
Technical Perspective: Data Distribution for Fast Joins

Leonid Libkin
School of Informatics, University of Edinburgh

libkin@inf.ed.ac.uk

A model database theory paper is usually assumed to have
several key ingredients:

• it should consider a real data management problem
that is of interest in practice;

• it should provide a clean and simple formalism that can
be followed by theoreticians and practitioners alike;

• it should provide theoretical results that give us in-
sights about the original practical problem.

In your favorite database theory papers you will surely
find all these three ingredients. A recent paper that has
them as well – and that serves as the basis for the high-
lights paper that follows – is the PODS 2015 paper by
Ameloot, Geck, Ketsman, Neven, and Schwentick that con-
siders single-round multi-way join algorithms in parallel sys-
tems. This brief overview explains why this is so, and hope-
fully convinces you to read the full highlights paper.

The problem.
Large-scale data analytics and massive parallelism are two

concepts that go hand-in-hand; hence the problem of e�-
cient evaluation of join queries is one that is actively stud-
ied. The challenges are quite di↵erent from the usual join
processing, as the dominant factor is no longer the I/O, but
rather communication cost. The most drastic way to reduce
it is to have just a single round of communication: that is,
distribute data to servers, let them do their work, and then
collect the results to produce the answer to the join query.

Afrati and Ullman’s EDBT 2010 paper initiated the study
of such multi-join algorithms. A refinement, Hypercube, al-
gorithm was proposed in a PODS 2013 paper by Beame,
Koutris, and Suciu and then experimentally evaluated. In
those algorithms, the network topology is a hypercube. To
evaluate a query, one replicates each tuple in several of its
nodes and then lets each node perform its computation.

While the hypercube is a rather natural distribution pol-
icy, it is certainly not the only one. But can we reason
about single-round join evaluation under arbitrary distribu-
tion policies?

Also, distribution policies are query-dependent. While
finding one policy for all scenarios is of course unrealistic,
what about a more down-to-earth requirement: if we already
know that a policy works for a query Q, perhaps we can use
the same policy for another query Q0, without redistributing
data? These are the questions addressed in the paper.

The formalism.
It is very simple and elegant. A network is a set of node

names; a distribution policy simply assigns each fact (a tuple
in a relation) to a set of nodes. This is the communication
round. The query Q is then executed locally at each node.
It is parallel-correct if such a distributed evaluation gives the
result of Q; that is, tuples in the answer to Q are exactly
those that are produced locally at network nodes.

Next, if we have two queries Q and Q0, and we know that
each distribution policy that makes Q parallel-correct does
the same for Q0, we say that parallel-correctness transfers
from Q to Q0. In this case, the work done for Q in terms of
looking for the right distribution policy need not be re-done
for Q0.

The results, and what they tell us.
This is a theory paper, and the main results are about

the complexity of checking parallel-correctness and parallel-
transferability. The paper concentrates on the class of
conjunctive queries, i.e., slightly more general queries that
multi-way joins.

Parallel-correctness, under mild assumptions, is ⇧p
2

-
complete. That is, it is a bit harder than NP or coNP, but
still well within polynomial space. In practice, this means
that checking whether a distribution policy guarantees cor-
rectness for all databases can be done in exponential time.
Note that this is a static analysis problem (the database
is not an input), and exponential time is tolerable and in
fact the expected best case for conjunctive queries (as their
containment is NP-complete).

The paper then shows that the same problems for con-
junctive queries with negations requires (modulo some com-
plexity theory assumptions) double-exponential time, i.e., is
realistically unsolvable, which means that one needs to re-
strict attention to simple joins.

Finally, parallel-transferability for conjunctive queries is
solvable in exponential time (remember, this is a problem
about queries, not about data), and importantly it is in NP
for many classes of conjunctive queries, likely multi-joins
(which hints at the possibility of using e�cient NP solvers
to address this problem in practice).

In summary, the paper provides an elegant theoretical in-
vestigation of a practically important problem, and gives a
good set of results that delineate the feasibility boundary.

32 SIGMOD Record, March 2016 (Vol. 45, No. 1)


