As time went
on, I became more involved with a system side as well
as the theory side. I think a change would have been to
spend more time on the real computer science side of
things, programming, programming languages,
abstraction. These are principles and foundations of
our field that it would be nice if I understood them a
bit better.

Among all your past research, do you have a favorite
piece of work?

Well, I think it’s the artifact-centric work broadly, but
if you wanted me to just pick out one paper, I think
what I would pick out is the paper we had in the
ICSOC 2009 conference’. That’s the International
Conference on Service Oriented Computing, and the
paper is on artifact-centric hubs.

Thank you very much for talking to me today, Rick

Thank you!

2 Richard Hull, Nanjangud C. Narendra, Anil Nigam:
Facilitating Workflow Interoperation Using Artifact-
Centric Hubs. ICSOC/ServiceWave 2009: 1-18.
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Stratos Idreos Speaks Out on
Database Craking

Marianne Winslett and Vanessa Braganholo

Stratos Idreos
http://stratos.seas.harvard.edu/

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community.
I'm Marianne Winslett, and today we are in Phoenix, site of the 2012 SIGMOD and PODS conference. I have here
with me Stratos Idreos, who is the 2011 recipient of the SIGMOD Jim Gray Dissertation Award for his thesis
entitled Database Cracking: Towards Auto-tuning Database Kernels. Stratos's advisors were Stefan Manegold and
Martin Kersten, and his PhD is from the University of Amsterdam. Stratos is currently a tenure-track researcher at
the Dutch National Research Institute for Mathematics and Computer Science (CWI)'. So, Stratos, welcome!

! Stratos is currently an Assistant Professor at the Harvard University.
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Tell me what your thesis is about.

My thesis introduced the concept of database cracking.
The main idea is that every query that comes through
the database system will be used as an advice on how
data should be stored on disk and on memory. So
basically, the system creates indexes incrementally and
on the fly during query processing. Normally, database
systems would need enough idle time and workload
knowledge to create indexes. Now, with database
cracking, indexes are created automatically without
you having to worry about all these preparations.

So when you say incrementally, do you mean you
create the whole index while queries are running, or
you create part of a traditional index?

Exactly, that is a very good question. So, creating the
whole index while queries are running, this is online
indexing. There’s a couple of works by Surajit
Chaudhuri and Nico Bruno at Microsoft that do online
indexing. In addition, there is the work by Alkis
Plyzotis which came at about the same time. Our work
is about incremental indexing. We create only parts of
the index during query processing. So, let me give you
a more representative example. I create part of indexes
within select operators, for example. So if you have a
select operator of a query that says give me everything
from this table where values of attribute A are between
20 and 30, then we would take the column of attribute
A and we would split it in three parts: from 0-20, from
20-30, from 30-whatever. Then you have introduced
range partitioning by splitting the table in three pieces,
and that is enough information to improve future
queries.

So, then if you want to use an index in the future, you
start by checking if the data is covered...

If this partition exists, you can use it, you can explore
it, you can refine it even more. So these little pieces
that you create, they become smaller and smaller with
every other query. And every other query introduces
more and more partitioning, which means more
knowledge about how data is laid on disk, and then
you can explore it. And by pieces becoming smaller,
performance becomes better.

So when you say smaller, what do you mean smaller? 1
would think they would become larger over time.

Larger in terms of how many they are, smaller in terms
of how many tuples they have inside.
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[ see, so they get divided into finer grained courses.

Yes, and if you think about it, at every range select
operator you have to touch at most two pieces, because
you only have to check the boundaries of the range,
and that’s at most two pieces. And by pieces becoming
smaller, you have to analyze less tuples with every
other query.

I stopped taking rejected
[papers] reviews very
religiously.

Doesn’t this make query optimization harder?

Yes and no. No because you have chosen to always use
indexes. So every query will use indexes, there is no
decision about that. You blindly go and use the same
database plan with every query. You could think about
it as if you always created clustered indexes, basically.
It’s not secondary indexes.

1 see. When you say it is not secondary indexes, do you
mean you rearrange the data on disc to match...?

Yes. We rearrange the actual data. We create copies of
the data, and we rearrange these copies. So at the first
time that you query, for example, if you want to select
over attribute A, we create a copy of this column and
we start rearranging this column. And then every query
that wants to select on A will go directly there, and
won’t touch the base data anymore.

So, later queries on attribute B make another copy
with B, and not the whole tuple, just the tuple ID is
there?

Exactly. It’s attribute B and the tuple ID.
But what about updates?

Updates, that’s a tricky business. But what we do with
updates is that we defer them. When updates come, we
just keep them aside. And we only merge them when a
relevant query comes. So let’s go back to the previous
example: attribute A, between 0-10, 20-30 and so on.
Then if another query comes and says, okay, I want
values between 20-25, if and only if there are pending
updates within this range, then we merge them on the
fly during query processing. So the select operator
would not only fine grain the partitioning information,
but it would also merge updates.
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And if I understood correctly, if the query is over
attributes A and B, you’ll have a little index that’s just
for that range of A and B?

Yes.

Hmmm, very interesting. So how did you show that’s
better than the alternatives?

First of all, let me clarify that this kind of ideas, this
kind of research, is applicable for exploratory dynamic
workloads. So in the case that you know exactly what
you are looking for, you have enough idle time to
prepare your indexes for that, you should not be using
database cracking, there’s no sense. But in the case
where you don’t have enough knowledge about the
workload, and you don’t have enough idle time to
prepare, then is when you should be using database
cracking. So what we always do in our experiments is
we compare database cracking with a plain, non-
indexing approach, where you have to scan your data,
and we always compare it with the perfect indexes,
which in the case of column-stores is when you have
basically sorted arrays. And that is the equivalent of
offline indexing, in this case, because, in order to sort
an array, you need time to do the sorting, and you need
to know that this array is useful when sorted. What we
typically see in these examples is that the performance
of database cracking starts with the first query being
almost as expensive as a scan (just a little bit more
expensive), and then it quickly improves performance,
and after a few queries, it reaches the optimum
performance of an index. But the offline indexing
approach takes typically 10 times more in order to
create the index. So if you don’t have idle time, you
first have to pay this 10 times more overhead.

Ok, that’s interesting.

Take good care of yourself,
(..-) do some physical
activities.

Maybe a more representative example would be
queries of TPC-H, for example. In order to create the
optimal indexes for the columns in TPC-H in this
particular machine that we used and everything, we
needed about 3 hours. With cracking we could answer
all queries, getting to optimum performance in a matter
of seconds, basically.
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And then, so if you just did cracking with no previous
knowledge of the TPC-H workload, versus if you had
created the perfect indexes beforehand, what’s the
difference in performance at run time of the
transactions?

So, we havent’t studied extensively the performance of
transactions, we typically do only analytical read
queries. But the difference compared to the optimal
index is basically zero. You reach the optimal
performance. You don’t expect optimal performance as
of query one. In the case of TPC-H (it is actually a
good case for us because the workload is skewed), you
reach optimal performance in a matter of 5-10 queries,
and the good point is that as of query number two, you
are way below the performance of a no index
approach. But then as of query 5-10, you reach the
optimal performance of a perfectly tuned database.
Now, if you devise micro-benchmarks, where you have
random  workloads  basically, this optimum
performance comes after thousands of queries, not
after 5 or 6.

Do you have any words of advice for today’s PhD
Students?

I would have many. My main lesson that I try to
remember now after my PhD is that I stopped taking
rejected [papers] reviews very religiously. So one big
mistake that I think that I made over the years is that
sometimes I got reject reviews (and I got many of
them), and then I thought that “okay, I should react
very very seriously based on this review”, and
sometimes I ended up basically just destroying papers
and making them very dense, just because I was trying
to put every little detail in there. So I think this would
be good, although we should take rejects very
seriously, and put comments to use, but maybe we
should also take a step back, and think about it again.

Is there another piece of advice you would like to
share?

Yeah, I’ll say that it’s not only about research, we
should also take good care of yourself as well, so
maybe sometimes take a step back, don’t do so much
research, do some physical activities.

Very good! Thank you very much for talking with us
today!

Thank you!
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1. INTRODUCTION

In the last decade, information and communi-
cation technology (ICT) advances have deeply af-
fected the scientific process, which increasingly pro-
duces and relies on digital research products, such
as publications, datasets, experiments, websites, soft-
ware, blogs, etc. Accordingly, scientific communi-
cation has started mutating in order to adapt its
mission (and business models) to such new scien-
tific paradigms and benefit from the unprecedented
Open Science opportunities that may arise from
them: reproducibility, i.e., the ability of repeating a
digital experiment and reusing its constituent prod-
ucts; and transparent evaluation, i.e., the ability of
(i) effectively evaluating scientific experiments by
means of reproducibility and (ii) assigning fine--
grained scientific reward, based on effective author-
ship across the overall scientific process. Scientists,
research institutions, and funders are pushing for
innovative Open Science scholarly communication
workflows (i.e., submission, peer-review, access, re-
use, citation, and scientific reward), marrying a holis-
tic approach where publishing includes in principle
any digital product resulting from a research ac-
tivity that is relevant to the evaluation and repro-
ducibility of the activity or part of it. Defining,
taking up, and supporting Open Science publish-
ing workflows become urgent challenges, to be ad-
dressed by ICT solutions capable of fostering and
driving radical changes in the way science is devel-
oped and disseminated.

The goal of the first International Workshop on
Reproducible Open Science! was to provide a fo-
rum for constructively exploring foundational, orga-

! RepScience2016’s web site http://repscience2016.
research-infrastructures.eu
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nizational and systemic challenges towards the im-
plementation of Open Science publishing principles.
Its mission was to contribute to the actual picture of
the state of the art approaches and solutions that
researchers and practitioners active in these fields
have investigated and realized: library and infor-
mation scientists working on the identification of
new publication paradigms, ICT scientists involved
in the definition of new technical solutions to these
issues, and scientists/researchers who actually de-
mand tools and practices for transparent evaluation
and reproducibility of science. The workshop has
brought together skills and experiences focusing on
the definition and establishment of the next gen-
eration scientific communication ecosystem, where
scientists can publish research results (including the
scientific article, the data, the methods, and any al-
ternative product that may be relevant to the con-
ducted research) in order to enable reproducibility
(effective reuse and decrease of cost of science) and
rely on novel scientific reward practices.
RepScience2016 has been organized in conjunc-
tion with the 20th edition of the International Con-
ference on Theory and Practice of Digital Libraries?.
Proceedings of the workshop are under publication
as a special issue of the Open Access journal D-Lib

Magazine®.

2.  WORKSHOP CONTRIBUTIONS

Each submitted contribution was peer-reviewed
by three of the seventeen members of the Program
Committee and ten were accepted, out of which
three reported the results of RDA Working Groups.
The workshop structure comprised two invited speak-

2TPDL2016’s web site, http://www.tpd12016.org
3D-Lib Magazine http://www.dlib.org
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ers and four sessions. In the following we shall first
report on the invited talks, then group the presen-
tations according to general topics they covered.

2.1 Invited talks

The workshop had two invited talks respectively
covering the foundational and more theoretical as-
pects of reproducibility and the real case of repro-
ducibility challenges currently studied at CERN’s
scientific information services.

Carole Goble in the talk entitled “What is Repro-
ducibility? The R* Brouhaha” depicted the chal-
lenges of reproducibility in computational science
by drawing an analogy between laboratory micro-
scope experiments and e-infrastructure “datascope”
experiments. The issues are similar, with “experi-
ments”’ constituted by materials (e.g., datasets, pa-
rameters, algorithm seeds) and methods (e.g., tech-
niques, algorithms, specifications of steps, models);
and “set up” constituted by instruments (e.g., codes,
services, scripts, libraries, workflows) and labora-
tory (e.g., e-infrastructure, system software, inte-
grative platforms, engines). The definition of re-
producibility is a non-trivial one, and weaker or
stronger forms may be defined, depending on the in-
tent of the researchers and the capabilities of the un-
derlying e-infrastructure. Examples are “rerun”, i.e.,
variations on experiment set up to enable robust-
ness, ‘“repeat”, i.e., same experiment same labora-
tory to defend one’s thesis, “replicate”; i.e., same ex-
periment, same set up, different lab to enable certi-
fication, “reproduce”, i.e., variations of the same ex-
periment, on different set ups and laboratories, and
“re-use”, i.e., different experiment using material,
methods of the experiment. Overall, reproducibil-
ity has a cost, both social/cultural and technologi-
cal, whose dimensions are portability/preservation,
(packaging, containers), access (standards, licens-
ing, PIDs), robustness/versioning (change, varia-
tion sensitivity, discrepancy handling), and descrip-
tion (standards, common metadata, ontologies). Fi-
nally, the Research Object framework* was present-
ed as a possible solution to address these issues.

Sunje Dallmeier-Tiessen in the talk entitled “En-
abling reproducible research: community practices,
service needs and first lessons learnt” has presented
CERN’s challenges and vision to provide scientists
with an e-infrastructure supporting Open Data prin-
ciples and analysis preservation and reproducibil-
ity. CERN scientific information services serve to-
day a variety of research communities each featur-
ing different but also overlapping requirements on
these matters. An important objective is to ad-

4Research Object, researchobject.org
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vocate and establish a culture of open sharing of
data and algorithms, to get rid of the current “fear
of losing control”, by leveraging on the potential
and concrete benefits and providing adequate tech-
nological support. To this aim, CERN Data Ser-
vices are developing tools enabling linking data with
data (subsets, versions, dynamic data), contributors
(who, when, where), articles, institutions, and fun-
ders. On the side of analysis preservation and re-
producibility, CERN is devising tools for support-
ing scientists at developing science, since its ear-
liest phases, in such a way that the results will
be reproducible, according to a model: save, re-
trieve, review/compare, and repeat/reproduce. So
far, the challenges identified are those of (i) gran-
ularity, complexity, and dependencies of data and
software, (4i) identification of solutions for data and
software publishing, linking, and citation, and (i)
the demanding amount of manual work needed to
make experimental material reproducible.

2.2 Presentation of contributions

The following sections summarizes the workshop
presentations® organized according to four themes:
Towards an enabling infrastructure, Models and lan-
guages, Systems, and Real-world experiences.

Towards an enabling infrastructure. Enhancing the
current scholarly communication infrastructure and
workflows to support Open Science and reproducibil-
ity opens up to different visions and questions.

Stephan Proll presented the paper “Enabling Re-
producibility for Small and Large Scale Research
Data Sets” where the authors have investigated the
problem of guaranteeing transparent citation of sub-
sets of data (e.g., results of queries) from dynamic
data sources (e.g., databases). The most intuitive
solutions (e.g., digital copies) raise a number of chal-
lenges (e.g., time, storage, DOIs/handles) which the
framework identified by the authors helps at ele-
gantly describe and solve at different extents, driven
by a cost analysis.

Paolo Manghi presented “The Scholix Framework
for Interoperability in Data-Literature Information
Exchange”. Scholix® is a framework for enabling
exchange of information relative to links between
scientific products across sources in the scholarly
communication domain. The framework defines an
information model and exchange formats for such
links to transparently move across independent plat-

5 Workshop presentation slides http://
repscience2016.research-infrastructures.eu/
index.php?d=sessions

8 Scholiz Framework http://www.scholix.org
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forms, scientific domains, and stakeholders (e.g.,
repositories for data and publications, publishers,
research infrastructures, libraries).

Models and languages. Enabling reproducibility re-
quires ways to encode the elements composing the
experiments, i.e., scientific products, and possibly
the actions, i.e., the steps constituting the experi-
ment.

On this respect, Markus Konkol reported on the
paper “Opening the Publication Process with Ex-
ecutable Research Compendia”. The authors pro-
pose the executable research compendium (ERC) as
a means to publish and access computational re-
search. ERC provides a new standardisable pack-
aging mechanism which combines data, software,
text, and a user interface description. As similar ap-
proaches to research objects or packages, ERC aims
at satisfying needs of authors, readers, publishers,
curators, and preservationists, in terms of scientific
evaluation, reward, visibility, and reproducibility.

Markus Stocker presented his work “From Data to
Machine Readable Information Aggregated in Re-
search Objects”. Data interpretation is an impor-
tant process in scientific workflows, where scien-
tists are called to interpret data (often) collected
using large-scale environmental monitoring infras-
tructures to gain information about the monitored
environment. Such information is typically repre-
sented to suit human consumption, while the au-
thors propose an encoding into machine readable
information objects that builds on the Research Ob-
ject framework.

Paolo Manghi described the results of “FLARE: a
flexible workflow language for research e-infrastruct-
ures”, where the authors defined FLARE, a work-
flow language for the specification (and execution)
of a scientific process in highly-heterogeneous env-
ironments, i.e., e-infrastructures whose workflow are
partly manual and automated. FLARE lays in be-
tween business process modelling languages, i.e.,
high-level specifications of a reasoning, protocol, or
procedure, and workflow execution languages, i.e.,

machine-readable specifications of computational steps

executable by dedicated engines. FLARE tools al-
lows the creation and sharing of hybrid workflows
and their execution, via “web wizards” guiding the
scientists through the manual and automated exe-
cution of the individual steps.

Systems. This session focused on new generation
repositories required for depositing, sharing, and ac-
cessing the products of science, be them datasets or
methods, in such a way they can be properly reused
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and experiments reproduced.

Vidya Ayer presented the article “Conquaire: To-
wards an architecture supporting continuous qual-
ity control to ensure reproducibility of research” re-
porting on the preliminary results of the project
Conquaire, aiming at delivering an infrastructure
based on subject-specific components offering func-
tionalities for data deposition and versioning, en-
abling automated and discipline-specific quality che-
cks over the data. The system architecture relies on
a DCVS system for storing data and on continuous
integration principles to ensure data quality.

Sheeba Samuel presented “Towards Reproducibil-
ity of Microscopy Experiments”. The authors have
realized an information system (based on the ex-
isting OMERO system?) that supports scientists in
the domain of microscopy techniques at following a
rigorous methodology for collecting documentation
and research data to the level necessary to repro-
duce scientific experiments. Although the approach
addresses the specific requirements of an interdisci-
plinary team of scientists from experimental biology
to store, manage, and reproduce the workflow of
their research experiments, it can also be extended
to the requirements of other scientific communities.

Real-world experiences. Many scientists are today
using tools to (i) publish their research products in
order to achieve degrees of reproducibility or (i)
search out for the products needed to reproduce ex-
periments. Such real-world experiences make a fer-
tile ground where to identify common requirements
for an open and reproducible science.

Jingbo Wang reported on two experiences in dif-
ferent contexts. The first was titled “Graph connec-
tions made by RD-Switchboard using NCIs meta-
data”, where she demoed connectivity graphs link-
ing datasets, papers, authors, and grants, built us-
ing the Research Data Switchboard® using NCls
metadata database”. By means of such graphs, the
NCI database was enriched with critical but miss-
ing information in the network of researchers and
article-dataset links, thereby enhancing the search
capabilities of the system and enabling fit-for-purpo-
se (e.g., research topic/context-driven) dataset dis-
covery. The second experience was titled “Support-
ing Data Reproducibility at NCI Using the Prove-
nance Capture System”. The National Computa-
tional Infrastructure (NCI) of Australia has realised

" Open Microscopy Environment Remote Objects http:
//www.openmicroscopy.org/site/products/omero
8The Research Data  Switchboard http://wuw.
RD-Switchboard.org

9 The Australian National Computational Infrastructure
https://nci.org.au/
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a system supporting researchers at modelling their
workflows, including those that have been used to
create data extracts (e.g., queries to databases), us-
ing a standards-based provenance representation.
This information, combined with access to the orig-
inal dataset and other related information systems,
allows data extracts to be easily regenerated to sup-
port experiment reproducibility, limiting preserva-
tion of data extracts to very specific cases.

Finally, Jan H. Hoffler presented the experience
of “ReplicationWiki: Improving Transparency in So-
cial Sciences Research”, an attempt to compensate
in the field of empirical social sciences the lack of
scientific reward regarding authoring of “replicable
studies” and authors of the required “replicable prod-
ucts”. ReplicationWiki'° today documents 2500 em-
pirical studies and the relative replication products
found in the literature, so far mainly in economics.
The wiki is populated by professors and students in
economics across several participating institutions,
with the aim of establishing the culture of open re-
producible science, as well as facilitating academic
teaching, and setting incentives for replicability and
replication.

3. WORKSHOP DISCUSSION

The concluding brainstorming session brought up
two main relevant considerations and future issues
with respect to open and reproducible science.

Experimental context (or set up). Computational
reproducibility spins around the concept of experi-
mental context (or set up), namely the components
required to execute an experiment by applying com-
putation over data, or to evaluate the quality of dig-
ital products, be them data or computation. The
experimental context must be shared by scientists,
to ensure a common ground of evaluation and ex-
ecution, thereby enabling transparent evaluation,
comparisons, and reproducibility. The ability of
sharing an experimental context to the largest and
agnostic audience entails a trade off between “ability
to adopt” and “portability of experiments”. On the
one hand scientists can assume to share experiments
and relative products based on common and agreed
on experimental context and methodologies. This
will allow them to compile minimal descriptions on
how products are to be combined to reproduce and
experiment, hence making it easy for scientists to
adopt reproducibility practices, but in turn mak-
ing the experiments effectively reproducible solely
to scientists aware of the underlying “commons”. On

10 Replication Wiki
uni-goettingen.de/

http://replication.
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the other hand, scientists can instead share the com-
ponents and the relative descriptions, so as to en-
sure the experiments can be reproduced beyond the
borders of their community. The extent of details
for such descriptions may ensure a broader cover-
age but in general hinders the adoption by scien-
tists, e.g., tedious metadata provision or evolution
of external software components. Identifying the
optimal balance is not trivial and also depends on
the maturity of a common experimental context,
typically research e-infrastructures, and its compo-
nents.

Roadmap to reproducibility. Open Science has be-
come more and more relevant and appealing for
all stakeholders of scientific communication, i.e., re-
search and academic organizations, researchers, pub-
lishers, libraries, and funders. The first results are
visible with the strong shift of funders and organi-
zations towards mandates for Open Access to pub-
lications, which started less than a decade ago, and
more recently to ensuring research data sharing (i.e.,
deposition, description, and preservation), e.g., Data
Pilot of the European Commission. Countries, li-
braries, and research communities (research infras-
tructures) are moving towards economy of scale so-
lutions for the storage of data, and several initia-
tives are suggesting methodologies and cost /sustain-
ability analyses that may facilitate this highly ex-
pensive process. As reproducibility is gaining rele-
vance and appeal among the very same stakehold-
ers, it is reasonable to expect that similar initiatives
will face the problem of how a research community
or a library can initiate supporting reproducibility
of science for a community or multiple communities
starting from a given e-infrastructural setting.
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