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Editor’s Notes

Welcome to the June 2016 issue of the ACM SIGMOD Record!

First of all, I would like to welcome Frank Neven as the new associate editor for the Database Prin-
ciples Column. This column continues with invitation-based contributions, with a goal to bring the
latest results from the Database theory community to the SIGMOD Record readers.

This issue opens with a Database Principles article by Olteanu and Schleich on Factorized Data-
bases. This article takes a fresh look at the problem of computing and representing results to rela-
tional queries, in particular, in a factorized manner. For various classes of queries, this work quanti-
fies the succinctness gap between factorized and standard tabular representations for results of
conjunctive queries, and surveys algorithms for computing factorized representations of query re-
sults. It further discusses the queries with aggregates and order-by clauses and their application to
learning regression models over factorized databases, with very promising initial results.

The Vision Articles Column features the article, “Database Meets Deep Learning: Challenges and
Opportunities”. Motivated by the success of deep learning in applications such as computer vision
and natural language processing, this article investigates the application of database techniques for
optimizing deep learning systems. It further outlines the research problems in databases where
deep learning techniques may help to improve performance. This is a timely article that aims to
establish the connection between deep learning and database research, and to foster a synergy be-
tween the two disciplines to advance data-driven applications.

The Surveys Column features two articles. The first article, “A Time Machine for Information: Look-
ing Back to Look Forward,” is an invited article based on the tutorial by Dong, Kementsietsidis, and
Tan at VLDB 2015. The article presents a vision of a time machine for information, in particular,
Web information, which will help people “look back” so as to “look forward”. With a focus on infor-
mation extraction and temporal analysis, the article reviews the key ideas on three components
(extraction, linking, and cleaning) that are central to the envisioned time machine, and further
points out future research directions. The second article, by Wang, Song, and Chen, surveys recent
research on accessing dataspaces. A dataspace system processes heterogeneous data sources.
Without full control on its data, it gradually integrates data as necessary. Query processing is char-
acterized by best-effort approximate answers where the correct semantic mappings have not been
established. In this context, the article surveys major techniques for processing and optimizing
search queries in dataspaces, and highlights future directions in accessing dataspaces.

The Open Forum Column features an article by Pavlo and Aslett, discussing “What is really New
with NewSQL.” NewSQL refers to a new class of database management systems (DBMSs) that claim
the ability to scale modern on-line transaction processing (OLTP) workloads in a way that is not
possible with legacy systems. Given the continuous development of relational DBMSs over the past
four decades, this article examines whether the claim of NewSQL'’s superiority is true. To do this,
the article reviews the history to explain how NewSQL systems came about, and provides a taxon-
omy of NewSQL systems with a detailed discussion of the different systems under this taxonomy.
The main takeaway from the analysis is that NewSQL systems are not a radical departure from ex-
isting system architectures. What is innovative is that they incorporate various database technolo-
gies into single platforms with significant engineering effort. They are by-products of a new era
where distributed computing resources are plentiful and affordable, but at the same time the de-
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mands of applications are much greater.

The Distinguished Profiles column features H.V. Jagadish, Professor of Electrical Engineering and
Computer Science at the University of Michigan and an ACM Fellow. In this interview, Jagadish talks
about his experience of starting the Proceedings of VLDB (PVLDB), a hybrid conference and journal
style publication, his involvement with CoRR (Computing Research Repository), and his perspective
on data-driven research.

The Data Centers column features an article by Naumann and Krestel on the Information Systems
Group at the Hasso Plattner Institute (HPI). The article describes the research focus of the group on
data profiling, data cleansing, and text mining.

Finally, this issue closes with a message from the Editor-in-Chief of ACM TODS and Call for Papers
for PODS 2017.

On behalf of the SIGMOD Record Editorial board, I hope that you all enjoy reading the June 2016
issue of the SIGMOD Record!

Your submissions to the Record are welcome via the submission site:
http://sigmod.hosting.acm.org/record

Prior to submission, please read the Editorial Policy on the SIGMOD Record’s website:
http://siemod.org/sigmodrecord/

Yanlei Diao

June 2016

Past SIGMOD Record Editors:

Ioana Manolescu (2009-2013)  Alexandros Labrinidis (2007-2009) Mario Nascimento (2005-2007)

Ling Liu (2000-2004) Michael Franklin (1996-2000) Jennifer Widom (1995-1996)
Arie Segev (1989-1995) Margaret H. Dunham (1986-1988) Jon D. Clark (1984-1985)
Thomas J. Cook (1981-1983) Douglas S. Kerr (1976-1978) Randall Rustin (1974-1975)

Daniel O’Connell (1971-1973) Harrison R. Morse (1969)
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Factorized Databases

http://www.cs.ox.ac.uk/projects/FDB/

Dan Olteanu

Maximilian Schleich

Department of Computer Science, University of Oxford

ABSTRACT

This paper overviews factorized databases and their ap-
plication to machine learning. The key observation un-
derlying this work is that state-of-the-art relational query
processing entails a high degree of redundancy in the
computation and representation of query results. This
redundancy can be avoided and is not necessary for sub-
sequent analytics such as learning regression models.

1. INTRODUCTION

Succinct data representations have been devel-
oped across many fields including computer science,
statistics, applied mathematics, and signal process-
ing. Such representations are employed for instance
for storing and transmitting otherwise large amounts
of data, and for speeding up data analysis [22].

In this paper we overview recent developments
on factorized databases, which are succinct loss-
less representations of relational data. They exploit
laws of relational algebra, in particular the distribu-
tivity of the Cartesian product over union that un-
derlies algebraic factorization, and data and com-
putation sharing to reduce redundancy in the rep-
resentation and computation of query results. The
relationship between a flat, tabular representation
of a relation as a set of tuples and an equivalent fac-
torized representation is on a par with the relation-
ship between logic functions in disjunctive normal
form and their equivalent circuits.

Factorized databases naturally capture existing
relational decompositions proposed in the literature:
lossless decompositions defined by join dependen-
cies, as investigated in the context of normal forms
in database design [1], conditional independence in
Bayesian networks [18], minimal constraint networks
in constraint satisfaction [7], factorizations of prove-
nance polynomials of query results [15] used for ef-
ficient computation in probabilistic databases [12,
20], and product decompositions of relations as stud-
ied in the context of incomplete information [13].
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In the following we first exemplify the benefits of
factorizing query results. We then discuss factor-
izations for various classes of queries, quantify the
succinctness gap between factorized and standard
tabular representations for results of conjunctive
queries and survey worst-case optimal algorithms
for computing factorized representations of query
results [16, 17]. We then briefly mention the case of
queries with aggregates and order-by clauses [3] and
discuss in more detail their application to learning
regression models over factorized databases [19, 14].

2. A FACTORIZATION EXAMPLE

Figure 1(a) depicts three relations and their natu-
ral join. Branch records the location, products and
daily inventory of each branch store in the chain.
There are many products per location and many
inventories per product. Competition records the
competitors (e.g., the distance to competitor stores)
of a store branch at a given location, with several
competitors per location. Sales records daily sales
offered by the store chain for each product.

The join result exhibits a high degree of redun-
dancy. The value l; occurs in 12 tuples, each value
c1 and ¢y occurs in six tuples and they are paired
with the same tuples of values for the other at-
tributes. Since l; is paired in Competition with
c1 and ¢ and in Branch with p; and ps, the Carte-
sian product of {c1,c2} and {p1,p2} occurs in the
join result. We can represent this product symbol-
ically as {c1,ca} x {p1,p2} instead of materializing
it. If we systematically apply this observation, we
obtain an equivalent factorized representation of the
entire join result that is much more compact than
its flat representation. Each tuple in the flat join
result is represented once in the factorization and
can be constructed by following one branch of each
union and all branches of each product. The flat
join result in Figure 1(a) has 90 values (18 tuples of
5 values each), while the equivalent factorized join
result in Figure 1(d) only has 20 values.
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(a) Database with relations Branch(Location, Product, Inventory), Competi-

tion(Location, Competitor), Sales(Product, Sale), where the attribute names are abbreviated;
(b) Hypergraph of the natural join of the relations; (¢) Variable order A defining one possible
nesting structure of the factorized join result given in (d). The union s3 U s, is cached under
the first occurrence of p; and referenced (via a dotted edge) from the second occurrence of ps.

Figure 1(c) depicts the nesting structure of our
factorized join result as a partial order A on the
query variables: The factorization is a union of L-
values occurring in both Competitors and Branch.
For each L-value [, it is a product of the union of
C-values paired with [ in Competitors and of the
union of P-values paired with [ in Branch and with
S-values in Sales. That is, given [, the C-values are
independent of the P-values and can be stored sep-
arately. The factorization saves computation and
space as it avoids the materialization of the prod-
uct of the unions of C-values and of P-values for a
given L-value. The same applies to the unions of
S-values and of I-values under each P-value. Fur-
ther saving is brought by caching expressions: The
union of S-values S34 = s3 U s4 from Sales occurs
with the P-value po regardless of which L-values ps
is paired with in Branch, so we can store the first
occurrence of S34 and refer to it using a pointer 1S54
from every subsequent occurrence of py. Like prod-
uct factorization, caching is enabled by conditional
independence: The variable S is independent of its
ancestor L given its parent P. We encode it using
a function key that maps each variable A to the
set of its ancestors on which A and its descendants
depend; this is given next to each variable in A.

Different variable orders are possible. We seek
those variable orders that fully exploit the inde-
pendence among variables and lead to succinct fac-
torizations. Branching and caching are indicators
of good variable orders. The total orders have no

branching and caching, so they define factorizations
with no asymptotic saving over flat representations.
For our join and any database, a factorized join
result can be computed in linear time (modulo a
log factor in the database size). In contrast, there
are databases for which the flat join result requires
cubic computation time, e.g., databases with one L
and P-value and n distinct C, S, and I-values.
SQL aggregates can be computed in one pass over
the factorized join result. For instance, to compute
the aggregate sum(1) that computes the cardinality
of the join result, we interpret each data value as 1
and turn unions into sums and products into mul-
tiplication. To compute sum(P*C) that sums over
all multiplications of products and competitors (as-
suming they are numbers), we turn all values except
for P and C into 1, unions into sums, and products
into multiplications (the result of | (1+1) |in the first

line is cached and reused in the second line):
Le(ertea) fpr-(1+1)- A+ 1) +p2-1-|(1+1) [+

1-[p2-|(14+1)|-1+p3-1-1]-(c3 +ca).

Learning regression models requires the compu-
tation of a family of aggregates sum(X*...xX,)
for any tuple of (not necessarily distinct) variables
(X1,...,Xy), such as the above aggregate sum (P*C).

We may also compute aggregates with group-by
clauses. Our factorized join result supports group-
ing by any set of variables that sit above all others
in the variable order A, e.g., group by {L,C, P}.
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3. QUERY FACTORIZATION

As exemplified in Section 2, factorized represen-
tations of relational data use Cartesian products
to capture the independence in the data, unions to
captures alternative values for an attribute, and ref-
erences to capture caching.

DEFINITION 3.1. A factorized representation is a
list (D;)ig[m), where each D; is a relational alge-
bra expression over a schema Y and has one of the
following forms:

e (), representing the empty relation over 3,

e (), representing the relation consisting of the

nullary tuple, if ¥ = (),

e q, representing the relation {(a)} with one tu-
ple having one data value (a), if ¥ = {A} and
the value a € Dom(A),

° Uje[k] E;, representing the union of the rela-
tions represented by E;, where each Ej; is an
expression over 3,

® X,ckEj, representing the Cartesian product
of the relations represented by E;, where each
E; is an expression over schema ¥, such that
Y is the disjoint union of all 3J;.

e a reference "E to an expression E over X.

The expression D; may contain references to Dy, for
k > i and is referenced at least once if 7 > 1. O

Definition 3.1 allows arbitrarily-nested factorized
representations. In this paper, we focus on factor-
ized representations of query results whose nesting
structures are given by orders on query variables.

DEFINITION 3.2. Given a join query @, a vari-
able depends on another variable if they occur in
the same relation symbol in Q.

A wariable order A for Q is a pair (T, key).

e T is a rooted forest with one node per variable
in @ such that the variables of each relation
symbol in @ lie along the same root-to-leaf
path in T

e The function key maps each variable A to the
subset of its ancestor variables in 7" on which
the variables in the subtree rooted at A de-
pend, i.e., for every variable B that is a child
of a variable A, key(B) C key(A)U{A}. O

If two variables A and B in @ depend on each
other, then the choice of A-values may restrict the
choice of B-values in a factorization of )’s result
and we need to represent explicitly their possible
combinations. If they are independent, then the
set of A-values can be represented separately from
the set of B-values and their combinations are only
expressed symbolically. The succinctness of factor-
ized representations lies in the exploitation of con-
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ditional independence between variables. In a vari-
able order, this is reflected in branching, i.e., a vari-
able has several children, and caching, i.e., a vari-
able has ancestors that are not keys.

EXAMPLE 3.3. The key information in the vari-
able order A in Figure 1(c) is given next to each
variable. The variable L is an ancestor of S, yet
it is not in key(S) since S does not depend on it.
We can thus cache the unions of S-values for a P-
value and refer to them for each occurrence of that
P-value. A also features branching: C' and P are
children of L, while S and I are children of P. This
means that for a given L-value (P), we can store
symbolically the product of the unions of C-values
and of P-values (and respectively of S and I).

Consider now the cyclic bowtie join query over
relations Ry,..., Rg and a variable order for it:

0 C

{¢t A4 p {¢}

|

- - {A,C} B D {C,E}

For each variable, its keys coincide with its ances-
tors, so there is no saving due to caching. There are
however two branches under C, each of them defin-
ing a triangle query. For each C-value ¢ we can thus
compute and store the set of triangles {(c, A, B) |
Ri(A,¢), R2(A, B), R3(B, ¢)} for the left branch sep-
arately from the set of triangles {(c, E, D) | R4(c, E),
Rs(E, D), Ry(c, D)} for the right branch. O

Among the known classes of variable orders [17,
6], we consider here the most general class called
d-trees. They are another syntax for hypertree de-
compositions of the join hypergraph [17].

3.1 Succinctness and Computation Time

The construction of variable orders is guided by
the joins, their selectivities, and input cardinalities.
They can lead to factorizations of greatly varying
sizes, where the size of a representation (flat or
factorized) is defined as the number of its values.
Within the class of factorizations over variable or-
ders, we can find the worst-case optimal ones and
also compute them in worst-case optimal time:

THEOREM 3.4 ([2, 11, 17]). Given a join query
Q, for every database D, the result Q(D) admits

e a flat representation of size O(|D|?" (@)

e a factorized representation of size O(|D|M*w(Q)),

There are classes of databases D for which the
above size bounds are tight.

There are worst-case optimal join algorithms to
compute the join result in these representations.

U



factorize (variable order A, varMap, ranges|(start;, end;)icpv])

A =vwar(A); Ea=10;

if (key(A) # anc(4)) |

switch(A) :
leaf node A:
EAn = FEaUag;
inner node A(Aj) ¢y

}
if (key(A) # anc(A))

return Fa;

if (A= (4j)jew) return x e, factorize(A;, varMap, ranges|(start;, end;);e,]);
context = Tyey(4)(varMap);
TEA = cache4[context];

foreach a € (;c(,1 acschema(r; T4 (L[start;, end;]) do {
foreach i€ [r] do find ranges R;[start}, end]] C R;[start;,end;] s.t. wa(R;[start}, end;]) = a;

foreach j € [k] do FEa,= factorize(A;, varMap x a,ranges|(start;, end;);c(,]);
if (VJ S [k‘} ZEAJ- 75 @) Ea =FEAU (a X (Xje[k]EAj));

cache s [context] = TEn;

if TEA #£0 return "Ea; }

Figure 2: Grounding a variable order A over a database (Ri,...,R;).

The parameters of the

initial call are A, an empty variable map, and the full range of tuples for each relation.

The measures p*(Q) and fhtw(Q) are the frac-
tional edge cover number and the fractional hyper-
tree width respectively. We know that

1 < fhtw(Q) < p*(Q) < 1Q)

and the gap between them can be as large as |Q)|,
which is the number of relations in ). The frac-
tional hypertree width is fundamental to problem
tractability with applications spanning constraint
satisfaction, databases, matrix operations, logic, and
probabilistic graphical models [9].

ExaMPLE 3.5. The join query in Section 2 is acy-
clic and has fhtw = 1 and p* = 3. The bowtie query
has fhtw = 3/2, which already holds for each of its
two triangles, and p* = 3, which is the sum of the
px values of the two triangles. O

3.2 Worst-case Optimal Join Algorithms

Worst-case optimal join algorithms for flat query
results have been developed only recently [11]. At
their outset is the observation that the classical
relation-at-a-time query plans are suboptimal since
their flat intermediate results may be larger than
the flat query result [2]. To attain worst-case op-
timality, a new breed of join algorithms has been
proposed that avoids intermediate results [11]. This
monolithic recipe is however an artifact of the flat
representation and not necessary for optimality: Us-
ing factorized intermediate results, optimality can

8

be achieved by join-at-a-time query plans [6]. Such
plans explore breadth-first the factorized space of
assignments for query variables and can compute
the join result in both factorized and flat form. An
equivalent depth-first exploration leads to a mono-
lithic worst-case optimal algorithm [17].

Figure 2 gives a worst-case optimal monolithic
(depth-first) algorithm that computes the ground-
ing Fa of a variable order A over an input database.
If A is a variable order for a join query, then Fa
is the factorized join result. As discussed in Sec-
tion 3.3, A may also be a variable order for conjunc-
tive queries with group-by and order-by clauses.

In case A is a forest, we construct a product of
the factorizations over its trees. We next discuss
the case where A is a tree with root variable A.

The relations are assumed sorted on their attribu-
tes following a depth-first pre-order traversal of A.
Each call takes a range defined by start and end
indices in each relation. Initially, these ranges span
the entire relations. Once the root A is mapped to a
value a in the intersection of possible A-values from
the relations with attribute A, then these ranges
are narrowed down to those tuples with value a for
A. We may further narrow down these ranges using
mappings for variables below A in A at higher re-
cursion depths. Each A-value a in this intersection
is the root of a factorization fragment over A. (Fol-
lowing Definition 3.1, a stands for relation {(a)}.)
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We first check whether the factorization we are
about to compute has been already computed. If
this is the case, we simply return a reference to it
from cache. If not, we compute it and place its ref-
erence in the cache. The key for the cache is the
context of A, i.e., the current mapping of the vari-
ables in key(A). The current variable mappings are
kept in varMap. Caching is useful when key(A) is
strictly contained in anc(A), since this means that
the factorization fragments over the variable order
rooted at A are repeated for every distinct combi-
nation of values for variables in anc(A) \ key(A).

If A is a leaf node, then we construct a union of
all mappings a of A. If it is an inner node, then
for each mapping a we recurse to each child and
construct a factorization that is a product of a and
the factorizations at children.

This algorithm defaults to LeapFrog TrieJoin [23]
if A is a path where key(A) = anc(A) for each
variable A in A, i.e., when there is no branching
and no sharing. The resulting factorization is a trie.

The key operation dictating the time complexity
of this algorithm is the intersection of the arrays of
ordered values defined by the relation ranges. This
takes time linear in the size of the smallest array
(modulo log factor) [23].

3.3 Beyond Join Queries

The above framework is immediately extensible
to queries with projections [16, 17] and order-by and
group-by clauses [3] by appropriately restricting the
variable orders of the factorized query results.

Projection. If a variable is projected away, then
all variables depending on it now depend on each
other. Following Definition 3.2, all dependent vari-
ables need to lie along the same path in the variable
order. For instance, if we project away the variable
P in our running example, then the variables S and
I, which used to be independent given P, become
dependent on each other. This restricts the pos-
sible variable orders of factorizations of the query
result, possibly decrease the branching factor in the
variable order, and likely increases the factorization
size. Variable orders and their widths can be de-
fined for conjunctive queries in immediate analogy
to the case of join queries [16, 17].

Group-By and Order-By. For a relation rep-
resenting a query result R, grouping by a set G of
variables partitions the tuples of R into groups that
agree on the G-value. Ordering R by a list O of
variables sorts R lexicographically on the variables
in the order given by O, where for each variable in
O the sorting is in ascending or descending order.

SIGMOD Record, June 2016 (Vol. 45, No. 2)

Given a factorized representation R over a vari-
able order, we can enumerate the tuples in the re-
lation represented by R in no particular order with
constant delay, i.e., the time between listing two
consecutive tuples is independent of the number of
tuples and thus constant under data complexity.

Group-by and order-by clauses require however
to enumerate the tuples in some desired order as
given by the explicit order O or by the group G so
that all tuples with the same G-value are listed con-
secutively and can be aggregated. Constant-delay
enumeration following an order O or a group G is
not supported by arbitrary variable orders, but by
those obeying specific constraints on the variables

in G or O.

THEOREM 3.6  ([3]). Given a factorized repre-
sentation of a relation R over a variable order A, a
set G of group-by variables, and a list O of order-by
variables.

The tuples within each G-group in R can be enu-
merated with constant delay if and only if each vari-
able of G is either root in A or a child of another
variable of G.

The tuples in R can be enumerated with constant
delay in sorted lexicographic order by O if and only
if each variable X of O is either root in /A or a child
of a variable appearing before X in O.

In other words, constant-delay enumeration of tu-
ples within a group holds exactly when the group-by
variables are above the other variables in the vari-
able order A. For an order-by list O, the condition
is stronger: there is a topological order of the vari-
ables in A that has O as prefix. Theorem 3.6 as-
sumes that the values within each union are sorted.
This is the case in the FDB system for factorized
query processing [4] and the F system for factorized
learning of regression models [19].

ExXAMPLE 3.7. The variable order A from Fig-
ure 1(c) supports constant-delay tuple enumeration
for the following sets of group-by variables: {L},
{L,C%}, {L,P}, {L,C, P}, {L,P I}, {L,PI,S},
{L,C,P,S}, {L,C,P, I}, and {L,C,P,S,I}; and
for the lists of order-by variables (with any vari-
able in ascending or descending order) that can be
constructed from the above sets such that they are
prefixes of a topological order of A. O

There are two strategies for a factorized compu-
tation of a conjunctive query ) with order-by or
group-by clauses. We derive a variable order A with
minimum width that satisfies all constraints for the
joins, projection, and order-by or group-by clauses.
Then, given A and the input database, we compute
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the factorized query result. Alternatively, we derive
a variable order A’ for the join of ) and compute
the factorized join result. We then restructure A’
and its factorization to support projection, group-
ing, and ordering[3]. The second strategy may be
preferred if the join is very selective so the restruc-
turing is not expensive.

Aggregates. We consider SQL aggregates based
on expressions in the semiring (N[A],+,-,0,1) of
polynomials with variables from A and coefficients
from N [8], e.g., sums over expressions 2 - X and
X - Y for variables X and Y.

THEOREM 3.8 (GENERALIZATION OF [3, 19]).
Given a variable order A and a factorized repre-
sentation E over A. Any SQL aggregate of the
form sum(X), min(X), ormax(X), where X is an
expression in the semiring (N[A], +,+,0,1), can be
computed in one pass over E.

If A supports constant-delay enumeration for a
group-by clause G, then Theorem 3.8 applies to
SQL aggregates with group-by G clause.

The algorithm in Figure 2 can be extended to
compute aggregates on top of joins without the need
to first materialize the factorized join result [19]: In-
stead of creating factorization fragments and possi-
bly caching them, we compute (and possibly cache)
the result of computing the aggregates on them and
propagate these aggregates up through recursion.
Since the aggregates we consider are distributive,
we compute them at a variable in the variable or-
der using the aggregates at its children.

Our earlier worst-case optimal factorization al-
gorithm for conjunctive queries [17] coupled with
one-pass aggregates and group-by clauses [3] can be
recovered via the recent framework of Functional
Aggregate Queries (FAQ) [9]. Both approaches are
dynamic programming algorithms with the same
runtime complexity. While FAQ is bottom-up, the
factorization algorithm is top-down (memoized).

4. LEARNING REGRESSION MODELS

We show in this section how to learn polyno-
mial regression models over factorized databases,
generalizing earlier work on linear regression [19].
The core computation underlying the construction
of such models concerns a set of aggregates with

semiring expressions such as those from Theorem 3.8.

4.1 Polynomial Regression

We consider the setting where a polynomial re-
gression model is learned over a training dataset
defined by a query over a database:

{(y(l),xgl), . ,mg)), ce (y(m), xyn), e
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The values y(*) are the labels and the values xgi) are

the features. We assume that the intercept of the
model is captured by one feature with value 1. All
values are real numbers.

Polynomial regression models predict the value
of the label based on a linear function of parame-
ters and feature interactions, which are products of
features. A polynomial regression model with all
feature interactions up to degree d is given by:

d n n
h@(.%‘) = Z Z c Z 9(;617“_7;%)58]@1 et Ty

t=1ky=1 ky=ki_1

The case of d =1 corresponds to linear regression.

For each model hg, we define a set Z such that
each K € T corresponds to the feature interaction of
parameter i in hy. For example, by substituting
K by (1,3), the parameter 6, 3y corresponds to the
interaction term z; - x3. For the model given above:

T=J{(k1, k) VI <k < ... <k <}
te(d]

Given the training dataset, the goal is to fit the
parameters 6, . 1,) of the model so as to minimize
the error of an objective function. We consider the
popular least squares regression objective function:

N (D)) _ /@2
E(0) = 5> (ha(@?) —y@)* + AR(0).
1=1

R(0) is a regularization term used to overcome model
overfitting, and A determines its weight in £(6).
Examples of regularization terms are: A ;.7 63
(Ridge); AY_ ez 10s] (Lasso); and A1) o7 0] +
A2 o7 0% (Elastic-Net).  For uniformity in our
equations, we treat the label y as a feature but with
a predefined parameter -1.

We use batch gradient descent (BGD) [5] to learn
the model. BGD repeatedly updates the model pa-
rameters in the direction of the gradient to decrease
the error given by the objective function £(6) and
to eventually converge to the optimal value:

VJeT:0;:= 9J—ai5(9),

50
4 - (i) (4) g
E5(9) = ho(a™) [ 25" + /\%R(H),
i=1 jeJ

where the learning rate o determines the size of each
convergence step. We use j € J to iterate over the
elements in tuple J.

In standard BGD, each convergence step scans
the training dataset and computes the sum aggre-
gate, then updates the parameters, and repeats this
process until convergence. This is inefficient be-
cause a large bulk of the computation is repeated
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across the convergence steps. A rewriting of the
sum aggregate can avoid the redundant work and
make it very competitive.

4.2 Rewriting the Update Program

BGD has two logically independent tasks: The
computation of the sum aggregate and convergence
of the parameters. The data-dependent part is the
sum aggregate S, where J, K = (k1,...,k) € I:

(S e I | T

i=1 \t=1 ky=1 ky=k,_1 keK jeJ

We can explicate the cofactor of Ok in S;y:

-

O x Cofactor[K, J]

HM

where Cofactor[K Z H H mgz)

i=1 keK JjeJ

For linear regression, ¢t = p = 1 and the cofactors
are sums over products of two features.

Remarkably, the data-dependent computation is
captured fully by the cofactors, which are completely
decoupled from the parameters. Therefore, this re-
formulation enables us to compute cofactors once
and perform parameter convergence directly on the
matrix of cofactors, whose size is independent of
the data size m. This is crucial for performance as
we do not require one pass over the entire training
dataset for each convergence step.

The matrix of cofactors has desirable properties:

PROPOSITION 4.1. ([19]) Given a query Q, data-
base D, where the query result Q(D) has schema
0 = (Ai)iepn)- Let Cofactor be the cofactor matriz
for learning a polynomial regression model hy using
BGD over Q(D).

The cofactor matriz has the following properties:

1. Cofactor is symmetric:

VK, J € T : Cofactor[K, J] = Cofactor[J, K].

2. Cofactor computation commutes with union:
Given a disjoint partitioning D = ;¢ (D;) and

cofactors (Cofactor;) ey over (Q(Dy)) elp, then

P
= Z Cofactor; [ K, J].

Jj=1

VK, J € I : Cofactor|K, J]

3. Cofactor computation commutes with projec-
tion: Given a feature set L C o and cofactor matrix
Cofactory, for the training dataset 7, (Q(D)), then

VK, Jel(st. Vke K,jeJ: Ay, A; € L):
Cofactory, [K, J] = Cofactor[K, J|.
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The symmetry property implies that we only need
to compute one half of the cofactor matrix.

Commutativity with union means that the cofac-
tor matrix for the union of several training datasets
is the entry-wise sum of the cofactor matrices of
these training datasets. This property is key to the
efficiency of our approach, since we can locally com-
pute partial cofactors over different partitions of the
training dataset and then add them up. It is also
desirable for concurrent computation, where partial
cofactors can be computed on different cores.

The commutativity with projection implies that
we can compute any regression model that consists
of a subset of the parameters in the cofactor ma-
trix. During convergence, we simply ignore from
the matrix the columns and rows for the irrele-
vant parameters. This is beneficial if some features
are necessary for constructing the dataset but ir-
relevant for learning, e.g., relation keys supporting
the join such as location in our training dataset in
Figure 1(a). It is also beneficial for model selec-
tion, a key challenge in machine learning centered
around finding the subset of features that best pre-
dict a test dataset. Model selection is a laborious
and time-intensive process, since it requires to learn
independently parameters corresponding to subsets
of the available features. With our reformulation,
we first compute the cofactor matrix for all features
and then perform convergence on top of the cofactor
matrix for the entire lattice of parameters indepen-
dently of the data. Besides choosing the features
after cofactor computation, we may also choose the
label and fix its parameter to -1.

The commutativity with projection is crucial for
computing the most succinct factorization of the
training dataset, since it does not restrict the choice
of variable order and allows to retain the join vari-
ables in the variable order. Projecting away join
variables from the variable order may break the
conditional independence of other variables and in-
crease the size of the factorization. Once the factor-
ization is constructed, we may decide to only com-
pute cofactors for a subset of the features.

4.3 Factorized Computation of Cofactors

There are several flavors for factorized cofactor
computation [19, 14]: over the (non-)materialized
factorized dataset or via an optimized SQL query.
The materialized flavor is sketched in this section
and the SQL flavor is presented in detail in Sec-
tion 4.4. The underlying idea of all these flavors is
that the algebraic factorization used to factorize the
training dataset can be mirrored in the factorized
computation of the cofactors.
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Figure 3: (Top) The factorized join annotated with constant (counts) and linear (weighted

sums) aggregates used for cofactor computation.

(Bottom) Cofactor matrix based on the

annotated factorized join (Column for intercept 7' not shown, the value for ¥1/Or is 18). For
any model, the convergence of model parameters is run on top of this matrix.

EXAMPLE 4.2. Based on our running example in
Figure 1(a), consider a linear regression model with
all variables as features (the label can be decided
later). The cofactor Cofactor[(P), ()] is the sum
of products of features P and I. If this aggregate
is computed over the factorized join result in Fig-
ure 1(d), then we can exploit the algebraic factor-
ization rules

Zx—ma-n and Zx-ai—ME-Zai
i=1 i=1 i=1
to obtain
Cofactor[(P), (I)] = 2p1 - 2(i1 + i2) + 2p2 - 2i5 +
2pa - 2i4 + 2p3 - is,

where the coefficients are the number of C-values
that are paired with P-values and [-values. Simi-
larly, we can factorize the pairs of values of inde-
pendent features as follows:
T S
>3 w) ()

i=1 j=1 i=1

Z%

For features P and C, the cofactor would then be:
Cofactor[(P), (C)] = (4p1 + 2p2)(c1 + c2) +

(2p2 + p3)(c3 +ca).
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For a factorization E representing a relation R,
we compute the cofactors at the root of E using co-
factors at children. They require the computation
of constant (degree 0) aggregates corresponding to
the number of tuples in R; linear (degree 1) aggre-
gates for each feature A of E, which are sums of
all A-values, weighted by the number of times they
occur in R; and quadratic (degree 2) aggregates,
which are products of values and/or linear aggre-
gates, or of quadratic and constant aggregates. We
call all these aggregates the regression aggregates for
linear regression models [19].

Figure 3 displays the factorized join result, anno-
tated with the constant (circles) and linear aggre-
gates (rectangles), and an excerpt of the cofactor
matrix, whose elements are quadratic aggregates.
The (1) at the top of the factorization represents
the intercept of the model. This can be obtained by
extending each relation with one attribute 7" with
value 1. The variable orders for the query would
then have the variable T as root. a

We generalize the factorized computation of co-
factors to polynomial regression models of arbitrary
degree d. The difference to the linear case is that
the cofactors are for more features due to feature
interactions and thus the degrees of regression ag-
gregates increase as well. For a given model of de-
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gree d, the highest-degree aggregates have degree
2d. We construct high-degree aggregates by com-
bining lower-degree aggregates, following the fac-
torization rules from Example 4.2.

We can compute the cofactors in one pass over a
factorized query result.

PROPOSITION 4.3. ([3, 19]) The cofactors of any
polynomial regression model can be computed in one
pass over any factorized representation.

An immediate implication is that the redundancy
in the flat join result is not necessary for learning:

THEOREM 4.4. The parameters of any polynomial
regression model of degree d can be learned over a
query Q and database D in time O(n?¢-| D}t (Q) 4
n2?.s), where n is the number of features and s is
the number of convergence steps.

Theorem 4.4 is a direct corollary of Propositions
3.4 and 4.3. Under data complexity, this becomes
O(|D"*(Q)) and coincides with the time needed to
compute the factorized query result. For comput-
ing join queries, this is worst-case optimal within
the class of factorized representations over variable
orders. The factor n2? is the total number of re-
gression aggregates needed to learn hy. In con-
trast, the data complexity of any regression learner
taking a flat join result as input would be at best
O(|D|P"(@). Furthermore, state-of-the-art learners
typically do not decouple parameter convergence
from data-dependent computation, so their total
runtime to learn hy is O(n?? - |D|?" (@) . s).

4.4 Factorized Computation in SQL

A SQL encoding of factorized computation of co-
factors has two desirable properties. It can be com-
puted by any relational database system and is thus
readily deployable in practice with a small imple-
mentation overhead. It leverages secondary-storage
mechanisms and thus works for databases that do
not fit in memory. For lack of space, we focus on
learning over a join query Q;y, (i.e., no projections).

Our approach has two steps. We first rewrite Q;,,
into an (a-)acyclic query Qo+ over possibly cyclic
subqueries. Since cyclic queries are not factorizable,
we materialize them to new relations. To attain the
overall complexity from Theorem 4.4, this material-
ization requires a worst-case optimal join algorithm
like LeapFrog TrieJoin [23]. We then generate a
SQL query that encodes the factorized computation
of the regression aggregates over Q-

Rewriting queries with cycles. Figure 4 gives
the rewriting procedure. It works on a variable or-
der A of Q;;,. The set QS is a disjoint partitioning
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rewrite(variable order A)

QS =0; A=wvar(A);

if (A =AA)jep) QS = U,y rewrite(A));
Q4 = relations(key(A) U {A});

if (AQ € QS st. QaCQ) return QSU{Qa}

else return @S

Figure 4: Rewriting a join query over vari-
able order A into an acyclic join query over
possibly cyclic subqueries.

of the set of relations of @Q);, into sets of relations
or partitions. Each partition @4 is a join query
defined by the set key(A) U {A} of variables. This
partition is materialized to a relation with the same
name Q4. The materialization simplifies the vari-
able order of Q;, to that of an acyclic query Q.+
equivalent to @;,. In case Q;, is already acyclic,
then each partition has one relation and hence Q¢
is syntactically equal to Q;y,.

EXAMPLE 4.5. Let us consider the bowtie join
query and its variable order from Example 3.3. We
apply the rewriting algorithm. When we reach leaf
B in the left branch, we create the join query @p
over the relations {R1, Re, R3} and add it to QS.
When we return from recursion to variable A, we
create the query @4 over the same relations, so we
do not add it to QS. We proceed similarly in the
right branch: We create the join query @ p over rela-
tions { Ry, Rs, Rg} and add it to @QS. The queries at
FE and C are not added to Q.S. Whereas the original
query and the two subqueries ) g and ) p are cyclic,
the rewritten query Q.. is the join of Qg and @Qp
on C and is acyclic. The triangle queries @Qp and
Q@Qp cannot be computed worst-case optimally with
traditional relational query plans [2], but we can use
specialized engines to compute them [23].

The join query in Figure 1(a) is already acyclic.
Using its variable order from Figure 1(c), we obtain
one identity query per relation. O

SQL query generation. The algorithm in Fig-
ure 5 generates one SQL query that computes all
regression aggregates (thus including the cofactors)
of a polynomial regression model. It takes as in-
put an extended variable order A, which has one
extra node per database relation placed under its
lowest variable. The query is then constructed in a
top-down traversal of A.

For a variable order A with root A, we materialize
arelation Ay over the schema (A4,,, Aq), where A,
is an identifier for A and A, encodes the degrees of
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factorize-sql (extended variable order A)

switch(A) :
leaf node R :
CREATE TABLE Ry, (R, Ra);
let
deg(GA) = Rda lzneage(GA) = (RnaRd)a
in

inner node A(Aj) e :
CREATE TABLE A;,,.(A,, Ag);

let
deg(Ga) =3 e deg(Ga,) + Ad,

in

return Ga;

INSERT INTO R,,,. VALUES (R,0);

Ga = SELECT schema(R),lineage(Ga),deg(Ga),agg(Ga) FROM R, Riype;

foreach 0<i<2d do INSERT INTO A4,,,. VALUES (A4,i);
foreach j € [k] do Ga, = factorize-sql(A;);

lineage(Ga) = (lineage(Ga,), - .., lineage(Ga,), An, Aad),
agg(Ga) = sum(power(A, Aq) = [[ ;4 a99(Ga,))

Ga = SELECT key(A),lineage(Ga),deg(Ga),agg(Ga)
FROM Ga,NATURAL JOIN...GA,, Arype
WHERE deg(Ga) < 2d GROUP BY key(A),lineage(Ga),deg(Ga);

agg(Ga) =1

Figure 5: Generation of one SQL query for computing all regression aggregates used to build
a polynomial model over an acyclic query with extended variable order A.

the aggregates over A. Ayype has 2d + 1 tuples, one
for each degree from zero to 2d.

We generate a query Ga, which computes the
regression aggregates for the factorization over A.
G is a natural join of the queries (Ga;) ek con-
structed for the children of A and an inequality join
with relation Agype. The query computes all aggre-
gates (agg(Ga)) of degree (deg(Ga)) up to 2d along
with the lineage of their computation. These aggre-
gates are computed by combining aggregates com-
puted at children and for A. The lineage is given by
columns with indices n and d. It is a relational en-
coding of the set Z of indexes of feature interactions
as given in Section 4.1. Furthermore, the query re-
tains the variables in key(A) which are to be joined
on in queries constructed for the ancestors of A.

For a leaf node representing an input relation R,
the type relation Ry, has only one tuple (R, 0) and
the generated query G is a product of R and Ryype.
We add a copy of column R, to represent the degree
deg(Ga) and we set agg(Ga) equal to 1. These
additions allow us to treat all nodes uniformly.

For simplicity of exposition, we accommodate the
intercept T as described in Example 4.2, where each
relation is extended with one extra attribute 7" with
value 1. T is used as a root node for any variable
order, so variable orders cannot be forests.
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EXAMPLE 4.6. We show how to generate the SQL
query for computing the regression aggregates for
any polynomial regression model of degree d over
the acyclic join in Figure 1(a). The queries con-
structed at different nodes in the variable order A
in Figure 1(c), now extended with three relation
nodes, are given in Figure 6.

For the path leading to the Sales node, we gen-
erate the queries Qgqies, @s, and Qp for the nodes
Sales, S, and respectively P.

The query Qgqies constructed at node Sales com-
putes the product of Sales and Salesyp. and adds
the degree and aggregate columns.

Variable S only has Sales as child. Its query
Qs computes inequality join on Qsaes and Siype
to limit the combinations of aggregates to those of
degree at most 2d. It also propagates the lineage
from @Qsgies and Siypes and keeps the variable P
because it is in its key: key(S) = {P}.

The query Qp constructed at variable P com-
putes the natural join of queries Q¢ and @Q; and the
inequality join with Pyyp. on degree. This query also
computes the aggregates (Ppqq) with degree (Pgey)
up to 2d and their lineage (columns with indexes n
and d). The query keeps the variable L because it
is in its key: key(P) = {L}. O
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CREATE TABLE Qsqics AS
SELECT | P,S] [ Salesy, Salesq, |

AS Salesgeg, AS Salesqgqg

FROM Sales, Salesyype;

CREATE TABLE Qs AS
SELECT | P, | Sales,,, Salesg, | ‘ Sn,Sq,
| (Salesgeg + Sq) | AS Sgey,

| sum(power(S, Sy) * Sales.gy) | AS Sagq
FROM QSU,I(%Sa Stypff
WHERE | (Salesgeq + Sa) | <=2

GROUP BY | P,| | Sales,, Salesq, |

CREATE TABLE Qp AS

SELECT | L, | | I, 14, Branch,,, Branchyg,
| Sn,Sq, Sales,,, Salesy, | | P, Py,
| (Lgeg + Sdeg + Pa) | AS Pyeg,

| sum(power (P, Py) * 154 * Sagg) | AS P,y
FROM (); NATURAL JOIN Qg, Prype
WHERE | (Lieg + Saeq + Pa) |<: 2d
GROUP BY | L, || I,, 1,4, Branch,,, Branchyg,

Sn,Sa, Sales,,, Salesy, | P, Py, Pyeqy

Figure 6: Queries generated by the algorithm
in Figure 5 at nodes Sales, S, and P in the ex-
tended variable order of the rewritten query.
In each of these queries, the aggregate, de-
gree, and lineage columns are color-coded.

S. CONCLUSION AND FUTURE WORK

Factorized databases are a fresh look at the prob-
lem of computing and representing results to rela-
tional queries. So far, we addressed the worst-case
optimal computation of factorized results for con-
junctive queries under various factorized represen-
tation systems for relational data [17], the charac-
terization of the succinctness gap between sizes of
factorized and flat representations of query results
and their provenance polynomials [16], and the fac-
torized computation of aggregates [3], such as those
needed for learning polynomial regression models
over database joins [19].
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These theoretical results form the foundation of
the FDB system for query factorization [4, 3], and
of the F system for learning regression models over
factorized queries [19, 14].

We next discuss directions of future research.

Practical considerations. We have recently
implemented an early prototype for learning regres-
sion models and preliminary benchmarks are very
encouraging. For linear regression models, our pro-
totype F can achieve up to three orders of mag-
nitude performance speed-up over state-of-the-art
systems R, Python StatsModels, and MADIib [19].
This performance gap can be further widened by ac-
commodating systems aspects such as compilation
of high-level code that only depends on the fixed set
of features and not on the arbitrarily large data.

We are currently designing and implementing a
second, more robust version of our in-memory query
engine FDB for factorized databases, whose focus is
on a cache-friendly representation and computation
and the exploitation of many-cores architectures.

Beyond polynomial regression. The princi-
ples behind F are applicable to learning statisti-
cal models beyond least-squares polynomial regres-
sion models (with various regularizers) using gra-
dient descent. It works for any model where the
derivatives of the objective function are expressible
in a semiring with multiplication and summation
operations. It also works for classification, such as
boosted trees and k-nearest neighbors, and other
optimization algorithms, such as Newton optimiza-
tion and coordinate descent. The semirings are nec-
essary, since factorization relies on the commutativ-
ity and distributivity laws of semirings.

Distributed Factorized Computation. Mas-
sively parallel query processing incurs a high net-
work communication cost [21]. This cost has been
analyzed theoretically for the Massively-Parallel Co-
mmunication model, with several recent results on
communication optimality for join queries [10].

Since factorized databases were specifically de-
signed for succinct and lossless representations of
relational data, a natural idea would be to reduce
the communication cost by shuffling factorized, in-
stead of flat, data between computation rounds.
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ABSTRACT

Deep learning has recently become very popular on ac-
count of its incredible success in many complex data-
driven applications, including image classification and
speech recognition. The database community has worked
on data-driven applications for many years, and there-
fore should be playing a lead role in supporting this new
wave. However, databases and deep learning are differ-
ent in terms of both techniques and applications. In this
paper, we discuss research problems at the intersection
of the two fields. In particular, we discuss possible im-
provements for deep learning systems from a database
perspective, and analyze database applications that may
benefit from deep learning techniques.

1. INTRODUCTION

In recent years, we have witnessed the success of
numerous data-driven machine-learning-based ap-
plications. This has prompted the database com-
munity to investigate the opportunities for integrat-
ing machine learning techniques in the design of
database systems and applications [29]. A branch of
machine learning, called deep learning [22, 18], has
attracted worldwide interest in recent years due to
its excellent performance in multiple areas including
speech recognition, image classification and natural
language processing (NLP). The foundation of deep
learning was established about twenty years ago in
the form of neural networks. Its recent resurgence is
mainly fueled by three factors: immense computing
power, which reduces the time to train and deploy
new models, e.g. Graphic Processing Unit (GPU)
enables the training systems to run much faster
than those in the 1990s; massive (labeled) training
datasets (e.g. ImageNet) enable a more comprehen-
sive knowledge of the domain to be acquired; new
deep learning models (e.g. AlexNet [20]) improve
the ability to capture data regularities.

Database researchers have been working on sys-
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tem optimization and large scale data-driven ap-
plications since 1970s, which are closely related to
the first two factors. It is natural to think about
the relationships between databases and deep learn-
ing. First, are there any insights that the database
community can offer to deep learning? It has been
shown that larger training datasets and a deeper
model structure improve the accuracy of deep learn-
ing models. However, the side effect is that the
training becomes more costly. Approaches have been
proposed to accelerate the training speed from both
the system perspective [5, 19, 9, 28, 11] and the the-
ory perspective [45, 12]. Since the database commu-
nity has rich experience with system optimization,
it would be opportune to discuss the applicability
of database techniques for optimizing deep learn-
ing systems. For example, distributed computing
and memory management are key database tech-
nologies. They are also central to deep learning.

Second, are there any deep learning techniques
that can be adapted for database problems? Deep
learning emerged from the machine learning and
computer vision communities. Recently, it has been
successfully applied to other domains, like NLP [13].
However, few studies have been conducted using
deep learning techniques for database problems. This
is partially because traditional database problems
— like indexing, transaction and storage manage-
ment — involve less uncertainty, whereas deep learn-
ing is good at predicting over uncertain events. Nev-
ertheless, there are problems in databases like knowl-
edge fusion [10] and crowdsourcing [27], which are
probabilistic problems. It is possible to apply deep
learning techniques in these areas. We will discuss
specific problems like querying interface, knowledge
fusion, etc. in this paper.

The rest of this paper is organized as follows: Sec-
tion 2 provides background information about deep
learning models and training algorithms; Section 3
discusses the application of database techniques for
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Figure 1: Stochastic Gradient Descent.

optimizing deep learning systems. Section 4 de-
scribes research problems in databases where deep
learning techniques may help to improve perfor-
mance. Some final thoughts are presented in Sec-
tion 5.

2. BACKGROUND

Deep learning refers to a set of machine learn-
ing models which try to learn high-level abstrac-
tions (or representations) of raw data through mul-
tiple feature transformation layers. Large training
datasets and deep complex structures enhance the
ability of deep learning models for learning effec-
tive representations for tasks of interest. There are
three popular categories of deep learning models ac-
cording to the types of connections between layers
[22], namely feedforward models (directed connec-
tion), energy models (undirected connection) and
recurrent neural networks (recurrent connection).
Feedforward models, including Convolution Neural
Network (CNN), propagate input features through
each layer to extract high-level features. CNN is
the state-of-the-art model for many computer vi-
sion tasks. Energy models, including Deep Belief
Network (DBN) are typically used to pre-train other
models, e.g., feedforward models. Recurrent Neu-
ral Network (RNN) is widely used for modeling se-
quential data. Machine translation and language
modeling are popular applications of RNN.

Before deploying a deep learning model, the model
parameters involved in the transformation layers
need to be trained. The training turns out to be a
numeric optimization procedure to find parameter
values that minimize the discrepancy (loss function)
between the expected output and the real output.

Stochastic Gradient Descent (SGD) is the most widely

used training algorithm. As shown in Figure 1,
SGD initializes the parameters with random val-
ues, and then iteratively refines them based on the
computed gradients with respect to the loss func-
tion. There are three commonly used algorithms
for gradient computation corresponding to the three
model categories above: Back Propagation (BP),
Contrastive Divergence (CD) and Back Propaga-
tion Through Time (BPTT). By regarding the lay-
ers of a neural net as nodes of a graph, these algo-
rithms can be evaluated by traversing the graph in
certain sequences. For instance, the BP algorithm
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Figure 2: Data flow of Back-Propagation.

is illustrated in Figure 2, where a simple feedfor-
ward model is trained by traversing along the solid
arrows to compute the data (feature) of each layer,
and along the dashed arrows to compute the gradi-
ent of each layer and each parameter (W and b).

3. DATABASES TO DEEP LEARNING

In this section, we discuss the optimization tech-
niques used in deep learning systems, and research
opportunities from the perspective of databases.

3.1 Stand-alone Training

Currently, the most effective approach for im-
proving the training speed of deep learning mod-
els is to use Nvidia GPU with the cuDNN library.
Researchers are also working on other hardware,
e.g. FPGA [21]. Besides exploiting advancements
in hardware technology, operation scheduling and
memory management are two important components
to consider.

3.1.1 Operation Scheduling

Training algorithms of deep learning models typ-
ically involve expensive linear algebra operations as
shown in Figure 3, where the matrix W1 and W2
could be larger than 4096x4096. Operation schedul-
ing is to first detect the data dependency of oper-
ations and then place the operations without de-
pendencies onto executors, e.g., CUDA streams and
CPU threads. Take the operations in Figure 3 as an
example, al and a2 in Figure 3 could be computed
in parallel because they have no dependencies. The
first step could be done statically based on dataflow
graph or dynamically [3] by analyzing the orders of
read and write operations. Databases also have this
kind of problems in optimizing transaction execu-
tion [44] and query plans. Those solutions should
be considered for deep learning systems. For in-
stance, databases use cost models to estimate query
plans. For deep learning, we may also create a cost
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y = concatenate(al,a2)

S~
‘ al:r*W1+b1‘ ‘a2=x*W2+b2 \

x = sigmoid(zx)

Figure 3: Sample operations from a deep
learning model.

model to find an optimal operation placing strategy
for the second step of operation scheduling given a
fixed computing resources including executors and
memory.

3.1.2 Memory Management

Deep learning models are becoming larger and
larger, and already occupy a huge amount of mem-
ory space. For example, the VGG model [32] can-
not be trained on normal GPU cards due to mem-
ory size constraints. Many approaches have been
proposed towards reducing memory consumption.
Shorter data representation, e.g. 16-bit float [7] is
now supported by CUDA. Memory sharing is an
effective approach for memory saving [3]. Take Fig-
ure 3 as an example, the input and output of the
sigmoid function share the same variable and thus
the same memory space. Such operations are called
‘in-place’ operations. Recently, two approaches were
proposed to trade-off computation time for mem-
ory. Swapping memory between GPU and CPU
resolves the problem of small GPU memory and
large model size by swapping variables out to CPU
and then swapping back manually[8]. Another ap-
proach drops some variables to free memory and re-
computes them when necessary based on the static
dataflow graph[4].

Memory management is a hot topic in the database
community with a significant amount of research
towards in-memory databases [35, 46], including lo-
cality, paging and cache optimization. To elaborate
more, the paging strategies could be useful for de-
ciding when and which variable to swap. In addi-
tion, failure recovery in databases is similar to the
idea of dropping and recomputing approach, hence
the logging techniques in databases could be con-
sidered. If all operations (and execution time) are
logged, we can then do runtime analysis without the
static dataflow graph. Other techniques, including
garbage collection and memory pool, would also be
useful for deep learning systems, especially for GPU
memory management.
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3.2 Distributed Training

Distributed training is a natural solution for ac-
celerating the training speed of deep learning mod-
els. The parameter server architecture [9] is typi-
cally used, in which the workers compute parameter
gradients and the servers update the parameter val-
ues after receiving gradients from workers. There
are two basic parallelism schemes for distributed
training, namely, data parallelism and model par-
allelism. In data parallelism, each worker is as-
signed a data partition and a model replica, while
for model parallelism, each worker is assigned a par-
tition of the model and the whole dataset. The
database community has a long history of work-
ing on distributed environment, ranging from par-
allel databases [23] and peer-to-peer systems [37]
to cloud computing [25]. We will discuss some re-
search problems relevant to databases arising from
distributed training in the following paragraphs.

3.2.1

Given that deep learning models have a large
set of parameters, the communication overhead be-
tween workers and servers is likely to be the bottle-
neck of a training system, especially when the work-
ers are running on GPUs which decrease the com-
putation time. In addition, for large clusters, the
synchronization between workers can be significant.
Consequently, it is important to investigate efficient
communication protocols for both single-node mul-
tiple GPU training and training over a large clus-
ter. Possible research directions include : a) com-
pressing the parameters and gradients for trans-
mission [30]; b) organizing servers in an optimized
topology to reduce the communication burden of
each single node, e.g., tree structure [15] and AllRe-
duce structure [42] (all-to-all connection); c) using
more efficient networking hardware like RDMA [5].

Communication and Synchronization

3.2.2  Concurrency and Consistency

Concurrency and consistency are critical concepts
in databases. For distributed training of deep learn-
ing models, they also matter. Currently, both declar-
ative programming (e.g., Theano and TenforFlow)
and imperative programming (e.g., Caffe and SINGA)
have been adopted in existing systems for concur-
rency implementation. Most deep learning systems
use threads and locks directly. Other concurrency
implementation methods like actor model (good at
failure recovery), co-routine and communicating se-
quential processes have not been explored.

Sequential consistency (from synchronous train-
ing) and eventual consistency (from asynchronous
training) are typically used for distributed deep learn-
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Table 1: Summary of optimization techniques used in existing systems as of July 2016.

SINGA | Caffe | Mxnet | TensorFlow | Theano | Torch
1. operation scheduling | v/ X v - - b
2. memory management | d4+a+p | i d+s P P -
3. parallelism d 4+ m d d4+m |d+m - d+m
4. consistency s+a+h | s/a s+a+h | s+a+h - S
1. x: not available: v': available 2. d: dynamic; a: swap; p: memory pool; i: in-place operation; s: static;
3. d: data parallelism; m: model parallelism; 4. s: synchronous; a: asynchronous; h:hybrid; -: unknown

ing. Both approaches have scalability issues [38].
Recently, there are studies for training convex mod-
els (deep learning models are non-linear and non-
convex) using a value bounded consistency model [41].
Researchers are starting to investigate the influence
of consistency models on distributed training [15,
16, 2]. There remains much research to be done on
how to provide flexible consistency models for dis-
tributed training, and how each consistency model
affects the scalability of the system, including com-
munication overhead.

3.2.3 Fault Tolerance

Databases systems have good durability via log-
ging (e.g., command log) and checkpointing. Cur-
rent deep learning systems recover the training from
crashes mainly based on checkpointing files [11].
However, frequent checkpointing would incur vast
overhead. In contrast with database systems, which
enforce strict consistency in transactions, the SGD
algorithm used by deep learning training systems
can tolerate a certain degree of inconsistency. There-
fore, logging is not a must. How to exploit the SGD
properties and system architectures to implement
fault tolerance efficiently is an interesting problem.
Considering that distributed training would repli-
cate the model status, it is thus possible to recover
from a replica instead of checkpointing files. Ro-
bust frameworks (or concurrency model) like actor
model, could be adopted to implement this kind of
failure recovery.

3.3 Existing Systems

A summary of existing systems in terms of the
above mentioned optimization aspects is listed in
Table 1. Many researchers have extended Caffe [19]
with ad hoc optimizations, including memory swap-
ping and communication optimization. However,
the official version is not well optimized. Similarly,

Torch [6] itself provides limited support for distributed

training. Mxnet[3] has optimization for both mem-
ory and operations scheduling. Theano [1] is typi-
cally used for stand-alone training. TensorFlow [11]
has the potential for the aforementioned static op-
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timization based on the dataflow graph.

We are optimizing the Apache incubator SINGA
system [28] starting from version 1.0. For stand-
alone training, cost models are explored for runtime
operation scheduling. Memory optimization includ-
ing dropping, swapping and garbage collection with
memory pool will be implemented. OpenCL is sup-
ported to run SINGA on a wide range of hardware
including GPU, FPGA and ARM. For distributed
training, SINGA (V0.3) has done much work on
flexible parallelism and consistency, hence the fo-
cus would be on optimization of communication and
fault-tolerance, which are missing in almost all sys-
tems.

4. DEEP LEARNING TO DATABASES

Deep learning applications, such as computer
vision and NLP, may appear very different from
database applications. However, the core idea of
deep learning, known as feature (or representation)
learning, is applicable to a wide range of applica-
tions. Intuitively, once we have effective represen-
tations for entities, e.g., images, words, table rows
or columns, we can compute entity similarity, per-
form clustering, train prediction models, and re-
trieve data with different modalities [40, 39] etc.
We shall highlight a few deep learning models that
could be adapted for database applications below.

4.1 Query Interface

Natural language query interfaces have been at-
tempted for decades [24], because of their great de-
sirability, particularly for non-expert database users.
However, it is challenging for database systems to
interpret (or understand) the semantics of natural
language queries. Recently, deep learning models
have achieved state-of-the-art performance for NLP
tasks [13]. Moreover, RNN has been shown to be
able to learn structured output [34, 36]. As one so-
lution, we can apply RNN models for parsing nat-
ural language queries to generate SQL queries, and
refine it using existing database approaches. For
instance, heuristic rules could be applied to correct
grammar errors in the generated SQL queries. The
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challenge is that a large amount of (labeled) train-
ing samples is required to train the model. One
possible solution is to train a baseline model with a
small dataset, and gradually refining it with users’
feedback. For instance, users could help correct the
generated SQL query, and these feedback essentially
serve as labeled data for subsequent training.

4.2 Query Plans

Query plan optimization is a traditional database
problem. Most current database systems use com-
plex heuristic and cost models to generate the query
plan. According to [17], each query plan of a para-
metric SQL query template has an optimality re-
gion. As long as the parameters of the SQL query
are within this region, the optimal query plan does
not change. In other words, query plans are in-
sensitive to small variations of the input parame-
ters. Therefore, we can train a query planner which
learns from a set of pairs of SQL queries and opti-
mal plans to generate (similar) plans for new (sim-
ilar) queries. To elaborate more, we can learn a
RNN model that accepts the SQL query elements
and meta-data (like buffer size and primary key) as
input, and generates a tree structure [36] represent-
ing the query plan. Reinforcement learning (like Al-
phaGo [31]) could also be incorporated to train the
model on-line using the execution time and mem-
ory footprint as the reward. Note that approaches
purely based on deep learning models may not be
very effective. In particular, the training dataset
may not be comprehensive to include all query pat-
terns, e.g. some predicates could be missing in the
training datasets. To solve these problems, a better
approach would be to combine database solutions
and deep learning.

4.3 Crowdsourcing and Knowledge Bases

Many crowdsourcing [43] and knowledge base [10]
applications involve entity extraction, disambigua-
tion and fusion problems, where the entity could
be a row of a database, a node in a graph, etc.
With the advancements of deep learning models in
NLP [13], it is opportune to consider deep learn-
ing for these problems. In particular, we can learn
representations for entities and then do entity re-
lationship reasoning [33] and similarity calculation
using the learned representations.

4.4 Spatial and Temporal Data

Spatial and temporal data are common data types
in database systems [14], and are commonly used
for trend analysis, progression modeling and predic-
tive analytics. Spatial data is typically processed by
mapping moving objects into rectangular blocks. If
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we regard each block as a pixel of one image, then
deep learning models, e.g., CNN, could be exploited
to extract the spatial locality between nearby blocks.
For instance, if we have the real-time location data
(e.g., GPS data) of moving objects, we could learn a
CNN model to capture the density relationships of
nearby areas for predicting the traffic congestion for
a future time point. When temporal data is mod-
eled as features over a time matrix, deep learning
models, e.g. RNN, can be designed to model time
dependency and predict the occurrence in a future
time point. A particular example would be disease
progression modeling [26] based on historical med-
ical records, where doctors would want to estimate
the onset of certain severity of a known disease.

5. CONCLUSIONS

In this paper, we have discussed databases and
deep learning. Databases have many techniques for
optimizing system performance, while deep learn-
ing is good at learning effective representation for
data-driven applications. We note that these two
“different” areas share some common techniques for
improving the system performance, such as memory
optimization and parallelism. We have discussed
some possible improvements for deep learning sys-
tems using database techniques, and research prob-
lems applying deep learning techniques in database
applications. Let us not miss the opportunity to
contribute to the exciting challenges ahead!
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ABSTRACT

Historical data (also called long data) holds the key to
understanding when facts are true. It is through long
data that one can understand the trends that have devel-
oped in the past, form the audit trails needed for jus-
tification, and make predictions about the future. For
searching, there is also increasing interest to develop
search capabilities over long data.

In this article, we first motivate the need to develop
a time machine for information that will help people
“look back” so as to “look forward”. We will overview
key ideas on three components (extraction, linking, and
cleaning) that we believe are central to the development
of any time machine for information. Finally, we con-
clude with our thoughts on what we believe are some in-
teresting open research problems. This article is based
on the material presented in a tutorial at VLDB 2015.

1. INTRODUCTION

“The longer you can look back, the farther
you can look forward.”
— Winston Churchill

There is general consensus that while big data are im-
portant, long data (i.e., historical data or temporal data)
are even more important [29, 48], as it provides the po-
tential to understand when facts are true and forms the
basis for audit trails needed by organizations and indi-
viduals. It is for this reason that companies use temporal
databases to provide support for rollbacks and auditing.
For Web pages, information from the Wayback machine
of the Internet Archive [30], which periodically keeps a
snapshot of most webpages on the Web, has been used
as legal evidence.

With the abundant availability of information one can
mine from the Web today, there is increasing interest to
develop capabilities to search long data on the Web, to
develop a complete understanding of the history of an
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entity (i.e., a person, a company, a music genre, a coun-
try, etc.), and to depict trends over time, based on Web
data. An example is the search for answers to the query
“Google’s CEO before Sundar Pichai”. Current search
results on Google returns articles about Sundar Pichai
and it is only after one reads through some articles about
the history of Google that one can infer that the CEO of
Google before Sundar Pichai is Larry Page.

Another compelling example to motivate the need to
understand when a fact is true comes from reports that
are filed with the U.S. Securities and Exchange Com-
mission (SEC) [20] at different times. Companies are re-
quired, by federal regulations, to file reports periodically
to SEC to disclose the stock holdings of its executives.
There are now millions of electronic filings in EDGAR
and the number of such filings is increasing over time.
Given the millions of SEC reports, how can one find out
the stock holdings of an executive during a certain pe-
riod of time? Were Ann and Bob affiliated with the same
company X during a certain time period? Or perhaps
more interestingly, did Ann purchase a significant num-
ber of shares of Company Y before it was announced
that Company X bought Company Y? Techniques for in-
tegrating and aggregating data over time have also been
explored in a number of projects [2, 5, 25, 33, 38, 40,
41, 45].

Finally, historical data provides an understanding of
what is important or trending over time. For example,
the understanding that most people believed earth was
flat versus spherical and the trending topics of discus-
sions allow tremendous opportunities for further knowl-
edge [19, 46, 47].

The task of aggregating long data into a meaningful
whole remains a largely difficult and manual task de-
spite more than a couple of decades of research in the
areas of temporal databases and data integration. The
difficulty to create a comprehensive understanding of
entities over time largely stems from the lack of (ex-
plicit) temporal data, and tools for interpreting such data
even if they were available. Ideally, we would like to
develop a time machine for information, where one can
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easily and incrementally ingest temporal data to develop
an ever increasing understanding of entities over time,
search and query facts for a particular time period, un-
derstand trending patterns over time, and perform ana-
Iytics that would allow one to, for example, understand
the prevalent “knowledge” in the previous decade. In
this article, we describe the techniques critical in build-
ing such a time machine for information, and discuss
how far (or close) we are in achieving this goal.

The development of such a time machine would nec-
essarily involve many of the challenges that occur in
data integration [13, 17] and knowledge curation (see,
for example, [4, 15, 27]), which are notoriously diffi-
cult tasks. The data integration process often includes
the fundamental steps of extracting information about
different types of (heterogeneous) entities, transforming
and cleaning the information, and curating facts regard-
ing different aspects or properties of those entities con-
sistently together. An additional challenge today is to
perform these tasks at scale; that is, we need to collect
information from a large number of data sources, where
each source may contain lots of data, and the schemas of
the sources may be diverse in their structure and quality
or may even be unavailable. The ability to inter-operate
amongst heterogeneous data sources with varying qual-
ity is thus a key ingredient to the successful development
of this time machine.

Another key ingredient to the successful development
of such time machine is to make every step of the data
integration process time-aware. In other words, we need
the capability to understand the valid time period for
each fact. To achieve this goal, one would inevitably re-
quire text extraction rules or techniques to extract struc-
tured temporal data from unstructured and semi-structured
data sources. Furthermore, techniques need to be devel-
oped to map and transform temporal data into a desired
format before temporal entity resolution can be applied.
And finally, information about the extracted entities is
temporally integrated and conflicting information is re-
solved to arrive at an integrated archive. This process
may repeat as new datasets are discovered or when new
versions of the same datasets are available to further en-
rich the information time machine.

Outline In this article, we first look back at past work
related to (bi-)temporal databases. We discuss why new
techniques beyond (bi-)temporal databases need to be
developed to integrate and manage long data in general
(Section 2). We will then present some existing work
on three components (extraction, linking, and cleaning)
that we believe are central to the development of any
time machine for information (Sections 3-5) before we
conclude with our thoughts by looking forward on some
of the interesting open research problems (Section 6).
While one goal of this article is to disseminate the
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above described material, a parallel goal is to motivate
the reader to pursue research in the direction of manag-
ing and integrating temporal data. Ultimately, we hope
that there will be more research along these directions
to bring us closer to realizing the goal of building a time
machine for information that will record and preserve
history accurately, and to help people “look back” and,
so as to, “look forward”.

We note that this article is based on material presented
in a tutorial at VLDB 2015 [18].

2. TEMPORAL DATABASES

The need for enterprises to track and query long data,
roll back to previous states of the database to provide au-
dit trials has led to the provision of temporal data man-
agement features in relational databases. Research in
temporal databases has a long history (see, for exam-
ple, [9, 10, 42, 43]) but the ability to create and manage
temporal tables only found its way to the SQL standard
in 2011, as part of the SQL:2011 standard. Since then,
major database vendors such as IBM DB2 10 [12], Or-
acle’s Total Recall, and Teradata [1] have also begun to
support the temporal features.

There are two primary notions of time in temporal
databases, namely, valid time (the time period during
which a tuple is true) and transaction time (where the
beginning of this time period represents when the tu-
ple and its valid time period was first recorded in the
database, and the duration of the transaction represents
the time period during which the recorded tuple and its
valid time was true). These are also known as appli-
cation time and, respectively, system time in SQL:2011.
Naturally, transaction time (or system time) can only in-
crease since the next tuple that is recorded can only oc-
cur at a later time than the previously recorded tuple.
This is in contrast with valid time, which may refer to
the past or future regardless of when it was entered into
the database.

For example, Anna was at restaurant Fleur De Lys at
12pm on March 28. Suppose this information was ex-
tracted and entered into the database on 10am March
29, the transaction time begins on 10am March 29, even
though its valid time begins earlier on 12pm March 28.
Later, we may also discover that Anna was at San Fran-
cisco’s Museum of Modern Art (MOMA) on 11lam on
March 28. Suppose this information was only deter-
mined and entered into the database on 12pm March
30, the valid time begins on March 28, 11am, while the
transaction time begins on March 30, 12noon. Each sub-
sequent fact that is entered into the database has a later
transaction time than the previous fact even though the
valid time may occur at different (out-of-order) times.
The first two records in Figure 1 illustrate the example
we just discussed. The third record shows that Anna
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[ Name | Location [ When [ Known since |

Anna Fleur De Lys | Mar 28, 12pm Mar 29, 10am
Anna SF MOMA Mar 28, 11am Mar 30, 12pm
Anna | SF MOMA Mar 28, 1:15pm | Mar 30, 2pm

Figure 1: Records of locations of Anna.

was at MOMA on 1:15pm March 28 and this fact was
entered into the database on 2pm March 30.

SQL statements can be issued to record the above
events as-is with the corresponding application and sys-
tem times into a bitemporal database. However, with-
out additional application logic, these records are insuf-
ficient for the purposes of consistently integrating this
information to arrive at the understanding that Anna was
at SF MOMA from 1lam to 12noon, at Fleur De Lys
from 12noon to 1:15pm, and then back at SF MOMA
from 1:15pm onwards. Even worse, in general, the time
at which the records are entered into the database may
not even correspond to the time when the information
was known, since different pieces of information may
be derived from different data sources at different times.
The above inference of where and when is Anna at a lo-
cation is done based on the preference that information
with a later known time is preferred to information from
an earlier known time, and that Anna can only be at one
location at any point in time. With other types of pref-
erences (e.g., information from one source is preferred
over the other), other conclusions may be derived.

The above discussions point out the need for tech-
niques to consistently integrate long data that goes be-
yond what bi-temporal databases and existing data inte-
gration support. In particular, support for user-defined
preferences to decide how conflicting long information
should be resolved is needed. In fact, techniques such
as [2, 5] have taken a step in this direction to consis-
tently aggregate possibly conflicting long information
from different sources. In the next three sections, we
will present some existing work on three major compo-
nents (extraction, linking, and fusion) that are central to
the development of any end-to-end data integration and
management system for long data.

3. EXTRACTION

3.1 Techniques for conventional data

To build any type of time machine, or big data reposi-
tory, we require data. While large repositories of propri-
etary data are often hidden behind corporate firewalls,
or are available with restrictive licensing, the web is a
rich source of information and is publicly available for
use by anyone. In addition, web data provides a wide
coverage on almost any topic of interest, and is updated
constantly. The challenge is thus to extract useful data
from this fairly unstructured world. In what follows, we
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discuss some of the challenges in extracting data directly
from texts, short texts, and fairly structured web tables.

Information extraction, which refers to the task of
understanding text and extracting structured data from
texts, has been an active area of research for quite some
time [31]. Its objective is to take a sentence such as
“Anna was at restaurant Fleur De Lys on March 28, 12
noon” and extract from it structured entries that might
look like a set of triples of the form

(Anna, location, Fleur De Lys),

(Anna, on, March 28).

Notice that not all information might be succesfully
extracted in the process of extraction. For example, we
might not extract the fact that Anna was at the restaurant
at 12 noon, or that Fleur De Lys is actually a restaurant
(and not a city). So, extractions are often incomplete
by nature. The extraction task is typically further exac-
erbated by the need to consider (a) the richness of the
language and that the same fact can be expressed in a
number of different ways; and (b) processing cannot be
limited to a single sentence at a time since understanding
the semantics of a sentence often requires understanding
its context (e.g., other sentences in the same paragraph).
As an example, assume that the sentence above is fol-
lowed by the statement “She ordered pasta”. To extract
the simple fact that (Anna, ate, pasta) we need to deref-
erence “She” and understand that it refers to Anna. Suc-
cessful approaches in information extraction often rely
on machine learning [49] or on a combination of ma-
chine learning and natural language understanding tech-
niques [21].

More recently, the popularity of services such as Twit-
ter gave momentum to a new class of short text sources
that is rich in information. A distinguishing character-
istic of such short text sources is that although there is
a huge volume of data, the information content is very
small in each short text (140 characters in the case of
Twitter). On the surface, the analysis of a 140-character
tweet seems like a much easier task when compared to
the analysis of a document with many sentences. How-
ever, the simplicity of short texts is deceiving and in
fact, the lack of context often makes the analysis of short
texts significantly harder.

Consider for example two simple short texts “I like
pink songs” and “I like pink shoes”. Even though a
human might immediately understand that the former
short text is likely to refer to the songs of the artist Pink
and the latter short text refers to the fact that the author
of the text likes shoes that are pink in color, the lack
of context makes the automatic analysis of these short
texts very challenging. In addition to the lack of con-
text, part of the challenge also has to do with the fact
that short texts often lack any syntax (due to the limi-
tations in length). As a result, traditional natural lan-
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guage based techniques often fail to properly extract in-
formation, and new techniques that are customized for
the analysis of short text are necessary [28].

In a more ideal extraction scenario, one may be able
to find the data of interest in a fairly structured setting.
For example, the data of interest may exist as a web ta-
ble [6, 36]. Web tables are typically small relational
tables crawled from HTML tables on the Web. Con-
sider Anna from our example in the previous section. If
Anna is a celebrity whose sightings are tracked at some
fan web page, one can conceivably find a table like the
one shown in Figure 1 that offers a row for each fan en-
counter with Anna. While a table such as this one is
a great starting point for data extraction, there are still
significant challenges to be addressed. For one thing, it
is non-trivial to identify the data types of each column
since such tables often come either without or with am-
biguous metadata (e.g., column headings). Sometimes,
such tables do not even come with column headings.
More importantly, while structured data are designed
with explicit connections between the different parts of
the schema (e.g., foreign keys), figuring out how differ-
ent web tables relate to each other often requires tech-
niques that go beyond the extraction of column types
and understanding the text surrounding the table.

3.2 Techniques for temporal data

There is a large body of work on temporal informa-
tion extraction [37] that is pertaining to the construction
of a time-machine, since beyond extracting facts about
the world we would also like to know the time that these
facts were valid. Conceptually, there are three main
challenges in temporal information extraction, namely
(a) the identification of temporal references in the input,
(b) the mapping of a temporal reference to a time point
(or interval), and (c) the assignment of time point (or in-
terval) to a fact. In what follows, we provide a high-level
review of the first two time-related challenges.

Part of the challenge in identifying temporal refer-
ences is that time is expressed in a variety of ways in
text. So, while one can find a clear temporal reference
in the sentence “Anna was at restaurant Fleur De Lys
on March 28, 12 noon”, the following two sentences
include temporal references that are less obvious: “Last
week, Anna was at restaurant Fleur De Lys.”, and “Anna
was at restaurant Fleur De Lys.”. Notice that both the
first and second sentences have an explicit time refer-
ence (in the form of “March 28, 12 noon”, and “Last
week’”), while the last sentence has an implicit time ref-
erence since the past tense of the verb implies that the
event happened some time in the past (see [24] of a more
complete list of explicit and implicit examples).

To be useful in practice, an identified time reference
must be assigned to a time point (or interval). In the ex-
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amples above, it seems fairly straighforward to assign
the “March 28, 12 noon” to a point in time, assuming
we know the year that this date is referring to. Simi-
larly, for the assignment of the reference “Last week”
we need some indication as to what is the week the text
(paragraph) was written, or in the worst case ground the
time reference to a time point based on a signal like the
document creation time (which resembles the transac-
tion time in temporal databases). Similarly, for the last
sentence we need to identify the time the text was writ-
ten (or is referring to) so that we assign a time interval
to the event that is upper-bounded by the identified time.
Not surprisingly, mapping time references to a time di-
mension is probably the most challenging part of tem-
poral information extraction. Techniques in this space
might rely on rules [44], or a combination of machine-
learning and syntactic analysis [37].

4. RECORD LINKAGE

After structured data is obtained, another major step
is to identify records that refer to the same real-world
entities. The record linkage problem refers to the fol-
lowing problem: given a set of records, each describing
an entity by its attribute values, partition the records so
that each partition contains records that refer to a dis-
tinct real-world entity.

4.1 Techniques for conventional data

Solutions to the record linkage problem typically in-
clude the following three steps [17].

1. Blocking refers to the process where blocking func-
tions are applied to partition input records into mul-
tiple smaller blocks such that records in different
blocks are very unlikely to refer to the same real-
world entity. Blocking helps reduce the number of
pairwise comparison that would otherwise be needed
in subsequent steps.

2. Pairwise matching refers to the process that com-
pares every pair of records in a block to decide if
they indeed refer to the same entity.

3. Clustering refers to the process that examines local
pairwise matching decisions to arrive at a globally
consistent decision of partitioning the records from
the same block such that each partition refers to a
distinct entity.

Among the three steps, the blocking step is performed
to achieve scalability (i.e., to handle massive data), while
the pairwise matching and clustering steps are used to
ensure the semantics of record linkage. In other words,
by blocking, one avoids unnecessary comparisons be-
tween two records in the pairwise matching and cluster-
ing steps, which determine whether or not two records
refer to the same real-world entity.

SIGMOD Record, June 2016 (Vol. 42, No. 2)



B8 Same Company #*— Univ. to Industry
9@ Different Companies

&—& Different Universities = Industry to Univ.

A4 Same University

Transition Probability
a
T

(0] 2 4 6 8 10 12 14 16
Time Period [years]

Figure 2: Transition rate on affiliation learned
from DBLP [32].

4.2 Techniques for temporal data

Traditional linkage techniques typically reward high
similarity between attribute values, and, likewise, penal-
ize low similarity between attribute values. Such mea-
sures are not always appropriate for temporal record link-
age. This is because, as time elapses, attribute values
of an entity tend to evolve; for example, a person may
change her name after marriage, change affiliations as a
result of changing jobs, and may also change her phone
number, address, and so on. Hence, blindly penalizing
low value similarity can lead to a lot of false negatives
in general; that is, records that refer to the same entity at
different times are not matched because of value evolu-
tion. At the same time, as time elapses, different entities
are increasingly likely to share the same attribute values,
such as the shared name Adam Smith between a British
philosopher in the 18th century and a current politician
in the US. Hence, blindly rewarding high value similar-
ity can lead to a lot of false positives in general; that is,
records that refer to different entities at different times
are wrongly matched together because they happen to
share the same attribute values.

The discussions above point out that temporal records
present new challenges to the temporal record linkage
problem and new techniques are needed to perform tem-
poral record linkage.

In the next two sections, we describe two key solu-
tions for the temporal record linkage problem; one ex-
ploits pairwise matching techniques, and the other ex-
ploits clustering techniques. These techniques make cru-
cial use of the following observations about temporal
records in their solutions.

e First, entities typically evolve smoothly, and typi-
cally only a few attribute values of an entity change
at any given time.

e Second, the values of an entity do not change errat-
ically and, in particularly, they rarely change back
and forth.
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e Third, if the data set is fairly complete, records that
refer to the same real-world entity typically (though
not necessarily) observe continuity, or similarity in
time gaps between adjacent records.

4.2.1 Time decay

A key insight by Li et al. is the notion of time de-
cay [34] Time decay is often used in data analytics to re-
duce the impact of older records on the analysis and can
be used effectively to capture the impact of time elapse
on attribute-value evolution. Two types of decay, dis-
agreement decay and agreement decay, were proposed
in [34].

e Consider an attribute A and a time gap AT. The
disagreement decay of A over AT is the probability
that an entity changes its A-value within time AT
The dsiagreement decay is denoted by d” (A, AT).

e Consider an attribute A and a time gap AT. The
agreement decay of A over AT is the probability
that the A-value is the same for two distinct entities
within time AT'. The notation we use for agreement
decay is d=(A, AT).

It is easy to see that both disagreement and agree-
ment decays are values in [0, 1], and typically monoton-
ically non-decreasing as a function of their second ar-
gument AT Intuitively, the disagreement decay is used
to reduce the penalty for value disagreement, while the
agreement decay is used to reduce the reward for value
agreement, over a long time period. More formally, this
is done by defining the pairwise similarity between two
records R; and R> as

Sim(Rl, RQ) =
acadwa(s(Ri.A Ry A),AT) + s(R1.A,Ry. A)
EAEAde(s(Rl.A,R2~A)7AT)

where dw 4(s(), AT) denotes the decayed weight of at-
tribute A with value similarity s() and time gap AT =
|R1.T — Ro.T|. When the value similarity s() is low,
dwa(s(),AT) is set to wa * (1 — d7 (A, AT)); when
the value similarity s() is high, dw(s(), AT) is set to
wa * (1 —d=(A, AT)), where w4 is the non-decayed
weight of attribute A.

Li et al. [34] also describe ways to learn the disagree-
ment and agreement decays empirically from a labeled
data set. As an example, Figure 3 shows disagreement
decay and agreement decay on attribute address learned
from a data set that contains 1871 European Patent from
359 inventors in years of 1978-2003. We observe that
while inventors over different periods of time seldom
shared the same address over time, many of them have
changed their address over time.

There are two extensions for time decays. First, Chi-
ang et al. [7] define recurrence rate, which considers the
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Figure 3: Agreement (flat line) and disagreement
decay (curved line) for inventor address learned
from a European patent data set [34].

probability of the same value re-occurring for an entity
attribute. The intuition is that after a value changes, it
may change back at a future time point; for example, a
person may return to the same affiliation, may keep co-
authoring with the same authors after a period of time,
and so on. Figure 4 shows the recurrence rate on four
attributes learnt from DBLP.

Second, Li et al. [32] consider a finer-grained dis-
agreement decay, called the transition probability. In-
tuitively, the transition probability captures the likeli-
hood of a particular (type of) value transitioning to dif-
ferent other (types of) values. These probabilities vary
widely across different pairs of values. For example, it
is far more likely for someone with the title of an “Asso-
ciate Professor” to transit to the value “Full Professor”
than “Accountant”. Figure 2 shows the transition rate
between different types of values for affiliation learned
from DBLP.

4.2.2  Two-stage temporal clustering

In addition to time decay, which is used in pairwise
comparison, Li et al. [34] also propose a two-stage tem-
poral clustering strategy, where the first stage requires
high value consistency and obtains high-precision re-
sults, and then the second stage adjusts results from the
first stage to improve recall. The key intuition is that,
unlike traditional clustering techniques that are time-
agnostic, considering the time order of records can often
provide important clues for correct record linkage. The
two stages proceed as follows.

1. The first stage considers the records in temporal or-
der. It compares a record with each previously cre-
ated cluster and computes a probability of merging.
After processing all the records, it makes the clus-
tering decision to maximize the overall probability
of record-cluster matching.

2. The second stage augments the clustering results by
also comparing a record with clusters that are cre-
ated later. The comparisons take into account record
continuity and clusters are adjusted based on these
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comparisons.

There are also two extensions for the two-stage clus-
tering method. The solution proposed by Chiang ez al. [8]
makes a clean cut on the two stages: the first stage,
called static stage, requires high consistency on attribute
values and does not consider time decay; the second
stage, called dynamic stage, considers time decay and
further merges clusters generated in the static stage.

In the solution proposed by Li et al. [32], the first
stage may place a record into multiple different clusters,
if it believes that the provider of the record is likely to
provide stale data. The second stage then merges clus-
ters from the first stage once it decides that the probabil-
ity of transition is high, and ignores the clusters consist-
ing of only stale records.

S. CLEANING AND FUSION

5.1 Techniques for conventional data

Data cleaning refers to the following problem: given
a snapshot of data, decide which piece of data is incor-
rect w.r.t. the ground truth and find the fix.

As shown in Figure 5, data cleaning techniques can
be classified along two dimensions. The first dimen-
sion concerns whether the data cleaning process consid-
ers only a single source or data over multiple sources.
The term data cleaning generally refers to the task of
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cleaning a single data source whereas the term data fu-
sion is generally used to refer to the task of merging and
cleaning data from multiple sources [16]. The second
dimension concerns whether the underlying technology
used for data cleaning is rule-based or learning-based.
The combinations along these two dimensions give rise
to four categories of methods.

e Rule-based data cleaning—Constraint-based data
repairing: This type of data cleaning relies on the
use of constraints, such as functional dependencies
and, more recently, CFDs (Conditional Functional
Dependencies), to specify the relationship between
data values [22]. When such relationships are vio-
lated, the data are typically cleaned (or repaired) by
finding the smallest set of changes to the data values
such that the constraints are no longer violated.

e Learning-based data cleaning—Quantitative data
cleaning: Such methods (e.g., [11, 26]) apply statis-
tical techniques to detect outliers of the data. It sug-
gests cleaning strategies such that the cleaned data
have close distribution to an ideal data set; however,
a quantitative repair is not guaranteed to be logically
consistent.

e Rule-based data fusion-Declarative data fusion:
Such methods (e.g., [3]) specify rules such as com-
puting the average value from a list of values, finding
the most popular value or the latest update to resolve
conflicting values from multiple sources.

e Learning-based data fusion-Truth discovery: Such
methods (e.g., [35]) find the truths that are consis-
tent with the real world by applying machine learn-
ing models that consider trustworthiness of sources
and copying relationships between the sources.

5.2 Techniques for temporal data

Temporal data add a new dimension, the time dimen-
sion, to the problem. The problem thus becomes the
following: given a set of temporal data, decide which
piece of data is incorrect for the claimed time point or
period of time and find the fix.

Temporal data raise two new challenges for data clean-
ing and fusion. First, as mentioned before, the true val-
ues can evolve over time; so it is critical to distinguish
between false data and out-of-date data, and to decide
the time period that a value is true. Second, there are
many causes for low-quality data: in addition to pro-
viding false and imprecise data, a previously good data
source may stop updating (a part of) data or updating
data infrequently and thus provide stale data.

To overcome these challenges, observe that (1) the

update history from data sources can give hints for changes

of the real world; for example, a source may remove
information about a restaurant because the restaurant
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is closed; and (2) certain attribute values observe par-
tial order; for example, for marry_status, value single
should occur before married in a timeline, which in turn
should occur before divorced in time.

We next describe how each category of data-cleaning
techniques are extended for temporal data. We omit the
category of learning-based data cleaning, as we are not
aware of any quantitative cleaning strategies for tempo-
ral data.

5.2.1 Rule-based data cleaning:
data currency

Fan et al. studied data currency [23] for cleaning tem-
poral data. It considers data without timestamps as in-
put, and aims at finding the up-to-date values.

The key idea of the solution is to extend conventional
database constraints with currency constraints, which
express currency relationships from the semantics of the
data. An example currency constraint is stated below:

Vs, t: s[status] =“married”At[status] =“single”
— <status S

This constraint states that given two tuples s and ¢
about the same entity (i.e., having the same EID), if s
provides value married for marriage status while ¢ pro-
vides value single, then s must have a more recent value
than ¢ on status.

In addition to currency constraints, their work also
considers a simple class of CFDs, called constant CFDs.
A constant CFD is a constraint that asserts an equality
to a constant value. A specification is defined as a triple
Se = (I, %,T), where I, specifies existing knowledge
on partial order of tuples regarding their timestamps,
Y denotes currency constraints, and I" denotes constant
CFDs.

Fan et al. [23] investigated four problems around data
currency.

e Satisfiability: Decide if a specification is valid; in
other words, whether the partial orders, the currency
constraints, and the constant CFDs have conflicts. It
is shown that this problem is NP-complete in gen-
eral.

e Implication: Decide if any other currency orders can
be implied by a given specification. It is shown that
the problem is coNP-complete in general.

o True value deduction: Decide whether true values of
an entity can be derived from a specification. Like
implication, this problem is coNP-complete in gen-
eral.

e Coverage analysis: Decide the minimum coverage
of a given specification (i.e., additional partial orders
or currency constraints to be provided) to make true
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values derivable. This problem is ¥5-complete in
general.

It is also proved that the above complexity results re-
main even if only currency constraints or only constant
CFDs are present.

Although all these problems are intractable in gen-
eral, Fan et al. [23] developed practical algorithms that
integrate inferences of data consistency and currency in
a single framework, deriving true values and finding a
minimum set of attributes that require users’ input to
find their true values.

5.2.2  Rule-based data fusion:
preference-aware union

Alexe et al. [2] propose a preference-aware union op-
erator for fusing temporal data from multiple data sources.
The intended use of the preference-aware union opera-
tor is typically at the final step of an entity integration
workflow, where the outcome of this step is the set of
integrated entity profiles derived by aggregating infor-
mation from multiple sources.

Intuitively, the operator takes as input temporal data
(from multiple sources) and resolves temporal conflicts
that may occur in the data according to a given set of
constraints and user-specified preference rules. For ex-
ample, a constraint may assert that a person can have
at most one affiliation at any time point, and a conflict
arises if the input data corroborates there is more than
one affiliation at some time point. A preference rule
may state that one should prefer the values from a later
timestamp or it may specify that one should prefer val-
ues from one source over another. With the given con-
straints and preference rules, the operator will then re-
solve a conflict, to the extent possible, to conclude what
should be the affiliation at the time points when conflicts
occur according to the specified preferences.

In the event that not all conflicts can be resolved through
preferences, one can then enumerate each possible con-
sistent interpretation of the result returned by the oper-
ator at a given time point through a polynomial-delay
algorithm. A key property of the solution is that the op-
erator produces the same integrated outcome, modulo
representation of time, regardless of the order in which
data sources are integrated.

5.2.3 Learning-based data fusion:
temporal data fusion

Temporal data fusion takes data with timestamps as
input, and tries to decide not only the currently correct
values, but also the correct values in the history and
their valid time period.

Specifically, consider a set D of data items, each de-
scribing the attribute of an entity, such as affiliation of a
person. A data item is associated with a value at each
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particular time ¢ and can be associated with different
values at different times. The life span of a data item
D is defined as a sequence of transitions, each asso-
ciated with a value change regarding D at a particular
time point. On the other hand, consider a set S of data
sources, each providing values for data items in D and
can change the data over time. Data provided by the
sources are observed at different times; by comparing
an observation with its previous observation, a series of
updates can be inferred. Given D and S, the temporal
data fusion problem computes the life span of each data
item in D.

The solutions to this problem typically contains two
major parts. The first component computes quality met-
rics of the sources for temporal data. The second com-
ponent conducts inferences to decide the lifespan of each
data item.

Source quality: For conventional static data, source
quality is typically measured by its accuracy [35]. The
metrics are far more complex for the dynamic case [14].
Ideally, a high-quality source should provide a new value
for a data item if and only if, and right after, the value
becomes true. These three conditions are captured by
three measures: (a) the coverage of a source measures
the percentage of all transitions of different data items
that it captures (by updating to the correct value); (b)
the exactness is the complement of the percentage of
transitions that the source mis-captures (by providing a
wrong value); and (c) the freshness is a function of time
AT, measuring among the captured transitions, the per-
centage that are captured within time AT. These three
measures are orthogonal and collectively referred to as
the CEF-measure.

Inference: There are two inference approaches to de-
cide the lifespan of a data item. The first inference ap-
proach uses Bayesian analysis [14]. Consider a data
item D € D. To discover its life span, both the time
and the value of each transition need to be decided. The
Bayesian analysis is based on the CEF-measures of D’s
providers.

1. First, decide the value of D at a beginning time point.

2. Then, find for D’s next transition the most likely
time point and the most likely value, and repeat this
process until it is decided that there is no more tran-
sition.

The second approach applies the Markov model [39].
As in the aforementioned Bayesian analysis, the Markov
model considers the delay between real-world changes
and source observation, and the delay between source
observation and source update. However, there are two
differences. First, the Markov model additionally en-
codes domain knowledge such as the partial order be-
tween values for a particular attribute. Second, it as-
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sumes that the data contains only minor errors such as
mis-spellings, and ignores possible erroneous data.

Finally, note that there can be copying relationships
between the sources and the copying relationships may
even change over time. Dong et al. [14] describe how
to apply a Hidden Markov Model model to find such
evolving relationships.

6. LOOKING FORWARD

There are many problems related to the extraction and
integration of temporal data that are yet to be solved.

First, the Web is a rich source of information. It is
possible to extract information from the Web, connect
the dots, and recover the history of an entity. For exam-
ple, by extracting information about the talks, tweets,
or even resumes and home pages, one can build a pro-
file of the affiliation (and even location) of a person over
time. How can one automatically find the relevant web
pages and tweets? How can one automatically ingest
these sources of information and combine the temporal
information for different attributes?

Second, as it is already challenging to build history
for a single entity, it is even more challenging to build

history for collective entities, such as the history of Rome,

the history of World War II, and the history of rock mu-
sic. The key here is to identify relevant single entities
such as people and events, rank them according to their
importance regarding the collective entity, and build the
history taking into account the time dimension.

Third, as the facts for an entity are evolving over time,
people’s perspective on the entity can also evolve. For
example, people used to believe that the earth is flat, and
it is only in the recent two centuries that people started
to believe that human evolved from apes. Distinguishing
the fact changes and the perspective changes proposes
new challenges in managing temporal data.

Finally, while there is already substantial body of work
on temporal text extraction and temporal entity resolu-
tion, earlier foundational work on mapping and data ex-
change, conflict resolution, and query answering in in-
consistent and incomplete databases have been largely
time-agnostic. It will be desirable to develop a prin-
cipled framework for managing inconsistent temporal
data and managing incompleteness (that may change with
time) in temporal data.
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ABSTRACT

Dataspaces provide a co-existence approach for het-
erogeneous data. Relationships among these het-
erogeneous data are often incrementally identified,
such as object associations or attribute synonyms.
With the different degree of relationships recognized,
various query answers may be obtained. In this pa-
per, we review the major techniques for process-
ing and optimizing queries in dataspaces, according
to their different abilities of handling relationships,
including 1) simple search query without consider-
ing relationships, 2) association query over object
associations, 3) heterogeneity query with attribute
correspondences, and 4) similarity query for similar
objects. Techniques such as indexing, query rewrit-
ing, expansion, and semantic query optimization are
discussed for these query types. Finally, we high-
light possible directions in accessing dataspaces.

1. INTRODUCTION

A dataspace system [8, 10] processes data, with
various formats, accessible through many systems
with different interfaces, such as relational [11], se-
quential [30], XML [32], RDF [31], etc. Unlike data
integration over DBMS, a dataspace system does
not have full control on its data, and gradually in-
tegrates data as necessary.

Dataspace is a data co-existence approach, which
provides base functionality over various data sources,
regardless of how integrated they are. A dataspace
system may return best-effort approximate answers,
from multiple sources, where a set of correct seman-
tic mappings have not been applied. In addition,
dataspace query answering also takes into consider-
ation a sequence of earlier queries leading up to it,
not only for optimizing potential future queries (see
[26]), but also for creating better semantic integra-
tion between sources in a dataspace [10].

Dataspace systems could apply existing approx-
imate or uncertain mappings and keyword search
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techniques, however, as also indicated in [10], these
works need to be generalized considerably to cases
where we do not have semantic mappings of sources
and where the data models of the sources differ.
In particular, since dataspaces are loosely coupled,
rather that providing exact answers, the goal of
dataspaces is best-effort query answering.

Some of the challenges in accessing dataspaces
have been (partially) addressed, such as studying
a sequence of earlier queries (for query optimiza-
tion and potentially better semantic integration),
or ranking answers from multiple sources with var-
ious levels of semantic mappings. Other challenges
remain open, e.g., handling inconsistencies in datas-
paces. (See a detailed discussion in Section 7).

In this paper, we focus on search queries for ac-
cessing dataspaces, i.e., returning items already ex-
isting in the dataspace. Since well-established se-
mantic mappings are often unavailable in datas-
paces, more complex SPJ queries with transforma-
tions and views are not considered in this survey.
Being aware of different levels of connections, we
categorize recently proposed techniques for search-
ing dataspaces into four potential categories.

Simple Search Query

Since the relationships between data objects may
barely be obtained, it is necessary to provide an
elementary way to access all the data in a datas-
pace. Simple search query, e.g., keyword queries
(with or without attribute names) or attribute pred-
icate queries, is a good choice to meet such require-
ments [16]. It returns a set of dataspace resources
(objects) that directly match the query predicates
without considering associations. Inverted index is
thus naturally extended to dataspaces for efficient
keyword query processing (see details in Section 3).

Association Query

A number of associations among objects may be
naturally embedded in dataspace initialization, such
as the tree relationships between file objects in a
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personal information management dataspace. The
object associations could also be incrementally spec-
ified, e.g., all the persons graduated from the same
university, known as association trails. These as-
sociations between objects are often modeled in a
graph structure. Association query, performed on
the association graph, returns not only the objects
matching the query specified contents, but also those
related objects connected via associations. Exten-
sions on index for associations are discussed as well
in Section 4.

Heterogeneity Query

Besides associations among objects, relationships
between heterogeneous attributes could also be con-
sidered when querying a dataspace. For example,
the matching between attributes “manu” and “prod”
indicates that both of them specify similar infor-
mation about manufacturers or producers. Such
attribute matching is often recognized by schema
matching techniques [18]. As mentioned, in datas-
paces, a pay-as-you-go style [12] is usually applied
to gradually identify attribute matching (accord-
ing to users’ feedback when necessary). The het-
erogeneity query extends query results by consid-
ering the matching relationships between hetero-
geneous attributes. For instance, a heterogeneity
query on attribute manu searches not only the men-
tioned manu but also the identified prod attribute.
Query rewrite is often employed for such query ex-
pansion (see details in Section 5).

Similarity Query

Rather than simply specifying keywords, a more ad-
vanced query may pose an object and return datas-
pace objects that are similar to the query object,
known as similarity query. To accelerate similarity
query processing, semantic query optimization [3,
13] can be employed. It relies on data dependen-
cies introduced in dataspaces for query rewriting
(in Section 6).

The remainder of this paper is organized as fol-
low. In Section 2, we introduce models for rep-
resenting dataspaces. The aforesaid four types of
queries are discussed from Sections 3 to 6, respec-
tively. Finally, we summarize this paper in Section
7 and discuss possible future directions.

2. MODELING

Owing to heterogeneity, dataspaces need to em-
ploy an elementary model to represent the most
common part of data from various sources, and pro-
vide a very basic accessing way to begin with.

2.1 Data Model
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The data model indicates how the contents of ob-
jects in dataspaces are organized. Usually, the ob-
jects consist of values on several attributes.

2.1.1 Triple Store

Since the objects in a dataspace are collected
from various heterogeneous sources with distinct at-
tributes, it is obviously inappropriate to manage the
data as tables with fixed columns like the relational
model. Instead, the data are often modeled as a
collection of triples [12, 5], in the form of

(object, attribute, value).

For example, Table 1 presents 6 triples, recording
the (School)Color attribute values of 6 objects.

Table 1: Triples in a dataspace

object, attribute, value)

(
to  (Wisconsin, SchoolColor, Cardinal)
t1  (Cal, SchoolColor, Blue)
to  (Washington, SchoolColor, Purple)
ts
ta
ts

Berkeley, Color, Navy)
UW-Madison, Color, Red)
Stanford, Color, Cardinal)

It is worth noting that the triples can be con-
verted to graph representation. In order to present
examples more intuitively, we use graph represen-
tation by default in the remainder of this paper.

2.1.2 Resource Views

The triple store scatters attribute values of an
object, which may not be efficient in object ori-
ented retrieval. The iMeMex Data Model (iDM),
specialized for personal data management [4, 20],
introduces an object oriented data model, by group-
ing the attribute-value pairs of an object together,
known as resource views.

Table 2: Components of a resource view RVj

Component  Description
RV;.name Name of a resource view RV}
RV;.tuple Set of attribute value pairs

(atto : valueg), (atty : valuey), . ..

RV;.content Finite byte sequence of content

Table 2 lists the components that can be attached
to a resource view RV;. Besides the set of attribute-
value pairs stored in RVj.tuple, other components,
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such as a finite byte sequence of content (a file in
personal information management), could be fur-
ther attached to a resource view.

2.2 Object Association

As mentioned in the introduction, we cannot iden-
tify ahead of time all the associations of objects in
dataspaces. Ad hoc recognized associations among
objects are managed in an extraordinary manner.

2.2.1 Association Graph

In iDM [20], the associations are modeled as a
graph, G := (RV, E), where RV := {RV4,...,RV,,}
denotes a set of n resource views (nodes). FE is a
sequence of directed edges between resource views.

DD
t

Figure 1: An example graph of associations among
resource views (objects)

For instance, Figure 1 presents an example asso-
ciation graph of 5 resource views. The edges denote
the associations between the corresponding resource
views, e.g., (Projects—PIM) indicates that PIM is
a project under the directory of all Projects in a
personal file management dataspace.

2.2.2  Association Triple

The association between objects in a dataspace
can be represented as a collection of triples as well,
in the form of (object, association, object) [5]. Un-
like the edges without any label in the aforesaid
association graph, a type is indicated in the associ-
ation triple for the association between two objects.

Tian Zhang name Y
authoredPaper
author

Raghu Ramakrishnan

Figure 2: An example triple base

contactAuthor

i year
publishedPapér

authoredPaper publishedin

name

Sigmod

Figure 2 illustrate an example dataspace of 4 ob-
jects (pl, p2, al and cl, denoted by ellipses). Rect-
angles attached to each object denote its attribute
values, e.g., “Tian Zhang” attached to pl through
an edge with label “name”, representing an attribute
value pair (name:Tian Zhang) of object pl. Each
association triple corresponds to an edge in Figure
2 with a label indicating its association type. For
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example, (al, contactAuthor, pl) means that al is
connected to pl as a contactAuthor.

2.2.3 Association Trail

Rather than representing specific single associa-
tions, an association trail [19], denotes a group of
associations by a join predicate 6. Instead of orig-
inally embedded in data, such associations can be
gradually declared.

Let QL(G) and Qr(G) be two collections of ob-
jects specified by queries @, and @Q g, respectively,
over an association graph G. An association trail

P:Qr 0(;9 Q) r represents all the associations from
objects in Q1 (G) to objects in Qr(G) according to
6(l,7). Tt conceptually introduces in the associa-
tion graph a directed edge from left to right and la-
beled @, for each pair of nodes given by Q, <ty Qr,
namely intensional edge. Association trails cover

relational and non-relational theta-joins as special
- . .. . (1,
cases. A bidirectional association trail ® : Qp, <(:T>)

QR represents associations in both directions.

University:MIT,
Year:2007

= 2 3 B
University:MIT,I” Fraq Yee--S2MEUNIVErsity o plice YUniversity:MIT,
Year:2008 Year:2008
* < graduatedSameYear _ -

Figure 3: Example association trails

Consider the example in Figure 3. Let ellipses
denote objects, while the rectangle attached to each
object lists its attribute-value pairs. A bidirectional
association trail is given by

. . o(l,r)
sameUniversity : class = person <= class = person,

0(l,r) : (Luniversity = r.university).

Arrows with dotted lines, labeled sameUniversity,

represents 3 intensional edges introduced by the as-
sociation trail. For instance, the intensional edge
between Anna and Fred indicates that they share
the same university attribute value.

2.2.4 Other Associations

Besides the aforesaid general associations between
objects, a special category of “referenceOf” rela-
tionships in personal data are considered, namely
Context-Based Reference (CR) [14]. Such associa-
tions are generated by user behaviors. Similar to
association trails, the CR associations could be in-
troduced gradually and represented in association
graphs as well.
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2.3 Semantic Correspondences

While associations represent the relationships be-
tween objects, the attribute correspondences indi-
cate the identity relationships of attributes.

2.3.1 Attribute Synonyms

Synonym correspondence between two attributes
(e.g., manu vs. prod) can be identified by schema
matching techniques in data integration (see [18] for
a survey). In dataspaces, the synonym correspon-
dence between attributes are often incrementally
recognized in a pay-as-you-go style [12]. Automated
mechanisms such as schema matching and refer-
ence reconciliation provide initial correspondences,
termed candidate matches, and then user feedback
is used to incrementally confirm these matches (when
necessary).

Two attributes A, B having synonym correspon-
dence are denoted by A <+ B, e.g., manu <> prod.
There may exist multiple attributes having synonym
correspondences to an attribute A. A synonym ta-
ble is introduced in [5] for attributes with correspon-
dence. If attribute A is referred to as Ay,..., A4, in
different data sources, having A < Aj,..., A <
A, the canonical name of A is chosen as one of
Aq, .o A

2.3.2 Trails

Instead of the symmetric synonyms relationships
between attributes, the concept of trail is also pro-
posed to specify asymmetric correspondences [20].

A unidirectional trail is denoted as ¥ : Qp — Qg.
It means that the query on the left @)1, induces the
query on the right Qg, i.e., whenever we query for
@1 we should also query for Qg.

For example, a trail

U, @ // * tuple.created — // * tuple.date

indicates that whenever querying objects (resource
views) on attribute created, it also needs to query
objects on attribute date.

A bidirectional trail is denoted as ¥ : Qf, < Qg.
It further indicates that the query on the right Qr
induces the query on the left Q..

Indeed, trails can specify correspondences between
more general queries. For example, they could be
used to transform a simple keyword query into a
query to the mediated data source. Consider a trail
“dataspace — //Projects/PIM/+”. With such a
trail, the query will not only return resources con-
taining keyword dataspace, but also “vldb2006.tex”
and “Grant.doc” in Figure 1 (although the keyword
dataspace does not appear in these documents).

Traditional data integration approaches, such as
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GAV, LAV, and GLAV, need high upfront effort to
semantically integrate all source schemas and pro-
vide a mediated schema. Trails provide a declara-
tive mechanism to enable semantic enrichment of a
dataspace in a pay-as-you-go fashion.

2.3.3  Probabilistic Mapping

Instead of the synonym correspondence based on
certain schema mapping, a probabilistic mapping
describe a probability distribution of a set of possi-
ble schema mapping [21].

A probabilistic mapping is defined as (5,7, m),
where S and T are relations belonging to source
schema and target schema respectively, and m is a
set whose elements m; consist of a one-to-one map-
ping between S and T and a probability, indicating
the probability of each mapping.

For example, consider three possible mappings in
Table 3. Each possible mapping consists of a set of
attribute correspondences, and is associated with a
corresponding probability. Note that the sum of all
probability is 1.

It is worth noting that even though the studies [6,
7] focus now on attribute correspondences, proba-
bilistic schema mappings could be much more com-
plex semantic correspondences, e.g., more general
GLAV mappings.

Table 3: Probabilistic schema mapping

Prob

my {(pname, name), (email-addr, email), 0.5
(current-addr, mailing-addr),
(permanent-addr, home-addr)}

Possible Mapping

mz {(pname, name), (email-addr, email), 0.4
(permanent-addr, mailing-addr),
(current-addr, home-addr)}

ms {(pname, name), 0.1
(email-addr, mailing-addr),
(current-addr, home-addr)}

3. SIMPLE SEARCH QUERY

The primary and easy way for most people access-
ing dataspaces is the keyword predicate query [5].
Each predicate is of the form (attribute : keyword),
denoted by (A : K), where A is an attribute name
and K is a keyword in the value of attribute A. For
example, a keyword predicate query could be:

{(title : Birch), (author : Raghu)}.

To answer the keyword predicate query, we con-
sider both the query and objects as sets of items of

SIGMOD Record, June 2016 (Vol. 42, No. 2)



attribute keyword pairs. An object O (or a query Q)
in dataspaces is thus a set of items {(A; : K1), (A4s :
K3),...,(Ajo| : K|0))}. For example, an object with
attribute value (manu : Apple Inc.) can be repre-
sented by a set of items {(manu : Apple), (manu :
Inc.)}, if each word is considered as a keyword.

The keyword predicate query returns the objects
in the dataspace that match most items. Query
answers are ranked by the following matching score
in descending order score(Q,0) =[Q N O|.

A similar Filter operator is also considered in
[11]. Tt returns resources (objects) satisfying the
given conditions, which can be specified as a set of
(attribute : keyword) pairs as well.

3.1 Index

Inverted lists are utilized for indexing dataspaces
[5]. The inverted index, also known as inverted files
or inverted lists, consists of a vocabulary of items
and a set of inverted lists. Each item e corresponds
to an inverted list of object 1Ds, where each ID re-
ports the occurrence of item e in that object.

(A:a)
(B:a)
(C:a)

(D:a) |
(D:a) (D:a)
| (E:e)
(D:a) | (F:f)

L,
L,
L,
.
.
L,
(Gg) |+ |
L,
L,
L,
L,
L,

(H:h)

| D:a) (H:b)
| (H:c)
(Gd)
| D:a) | (F:d)
(a) Objects (b) Object lists

23le|e|N|lo|als|w|n|=

Figure 4: Indexing by attribute inverted lists
(ATIL) for items of attribute-keyword pairs

The items of objects in dataspaces are indeed
attribute-keyword pairs. The attribute inverted lists
(ATIL) are lists of objects where the corresponding
item (attribute-keyword pair) appears [5]. Figure 4
shows an example dataspace S which consists of 11
objects with a vocabulary Z of 12 items. For each
item (an attribute-keyword pair), we have a pointer
referring to a specific list of object 1Ds, where the
item appears. For instance, consider the inverted
list of item (D : a) in Figure 4(b). It indicates that
the keyword a on attribute D appears in the objects
2,3, 5,8, 11, as presented in in Figure 4(a). In real
implementation, each object 1D in the list is associ-
ated with a value, which denotes the weight of the
item (D : a) in that object.
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3.2 Compression

The heavy cost of inverted index based query pro-
cessing arises from two aspects, 1) I/O cost of read-
ing inverted lists from disks, and 2) aggregation of
these inverted lists for ranking results. To reduce
the cost of retrieving and merging lists, compres-
sion of inverted lists is studied [22]. The basic idea
is to store the merged lists for items that appear
together frequently in queries or dataspace objects.

@ (D:a) only | (F:f) only ]

(B:a)
[(D:a)| (F:
(A:a)
(C:a)

by

Figure 5: Compressing inverted lists on items (an
item corresponds to only one list)

For instance, in Figure 5, the inverted lists of
items, attribute-keyword pairs (D:a), (F:f), are com-
bined together as a big single list. We have several
sections in each compressed list, such as the sublist
of tuples with both (D:a) and (F:f), the sublist with
only (D:a), and the sublist with only (F:f).

3.3 Materialization

Materialized views in relational databases are of-
ten utilized to find equivalent view-based re-writings
of relational queries [9], such as conjunctive queries
or aggregate queries in databases. The concept of
materialization is also extended to dataspaces for
exploring query optimization opportunities [26].

v, | (A=) | (Ba) st ]
v, | (Aa) | (B:a) [ (C:a) [D:a)}~ |
v, | (F:f) [ (Gg) | (H:h) |

Vv, | (D:a) | (E:e)

Figure 6: Materializing views of items (an item
may be materialized multiple times)

In Figure 6, we show an example of materialized
lists of item views. For instance, the first view,
denoted by V4 = {(A:a), (B :a)}, materializes the
merge results of lists corresponding to item (A : a)
and (B :a) in the example of Figure 4. Without
materialization, we need two random disk accesses
for query predicates (A : a) and (B : a), respectively.
In contrast, by materialized views, only one random
disk access is needed for the same query. Moreover,
besides reducing the 1/O cost, we also avoid the
aggregation of the aforesaid two separate inverted
tuple lists in the query.

4. ASSOCIATION QUERY
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Next, we discuss the queries specifying associ-
ation requirements of objects. Again, both data
models, triple store and resource view, support key-
word predicate queries.

4.1 Association Search Query

4.1.1 Neighborhood Keyword Query

Neighborhood keyword query extends traditional
keyword query by taking associations into account,
that is, it also explores associations between data
items. A neighborhood keyword query specifies a
set of keywords, and the result consists of (1) rel-
evant instance, which contains at least one of the
query keywords; (2) associated instance, which is
associated with a relevant instance.

For example, consider a query whose keyword is
“Birch” in Figure 2. Instance ap is a relevant in-
stance as it contains “Birch” in the title attribute,
and p1, p2 and ¢y are associated instances as they
have association with a;.

4.1.2  Association Predicate Query

Besides the predicates on attribute values, pred-
icates on associations can also be specified [5], of
the form (R : K), where R in the predicate is an
association name. Objects satisfy the predicate if
they have associations of type R with objects that
contain the keyword K in attribute values.

For example, a query “Raghu’s Birch paper in
Sigmod” can be described with three predicates:

{(title : Birch), (author : Raghu),
(publishedIn : Sigmod)}.

The query is satisfied by object al in Figure 2,
which has attribute value (title : Birch), and in
association with ¢l (containing keyword Sigmod)
in type publishedIn and p2 (containing keyword
Raghu) with type author.

4.1.3 Indexing Associations

Similar to indexing attribute keywords, attribute-
association inverted lists (AAIL) are introduced for
indexing association information (together with the
aforesaid attribute-keyword information). Suppose
that an object O has an association R with objects
O1,...,0, in the dataspace, and each of Oy, ..., 0,
has the keyword K in one of its attribute values.
An inverted list will be generated for the associa-
tion:value item (R : K'), which contains n objects
O1,...,0, in the list. For instance, in Figure 7, ob-
ject al appears in the list of (publishedIn : 1996),
since al is in association (with type publishedIn)
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to another object (c1) containing keyword 1996 in
its attribute (year), as illustrated in Figure 2.

(publishedIn:1996) | wla1
(year:1996) .

(authoredPaper:birch) —w{p1|p2
(publishedPaper:birch) | c1
(title:birch) L fan]
(author:raghu) —»a_1
(email:raghu) —»E
(name:raghu) —»E
(author:ramakrishnan) —>§
M

Figure 7: Attribute-association inverted lists
(AAIL) for both associations and attribute-keyword
items (for the example dataspace in Figure 2)

An association predicate query {(R : K1),...,(R:
K,)} can be answered over the AAIL. For exam-
ple, when searching for “Raghu’s papers”, the query
contains an association predicate (author : Raghu).
Based on the AAIL in Figure 2, it returns object al.

4.2 Association Trail Query

Other than query over arbitrary individual asso-
ciations, [19] considers queries with specific groups
of associations, specified by association trails.

4.2.1 Neighborhood Query

Given a query @ (of attribute-keyword items) and
an association trail ®,, the association trail query
results are given by (QNQ%) xg, Q%, where Q% and
Q% are the queries on the left and right sides of trail

®,, respectively, and 6; is the #-predicate of ;.
For example, consider the dataspace in Figure 3
and an association trail

B . o(l,r)
sameUniversity : class = person <= class = person,

0(l,r) : (Luniversity = r.university).

A query @ = {(name : Anna)} with the asso-
ciation trail returns not only object 1 in Figure 3
(matching the query content), but also objects 2
and 3 who share the same university (identified by
0(lL,r)).

When considering a set of association trails ®* :=
{®P1,...,D,}, the query results could be the union
of the corresponding results given by ;.

4.2.2  Indexing Association Trails

The most intuitive strategy for processing asso-
ciation trail queries is to explicitly materialize all
intensional edges in the graph, through a join index
[28]. For instance, Figure 8 lists all the objects 2
and 3, which have association to object 1 specified
by association trail 1 (sameUniversity). Similarly,
objects 1 and 3 have association to object 2 as well.
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OidLeft | OidRight | trailList traillD | trail label

1 2 {1} 1 sameUniversity

3 {1} 2 graduatedSameYear
2 1 {1}

3 1,2
3 1 {1}

2

{1.2

Figure 8: Association trail index

At query time, it looks up materialization to ob-
tain the neighborhoods for each object returned by
the original query Q. A query Q = {(name : Anna)}
thus returns object 1 (containing the specified key-
word in @) as well as objects 2 and 3 with the spec-
ified association 1 (sameUniversity) to object 1.

lookupEdges
OidLeft | OidRight | trailList traillD | trail label
2 1 {1} 1 sameUniversity
3 1 {1} 2 graduatedSameYear
2 {2}

normalEdges
OidLeft | OidRight | trailList
1 2 {1}
3 {1}
2 3 {2}

Figure 9: Grouping-compressed index (GCI) for
association trail

Association (join) relationships can be grouped
together as cliques. The grouping-compressed in-
dex (GCI) [19] explicitly represents the edges from
a given object (node) O; in the clique to all the
other objects {Oa,...,O¢}, and for each remaining
node in the clique, represents special lookup edges
(Oj, 01, lookup) that state O; connects to the same
objects as O1p. Thus, it represents the information
in the clique with C' normal edges for Oy plus C'—1
edges for the lookup edges of all remaining nodes.
In short, a reduction in storage space (and conse-
quently join indexing time) from C? edges to 2C —1
edges.

For example, consider the clique of three objects
{1,2,3} in Figure 3. It corresponds to three groups
of edges {(L 2)7 (17 3)}7 {(27 1)7 (27 3>}7 {(3’ 1)7 (3a 2)}7
in Figure 8. In the grouping-compressed index as
shown in Figure 9, only one group of (normal) edges
{(1,2),(1,3)} is preserved, while other two groups
of edges are represented by lookupEdges (2,1) and
(3,1). The lookupEdges denote that objects 2 and
3 share the same connections as object 1 w.r.t. asso-
ciation trail 1 (sameUniversity). The total number
of edges (inverted lists) reduce.

SIGMOD Record, June 2016 (Vol. 45, No. 2)

4.3 Path Expression Query

Path expressions (as well as keywords and predi-
cates) have been used in XML search engines refer-
ring to the NEXI language [27]. The queries have
been adapted to dataspaces by iDM [4, 20] and [32].
A most typical path expression query, //A//B, re-
turns resource views named B, from which there
exists a path to another resource view named A.

The path expression can also be combined with
attribute predicates, such as //A//B[b = 42]. Tt
further requires RV.tuple.b = 42 for the results spec-
ified by //A//B. For example,

//Projects//Grant[created = “2006”]

returns resource views which are documents entitled
Grant and created in 2006 in all the Projects. Con-
sequently, the object Grant.doc in Figure 1 will be
returned, which has a path from Project to Grant.

A Traverse operator, similar to the path expres-
sion query, is also introduced in [11], which is used
to find resources referenced by a property. It ac-
cepts a sequence of resources with attribute pred-
icates and a set of conditions. The returned re-
sources satisfy the conditions and have association
to the given resources successively, i.e., there is a
path from the first resource to the result.

S. HETEROGENEITY QUERY

Dataspace queries could be extended to not only
objects with associations, but also attributes with
correspondence owing to information heterogeneity.

5.1 Attribute Hierarchy Query

Owing to information heterogeneity, an attribute
(such as name) may correspond to multiple descen-
dants in hierarchies, e.g., firstName, lastName,
nickName, etc. A query (name : Tian) may refer
to firstName, lastName, or nickName.

To support such hierarchies in attribute hetero-
geneity, a natural idea is to index dataspaces with
duplication. Attribute inverted lists with duplica-
tion (Dup-ATIL) [5] is constructed as follows. If
the keyword K appears in the value of attribute
Ap, and A is an ancestor of Ay in the hierarchy,
then there is a list for (A : K). It records the num-
ber of occurrences of K in values of the attribute A
and A’s sub-attributes. Consequently, a predicate
query with the Dup-ATIL is answered in the same
way as we use the ATIL.

Indexing Attributes with Hierarchy Path

The size of Dup-ATIL could be very large if the at-
tribute hierarchy contains long paths from the root
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attribute to the leaf attributes and most values in
the dataspace belong to leaf attributes.

A more concise way is to generalize the inverted
lists without introducing duplicates [5]. Attribute
inverted lists with hierarchies (Hier-ATIL) is con-
structed by extending the attribute inverted list as
follows. Let Ao, ..., A, be attributes such that for
each i € [0,n—1], attribute A; is the super-attribute
of A;y1, and Ay does not have super-attribute. It
introduces a hierarchy path Aq//...//A, for at-
tribute A,. For each keyword K in the value of
attribute A,, there is an inverted list generated for
(Ao//...//A, : K). Each object in the list denotes
that the keyword K appears in the attribute A,, of
the object.

The attribute-keyword predicate query (A4 : K)
can be answered by considering all the inverted lists
whose hierarchy paths contain the attribute A.

5.2 Attribute Synonym Query

Besides attribute hierarchies, a more general form
of information heterogeneity is the attribute syn-
onyms, A <+ B, in more arbitrary attribute pairs.

Query Rewrite with Canonical Name

To accommodate synonyms, a straightforward idea
is to introduce a synonym table for attribute and
association names [5]. If attribute A is referred to
as Aiq,..., A, in different data sources, it chooses
the canonical name of A as one of Ay,..., A,.

In the index, when a keyword K appears in a
value of the A; attribute, there is an inverted list for
(A : K). The object in the list for (A : K) denotes
the occurrence of K in its attribute Aq,..., or A,.

To answer a predicate query with attribute pred-
icate (A;, K),i € [1,n], we transform it into a key-
word search for (K : A). For example, suppose that
author is considered as a canonical name for author
and authorship. The predicate (authorship : Tian)
will be transformed into (author : Tian).

Query Rewrite with Predicate Expansion

The attribute synonym relationship is often incre-
mentally determined, in a pay-as-you-go style. To
avoid updating the existing index (w.r.t. synonym
attributes), we may also consider to expand the
query with synonym attributes [26], rather than re-
placing them with canonical names.

Consider a query Q@ = {(A1 : K1),...,(4)q :
Kq|)} specifying predicates on a set of attribute-
keyword pairs. The expanded query Q of Q is

QZ{(BZK1)|Bl<—>AZ,(AZKZ)EQ}UQ
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For example, we consider a query
Q = {(manu : Apple), (post : Infinite)}.

The query evaluation searches not only in the manu
and post attributes specified in the query, but also
in the attributes prod and addr according to the at-
tribute synonym correspondences manu <+ prod and
addr <+ post, respectively, having

Q = {(manu : Apple), (prod : Apple),
(post : Infinite), (addr : Infinite)}.

5.3 Trail Query

Rather than simple attribute pairs or hierarchies,
trails specify more complicated relationships among
attributes of query answers [20]. Query processing
in the presence of trails first detects whether a trail
should be applied to a given query Q. The matching
of a unidirectional trail is performed on the left side
of the trail. If the left side of a trail was matched by
a query (@, the right side of that trail will be used
to compute the transformation of (). Finally, the
original query @ is merged with the transformation
as a new query. The new query extends the seman-
tics of the original query based on the information
provided by the trail definition.

Query Rewrite with Trails

Let W and WP denote the left and right sides of a
trail U,, respectively. The rewrite processing con-
sists of three phases: Matching, Transformation,
and Merging.
(1) Matching. A trail ¥; matches a query @) when-
ever its left side query, ®F, is contained in Q as a
subset.
(2) Transformation. The query @ is transformed by
substituting W1 with UF, denoted by QF .
(3) Merging. The transformed query Qg is merged
with the matched subexpression.
Consequently, the query is expanded not only on
WL but also the related WFE.

For example, consider a query

Q := //Projects//Grant|created = “2006”],
and a trail
Uy := //* tuple.created — |/ * .tuple.date.

The trail states that when querying the created
attribute of an object (resource view), it should
also consider the query on the date attribute. Wy
matches @ as its left side query ¥ is contained in
Q. After transformation, we have

Qy, = // * [date = “2006”].
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The final merged query Q?\Pl} is

Qlu,y == //Projects//Grant[created="2006" OR
date=*“2006"].

5.4 Query with Probabilistic Mapping

Instead of certain attribute synonym correspon-
dence, the matching of attributes (especially the one
generated by auto-matching tools) is often uncer-
tain. Query answering is thus performed on such
probabilistic mapping [6, 7, 21].

Consider the possible mappings in Table 3. By-
table semantics [6, 7] could be considered for query
answering based on p-mapping, i.e., one mapping
for all tuples. A query @ with attribute-keyword
predicate {(mailing-addr : Sunnyvale)} will be ex-
panded as

Q = {{(current-addr : Sunnyvale)},
{(permanent-addr : Sunnyvale)},
{(email-addr : Sunnyvale)}}.

The probability of an object O matching the query
is computed by aggregation w.r.t. possible map-
pings. Suppose that there is an object O with the
following attribute-value pairs

O = {(pname : Bob), (email-addr, bob),
(current-addr : Sunnyvale),

(permanent-addr : Sunnyvale)}.

As shown, two predicates on attributes current-addr
and permanent-addr match, w.r.t. mappings m;
and me, respectively. Referring to the probabili-
ties of m1 and ms in Table 3, the probability of this
object O matching the query @ is 0.9.

Besides the simple predicate queries, more com-
plex SPJ queries could be answered based on prob-
abilistic mapping [6, 7, 21]. As aforesaid, semantic
mappings are often not well-established in datas-
paces, we do not consider the complex SPJ queries
in this survey.

In addition, queries could also be answered based
on trails with probability variants, named proba-
bilistic trails [20]. Specifically, a probability value
0 < p < 1is assigned to a trail. The probability re-
flects the likelihood that the results obtained by the
trail are correct. Similarly, there is another variant
named scored trails, which bind a score to a trail,
reflecting the relevance of the trail.

6. SIMILARITY QUERY

Other than given a set of attribute-keyword pred-
icates, a similarity query poses a query object with
attribute-value pairs, and returns dataspace objects
that are similar to the query object.
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Similarity Query Answering

Given a query of attribute value pairs, @ = {(4; :
Wi),....(Aq = Wq)}, the similarity query re-
turns a set of objects, which are similar to ) on each
attribute w.r.t. attribute similarity function [25].

A similarity function 0(A;, Aj) : [Ai =i Aiy A =4
Aj,A; ~j; Aj] specifies a constraint on similar-
ity correspondence of two values from attribute A;
or Aj, according to their corresponding similarity
operators =%, ~;; or ~;;. Here, A;, A; are often
synonym attributes, and the similarity function of-
ten comes together with the attribute matching on
how their attribute values should be compared. For
instance, a similarity function specified on two at-
tributes (manu, prod) for the example dataspace in
Figure 10 can be

f(manu, prod) : [manu ~<s manu, manu ~<s prod,
prod ~<5 prod].

Two objects 01,0 are said to be similar w.r.t.
G(Ai,Aj), denoted by (01702> = Q(Ai,Aj), if at
least one of three similarity operators in 6(A4;, A;)
evaluates to true. For example, (t1,t2) are simi-
lar w.r.t. @(manu, prod), since the edit distance of
(t1[manu], tz[prod]) is 4 < 5, satisfying the similar-
ity operator manu ~<s prod.

t1:{(name : iPod), (color : red), (manu : Apple Inc.),
addr : InfiniteLoop, CA), (tel : 567),

website : itunes.com)};

to:{(name : iPod), (color : cardinal), (prod : Apple),
post : InfiniteLoop, Cupert), (tel : 123),

website : apple.com)};

ts:{(name : iPad), (color : white), (manu : Apple Inc.),
post : InfiniteLoop), (phn : 567),

(website : apple.com)}.

(
(
(
(
(
(
(
(

Figure 10: Example dataspace with three objects

Consider a similarity query @ over dataspace S
with a set © of similarity functions. It returns all
the objects O in § with similar attribute values to
Q, i.e., for each A; specified in @, having (Q, 0) =<
0(A;, B;) for some 0(A;, B;) € ©. For example, let

O (addr, post) : [addr ~<g addr, addr ~<g post,
post ~<g post]

be another similarity function. Consider a query
Q = {(manu : Apple), (post : InfiniteLoop, CA)}. It re-
turns all the 3 objects in Figure 10 as similarity
query answers.
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Semantic Query Optimization

Integrity constraints (e.g., FDs) can be utilized to
rewrite and optimize queries, which is known as the
semantic query optimization [3, 13]. In [24, 25],
data dependencies are extended for similarity query
optimization in dataspaces.

Data dependencies in dataspaces are generally
in the form of ¢ : 0(A4;,A;) — 0(B;, Bj) defined
on similarity functions 6(A;, A;) and 6(B;, B;). It
states that for any two objects O, Oy that are sim-
ilar w.r.t. 6(A;, Aj), it always implies (O1,02) =<
0(B;, B;) as well. For example,

1 : O(manu, prod) — 6(addr, post).

states that if the manu or prod values of two objects
are similar, then their corresponding addr or post
values should also be similar.

For instance, consider again the query object with
(post : InfiniteLoop, CA) and (manu : Apple). As men-
tioned, the similarity query searches not only in
the manu, post attributes specified in the query, but
also in the synonym attributes prod, addr accord-
ing to the similarity functions #(manu,prod) and
f(addr, post), respectively. Recall the semantics of
the above dependency 1. If (manu,prod) of the
query object and a data object are found to be sim-
ilar, then the data object can be directly returned as
answer without evaluation on post, addr since their
corresponding (post, addr) values must be similar as
well. The query efficiency is improved.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we review several cases of access-
ing dataspaces (listed in Table 4), depending on the
relationship information obtained thus far. When a
dataspace system is first launched, with relation-
ships barely identified, simple keyword queries ap-
ply. With the pay-as-you-go identification of rela-
tionships among data in dataspaces, the query an-
swers are enhanced, e.g., trail queries, or probabilis-
tic query answering with the partial probabilistic
mapping. The gradually identified attribute rela-
tionships further enable the similarity query.

A dataspace system offers a suite of interrelated
services and guarantees, where techniques, such as
keyword query and probabilistic query answering,
could be applied and considerably generalized 8,
10]. While some of the challenges in accessing datas-
paces have been (partially) addressed, such as study-
ing a sequence of earlier queries (for query optimiza-
tion and potentially better semantic integration),
or ranking answers from multiple sources with var-
ious levels of semantic mappings, the others remain
open, e.g., handling inconsistencies in dataspaces.
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We list some advice of future directions.

(1) To address inconsistencies in dataspaces, the
comparable dependencies [24, 25] could be applied.
However, such a notation is defined at schema level
(originally for query optimization). Following the
same line of extending data dependencies with con-
ditions in databases, known as conditional depen-
dencies [2, 17], we may also study data dependencies
declared with conditions (instances) in dataspaces.
For example, we may consider a keyword depen-
dency d) : ([Al <~ Bl} : Kl) — ([A] <~ B]] : Kj), by
extending matching keys [23]. Tt states that if an
object contains a keyword K in either attribute A;
or its synonym B;, then it must also have a keyword
K appearing in either attribute A; or B;.

(2) To answer queries over inconsistent datas-
paces, consistent query answering [1] for dataspaces
needs to be studied. Existing study [15] could han-
dle uncertainty and inconsistency together, but do
not consider the heterogeneous data in dataspaces.
In essence, we need to manipulate simultaneously
the uncertainty originated from both schema map-
ping and data inconsistency.

(3) Beyond relational, tree-structured (XML) or
graph-structured (RDF), more data types are ex-
pected to be supported in dataspaces, e.g., sequen-
tial (event logs). While the integration of sequential
event data [33, 34] and inconsistency detection [30,
29] have been investigated, searching and consistent
query answering over such heterogeneous event se-
quences, especially ranking together with other data
types, remain open.
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ABSTRACT

A new class of database management systems (DBMSs) called
NewSQL tout their ability to scale modern on-line transac-
tion processing (OLTP) workloads in a way that is not possible
with legacy systems. The term NewSQL was first used by one
of the authors of this article in a 2011 business analysis report
discussing the rise of new database systems as challengers to
these established vendors (Oracle, IBM, Microsoft). The other
author was working on what became one of the first examples
of a NewSQL DBMS. Since then several companies and re-
search projects have used this term (rightly and wrongly) to
describe their systems.

Given that relational DBMSs have been around for over four
decades, it is justifiable to ask whether the claim of NewSQL’s
superiority is actually true or whether it is simply marketing.
If they are indeed able to get better performance, then the next
question is whether there is anything scientifically new about
them that enables them to achieve these gains or is it just that
hardware has advanced so much that now the bottlenecks from
earlier years are no longer a problem.

To do this, we first discuss the history of databases to under-
stand how NewSQL systems came about. We then provide a
detailed explanation of what the term NewSQL means and the
different categories of systems that fall under this definition.

1. A BRIEF HISTORY OF DBMSS

The first DBMSs came on-line in the mid 1960s. One of the
first was IBM’s IMS that was built to keep track of the supplies
and parts inventory for the Saturn V and Apollo space explo-
ration projects. It helped introduce the idea that an applica-
tion’s code should be separate from the data that it operates on.
This allows developers to write applications that only focus on
the access and manipulation of data, and not the complications
and overhead associated with how to actually perform these
operations. IMS was later followed by the pioneering work in
the early 1970s on the first relational DBMSs, IBM’s System
R and the University of California’s INGRES. INGRES was
soon adopted at other universities for their information sys-
tems and was subsequently commercialized in the late 1970s.
Around the same time, Oracle released the first version of their
DBMS that was similar to System R’s design. Other compa-
nies were founded in the early 1980s that sought to repeat the
success of the first commercial DBMSs, including Sybase and
Informix. Although IBM never made System R available to
the public, it later released a new relational DBMS (DB2) in
1983 that used parts of the System R code base.
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The late 1980s and early 1990s brought about a new class
of DBMSs that were designed to overcome the much touted
impedance mismatch between the relational model and object-
oriented programming languages [65]. These object-oriented
DBMSs, however, never saw wide-spread market adoption be-
cause they lacked a standard interface like SQL. But many
of the ideas from them were eventually incorporated in rela-
tional DBMSs when the major vendors added object and XML
support a decade later, and then again in document-oriented
NoSQL systems over two decades later.

The other notable event during the 1990s was the start of
today’s two major open-source DBMS projects. MySQL was
started in Sweden in 1995 based on the earlier ISAM-based
mSQL system. PostgreSQL began in 1994 when two Berke-
ley graduate students forked the original QUEL-based Post-
gres code from the 1980s to add support for SQL.

The 2000s brought the arrival of Internet applications that
had more challenging resource requirements than applications
from previous years. They needed to scale to support large
number of concurrent users and had to be on-line all the time.
But the database for these new applications was consistently
found to be a bottleneck because the resource demands were
much greater than what DBMSs and hardware could support
at the time. Many tried the most obvious option of scaling
their DBMS vertically by moving the database to a machine
with better hardware. This, however, only improves perfor-
mance so much and has diminishing returns. Furthermore,
moving the database from one machine to another is a com-
plex process and often requires significant downtime, which is
unacceptable for these Web-based applications. To overcome
this problem, some companies created custom middleware to
shard single-node DBMSs over a cluster of less expensive ma-
chines. Such middleware presents a single logical database to
the application that is stored across multiple physical nodes.
When the application issues queries against this database, the
middleware redirects and/or rewrites them to distribute their
execution on one or more nodes in the cluster. The nodes exe-
cute these queries and send the results back to the middleware,
which then coalesces them into a single response to the ap-
plication. Two notable examples of this middleware approach
were eBay’s Oracle-based cluster [53] and Google’s MySQL-
based cluster [54]. This approach was later adopted by Face-
book for their own MySQL cluster that is still used today.

Sharding middleware works well for simple operations like
reading or updating a single record. It is more difficult, how-
ever, to execute queries that update more than one record in
a transaction or join tables. As such, these early middleware
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systems did not support these types of operations. eBay’s mid-
dleware in 2002, for example, required their developers to im-
plement all join operations in application-level code.

Eventually some of these companies moved away from us-
ing middleware and developed their own distributed DBMSs.
The motivation for this was three-fold. Foremost was that tra-
ditional DBMSs at that time were focused on consistency and
correctness at the expense of availability and performance. But
this trade-off was deemed inappropriate for Web-based appli-
cations that need to be on-line all the time and have to sup-
port a large number of concurrent operations. Secondly, it
was thought that there was too much overhead in using a full-
featured DBMS like MySQL as a “dumb” data store. Like-
wise, it was also thought that the relational model was not the
best way to represent an application’s data and that using SQL
was an overkill for simple look-up queries.

These problems turned out to be the origin of the impe-
tus for the NoSQL' movement in the mid to late 2000s [22].
The key aspect of these NoSQL systems is that they forgo
strong transactional guarantees and the relational model of tra-
ditional DBMSs in favor of eventual consistency and alterna-
tive data models (e.g., key/value, graphs, documents). This is
because it was believed that these aspects of existing DBMSs
inhibit their ability to scale out and achieve the high avail-
ability that is needed to support Web-based applications. The
two most well-known systems that first followed this creed are
Google’s BigTable [23] and Amazon’s Dynamo [26]. Nei-
ther of these two systems were available outside of their re-
spective company at first (although they are now as cloud ser-
vices), thus other organizations created their own open source
clones of them. These include Facebook’s Cassandra (based
on BigTable and Dynamo) and PowerSet’s Hbase (based on
BigTable). Other start-ups created their own systems that were
not necessarily copies of Google’s or Amazon’s systems but
still followed the tenets of the NoSQL philosophy; the most
well-known of these is MongoDB.

By the end of the 2000s, there was now a diverse set of scal-
able and more affordable distributed DBMSs available. The
advantage of using a NoSQL system (or so people thought)
was that developers could focus on the aspects of their ap-
plication that were more beneficial to their business or orga-
nization, rather than having to worry about how to scale the
DBMS. Many applications, however, are unable to use these
NoSQL systems because they cannot give up strong transac-
tional and consistency requirements. This is common for en-
terprise systems that handle high-profile data (e.g., financial
and order processing systems). Some organizations, most no-
tably Google [24], have found that NoSQL DBMSs cause their
developers to spend too much time writing code to handle in-
consistent data and that using transactions makes them more
productive because they provide a useful abstraction that is
easier for humans to reason about. Thus, the only options
available for these organizations were to either purchase a more
powerful single-node machine and to scale the DBMS ver-
tically, or to develop their own custom sharding middleware
that supports transactions. Both approaches are prohibitively
expensive and are therefore not an option for many. It is in this
environment that brought about NewSQL systems.

The NoSQL community argues that the sobriquet should now
be interpreted as “Not Only SQL”, since some of these systems
have since support some dialect of SQL.
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2. THE RISE OF NEWSQL

Our definition of NewSQL is that they are a class of mod-
ern relational DBMSs that seek to provide the same scalable
performance of NoSQL for OLTP read-write workloads while
still maintaining ACID guarantees for transactions. In other
words, these systems want to achieve the same scalability of
NoSQL DBMSs from the 2000s, but still keep the relational
model (with SQL) and transaction support of the legacy DBMSs
from the 1970-80s. This enables applications to execute a
large number of concurrent transactions to ingest new infor-
mation and modify the state of the database using SQL (in-
stead of a proprietary API). If an application uses a NewSQL
DBMS, then developers do not have to write logic to deal with
eventually consistent updates as they would in a NoSQL sys-
tem. As we discuss below, this interpretation covers a number
of both academic and commercial systems.

‘We note that there are data warehouse DBMSs that came out
in the mid-2000s that some people think meet this criteria (e.g.,
Vertica, Greenplum, Aster Data). These DBMSs target on-line
analytical processing (OLAP) workloads and should not be
considered NewSQL systems. OLAP DBMSs are focused on
executing complex read-only queries (i.e., aggregations, multi-
way joins) that take a long time to process large data sets (e.g.,
seconds or even minutes). Each of these queries can be signif-
icantly different than the previous. The applications targeted
by NewSQL DBMSs, on the other hand, are characterized as
executing read-write transactions that (1) are short-lived (i.e.,
no user stalls), (2) touch a small subset of data using index
lookups (i.e., no full table scans or large distributed joins), and
(3) are repetitive (i.e., executing the same queries with differ-
ent inputs). Others have argued for a more narrow definition
where a NewSQL system’s implementation has to use (1) a
lock-free concurrency control scheme and (2) a shared-nothing
distributed architecture [57]. All of the DBMSs that we clas-
sify as NewSQL in Section 3 indeed share these properties and
thus we agree with this assessment.

3. CATEGORIZATION

Given the above definition, we now examine the landscape
of today’s NewSQL DBMSs. To simplify this analysis, we
will group systems based on the salient aspects of their imple-
mentation. The three categories that we believe best represent
NewSQL systems are (1) novel systems that are built from
the ground-up using a new architecture, (2) middleware that
re-implement the same sharding infrastructure that was devel-
oped in the 2000s by Google and others, and (3) database-as-a-
service offerings from cloud computing providers that are also
based on new architectures.

Both authors have previously included alternative storage
engines for existing single-node DBMSs in our categorization
of NewSQL systems. The most common examples of these
are replacements for MySQL’s default InnoDB storage engine
(e.g., TokuDB, ScaleDB, Akiban, deepSQL). The advantage
of using a new engine is that an organization can get better
performance without having to change anything in their ap-
plication and still leverage the DBMS’s existing ecosystem
(e.g., tools, APIs). The most interesting of these was ScaleDB
because it provided transparent sharding underneath the sys-
tem without using middleware by redistributing execution be-
tween storage engines; the company, however, has since piv-
oted to another problem domain. There has been other sim-
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ilar extensions for systems other than MySQL. Microsoft’s
in-memory Hekaton OLTP engine for SQL Server integrates
almost seamlessly with the traditional, disk-resident tables.
Others use Postgres’ foreign data wrappers and API hooks to
achieve the same type of integration but target OLAP work-
loads (e.g., Vitesse, CitusDB).

We now assert that such storage engines and extensions for
single-node DBMSs are not representative of NewSQL sys-
tems and omit them from our taxonomy. MySQL’s InnoDB
has improved significantly in terms of reliability and perfor-
mance, so the benefits of switching to another engine for OLTP
applications are not that pronounced. We acknowledge that the
benefits from switching from the row-oriented InnoDB engine
to a column-store engine for OLAP workloads are more signif-
icant (e.g., Infobright, InfiniDB). But in general, the MySQL
storage engine replacement business for OLTP workloads is
the graveyard of failed database projects.

3.1 New Architectures

This category contains the most interesting NewSQL sys-
tems for us because they are new DBMSs built from scratch.
That is, rather than extending an existing system (e.g., Mi-
crosoft’s Hekaton for SQL Server), they are designed from
a new codebase without any of the architectural baggage of
legacy systems. All of the DBMSs in this category are based
on distributed architectures that operate on shared-nothing re-
sources and contain components to support multi-node con-
currency control, fault tolerance through replication, flow con-
trol, and distributed query processing. The advantage of us-
ing a new DBMS that is built for distributed execution is that
all parts of the system can be optimized for multi-node envi-
ronments. This includes things like the query optimizer and
communication protocol between nodes. For example, most
NewSQL DBMSs are able to send intra-query data directly
between nodes rather than having to route them to a central
location like with some middleware systems.

Every one of the DBMSs in this category (with the excep-
tion of Google Spanner) also manages their own primary stor-
age, either in-memory or on disk. This means that the DBMS
is responsible for distributing the database across its resources
with a custom engine instead of relying on an off-the-shelf dis-
tributed filesystem (e.g., HDFS) or storage fabric (e.g., Apache
Ignite). This is an important aspect of them because it allows
the DBMS to “send the query to the data” rather than “bring
the data to the query,” which results in significantly less net-
work traffic since transmitting the queries is typically less net-
work traffic than having to transmit data (not just tuples, but
also indexes and materialized views) to the computation.

Managing their own storage also enables a DBMS to em-
ploy more sophisticated replication schemes than what is pos-
sible with the block-based replication scheme used in HDFS.
In general, it allows these DBMSs to achieve better perfor-
mance than other systems that are layered on top of other
existing technologies; examples of this include the “SQL on
Hadoop” systems like Trafodion [4] and Splice Machine [16]
that provide transactions on top of Hbase. As such, we believe
that such systems should not be considered NewSQL.

But there are downsides to using a DBMS based on a new
architecture. Foremost is that many organizations are wary of
adopting technologies that are too new and un-vetted with a
large installation base. This means that the number of people
that are experienced in the system is much smaller compared
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to the more popular DBMS vendors. It also means that an
organization will potentially lose access to existing adminis-
tration and reporting tools. Some DBMSs, like Clustrix and
MemSQL, avoid this problem by maintaining compatibility
with the MySQL wire protocol.

Examples: Clustrix [6], CockroachDB [7], Google Span-
ner [24], H-Store [8], HyPer [39], MemSQL [11], NuoDB [14],
SAP HANA [55], VoltDB [17].

3.2 Transparent Sharding Middleware

There are now products available that provide the same kind
of sharding middleware that eBay, Google, Facebook, and other
companies developed in the 2000s. These allow an organi-
zation to split a database into multiple shards that are stored
across a cluster of single-node DBMS instances. Sharding is
different than database federation technologies of the 1990s
because each node (1) runs the same DBMS, (2) only has a
portion of the overall database, and (3) is not meant to be ac-
cessed and updated independently by separate applications.

The centralized middleware component routes queries, co-
ordinates transactions, as well as manages data placement, repli-
cation, and partitioning across the nodes. There is typically a
shim layer installed on each DBMS node that communicates
with the middleware. This component is responsible for exe-
cuting queries on behalf of the middleware at its local DBMS
instance and returning results. All together, these allow mid-
dleware products to present a single logical database to the
application without needing to modify the underlying DBMS.

The key advantage of using a sharding middleware is that
they are often a drop-in replacement for an application that
is already using an existing single-node DBMS. Developers
do not need to make any changes to their application to use
the new sharded database. The most common target for mid-
dleware systems is MySQL. This means that in order to be
MySQL compatible, the middleware must support the MySQL
wire protocol. Oracle provides the MySQL Proxy [13] and
Fabric [12] toolkits to do this, but others have written their
owning protocol handler library to avoid GPL licensing issues.

Although middleware makes it easy for an organization to
scale their database out across multiple nodes, such systems
still have to use a traditional DBMS on each node (e.g., MySQL,
Postgres, Oracle). These DBMSs are based on the disk-oriented
architecture that was developed in the 1970s, and thus they
cannot use a storage manager or concurrency control scheme
that is optimized for memory-oriented storage like in some
of the NewSQL systems that are built on new architectures.
Previous research has shown that the legacy components of
disk-oriented architectures is a significant encumbrance that
prevents these traditional DBMSs from scaling up to take ad-
vantage of higher CPU core counts and larger memory capac-
ities [38]. The middleware approach can also incur redundant
query planning and optimization on sharded nodes for com-
plex queries (i.e., once at the middleware and once on the in-
dividual DBMS nodes), but this does allow each node to apply
their own local optimizations on each query.

Examples: AgilData Scalable Cluster 2 [1], MariaDB MaxS-
cale [10], ScaleArc [15], ScaleBase>.

ZPrior to 2015 , AgilData Cluster was known as dbShards.
3ScaleBase was acquired by ScaleArc in 2015 and is no longer sold.
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3.3 Database-as-a-Service

Lastly, there are cloud computing providers that offer NewSQL

database-as-a-service (DBaaS) products. With these services,
organizations do not have to maintain the DBMS on either
their own private hardware or on a cloud-hosted virtual ma-
chine (VM). Instead, the DBaaS provider is responsible for
maintaining the physical configuration of the database, includ-
ing system tuning (e.g., buffer pool size), replication, and back-
ups. The customer is provided with a connection URL to the
DBMS, along with a dashboard or API to control the system.

DBaaS customers pay according to their expected applica-
tion’s resource utilization. Since database queries vary widely
in how they use computing resources, DBaaS providers typ-
ically do not meter query invocations in the same way that
they meter operations in block-oriented storage services (e.g.,
Amazon’s S3, Google’s Cloud Storage). Instead, customers
subscribe to a pricing tier that specifies the maximum resource
utilization threshold (e.g., storage size, computation power,
memory allocation) that the provider will guarantee.

As in most aspects of cloud computing, the largest com-
panies are the major players in the DBaaS field due to the
economies of scale. But almost all of the DBaaSs just pro-
vide a managed instance of a traditional, single-node DBMS
(e.g., MySQL): notable examples include Google Cloud SQL,
Microsoft Azure SQL, Rackspace Cloud Database, and Sales-
force Heroku. We do not consider these to be NewSQL sys-
tems as they use the same underlying disk-oriented DBMSs
based on the 1970s architectures. Some vendors, like Mi-
crosoft, retro-fitted their DBMS to provide better support for
multi-tenant deployments [21].

We instead regard only those DBaaS products that are based
on a new architecture as NewSQL. The most notable examples
is Amazon’s Aurora for their MySQL RDS. Its distinguish-
ing feature over InnoDB is that it uses a log-structured storage
manager to improve I/O parallelism.

There are also companies that do not maintain their own
data centers but rather sell DBaaS software that run on top of
these public cloud platforms. ClearDB provides their own cus-
tom DBaasS that can be deployed on all of the major cloud plat-
forms. This has the advantage that it can distribute a database
across different providers in the same geographical region to
avoid downtimes due to service outages.

Aurora and ClearDB are the only two products available
in this NewSQL category as of 2016. We note that several
companies in this space have failed (e.g., GenieDB, Xeround),
forcing their customers to scramble to find a new provider and
migrate their data out of those DBaaS before they were shut
down. We attribute their failure due to being ahead of market
demand and from being out-priced from the major vendors.

Examples: Amazon Aurora [3], ClearDB [5].

4. THE STATE OF THE ART

We next discuss the features of NewSQL DBMSs to under-
stand what (if anything) is novel in these systems. A summary
of our analysis is shown in Table 1.

4.1 Main Memory Storage

All of the major DBMSs use a disk-oriented storage archi-
tecture based on the original DBMSs from the 1970s. In these
systems, the primary storage location of the database is as-
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sumed to be on a block-addressable durable storage device,
like an SSD or HDD. Since reading and writing to these de-
vices is slow, DBMSs use memory to cache blocks read from
disk and to buffer updates from transactions. This was nec-
essary because historically memory was much more expen-
sive and had a limited capacity compared to disks. We have
now reached the point, however, where capacities and prices
are such that it is affordable to store all but the largest OLTP
databases entirely in memory. The benefit of this approach
is that it enables certain optimizations because the DBMS no
longer has to assume that a transaction could access data at any
time that is not in memory and will have to stall. Thus, these
systems can get better performance because many of the com-
ponents that are necessary to handle these cases, like a buffer
pool manager or heavy-weight concurrency control schemes,
are not needed [38].

There are several NewSQL DBMSs that are based on a main
memory storage architecture, including both academic (e.g.,
H-Store, HyPer) and commercial (e.g., MemSQL, SAP HANA,
VoltDB) systems. These systems perform significantly better
than disk-based DBMSs for OLTP workloads because of this
main memory orientation.

The idea of storing a database entirely in main memory is
not a new one [28, 33]. The seminal research at the University
of Wisconsin-Madison in the early 1980s established the foun-
dation for many aspects of main memory DBMSs [43], includ-
ing indexes, query processing, and recovery algorithms. In
that same decade, the first distributed main-memory DBMSs,
PRISMA/DB, was also developed [40]. The first commercial
main memory DBMSs appeared in 1990s; Altibase [2], Ora-
cle’s TimesTen [60], and AT&T’s DataBlitz [20] were early
proponents of this approach.

One thing that is new with main memory NewSQL systems
is the ability to evict a subset of the database out to persistent
storage to reduce its memory footprint. This allows the DBMS
to support databases that are larger than the amount of mem-
ory available without having to switch back to a disk-oriented
architecture. The general approach is to use an internal track-
ing mechanism inside of the system to identify which tuples
are not being accessed anymore and then chose them for evic-
tion. H-Store’s anti-caching component moves cold tuples to
a disk-resident store and then installs a “tombstone” record in
the database with the location of the original data [25]. When
a transaction tries to access a tuple through one of these tomb-
stones, it is aborted and then a separate thread asynchronously
retrieves that record and moves it back into memory. An-
other variant for supporting larger-than-memory databases is
an academic project from EPFL that uses OS virtual mem-
ory paging in VoltDB [56]. To avoid false negatives, all of
these DBMSs retain the keys for evicted tuples in databases’
indexes, which inhibits the potential memory savings for those
applications with many secondary indexes. Although not a
NewSQL DBMS, Microsoft’s Project Siberia [29] for Heka-
ton maintains a Bloom filter per index to reduce the in-memory
storage overhead of tracking evicted tuples.

Another DBMS that takes a different approach for larger-
than-memory databases is MemSQL where an administrator
can manually instruct the DBMS to store a table in a columnar
format. MemSQL does not maintain any in-memory tracking
meta-data for these disk-resident tuples. It organizes this data
in log-structured storage to reduce the overhead of updates,
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which are traditionally slow in OLAP data warehouses.

4.2 Partitioning / Sharding

The way that almost all of the distributed NewSQL DBMSs
scale out is to split a database up into disjoint subsets, called
either partitions or shards.

Distributed transaction processing on partitioned databases
is not a new idea. Many of the fundamentals of these sys-
tems came from the seminal work by the great Phil Bernstein
(and others) in the SDD-1 project in the late 1970s [51]. In
the early 1980s, the teams behind the two pioneering, single-
node DBMSs, System R and INGRES, both also created dis-
tributed versions of their respective systems. IBM’s R* was
a shared-nothing, disk-oriented distributed DBMS like SDD-
1 [63]. The distributed version of INGRES is mostly remem-
bered for its dynamic query optimization algorithm that re-
cursively breaks a distributed query into smaller pieces [31].
Later, the GAMMA project [27] from the University of Wis-
consin-Madison explored different partitioning strategies.

But these earlier distributed DBMSs never caught on for two
reasons. The first of these was that computing hardware in the
20th century was so expensive that most organizations could
not afford to deploy their database on a cluster of machines.
The second issue was that the application demand for a high-
performance distributed DBMS was simply not there. Back
then the expected peak throughput of a DBMS was typically
measured at tens to hundreds of transactions per second. We
now live in an era where both of these assumptions are no
longer true. Creating a large-scale, data-intensive application
is easier now than it ever has been, in part due to the prolifera-
tion of open-source distributed system tools, cloud computing
platforms, and affordable mobile devices.

The database’s tables are horizontally divided into multiple
fragments whose boundaries are based on the values of one (or
more) of the table’s columns (i.e., the partitioning attributes).
The DBMS assigns each tuple to a fragment based on the val-
ues of these attributes using either range or hash partitioning.
Related fragments from multiple tables are combined together
to form a partition that is managed by a single node. That node
is responsible for executing any query that needs to access data
stored in its partition. Only the DBaaS systems (Amazon Au-
rora, ClearDB) do not support this type of partitioning.

Ideally, the DBMS should be able to also distribute the ex-
ecution of a query to multiple partitions and then combine
their results together into a single result. All of the NewSQL
systems except for ScaleArc that support native partitionining
provide this functionality.

The databases for many OLTP applications have a key prop-
erty that makes them amenable to partitioning. Their database
schemas can be transposed into a tree-like structure where de-
scendants in the tree have a foreign key relationship to the
root [58]. The tables are then partitioned on the attributes
involved in these relationships such that all of the data for
a single entity are co-located together in the same partition.
For example, the root of the tree could be the customer table,
and the database is partitioned such that each customer, along
with their order records and account information, are stored
together. The benefit of this is that it allows most (if not all)
transactions to only need to access data at a single partition.
This in turn reduces the communication overhead of the sys-
tem because it does not have to use an atomic commitment
protocol (e.g., two-phase commit) to make sure that transac-
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tions finish correctly at different nodes.

The NewSQL DBMSs that deviate from the homegenous
cluster node architecture are NuoDB and MemSQL. For NuoDB,
it designates one or more nodes as storage managers (SM)
that each store a partition of the database. The SMs splits
a database into blocks (called “atoms” in NuoDB parlance).
All other nodes in the cluster are designated as transaction en-
gines (TEs) that act as an in-memory cache of atoms. To pro-
cess a query, a TE node retrieves all of the atoms that it needs
for that query (either from the appropriate SMs or from other
TEs). TEs acquire write-locks on tuples and then broadcasts
any changes to atoms to the other TEs and the SM. To avoid
atoms from moving back and forth between nodes, NuoDB ex-
poses load-balancing schemes to ensure that data that is used
together often reside at the same TE. This means that NuoDB
ends up with the same partitioning scheme as the other dis-
tributed DBMSs but without having to pre-partition the database
or identify the relationships between tables.

MemSQL also uses a similar heterogeneous architecture com-
prised of execution-only aggregator nodes and leaf nodes that
store the actual data. The difference between these two sys-
tems is in how they reduce the amount of data that is pulled
from the storage nodes to the execution nodes. With NuoDB,
the TEs cache atoms to reduce the amount data that they read
from the SMs. MemSQL’s aggregator nodes do not cache any
data, but the leaf nodes execute parts of queries to reduce the
amount of data that is sent to the aggregator nodes; this is not
possible in NuoDB because the SMs are only a data store.

These two systems are able to add additional execution re-
sources to the DBMS’s cluster (NuoDB’s TE nodes, Mem-
SQL’s aggregator nodes) without needing to re-partition the
database. A research prototype of SAP HANA also explored
using this approach [36]. It remains to be seen, however, whether
such a heterogeneous architecture is superior to a homegenous
one (i.e., were each node both stores data and executes queries)
in terms of either performance or operational complexity.

Another aspect of partitioning in NewSQL systems that is
new is that some of them support live migration. This al-
lows the DBMS to move data between physical resources to
re-balance and alleviate hotspots, or to increase/decrease the
DBMS’s capacity without any interruption to service. This
is similar to re-balancing in NoSQL systems, but it is more
difficult because a NewSQL DBMS has to maintain ACID
guarantees for transactions during the migration [30]. There
two approaches that DBMSs use to achieve this. The first
is to organize the database in many coarse-grained “virtual”
(i.e., logical) partitions that are spread amongst the physical
nodes [52]. Then when the DBMS needs to re-balance, it
moves these virtual partitions between nodes. This is the ap-
proach used in Clustrix and AgilData, as well as in NoSQL
systems like Cassandra and DynamoDB. The other approach
is for the DBMS to perform more fine-grained re-balancing
by redistributing individual tuples or groups of tuples through
range partitioning. This is akin to the auto-sharding feature
in the MongoDB NoSQL DBMS. It is used in systems like
ScaleBase and H-Store [30].

4.3 Concurrency Control

Concurrency control scheme is the most salient and impor-
tant implementation detail of a transaction processing DBMS
as it affects almost all aspects of the system. Concurrency con-
trol permits end-users to access a database in a multi-program-
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med fashion while preserving the illusion that each of them is
executing their transaction alone on a dedicated system. It es-
sentially provides the atomicity and isolation guarantees in the
system, and as such it influences the entire system’s behavior.

Beyond which scheme a system uses, another important as-
pect of the design of a distributed DBMS is whether the sys-
tem uses a centralized or decentralized transaction coordina-
tion protocol. In a system with a centralized coordinator, all
transactions’ operations have to go through the coordinator,
which then makes decisions about whether transactions are al-
lowed to proceed or not. This is the same approach used by
the TP monitors of the 1970-1980s (e.g., IBM CICS, Oracle
Tuxedo). In a decentralized system, each node maintains the
state of transactions that access the data that it manages. The
nodes then have to coordinate with each other to determine
whether concurrent transactions conflict. A decentralized co-
ordinator is better for scalability but requires that the clocks in
the DBMS nodes are highly synchronized in order to generate
a global ordering of transactions [24].

The first distributed DBMSs from the 1970-80s used two-
phase locking (2PL) schemes. SDD-1 was the first DBMS
specifically designed for distributed transaction processing ac-
ross a cluster of shared-nothing nodes managed by a central-
ized coordinator. IBM’s R* was similar to SDD-1, but the
main difference was that the coordination of transactions in
R* was completely decentralized; it used distributed 2PL pro-
tocol where transactions locked data items that they access di-
rectly at nodes. The distributed version of INGRES also used
decentralized 2PL with centralized deadlock detection.

Almost all of the NewSQL systems based on new archi-
tectures eschew 2PL because the complexity of dealing with
deadlocks. Instead, the current trend is to use variants of times-
tamp ordering (TO) concurrency control where the DBMS as-
sumes that transactions will not execute interleaved operations
that will violate serializable ordering. The most widely used
protocol in NewSQL systems is decentralized multi-version
concurrency control (MVCC) where the DBMS creates a new
version of a tuple in the database when it is updated by a trans-
action. Maintaining multiple versions potentially allows trans-
actions to still complete even if another transaction updates the
same tuples. It also allows for long-running, read-only trans-
actions to not block on writers. This protocol is used in al-
most all of the NewSQL systems based on new architectures,
like MemSQL, HyPer, HANA, and CockroachDB. Although
there are engineering optimizations and tweaks that these sys-
tems use in their MVCC implementations to improve perfor-
mance, the basic concepts of the scheme are not new. The
first known work describing MVCC is a MIT PhD dissertation
from 1979 [49], while the first commercial DBMSs to use it
were Digital’s VAX Rdb and InterBase in the early 1980s. We
note that the architecture of InterBase was designed by Jim
Starkey, who is also the original designer of NuoDB and the
failed Falcon MySQL storage engine project.

Other systems use a combination of 2PL. and MVCC to-
gether. With this approach, transactions still have to acquire
locks under the 2PL scheme to modify the database. When a
transaction modifies a record, the DBMS creates a new ver-
sion of that record just as it would with MVCC. This scheme
allows read-only queries to avoid having to acquire locks and
therefore not block on writing transactions. The most famous
implementation of this approach is MySQL’s InnoDB, but it
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is also used in both Google’s Spanner, NuoDB, and Clustrix.
NuoDB improves on the original MVCC by employing a gos-
sip protocol to broadcast versioning information between nodes.

All of the middleware and DBaaS$ services inherit the con-
currency control scheme of their underlying DBMS architec-
ture; since most of them use MySQL, this makes them 2PL
with MVCC systems.

We regard the concurrency control implementation in Span-
ner (along with its descendants F1 [54] and SpannerSQL) as
one of the most novel of the NewSQL systems. The actual
scheme itself is based on the 2PL. and MVCC combination de-
veloped in previous decades. But what makes Spanner differ-
ent is that it uses hardware devices (e.g., GPS, atomic clocks)
for high-precision clock synchronization. The DBMS uses
these clocks to assign timestamps to transactions to enforce
consistent views of its multi-version database over wide-area
networks. CockroachDB also purports to provide the same
kind of consistency for transactions across data centers as Span-
ner but without the use of atomic clocks. They instead rely on
a hybrid clock protocol that combines loosely synchronized
hardware clocks and logical counters [41].

Spanner is also noteworthy because it heralds Google’s re-
turn to using transactions for its most critical services. The
authors of Spanner even remark that it is better to have their
application programmers deal with performance problems due
to overuse of transactions, rather than writing code to deal with
the lack of transactions as one does with a NoSQL DBMS [24].

Lastly, the only commercial NewSQL DBMS that is not us-
ing some MVCC variant is VoltDB. This system still uses TO
concurrency control, but instead of interleaving transactions
like in MVCC, it schedules transactions to execute one-at-a-
time at each partition. It also uses a hybrid architecture where
single-partition transactions are scheduled in a decentralized
manner but multi-partition transactions are scheduled with a
centralized coordinator. VoltDB orders transactions based on
logical timestamps and then schedules them for execution at
a partition when it is their turn. When a transaction executes
at a partition, it has exclusive access to all of the data at that
partition and thus the system does not have to set fine-grained
locks and latches on its data structures. This allows transac-
tions that only have to access a single partition to execute effi-
ciently because there is no contention from other transactions.
The downside of partition-based concurrency control is that
it does not work well if transactions span multiple partitions
because the network communication delays cause nodes to sit
idle while they wait for messages. This partition-based con-
currency is not a new idea. An early variant of it was first
proposed in a 1992 paper by Hector Garcia-Molina [34] and
implemented in the kdb system in late 1990s [62] and in H-
Store (which is the academic predecessor of VoltDB).

In general, we find that there is nothing significantly new
about the core concurrency control schemes in NewSQL sys-
tems other than laudable engineering to make these algorithms
work well in the context of modern hardware and distributed
operating environments.

4.4 Secondary Indexes

A secondary index contains a subset of attributes from a ta-
ble that are different than its primary key(s). This allows the
DBMS to support fast queries beyond primary key or parti-
tioning key look-ups. They are trivial to support in a non-
partitioned DBMS because the entire database is located on a
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single node. The challenge with secondary indexes in a dis-
tributed DBMS is that they cannot always be partitioned in
the same manner as with the rest of the database. For exam-
ple, suppose that the tables of a database are partitioned based
on the customer’s table primary key. But then there are some
queries that want to do a reverse look-up from the customer’s
email address to the account. Since the tables are partitioned
on the primary key, the DBMS will have to broadcast these
queries to every node, which is obviously inefficient.

The two design decisions for supporting secondary indexes
in a distributed DBMS are (1) where the system will store them
and (2) how it will maintain them in the context of transac-
tions. In a system with a centralized coordinator, like with
sharding middleware, secondary indexes can reside on both
the coordinator node and the shard nodes. The advantage of
this approach is that there is only a single version of the index
in the entire system, and thus it is easier to maintain.

All of the NewSQL systems based on new architectures
are decentralized and use partitioned secondary indexes. This
means that each node stores a portion of the index, rather than
each node having a complete copy of it. The trade-off be-
tween partitioned and replicated indexes is that with the for-
mer queries may need to span multiple nodes to find what they
are looking for but if a transaction updates an index it will only
have to modify one node. In a replicated index, the roles are
reversed: a look-up query can be satisfied by just one node in
the cluster, but any time a transaction modifies the attributes
referenced in secondary index’s underlying table (i.e., the key
or the value), the DBMS has to execute a distributed transac-
tion that updates all copies of the index.

An example of a decentralized secondary index that mixes
both of these concepts is in Clustrix. The DBMS first main-
tains a replicated, coarse-grained (i.e., range-based) index at
each node that maps values to partitions. This mapping al-
lows the DBMS to route queries to the appropriate node using
an attribute that is not the table’s partitioning attribute. These
queries will then access a second partitioned index at that node
that maps exact values to tuples. Such a two-tier approach re-
duces the amount of coordination that is needed to keep the
replicated index in sync across the cluster since it only maps
ranges instead of individual values.

The most common way that developers create secondary in-
dexes when using a NewSQL DBMS that does not support
them is to deploy an index using an in-memory, distributed
cache, such as Memcached [32]. But using an external sys-
tem requires the application to maintain the cache since the
DBMSs will not automatically invalidate the external cache.

4.5 Replication

The best way that an organization can ensure high availabil-
ity and data durability for their OLTP application is to replicate
their database. All modern DBMSs, including NewSQL sys-
tems, support some kind of replication mechanism. DBaaS
have a distinct advantage in this area because they hide all
of the gritty details of setting of replication from their cus-
tomers. They make it easy to deploy a replicated DBMS with-
out the administrator having to worry about transmitting logs
and making sure that nodes are in sync.

There are two design decisions when it comes to database
replication. The first is how the DBMS enforces data consis-
tency across nodes. In a strongly consistent DBMS, a transac-
tion’s writes must be acknowledged and installed at all replicas
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before that transaction is considered committed (i.e., durable).
The advantage of this approach is that replicas can serve read-
only queries and still be consistent. That is, if the application
receives an acknowledgement that a transaction has commit-
ted, then any modifications made by that transaction are visible
to any subsequent transaction in the future regardless of what
DBMS node they access. It also means that when a replica
fails, there are no lost updates because all the other nodes
are synchronized. But maintaining this synchronization re-
quires the DBMS to use an atomic commitment protocol (e..g,
two-phase commit) to ensure that all replicas agree with the
outcome of a transaction, which has additional overhead and
can lead to stalls if a node fails or if there is a network parti-
tion/delay. This is why NoSQL systems opt for a weakly con-
sistent model (also called eventual consistency) where not all
replicas have to acknowledge a modification before the DBMS
notifies the application that the write succeeded.

All of the NewSQL systems that we are aware of support
strongly consistent replication. But there is nothing novel about
how these systems ensure this consistency. The fundamentals
of state machine replication for DBMSs were studied back in
the 1970s [37, 42]. NonStop SQL was one of the first dis-
tributed DBMSs built in the 1980s using strongly consistency
replication to provide fault tolerance in this same manner [59].

In addition to the policy of when a DBMS propagates up-
dates to replicas, there are also two different execution mod-
els for how the DBMS performs this propagation. The first,
known as active-active replication, is where each replica node
processes the same request simultaneously. For example, when
a transaction executes a query, the DBMS executes that query
in parallel at all of the replicas. This is different from active-
passive replication where a request is first processed at a sin-
gle node and then the DBMS transfers the resultant state to the
other replicas. Most NewSQL DBMSs implement this second
approach because they use a non-deterministic concurrency
control scheme. This means that they cannot send queries to
replicas as they arrive on the master because they may get ex-
ecuted in a different order on the replicas and the state of the
databases will diverge at each replica. This is because their
execution order depends on several factors, including network
delays, cache stalls, and clock skew.

Deterministic DBMSs (e.g., H-Store, VoltDB, ClearDB) on
the other hand do not perform these additional coordination
steps. This is because the DBMS guarantees that transactions’
operations execute in the same order on each replica and thus
the state of the database is guaranteed to be the same [44].
Both VolItDB and ClearDB also ensure that the application
does not execute queries that utilize sources of information
that are external to the DBMS that may be different on each
replica (e.g., setting a timestamp field to the local system clock).

One aspect of the NewSQL systems that is different than
previous work outside of academia is the consideration of repli-
cation over the wide-area network (WAN). This is a byproduct
of modern operating environments where it is now trivial to
deploy systems across multiple data centers that are separated
by large geographical differences. Any NewSQL DBMS can
be configured to provide synchronous updates of data over the
WAN, but this would cause significant slowdown for normal
operations. Thus, they instead provide asynchronous repli-
cation methods. To the best of our knowledge, Spanner and
CockroachDB are the only NewSQL systems to provide a repli-
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cation scheme that is optimized for strongly consistent replicas
over the WAN. They again achieve this through a combination
of atomic and GPS hardware clocks (in case of Spanner [24]),
or hybrid clocks (in the case of CockroachDB [41]).

4.6 Crash Recovery

Another important feature of a NewSQL DBMS for provid-
ing fault tolerance is its crash recovery mechanism. But unlike
traditional DBMSs where the main concern of fault tolerance
is to ensure that no updates are lost [47], newer DBMSs must
also minimize downtime. Modern web applications are ex-
pected to be on-line all the time and site outages are costly.

The traditional approach to recovery in a single-node sys-
tem without replicas is that when the DBMS comes back on-
line after a crash, it loads in the last checkpoint that it took
from disk and then replays its write-ahead log (WAL) to re-
turn the state of the database to where it was at the moment of
the crash. The canonical method of this approach, known as
ARIES [47], was invented by IBM researchers in the 1990s.
All major DBMSs implement some variant of ARIES.

In a distributed DBMS with replicas, however, the tradi-
tional single-node approach is not directly applicable. This
is because when the master node crashes, the system will pro-
mote one of the slave nodes to be the new master. When the
previous master comes back on-line, it cannot just load in its
last checkpoint and rerun its WAL because the DBMS has con-
tinued to process transactions and therefore the state of the
database has moved forward. The recovering node needs to get
the updates from the new master (and potentially other repli-
cas) that it missed while it was down. There are two potential
ways to do this. The first is for the recovering node to load
in its last checkpoint and WAL from its local storage and then
pull log entries that it missed from the other nodes. As long
as the node can process the log faster than new updates are
appended to it, the node will eventually converge to the same
state as the other replica nodes. This is possible if the DBMS
uses physical or physiological logging, since the time to apply
the log updates directly to tuples is much less than the time
it takes to execute the original SQL statement. To reduce the
time it takes to recover, the other option is for the recovering
node to discard its checkpoint and have system take a new one
that the node will recover from. One additional benefit of this
approach is that this same mechanism can also be used in the
DBMS to add a new replica node.

The middleware and DBaaS systems rely on the built-in
mechanisms of their underlying single-node DBMSs, but add
additional infrastructure for leader election and other manage-
ment capabilities. The NewSQL systems that are based on new
architectures use a combination of off-the-shelf components
(e.g., ZooKeeper, Raft) and their own custom implementations
of existing algorithms (e.g., Paxos). All of these are standard
procedures and technologies that have been available in com-
mercial distributed systems since the 1990s.

S. FUTURE TRENDS

We foresee the next trend for database applications in the
near future is the ability to execute analytical queries and ma-
chine learning algorithms on freshly obtained data. Such work-
loads, colloquially known as “real-time analytics” or hybrid
transaction-analytical processing (HTAP), seek to extrapolate
insights and knowledge by analyzing a combination of histor-
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ical data sets with new data [35]. This differs from traditional
business intelligence operations from the previous decade that
could only perform this analysis on historical data. Having a
shorter turnaround time is important in modern applications
because data has immense value as soon as it is created, but
that value diminishes over time.

There are three approaches to supporting HTAP pipelines in
a database application. The most common is to deploy sepa-
rate DBMSs: one for transactions and another for analytical
queries. With this architecture, the front-end OLTP DBMS
stores all of the new information generated from transactions.
Then in the background, the system uses an extract-transform-
load utility to migrate data from this OLTP DBMS to a second
back-end data warehouse DBMS. The application executes all
complex OLAP queries in the back-end DBMS to avoid slow-
ing down the OLTP system. Any new information generated
from the OLAP system is pushed forward to front-end DBMS.

Another prevailing system design, known as the lambda ar-
chitecture [45], is to use a separate batch processing system
(e.g., Hadoop, Spark) to compute a comprehensive view on
historical data, while simultaneously using a stream process-
ing system (e.g., Storm [61], Spark Streaming [64]) to provide
views of incoming data. In this split architecture, the batch
processing system periodically rescans the data set and per-
forms a bulk upload of the result to the stream processing sys-
tem, which then makes modifications based on new updates.

There are several problems inherent with the bifurcated en-
vironment of these two approaches. Foremost is that the time
it takes to propagate changes between the separate systems
is often measured in minutes or even hours. This data trans-
fer inhibits an application’s ability to act on data immediately
when it is entered in the database. Second, the administrative
overhead of deploying and maintaining two different DBMSs
is non-trivial as personnel is estimated to be almost 50% of
the total ownership cost of a large-scale database system [50].
It also requires the application developer to write a query for
multiple systems if they want to combine data from different
databases. Some systems that try to achieve a single platform
by hiding this split system architecture; an example of this
is Splice Machine [16], but this approach has other technical
issues due to copying data from the OLTP system (Hbase) be-
fore it can be used in the OLAP system (Spark).

The third (and in our opinion better) approach is to use a
single HTAP DBMS that supports the high throughput and low
latency demands of OLTP workloads, while also allowing for
complex, longer running OLAP queries to operate on both hot
(transactional) and cold (historical) data. What makes these
newer HTAP systems different from legacy general-purpose
DBMS:s is that they incorporate the advancements from the
last decade in the specialized OLTP (e.g., in-memory storage,
lock-free execution) and OLAP (e.g., columnar storage, vec-
torized execution) systems, but within a single DBMS.

SAP HANA and MemSQL were the first NewSQL DBMSs
to market themselves as HTAP systems. HANA achieves this
by using multiple execution engines internally: one engine for
row-oriented data that is better for transactions and a different
engine for column-oriented data that is better for analytical
queries. MemSQL uses two different storage managers (one
for rows, one for columns) but mixes them together in a single
execution engine. HyPer switched from a row-oriented system
with H-Store-style concurrency control that was focused on
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Year Main Memory

Concurrency

Released Storage Partitioning Control Replication Summary
Clustrix [6] 2006 No Yes MVCC+2PL Strong+Passive  MySQL-compatible DBMS that  supports
shared-nothing, distributed execution.
CockroachDB [7] 2014 No Yes MVCC Strong+Passive  Built on top of distributed key/value store. Uses
software hybrid clocks for WAN replication.
Google Spanner [24] 2012 No Yes MVCC+2PL Strong+Passive WAN-replicated, shared-nothing DBMS that
uses special hardware for timestamp generation.
w2
‘é H-Store [8] 2007 Yes Yes TO Strong+Active  Single-threaded execution engines per partition.
2 Optimized for stored procedures.
E HyPer [9] 2010 Yes Yes MVCC Strong+Passive HTAP DBMS that uses query compilation and
= memory efficient indexes.
E MemSQL [11] 2012 Yes Yes MVCC Strong+Passive Distributed, shared-nothing DBMS using com-
; piled queries. Supports MySQL wire protocol.
2 NuoDB [14] 2013 Yes Yes MVCC Strong+Passive  Split architecture with multiple in-memory ex-
ecutor nodes and a single shared storage node.
SAP HANA [55] 2010 Yes Yes MVCC Strong+Passive Hybrid storage (rows + cols). Amalgamation of
previous TREX, P*TIME, and MaxDB systems.
VoItDB [17] 2008 Yes Yes TO Strong+Active  Single-threaded execution engines per partition.
Supports streaming operators.
o AgilData [1] 2007 No Yes MVCC+2PL Strong+Passive  Shared-nothing database sharding over single-
Ei node MySQL instances.
E MariaDB MaxScale [10] 2015 No Yes MVCC+2PL Strong+Passive Query router that supports custom SQL rewrit-
2 ing. Relies on MySQL Cluster for coordination.
a
E ScaleArc [15] 2009 No Yes Mixed Strong+Passive Rule-based query router for MySQL, SQL
Server, and Oracle.
w» Amazon Aurora [3] 2014 No No MVCC Strong+Passive Custom log-structured MySQL engine for RDS.
<
é ClearDB (5] 2010 No No MVCC+2PL Strong+Active  Centralized router that mirrors a single-node
a MySQL instance in multiple data centers.

Table 1: NewSQL Systems — Summary of the system features described in Section 4 for the different DBMSs. Note that the year released is either
when the project was announced publicly or when the company was first formed.

OLTP to use an HTAP column-store architecture with MVCC
to allow it support more complex OLAP queries [48]. Even
VoltDB has pivoted their marketing strategy from pure OLTP
performance to providing streaming semantics. Similarly, the
S-Store project seeks to add support for stream processing op-
erations on top of the H-Store architecture [46]. It is likely
that the specialized OLAP systems from the mid-2000s (e.g.,
Greenplum) will start to add support for better OLTP.

‘We note, however, that the rise of HTAP DBMSs does mean
the end of giant, monolithic OLAP warehouses. Such systems
will still be necessary in the short-term as they stand to be the
universal back-end database for all of an organization’s front-
end OLTP silos. But eventually the resurgence of database fed-
eration will allow organization’s to execute analytical queries
that span multiple OLTP databases (including even multiple
vendors) without needing to move data around.

6. CONCLUSION

The main takeaway from our analysis is that NewSQL data-
base systems are not a radical departure from existing system
architectures but rather represent the next chapter in the con-
tinuous development of database technologies. Most of the
techniques that these systems employ have existed in previous
DBMSs from academia and industry. But many of them were
only implemented one-at-a-time in a single system and never
all together. What is therefore innovative about these NewSQL
DBMSs is that they incorporate these ideas into single plat-
forms. Achieving this is by no means a trivial engineering
effort. They are by-products of a new era where distributed
computing resources are plentiful and affordable, but at the
same time the demands of applications is much greater.
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It is also interesting to consider the potential impact and fu-
ture direction of NewSQL DBMSs in the marketplace. Given
that the legacy DBMS vendors are entrenched and well funded,
NewSQL systems have an uphill battle to gain market share. In
the last five years since we first coined the term NewSQL [18],
several NewSQL companies have folded (e.g., GenieDB, Xer-
ound, Translattice) or pivoted to focus on other problem do-
mains (e.g., ScaleBase, ParElastic). Based on our analysis
and interviews with several companies, we have found that
NewSQL systems have had a relatively slow rate of adoption,
especially compared to the developer-driven NoSQL uptake.
This is because NewSQL DBMSs are designed to support the
transactional workloads that are mostly found in enterprise ap-
plications. Decisions regarding database choices for these en-
terprise applications are likely to be more conservative than
for new Web application workloads. This is also evident from
the fact that we find that NewSQL DBMSs are used to com-
plement or replace existing RDBMS deployments, whereas
NoSQL are being deployed in new application workloads [19].

Unlike with the OLAP DBMS start-ups from the 2000s,
where almost all of the vendors were acquired by major tech-
nology companies, up until now there has been only one acqui-
sition made of a NewSQL company. In March 2016, Tableau
announced that it purchased the start-up formed for the HyPer
project. The two other possible exceptions to this are (1) Ap-
ple acquiring FoundationDB in March 2015, but we exclude
them because this system was at its core a NoSQL key-value
store with an inefficient SQL layer grafted on top of it, and
(2) ScaleArc acquiring ScaleBase, but this was one competitor
buying out another. None of these examples are the same kind
of acquisition where a legacy vendor purchasing an upstart
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system (e.g., Teradata buying Aster Data Systems in 2011).
We instead see that the large vendors are choosing to innovate
and improve their own systems rather than acquire NewSQL
start-ups. Microsoft added the in-memory Hekaton engine
to SQL Server in 2014 to improve OLTP workloads. Oracle
and IBM have been slightly slower to innovate; they recently
added column-oriented storage extensions to their systems to
compete with the rising popularity of OLAP DBMSs like HP
Vertica and Amazon Redshift. It is possible that they will add
an in-memory option for OLTP workloads in the future.

More long term, we believe that there will be a conver-
gence of features in the four classes of systems that we dis-
cussed here: (1) the older DBMSs from the 1980-1990s, (2)
the OLAP data warehouses from the 2000s, (3) the NoSQL
DBMSs from the 2000s, and (4) the NewSQL DBMSs from
the 2010s. We expect that all of the key systems in these
groups will support some form of the relational model and
SQL (if they do not already), as well as both OLTP opera-
tions and OLAP queries together like HTAP DBMSs. When
this occurs, such labels will be meaningless.
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Thank you, Marianne.

Jag, you've been very involved with the Proceedings of
the VLDB. How did that get started?

The Proceedings of the VLDB just happened to come
together. This is really how it happened. I was part of
the VLDB Endowment Board of Trustees and there
had been a lot of discussion amongst various people
who had been on the board before me about
publication models and what one should do. There had
been a broadening effort that Phil Bernstein and others
had been pushing. There were some who felt that
conference publications did not get the same level of
respect as journal publications, particularly in some
countries. There were others who were concerned
about how we did our reviews and what our reviewing
processes were. Somehow all the vectors lined up at
the right time and I just happened to be able to make
use of all the forces that were there at that time. When
it suddenly happened, it was actually very quick. There
were a number of pieces that needed to come together
for PVLDB to happen and all of that happened within
one VLDB Endowment board meeting, which is
typically not the way that VLDB operates. That’s
because there had been many years of preparatory
work and so people sort of knew all the issues. There
had not been partial solutions before, they were just
issues, what we should do, and inconclusive
discussions. When there was something that seemed
like it had a chance of working, I think the trustees
were very enthusiastic about trying out the experiment
and seeing how it worked.

[...] a great deal of the
work that people are doing
in a data-driven manner in

many disciplines is often
prey to all kinds of biases
and errors. It’s very easy
not to have enough
statistical power.

Is this experiment helping with the communities that
want to see a journal publication? So is PVLDB a
journal?

PVLDB is a journal when its advantageous to be one. I

think that it is truly a hybrid. It is not a standard
conference publication. It is not a standard journal
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publication. For those who keep books, the fact that we
have an explicit ISSN, which is what makes it a journal
as opposed to just an ISBN, which is a one-shot thing
that each conference proceedings gets, makes it
technically a journal for classification purposes. Other
than that, I think that the nature of the publication, and
the spirit of it and the way in which one reviews it and
evaluates it, is very much in what we think of as
conference style as opposed to journal style.

And is it in that ISI index that some countries rely on?

The ISI index is one place for instance where having
an ISSN is very important.

How is the impact factor looking for it so far?

It’s too early. It turns out that Thomson Reuters has a
process for putting things into their index and among
the things they want to see is a minimum bar of three
years of publication history on schedule. So apparently
they deal with a lot of publications that do not end up
having enough volume and so the issues get delayed.
Now, we are all used to backlogs in our journals and
people are trying to minimize the backlogs and editors
are wheedling the extra pages from the publishers, and
things like this. There are places where journals just do
not know how to fill their pages. They are promised a
quarterly journal but they have a hard time actually
bringing one out. So for whatever reasons, that is a rule
and we have not had three years of regular
publications'. So we are not yet indexed in the ISI, for
instance.

So you’ve been very involved with this CoRR
(Computing Research Repository). What’s that all
about?

The Computing Research Repository is something that
some people put all of their work in and others may
have never even heard of. It seems to have an uneven
uptake in our community. The idea behind this is that
there is a central place where people put any work that
they think others may want to read. There isn’t a
review process other than for appropriateness. So we
do talk about the category and we want to make sure
that if you claim that your paper is about databases
then it is about databases. So it isn’t just that we keep a
political creed out, but one of my jobs as the database
section editor for CoRR is to make sure that a paper
that is about “software engineering” doesn’t have a

! This interview was conducted in 2012.
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“database” label by mistake. Sometimes there are
questions about where exactly do we draw a boundary,
does a paper deserves two labels, and things of this
nature. Anyway, the thing with this is simply to have
one place where people can find work on a particular
topic. This is something that physicists have had great
success in using extensively. I think most areas in
physics do this and some areas in mathematics and
other fields. Computer science was not even the first to
the game here, but the same infrastructure is being
used for computing. Some people and some sub
communities seem to have adopted it with gusto and
others have just totally ignored it.

I think that the value, if there is good adoption, is that
it saves you the effort of doing things like a web search
to find papers. We have organized collections for
things that have been published in good places (things
like our SIGMOD DiSC -- Digital Symposium
Collection) and things of that nature, which for our sub
community works very well. So the need for the
database community for something like CoRR may be
less. We note though that CoRR isn’t just for things
that are published in good places. It is for everything.

1 think of it as a pre-print place or a pre-submission
place.

Well, so one of the things we’ve also done is when
papers appear in PVLDB, they also get deposited in
CoRR. So it is not something that gets there as a pre-
print, it is put there at acceptance. And many
conferences, workshops and journals do this with
CoRR on a regular basis. When papers are accepted,
there is a batch upload.

The people I know who are enthusiastically depositing
and looking in CoRR are using it as a place to put in
their papers that usually they haven’t even submitted
yet so they’re sort of at the tech-report stage. That is
different from what you were talking about a minute
ago and that usage in my mind conflicts with the
double-blind reviewing philosophy. Do you have any
comments on that?

Yes, I agree with you that there are people who put
things into CoRR at a very early stage, at a pre-print
stage or to establish “first in time” for some idea. But I
view this as not much different from people putting out
papers on the web. There are a lot of people who put
up tech reports on the web and I think that double-
blind reviewing is impacted even if there weren’t
CoRR, just because there is a web and there is web
search. That is a challenge for double-blind reviewing.
I don’t think that CoRR makes it that much worse. I
personally believe that changing how we manage our
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archival to support the blindness of reviewing is the
tail wagging the dog. I think that whatever one might
want to do with respect to whether we use double-blind
reviews or not, that is a concern with respect to how
we evaluate papers and that should be a second order
concern with respect to how we disseminate
knowledge: how we store and share knowledge should
be the primary concern. Even if it were the case that it
mattered that there was a negative impact on double-
blind reviewing, I would still say CoRR is dealing with
a more important issue than double-blindness does.

So given that we have this IEEE, ACM Digital Library
access, do we also need CoRR?

I think that the digital libraries are very good and
actually in terms of stuff that I really use in my
research there is very little that isn’t in either IEEE or
ACM’s Digital Library. Again, there are some issues:
they are both proprietary (they are owned by
professional societies), they’re available for a fee (so
they’re not free to use), and they have standards that
they have in terms of what material is included. And so
things that don’t make the cut with respect to the
venues that get incorporated wouldn’t be in there,
whereas CoRR just has everything in it. The other
point is that, to the extent that people put pre-prints or
tech reports you get faster dissemination. For
conferences, for example, things get into the digital
library usually several months after the conference, it
isn’t even at the time of the conference.

One side effect of all the work we’ve been doing in the
database community over the last 50 years (according
to Rick Snodgrass, we’re 50 years old now) is that
scientists have huge amounts of data available to them
that they didn’t have in the past. How has this changed
the way that they do science?

The way I think about this is that the standard way of
doing science is what is called hypothesis-driven. You
first pose a research question that you’re going to ask,
you have a hypothesis and then you do one or more of
the things that you just mentioned -- let’s say an
experiment. The result of that experiment will either
verify the hypothesis or refute it. And that’s the
classical scientific method of doing research. The thing
that has now become possible is not to have a
hypothesis but to have a goal that says “I’ll find out
something of interest in this space.” So if one were to
take a cartoon picture of data mining, as we would
have talked about it even 15-20 years ago, we would
simply say “Well, we have a lot of data and we look
for patterns in the data.” Let’s say we stop there. That
is what one can think of as data-driven scientific
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research. One can say “I am looking for genes that
have some role in some disease. I don’t have a clue
about anything, except I know how to do sequencing
and so I’'m going to take a bunch of people who have
this disease and a bunch of people who don’t. I don’t
have a hypothesis other than to say that there must be
some genes that are different. Then I’'m just going to
run their DNA and look at where the differences are.”
This is not hypothesis-driven research. You can state it
in terms of a hypothesis, but it is not a very interesting
hypothesis.

In the example that I just gave, there actually is a data
generation face to the research. One could do this with
secondary data. One could say “I’m going to make use
of other people’s data that’s published and do a
secondary study with that”. The point is that we’re
learning new things without knowing beforehand what
we’re going to learn. I think that this is very powerful
because it decreases the burden on us to specify a
hypothesis in advance. On the other hand, if one
doesn’t have a good explanation, at least in a post-hoc
manner, one ends up with things that are intellectually
dissatisfying and possibly even statistical flukes. I
think that there is need for people who undertake this
kind of scientific investigation to think harder from
first principles about the statistics and what the
likelihood is that they are seeing results that are not the
result of over-fitting or the result of just multiple
hypothesis testing or some other issue of this nature. I
think that the standards of statistical evidence need to
be much higher as a threshold for acceptance when one
is doing it without a hypothesis.

One problem [ see in the non-hypothesis-driven
approach is that I'm not sure how well it’s accepted by
other people in science. So here’s a direct quote from
someone who is in the medical industry: “Oh those
epidemiologists, they just want to go on fishing
expeditions”.

I think such statements are actually warranted in many
situations because a great deal of the work that people
are doing in a data-driven manner in many disciplines
is often prey to all kinds of biases and errors. It’s very
easy not to have enough statistical power. It’s very
easy to have results that are incorrect because of
multiple hypothesis testing or because of over-fitting
or because of some other bias in terms of the way
things were done. There are well-documented cases,
for instance, of people showing things like moving
objects in the distance through thought. You know,
things of this nature which one shouldn’t have a
scientific basis to expect. Every now and then there is
some such paper that gets published. If one conducts
enough experiments there would be some case where
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just in terms of random association, things will turn out
the way that you would like them to be. So, when one
is considering some small data sample, and saying
“Well in a data-driven manner I see this result,
therefore it is”, I think one has to take that with a very
big pinch of salt.

I don’t think that the
database community is
actually doing very much
for scientists.

That having been said, I think that there is a question
of the comfort zone for somebody who has been
trained in a certain way of doing work. As a person
who begins with the data, which is what I’m certainly
trained to do, I often have discussion with people who
are used to thinking about the hypothesis first and just
feel uncomfortable at a gut level because they are
being forced to think about things in ways that they’re
not used to. That will instinctively make them react
negatively and then it’s a question of them thinking it
through, with their knowledge, training and wisdom
and coming to a conclusion about whether some new
piece of work done in a new style makes sense or not.

How well is the database community doing at
supporting the needs of scientists?

I don’t think that the database community is actually
doing very much for scientists. I think that many
scientists have a lot of data. I think they struggle with
the data and they do all kinds of things with the data
that may seem ridiculous to people who attend
SIGMOD for instance, but they do it because that’s
what they know how to do. I think being able to
provide tools to support their work, particularly as the
amount of data that scientists are dealing with
increases, is something we as the community should
embrace and I know that at least some segments of our
community are thinking hard about things like this. I
think we have a long way to go.

Do you have a list of top challenges that we should be
working on for the sake of scientists?

Actually, my view is that what we do for scientists is
probably not that much different from what we would
do for an end user in the consumer arena. I work with
scientists as you’ve said, and I think about things that
we might need to do in terms of data management to
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help scientists do what they need to do. But when I
write a paper in the database world, describing some
result, it’s usually not hard for me to take the same
thing and cast it in terms of a hotel reservation or
managing an address book, or something of this nature
-- just very simple, personal tasks that end users would
do for themselves. So I really think that the challenges
are what one would expect if we just sat down and said
“Who is using this stuff? What do they need to do?”. I
think that we get too wrapped up in dealing with what
needs to be done inside the box with tightly defined
boundaries and I think taking that one extra step of
seeing what is it that someone is trying to accomplish
with whatever is running on this box would make a
world of a difference.

So if I am understanding things correctly, you're
saying that the core guts of what they need is already
there but it’s not friendly enough, accessible enough,
missing some layer on top perhaps for them to actually
make use of it. Or maybe they don’t know it exists...

Yes, to all of the above.

What is the right way to design a usable data
management system?

My soapbox position on this has been that usability
isn’t skin deep. Which is to say, that you can’t build a
database system first and then throw a pretty interface
on top of it and say that you now have a usable
database system. Instead, I think you need to start at
the beginning from what task the user is trying to
accomplish and what knowledge the user brings to the
task when they’re trying to accomplish this and then
see what the workflow should be to maximize their
ability to accomplish that task directly and quickly.

To some extent the interface matters, but I think that
even beyond the interface, as one thinks it through in
terms of breaking a task into subtasks, and what is
actually being done, one ends up with an interaction
model. This is in effect the query model, the thing we
should then have efficient support for. We had better
design our database to be able to support that kind of
interaction model, not to make people think about it
that way. Usually we start with “I got this box and
what can this box do?”. And so we naturally end up
with things that are not particularly usable.

So if I understand correctly then you're saying is we
might need to redesign the core, the guts of the system
once we figure out what these people really need.
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I think that we will need to redesign significant aspects
of it. We may not need to re-do all of it. If we get
down to things like the actual data store which is, for
most purposes, probably not something that would
become visible, even there, I can give you a
counterexample. So a paper that one of my students
had last year’ was on the system called CRIUS for
organically grown database systems where the idea is
that the user doesn’t have a schema in mind before
they start throwing data into the database and so as
they come up with new instances, they realize that the
schema needed to be richer than what they previously
had. So, you start with a single column in a single
table, and you grow it from there. Well, even though a
lot of our contribution there had to do with how the
user does this and what support the user gets and what
dependencies mean and how do you keep the user from
making errors, etc., the fact that the schema is evolving
(and you expect the schema to evolve) on a continuous
basis has implications on the kind of storage that you
do. So for instance even if you didn’t otherwise have a
reason to do a vertical storage, the fact that you need to
support something like schema evolution might tip the
balance. So there are things like this that could affect
decisions even at the gut level.

Is database research

research?

turning into informatics

So a thing I’ve been trying to do with very little
success, when people ask me what area I work in, is to
say “I work in information management”. Quite often,
I get a blank stare. They say “Oh, you mean
databases”, and that means something to them. I think
the reason that I want to say information management
and not databases is because, to me, a database is a
very specific engine that does something we all
understand, whereas information management is the
broader universe. Databases have a significant role to
play in information management, but I want to lay
claim to the broader turf and somehow that has been
difficult.

XML query optimization: should we give up and walk
away, like we did for relational query optimization and
call it done?

I think that at some point things matured to a point that
the academic community has done pretty much what
could be done. It doesn’t mean that everybody should

> H. V. Jagadish, Arnab Nandi, Li Qian: Organic Databases. DNIS
2011: 49-63. There is also a more recent paper on the subject: H. V.
Jagadish, Li Qian, Arnab Nandi: Organic databases. IJCSE 11(3):
270-283 (2015).
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walk away but I think that the bulk of the interest
moves on and every now and then there will be some
willing person that comes in and changes the paradigm
and makes us all think something new about something
and such things may happen.

Why should we care about the Computing Research
Association?

The Computing Research Association actually is
something that does a great deal of good. It is an
organization that not too many of us may have that
much familiarity with. It is a professional society,
except that the members of the society are computing
research departments as opposed to individuals as say
in the case of something like ACM. What the CRA
does is think about what is good to support the
computing research enterprise with a little bit of an
administrative view much more so than say, something
like the ACM. So in terms what they specifically do,
there are things that are bread and butter everyday
things. They do what is known as the Taulbee Survey
of salaries and placements of graduates and things of
this nature and this is something that helps us keep

[...] usability isn’t skin
deep. [...] you can’t build a
database system first and

then throw a pretty
interface on top of it and
say that you now have a
usable database system.

track of where things are in the field. Helps us keep
track of the health of the field. Helps our department
heads fight for larger raises. ..

(laughs)

Yes it does! That is one reason to pay attention to the
CRA. But I think beyond this, the CRA is a good place
because of the way it is set up to take action on items
that are of broad interest to the computing community.
For example, the CRA was responsible for a
postdoctoral fellowship program that was put into
place exactly when the downturn hit about three years
ago and jobs dried up. This program is now being
phased out as the economy recovers and as hiring is
coming back up to normal levels. I think that if the
organization weren’t there, this wouldn’t have
happened. 1 forgot to mention that the CRA is very
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much North American, so it’s not a worldwide thing
unlike say, the ACM. So one of the things the CRA
does spend significant effort on is in educating
government officials on the benefits of funding
computer science research. Again, in that, there have
been many activities that the CRA has undertaken and
the fact that there is generally bipartisan agreement in
congress with regards to funding for computing
research, is, to some extent, because the CRA has been
very effective in making the case of the value that it
brings to the economy and the society as a whole in
return for a small amount of investment.

Do you have any words of advice for fledgling or
midcareer database researchers?

Glad you’re doing it.

Good choice! Among all your past research, do you
have a favorite piece of work?

Yeah, there are a couple of things I could pull out. One
is a paper that I wrote with Abraham Silberschatz and
Inderpal Mumick on what we call the chronicle data
model and this was published in PODS’® and nobody
paid attention to it, but the whole point of it was that
there is often too much data coming at too fast a
volume for you to be able to store it before you process
it. So we developed a data model for dealing with it in
an online manner with data streaming. About 5-7 years
later the database community discovered data
streaming and the name was streams and not
chronicles, but I am proud of having been there first
and first by several years. The other piece of work that
I’'m really proud of is the TAX paper®, which is the
algebra that underlay the TIMBER XML database.
This is a paper that was rejected at all the major venues
and we eventually published in DBPL and I just think
that, of all of my work, is the piece that I find the most
elegant and it underlay the entire TIMBER system that
came afterwards.

Can you say a little more about what the central result
of the paper was?

Yeah, the problem has to do with how do you do set-
oriented processing for something like XML where
you are going to deal with different fragments and
fragments may have different shapes. So you don’t

SH. V. Jagadish, Inderpal Singh Mumick, Abraham Silberschatz:
View Maintenance Issues for the Chronicle Data Model. PODS
1995: 113-124

‘HV. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, Keith
Thompson: TAX: A Tree Algebra for XML. DBPL 2001: 149-164
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have a set of uniform structures that you can deal with.
Our basic solution was that every operator would, as
its first step, have something that renders things
uniform and afterwards you would apply the operator
and then we can develop a set-oriented algebra. So that
was the idea.

If you magically had enough extra time to do one
additional thing at work that you are not doing now,
what would it that be?

I would blog.

Oh! Well, you blogged recently’.

That was one of the first times, and that was more of a
community thing. I would blog more®.

Good. We'll watch for a blog appearing soon on your
webpage. If you could change one thing about yourself
as a computer science researcher, what would it be?

I wish I were better trained.

What an indictment of Stanford!

SHV Jagadish. Big Data: it’s not just the analytics. ACM SIGMOD
Blog. http://wp.sigmod.org/?p=430

6 Jagadish’s blog is available at http://www.bigdatadialog.com/
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You know I got my degree in Electrical Engineering.

Yeah... but there were computer scientists in Electrical
Engineering too.

Yeah, this is not an indictment of the university at all.
In any case times change, things change and what we
need to know changes. Its just that I seem to come up
against the limits of what I know how to do all the
time. I wish I knew how to do X and if I just knew how
to do X, I would be in so much a better place to address
some problem. Then I say “Well, I much teach myself
X, and of course I never get the time to teach myself X
and so, that’s how it goes.

What are some example X's that you wished you knew
more about?

I wish I were a better theoretician.

Oh, more theory! Okay. Anything else comes to mind?

I wish I were a better systems builder.

Woah! We covered both sides right there, okay. Well
thanks very much for talking with me today.

Thanks Marianne!
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ABSTRACT

The Hasso Plattner Institute (HPI) is a private com-
puter science institute funded by the eponymous SAP
co-founder. It is affiliated with the University of Pots-
dam in Germany and is dedicated to research and teach-
ing, awarding B.Sc., M.Sc., and Ph.D. degrees.

The Information Systems group was founded in 2006,
currently has around ten Ph.D. students and about 15
masters students actively involved in our research ac-
tivities. Our initial and still ongoing research focus has
been the area of data cleansing and duplicate detection.
More recently we have become active in the area of text
mining to extract structured information from text, and
even more recently in data profiling, i.e., the task of
discovering various metadata and dependencies from a
data instance.

1. MOTIVATION

Data abounds — it appears in many forms rang-
ing from traditional relational or XML databases
over semi-structured data, often published as linked
open data, to textual data from documents on the
Web. This wealth of data is ever growing, and many
organizations and researchers have recognized the
benefit of integrating it into larger sets of homoge-
neous, consistent, and clean data. Integrated data
consolidates disconnected sources in organizations;
it combines experimental results to gain new sci-
entific insights; it provides consumers with a more
complete view of product offers, etc.

Yet integration of such data is difficult due to
its often extreme heterogeneity: Syntactic het-
erogeneity in data formats, access protocols, and
query languages is typically the most simple to
overcome, usually by building appropriate source-
specific wrapper components. Next, structural het-
erogeneity must be overcome by aligning the dif-
ferent schemata of the datasets: Schema matching
techniques automatically detect similarity and cor-
respondence among schema elements, while schema
mapping techniques interpret these to actually
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transform the data. Finally, to overcome semantic
heterogeneity the different meanings of data and the
similar but different representations of real-world
entities must be recognized. Here, similarity search
and data cleansing techniques are employed.

While the first two challenges have been research
topics of our’s in the past, the last and arguably
most difficult challenge is a main focus of our cur-
rent research endeavors. This focus manifests itself
in three main research directions, which are mo-
tivated in the following sections: First, and most
recently, in the area of data profiling, i.e., the de-
velopment of methods to discover interesting prop-
erties about unknown datasets. Second, in the area
of data cleansing, i.e., the development of methods
to automatically correct errors and inconsistencies
in databases and in particular to search and con-
solidate duplicates. Third, the area of text mining,
i.e., the extraction of information from textual data,
such as Wikipedia articles, tweets, or other text.

Where possible we aim at making our data and
our algorithms available. A good starting point to
find them is http://hpi.de/naumann/projects/
repeatability.html.

2. DATA PROFILING

“Data profiling is the set of activities and pro-
cesses to determine the metadata about a given
dataset.” [1] The need to profile a new or unfa-
miliar data arises in many situations, in general to
prepare for some subsequent task. Data profiling
comprises a broad range of methods to efficiently
analyze a given dataset. In a typical scenario, mir-
roring the capabilities of commercial data profiling
tools, tables of a relational database are scanned
to derive metadata including data types and typi-
cal value patterns, completeness and uniqueness of
columns, keys and foreign keys, and occasionally
functional dependencies and association rules. In
addition, research (ours and others’) has proposed
many methods for further tasks, such as the discov-
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ery of inclusion dependencies or conditional func-
tional dependencies. There are a number of con-
crete use cases for data profiling results, including:

e Query optimization: counts and histograms
for selectivity estimation, dependencies for
query simplification

e Data cleansing: pattern and dependency de-
tection to identify violations

e Data integration: inter-database inclusion de-
pendencies to enrich datasets and find join-
paths

e Data analytics: data preparation and initial
insights

e Database reverse engineering: foreign key dis-
covery to understand a schema and identify its
core components

Our survey [1] highlights the community’s signif-
icant research progress in this area in the recent
past. Data profiling is becoming a more and more
popular topic as researchers and practitioners are
recognizing that just gathering data into data lakes
is not sufficient: “If we just have a bunch of data
sets in a repository, it is unlikely anyone will ever be
able to find, let alone reuse, any of this data. With
adequate metadata, there is some hope [...]” [4]

2.1 Profiling relational data

Apart from computationally more simple tasks,
such as counting the number of distinct values in a
column, data profiling is typically concerned with
discovering dependencies in a given, possibly large
dataset. We, and other groups, have developed
various methods to efficiently discover all mini-
mal functional dependencies, inclusion dependen-
cies, unique column combinations, and order de-
pendencies. More dependencies are to come, such
as join dependencies, matching dependencies, de-
nial constraints, etc. Instead of listing and explain-
ing each technique in any detail, we highlight some
general difficulties we have encountered that make
data profiling both challenging and interesting:

Schema size: Because dependencies can occur
among any column or column combination,
not only the number of records, but also the
number of columns is a decisive factor of com-
plexity.

Size of dependencies: One way to handle the ex-
ponential search space is to limit the size of the
dependencies, i.e., the number of involved at-
tributes. For instance, one could argue that
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key-candidates with more than ten attributes
are not useful. On the other hand, a complete
set of metadata can be useful, for instance to
normalize a relation based on its functional de-
pendencies.

Number of dependencies: While much depen-
dency-focussed research, such as normaliza-
tion theory or reasoning with dependencies,
assumes a handful of dependencies as input,
we typically observe thousands, millions and
in some cases even billions of dependencies in
typical real-world datasets. Just storing them
becomes a problem, not to mention reasoning
about them or interpreting them manually.

Treatment of nulls: The semantics of missing
values is an interesting problem for almost any
data management and analysis task, likewise
for data profiling [13].

Intricate pruning: Huhtala et al. already showed
quite complex insights to efficiently prune the
search space for FD discovery [10]. When pro-
filing for various types of dependencies, cross-
dependency pruning becomes possible.

Relaxed dependencies: Apart from strict de-
pendencies, it is also of interest to discover
partial dependencies, which are true for only
a part of the dataset, and conditional depen-
dencies, which are true for a well-defined such
part.

Dynamic data: While most of our focus has been
on algorithms for a given, static dataset, we
are also interested in efficiently updating data
profiling results after changes in the data.

Experiments: Testing correctness of algorithms
for given, real-world datasets is straightfor-
ward, but generating artificial testdata with
certain properties, such as a certain number
and distribution of functional dependencies, is
very challenging.

Interpreting results: Any discovered metadata
can only be validated for the dataset at hand.
Some might be true in general, some might be
spurious. We discuss this arguably most im-
portant and most difficult challenge of making
sense of profiling results in Section 2.4.

In conclusion, research has many avenues to fol-
low!
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2.2 The Metanome project

Metanome is our open Java-based framework and
tool for managing relational datasets and data pro-
filing algorithms [18]. Our motivation for this un-
dertaking is to bundle the many algorithms devel-
oped in our group, to provide an easy interface
and testing environment for developers of new al-
gorithms, and finally to enable fair comparisons
among competing algorithms. Our initial focus was
on functional dependency discovery, and Metanome
features implementations of already eight published
FD-discovery algorithms including those evaluated
in [19] plus seven further algorithms for other dis-
covery tasks (www.metanome.de).

2.3 Profiling RDF data

Among the datasets that are particularly wor-
thy to profile, due to their variety and their gen-
eral interest, are linked datasets. We are apply-
ing traditional and novel data mining technology to
linked data in its RDF representation as subject-
predicate-object triples. For instance, the discovery
of frequent itemsets of predicates or objects in the
context of subjects allows enriching datasets with
missing triples. Another configuration — mining
for frequent subjects in the context of predicates
— achieves a clustering of entities. We have also ap-
plied data mining techniques for the discovery of
conditional inclusion dependencies [16]. The vol-
ume of available linked data (a popular dataset is
from the Billion Triples Challenge, which currently
comprises over 3 billion facts) necessitates space-
efficient algorithms.

Again, much of our work enters our browser-
based discovery tool, ProLOD++ [2], which fea-
tures techniques to discovery key-candidates, ex-
plore class and property distributed, discover fre-
quent graph patterns, and more (see Figure 1).

2.4 From metadata to semantics

Finding all (and thus very many) dependencies in
a given dataset is only the first part of a meaningful
discovery process. The vast majority of metadata
is spurious: It might be valid only in the current
instance, or it might be valid for any reasonable
instance but meaningless nonetheless. Separating
the wheat from the chaff is extremely difficult, as
it is a jump from (meta-)data to semantics; only a
human can promote a unique column combination
to a key, an inclusion dependency to a foreign key, or
a functional dependency to an enforced constraint.

But computer science can help: We are cur-
rently investing much of our time to transform large
amounts of metadata to schematic information. A

SIGMOD Record, June 2016 (Vol. 45, No. 2)

Overview Graph Analysis  Properties  Inverse Properties  Association Rules  Synonyms ey Discovery

+
| Grapns/ pattem

» LinkedMDB (631,003 o

Statistics: ) Class distribution: )
Figure 1: Exploring frequent patterns
in a Linked Dataset with ProLOD

(www.prolod.org)

Figure 2: Clusters of web tables, connected
through (reasonable) inclusion dependencies

first step is a metadata management system to store
and query many different types of metadata. Next,
we are developing selection and ranking methods
to present to users only the most promising meta-
data. And finally, the visualization of metadata is
an important tool to aid experts in understanding
their data. Figure 2, for instance, shows connected
components created by discovering inclusion depen-
dencies among millions of web tables.

3. DATA CLEANSING

With the ever-increasing volume of data, data
quality problems arise. One of the most intriguing
problems is that of multiple, yet different represen-
tations of the same real-world object in the data:
duplicates. Such duplicates have many detrimental
effects, for instance bank customers can obtain du-
plicate identities, inventory levels are monitored in-
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correctly, catalogs are mailed multiple times to the
same household, etc. A related problem is that of
similarity search in structured data: given a query
record, find the most similar candidate records in
a database and identify whether one of them is a
match.

The areas of similarity search and duplicate de-
tection are experiencing a renaissance both in re-
search and industry. Apart from scientific contribu-
tions we cooperate with companies to transfer our
technology. Both our similarity search and our du-
plicate detection techniques have been adopted by
industry partners.

3.1 Duplicate detection

Detecting duplicates is difficult: First, duplicate
representations are usually not identical but slightly
differ in their values. Second, in principle, all pairs
of records should be compared, which is infeasible
for large volumes of data [9]. Our research addresses
both aspects by designing effective similarity mea-
sures and by developing efficient algorithms to re-
duce the search space.

One focus of our work is to develop improved vari-
ations of the elegant and simple sorted neighbor-
hood method [8], for instance adapting it to nested
XML data, making it progressive, parallelizing it
for GPU-processing, or creating an adaptive version
that is provably more efficient than the original [5].

In our experience, research(ers) in duplicate de-
tection suffers particularly when trying to trans-
fer technology and methods to industrial settings:
Availability of data is a first issue, that arises even
if a cooperation is firmly established and all par-
ticipating parties in principle agree to the effort.
Next, domain- and partner-specific similarity mea-
sures are needed that satisfy the specific use-case.
Companies can have widely differing views of what
constitutes a duplicate: Measuring recall is impos-
sible due to large dataset sizes, and precision is sur-
prisingly malleable, depending on whom one asks
for validation. And finally, the real world holds
many nitty, gritty details that can be conveniently
ignored in a research setting!. With [20] we were
able to overcome these difficulties and have had a
lasting impact on the data quality of our partner.

3.2 Similarity search

A problem related to duplicate detection, but of-
fering quite different requirements is that of efficient
similarity search. Instead of comparing all or many
pairs of records in an offline fashion (n x n), on-

'For instance, providing a machine with 16GB main
memory but insisting on a 32-bit operating system.
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line similarity search asks for all records matching
a given query record (1 x n). A typical use case is
a call center agent pulling up customer information
based on a customer’s name and city. The main
challenge is to develop a suitable similarity index,
a much more difficult undertaking that an exact-
match index.

One of our solutions matches the problem to a
query plan optimization task, choosing similarity
index accesses based on their selectivity and their
cost, each of which is again modified by the dynami-
cally chosen threshold: A low thresholds yields more
candidates, but also more access to disk to retrieve
the candidates [17]. A further insight is the impor-
tance of frequency-aware similarity measures, which
apply different weights depending on the frequency
of the query terms (Schwarzenegger vs. Miller).

We are currently extending this work to solve the
problem of an ever-growing set of data that shall be
held duplicate free: each query can simultaneously
be an insert-operation.

4. TEXT MINING

Unstructured data in the form of textual doc-
uments can be found everywhere, from medi-
cal records to game chats, and from politicians’
speeches to tweets. These documents cover a vari-
ety of genres, from serious to fun, from entire nov-
els to single words. This diversity makes dealing
with textual data particularly challenging and there
is no one-size-fits-all text mining method yet. We
are currently working on the topics of named entity
linking, topic modeling, and bias detection on var-
ious document collections from the web. We cover
the research areas natural language processing, in-
formation extraction, and recommender systems.

4.1 Named entity linking

A first step in analyzing texts is to find entities.
Named entity linking is a rather new task composed
of named entity recognition and linking the textual
mentions in a document to corresponding entries
in a knowledge base, thus disambiguating the men-
tions. The disambiguation can be performed using
additional information in the knowledge base and
the context of the mentions in the documents. We
developed a named entity linking approach that op-
erates on a textual range of relevant terms. We then
aggregate decisions from an ensemble of simple clas-
sifiers, each of which operates on a randomly sam-
pled subset from the above range [21]. The obtained
results are very good with respect to precision and
recall.
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Some tasks, such as topic-based clustering, re-
quire near perfect precision and therefore we en-
hanced our named entity linking approach using
random walks [6]. This allows for efficient compu-
tation of the linking and improves the precision at
a minimal expense of recall.

4.2 Relationship extraction

Once entities are successfully extracted and dis-
ambiguated, finding relations between those entities
is a next logical step. In the context of an industry
project with a large German bank, we aim at build-
ing company networks to support their risk manage-
ment department. These company networks are ex-
tracted automatically from newspaper articles, pos-
ing new challenges to the named entity recognition
task, which is particularly difficult for German com-
pany names, due to complex, often ambiguous nam-
ing. Further, the relationship types we are inter-
ested in differ from standard, binary relations, such
as “married with” or “located in”. Our company
networks require the detection of relations that are
not necessarily binary, e.g. “competitor with” or
“supplier to”. To this end, we developed a holistic,
seed-based algorithm to find these types of relations
by providing a handful of example instantiations.
The algorithm is based on Snowball [3] and can deal
with any type of user-provided relations to extract
relationship types with high precision.

4.3 Recommender systems

As with the information extraction tasks, we
have a strong focus on the application of our re-
search. Therefore, personalization, prediction, and
recommendation play a major role in our group’s
work. From predicting accepted answers in MOOC
forums [11], to recommending hashtags in Twit-
ter [7], we analyzed diverse text collections acces-
sible through the web. We also experimented with
recommending serendipitous news articles [12] to
present to the user not only relevant and novel ar-
ticles, but also some surprising ones.

In an attempt to bridge the gap between tradi-
tional news and social media, we developed a tweet
recommender system [15]. The goal was to pro-
vide the reader of a news article about some event
with an overview of the reactions in Twitter. While
Twitter is often only used to share and distribute
information, it is also used to express opinions, re-
ject ideas, or support certain viewpoints. To de-
tect these (subtle) opinions, traditional sentiment
analysis techniques have to be adapted to recognize
emojis, abbreviations, slang, etc. The mismatch be-
tween the language used in news articles and tweets
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makes recommending one based on the other chal-
lenging.

4.4 Bias detection

Finally, we have to deal with another mismatch
between used languages when trying to detect po-
litical bias of mainstream media. Initial experi-
ments on comparing parliamentary speeches with
news articles of various German news outlets [14]
have shown that perceived bias can be automat-
ically quantified. Given the very different genres
(speeches vs. articles), detecting biased statements
based on their comparison is rather cumbersome.
Only rarely vocabulary use is a good indicator (e.g.,
“nuclear energy” vs. “atomic energy” in Germany).
Nevertheless, identifying this bias in mainstream
media and making it visible to the reader is an im-
portant piece of information.

Beside this statement bias, newspapers can also
influence their readers by only reporting about cer-
tain topics (gate-keeping bias) or covering certain
positions more thoroughly than others (coverage
bias). Automatically detecting all three kinds of
bias is our current goal, making it necessary to ex-
tract not only entities (politicians, parties, domain
experts) and their relations, but also to do fine-
grained opinion mining and sentiment analysis.
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The Dark Citations of TODS Papers and What to Do
About It—Or: Cite the Journal Paper

Christian S. Jensen
csj@cs.aau.dk

When assessing the excellence of a scientific paper,
e.g., in a review, important aspects include the novelty
and significance of its contribution, its scientific depth,
and its mastery of the pertinent apparatus of computer
science. The excellence of a researcher can be measured
by their ability to publish in the scientific outlets with
the highest reputation.

In contrast, the academic impact of the content of a
paper can be measured by the number of citations to the
paper. In some areas, it is easier to get citations than in
other areas. However, when comparing two papers from
the same area, one paper with many citations and one
paper with few, the former can generally be considered
as the more interesting, relevant, important, and/or im-
pactful one. The academic impact of a researcher can
then be measured by the number of citations to their pa-
pers.

However, although impact as measured by citations
is then different from excellence, citations are still used
for the rating of journals. Notably, journals are rated
according to their citation-based impact factors, and a
number of publishers advertise these statistics of their
journals. Further, in some countries, the impact factors
of a journal play an important role when different insti-
tutions assess the excellence of the journal. If a jour-
nal is not rated highly by funding agencies, researchers
who rely on funding from those agencies are effectively
encouraged to publish in other journals. Likewise, if a
journal is not rated highly by hiring or promotion com-
mittees, candidates are effectively encouraged to pub-
lish in other journals. Because of reasons such as these,
I find that it is not advisable to simply ignore citations.

A journal’s two-year impact factor for a particular
year n is calculated as the sum of the number of ci-
tations given during year n to each paper published in
the journal during years n — 1 and n — 2, divided by
the count of papers published during years n — 1 and
n — 2. Thus, an impact factor of 2.5 for year 2015
means that papers published in that journal during 2013
and 2014 received an average of 2.5 citations during
2015. This definition does not state explicitly which

SIGMOD Record, June 2016 (Vol. 45, No. 2)

citations are counted. When considering the two-year
impact factor computed by Thomson Reuters, it is not
entirely transparent which citations are counted. Thom-
son Reuters maintains a master journal list. Presumably,
citations from papers in journals on this list are counted,
but the extent to which other journals and also confer-
ences are counted is not transparent. It is important for
computer science that citations from conference papers
are counted.

Having argued that citations are important, I will ar-
gue next that many citations to results published in TODS
are not counted and that TODS papers should really have
many more citations. This would substantially increase
the citation statistics of TODS, including its two-year
impact factor, and it would thus better reflect the exter-
nally perceived excellence of the journal and its papers.

A concrete example illustrates the issue. In June 2011,
I and three coauthors published a paper in TODS enti-
tled Design and analysis of a ranking approach to pri-
vate location-based services. This paper is an extension
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Figure 1: Citations to a 2008 ICDE paper and
its TODS 2011 extended version (Source: Google
Scholar as of May 14, 2016)

of a conference paper entitled SpaceTwist: Managing
the Trade-Offs Among Location Privacy, Query Perfor-
mance, and Query Accuracy in Mobile Services that we
published in ICDE in 2008. We chose to extend this
paper into a journal paper because we felt that its ap-
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proach was quite novel. Also, the paper received en-
couraging reviews and was considered for the best paper
award at ICDE. The journal paper offers more compre-
hensive coverage; for example, we involved a statistics
professor in order to be able to analyze better the paper’s
ranking approach. Thus, the journal paper contains ev-
erything that the conference paper contains, and signifi-
cantly more.

Figure 1 shows the citations to the two papers. The
journal paper received 3, 4, 6, 4, and 4 citations in the
years 2011 to 2015, respectively. If these citations are all
counted, the paper contributes 4 citations to the TODS
2012 impact factor and 6 citations to the 2013 impact
factor. The conference paper received 5, 41, 26, 47, 31,
30, 39, and 60 citations in the years 2008 to 2015. If
these citations are all counted, the paper contributes 41
citations to the ICDE 2009 impact factor and 26 cita-
tions to the 2010 impact factor.

In this example, a total of 21 citations are counted
for the results published in the journal paper from 2011
to 2015, but considering also the citations to the confer-
ence paper, the citations to the results are 228 from 2011
to 2015. The 207 concurrent citations to the conference
paper are the dark citations that are not counted. The dif-
ference between the counted citations and the uncounted
dark citations is an order of magnitude! Imagine the dif-
ference it would make if these citations were counted.

It is common practice in the database area and other
areas of computer science to first publish papers in con-
ferences and only then publish extended versions in jour-
nals. Indeed, database and other journals accept ex-
tended conference papers, and they publish many pa-
pers that are extensions of conference papers. TODS
requires that extended versions include at least 30% of
new content material (see http://tods.acm.org/
ThirtyPercentRulePolicy.cfm),andIestimate
that around three quarters of the papers published each
year are extensions of conference papers.

So far, I have argued that we cannot simply ignore ci-
tations and that results published in TODS receive many
more citations than are actually counted. Why does the
problem occur and how can we fix the problem?

The example shows that other papers continue to cite
the conference paper even when it has been superseded
by an extended journal paper. This practice may occur
because the conference paper is cited initially, as only it
exists. (This was true for 2008 through 2010.) Then the
authors of subsequent papers just keep citing the confer-
ence paper. They may not have noticed that an extended
journal version had becomes available, as they already
have something to cite. That said, in my view, this prac-
tice is generally not one that makes the most sense from
an academic perspective.

On possible action that addresses the problem is for
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TODS to publish a higher fraction of papers that do not
extend a conference paper. Such papers have no dark
citations. TODS has already started to encourage more
submissions of such original papers, by making them el-
igible for presentation at SIGMOD (see the editorial The
Best of Two Worlds—Present Your TODS Paper at SIG-
MOD in the June 2015 issue of TODS). Other journals
have established fast-track publication schemes for orig-
inal papers. TODS could do something similar. How-
ever, this action can only partially fix the problem.

Another possible action is to develop a citation met-
ric and system that takes the dark citations into account
when assessing the citation performance for the results
published in journals. While I think that such a metric
and system make sense, the result is yet another metric
that may not be adopted where it counts. Specifically, it
is going to be a long, tedious, and up-hill battle to get
publishers to use yet another metric, and it may be even
harder to get institutions to adopt the new metric.

I propose a very practical action that authors can start
taking right now and that I think is good for science.
Specifically, I propose to address the problem of dark
citations by always citing the extended journal version
of a paper whenever it is available. The journal version
is the definitive and most recent account of the research.
The journal version has gone through an additional and
more formal review process. The journal version ex-
tends and, likely, consolidates the conference version’s
results. And the journal version is likely to offer a better
and more up-to-date coverage of related work. These
are all good arguments for citing the journal version.

There can be reasons for also citing the conference
version. One is that it may be important to establish
the order of invention. It may have taken several years
for an extended version to appear in a journal because
it takes time to develop the new results, because the re-
view process and revisions take time, and because there
may be a delay from acceptance to actual publication in
an issue. A possible reason for citing only the confer-
ence version occurs if one wants to make reference to
content in the conference version that is not present in
the journal version. However, in my experience as an
editor and an author, this situation occurs rarely.

In summary, it is important for the database com-
munity to have journals that are not only excel-
lent, but are also highly cited. Results published in
TODS have many more citations than are counted.
You can help by citing the extended journal paper
when one exists.

Acknowledgments My colleague Rick Snodgrass, a
former TODS Editor-in-Chief, provided valuable com-
ments that helped improve the presentation.

SIGMOD Record, June 2016 (Vol. 42, No. 2)



SIGMOD

Program Chair:

Floris Geerts

University of Antwerp
floris.geerts@uantwerpen.be

Program Committee:

Leopoldo Bertossi (Carleton Univ.)

Meghyn Bienvenu (CNRS, Univ. of Montpellier)
Angela Bonifati (Univ. de Lyon)

Andrea Cali (Univ. of London)

Rada Chirkova (NC State Univ.)

Giuseppe De Giacomo (Sapienza Univ. di Roma)
Ting Deng (Beihang Uniyv.)

Diego Figueira (CNRS)

Georg Gottlob (Oxford Univ.)

Paraschos Koutris (Univ. of Wisconsin-Madison)
Andrew McGregor (Univ. of Massachusetts)
Gerome Miklau (Univ. of Massachusetts)

Jeff Phillips (Univ. of Utah)

Andreas Pieris (Vienna Univ. of Technology)
Juan L. Reutter (Pontificia Univ. Catdlica)
Thomas Schwentick (Univ. Dortmund)
Francesco Silvestri (IT Univ. of Copenhagen)
Yufei Tao (Chinese Univ. of Hong Kong)

Stijn Vansummeren (Univ. Libre de Bruxelles)
Jef Wijsen (Univ. de Mons)

Qin Zhang (Indiana Univ.)

PODS General Chair:
Tova Milo (Tel Aviv Univ.)

Proceedings Chair:
Emanuel Sallinger (Oxford Univ.)

Publicity Chair:
Paolo Guagliardo (Univ. of Edinburgh)

Important Dates

First Submission Cycle:

Abstract submission Jun 12, 2016
Paper submission Jun 19, 2016
Accept/Reject/Revise Aug 28, 2016
Revision deadline Sep 25,2016
Accept/Reject (Revisions) Oct 30, 2016
Second Submission Cycle:

Abstract submission Dec 11, 2016
Paper submission Dec 18, 2016
Accept/Reject notification Feb 26, 2017
Camera ready Mar 19, 2017

All deadlines end at 11:59pm PST.

SIGMOD Record, June 2016 (Vol. 45, No. 2)

CALL FOR PAPERS
36th ACM SIGMOD-SIGACT-SIGART Symposium on

PRINCIPLES OF DATABASE SYSTEMS (PODS 2017)

May 14 — May 19, 2017, Raleigh, North Carolina, USA
http://sigmod2017.0rg

The PODS symposium series, held in conjunction with the SIGMOD confer-
ence series, provides a premier annual forum for the communication of new
advances in the theoretical foundations of data management, traditional or
non-traditional.

For the 36th edition, PODS continues to aim to broaden its scope, and calls
for research papers providing original, substantial contributions along one or
more of the following aspects:

— deep theoretical exploration of topical areas central to data management;

— new formal frameworks that aim at providing the basis for deeper theoret-
ical investigation of important emerging issues in data management; and

— validation of theoretical approaches from the lens of practical applicability
in data management.

Topics that fit the interests of the symposium include:

— design, semantics, query languages

— databases and knowledge representation

— data models, data structures, algorithms for data management

— concurrency & recovery, distributed/parallel databases, cloud computing

— model theory, logics, algebras, computational complexity

— graph databases and (semantic) Web data

— data mining, information extraction, search

— data streams

— database aspects of machine learning

— data-centric (business) process management, workflows, web services

— incompleteness, inconsistency, uncertainty in data management

— data and knowledge integration and exchange, data provenance, views and
data warehouses, metadata management

— domain-specific databases (multi-media, scientific, spatial, temporal, text)

— data privacy and security

Submission Guidelines: Submitted papers must be formatted using the des-
ignated style file (sig-alternate-10.cls) which uses 10pt font size and line
spacing of 11pt using the “\documentclass{sig-alternate-10}”” command in
your LaTeX document. Submitted papers should be at most twelve pages,
excluding bibliography. Additional details may be included in an appendix,
which, however, will be read at the discretion of the PC. Submissions that do
not conform to these guidelines risk rejection without consideration of their
merits.

The submission process is online, using https://easychair.org/
conferences/?conf=pods2017. Note that, unlike the SIGMOD con-
ference, PODS does not use double-blind reviewing, and therefore PODS
submissions should have the names and affiliations of authors listed on the
paper.

The results of submitted paper must be unpublished and not submitted else-
where, including the formal proceedings of other symposia or workshops.
Authors of an accepted paper will be expected to sign copyright release
forms, and one author is expected to present it at the conference.

Awards: Awards may be given, as judged by the program committee, for best
paper and best student paper. More details can be found on the conference
website.

71



