
Technical Perspective:
Taming Hardware Skew as Parallel DBMSs Scale Out

David J. DeWitt
Microsoft Corporation
Madison WI, U.S.A.

For almost 40 years now, relational database management
systems have successfully used data parallelism to speed up
the evaluation of large queries. Here, by “data parallelism”
we mean taking one operation (for example, a “join” or an
“aggregation”) and spreading it over multiple machines, each
operating on a part of the data. In general this approach
works spectacularly well, yielding almost linear speedups
over a wide variety of workloads. However, like any form
of parallelism, data-parallel relational query processing is
vulnerable to “skew.” The database literature is full of work
dealing with the skew that arises when one node in a parallel
system is allocated more work than the average.

The following paper, by Li, Naughton, and Nehme, is in-
teresting in that it deals with another kind of skew, one that
has received much less attention: “hardware skew,” that is,
skew that arises because the processing units in a parallel
system are not all of equal power. Such skew can arise in
several ways – for example, a parallel system could be con-
structed“on the fly”by allocating available nodes in a cloud,
or a company could upgrade an on-premises system with the
addition of new nodes that are of a di↵erent generation and
class of hardware than the existing ones. If the DBMS is
oblivious to the fact that the underlying system is not uni-
form, the result will be the same as that achieved if the
system were constructed entirely of the slowest nodes in the
system.

If all the nodes in the system are equally “balanced” the
solution is simple – if one node is 1/2 as fast as the average,

give that node 1/2 the average work, and you are set. Unfor-
tunately, in practice, things are not that simple. One node
may have a faster CPU but the same I/O performance, or
vice-versa; or nodes may have di↵ering amounts of memory
or network bandwidth. In such cases simple proportional al-
location of work will be suboptimal. The situation is further
complicated by the fact that di↵erent queries make di↵erent
demands on the system with respect to CPU, memory, net-
work, and disk; in fact, di↵erent stages of a single query can
make very di↵erent demands.
This, finally, is the situation addressed by the paper, “Re-

source Bricolage for Parallel DBMSs on Heterogeneous Clus-
ters.” The authors make use of techniques for cost esti-
mation growing out of the query optimization and query
running time prediction literature; they combine these tech-
niques with a linear programming model that chooses an op-
timal allocation for a given query on a given system. They
demonstrate through an analytic model as well as experi-
ments with an implementation that their proposed solution
dominates simpler alternatives.
An interesting question this work raises is the duality be-

tween “on-demand” load balancing of the type employed by
MapReduce-like systems and the predictive, up-front alloca-
tion of work advocated by this paper. My suspicion is that
both approaches have their place, and the choice of which to
use depends on issues such as the predictability of the work-
load and the importance of “locality” in the performance of
the system. Perhaps hybrid solutions will be the answer in
some cases.

SIGMOD Record, March 2016 (Vol. 45, No. 1) 41


