Technical Perspective:
Broadening and Deepening Query Optimization Yet Still
Making Progress

Jeffrey F. Naughton
University of Wisconsin—Madison
Madison WI, U.S.A.

Query optimization is a fundamental problem in data man-
agement. Simply put, most database query languages are
declarative rather than imperative — that is, they specify
properties that the answer should satisfy, rather than give
an algorithm to compute the answer. The best known and
most widely used database query language, SQL, is a prime
example of a language for which optimization is essential.

By “essential” I mean that database optimization is not a
matter of shaving 10% or even a factor of 2X from a query’s
execution time. In database query evaluation, the differ-
ence between a good plan and a bad or even average plan
can be multiple orders of magnitude — so successful query
optimization makes the difference between a plan that runs
quickly and one that never finishes at all. Accordingly, since
the seminal papers in the 1970s, query optimization has re-
ceived and continues to receive a great deal of attention from
both the industrial and research database communities.

Early work on optimization focused on a scenario in which
the query was fully specified, and the optimization goal was
query evaluation time. That is, the problem was this: what
is the fastest way to evaluate this query? While this prob-
lem was (and is!) challenging, it is not broad enough to
capture the optimization problem faced by modern systems.
As an important example, many times the query is not fully
specified in advance (as a simple example, it may contain
variables, or “parameters” that are only discovered at run
time). This generalization gives rise to parametric query
optimization, where the problem is as follows:

Given a partially specified query, find a set of
good evaluation plans, one of which will be cho-
sen at run time when the parameter is instanti-
ated.

Yet another necessary generalization has to do with the

SIGMOD Record, March 2016 (Vol. 45, No. 1)

optimization goal. Sometimes execution time is not the only
criterion by which plans should be selected. As a prominent
and current example, if the query is being run in the cloud,
the system may of course want to find fast evaluation plans,
but may also desire inexpensive ones. That is, now we have
two objectives: running time and cost. This gives rise to
multi-objective query optimization, where the problem is as
follows:

Given a query and a set of objectives, find a set of
plans that are Pareto-optimal for these objectives
(a plan is “Pareto-optimal” if it is not dominated
in all objectives by other plans.)

Both parametric and multi-objective query optimization
have been studied in the past, but the following paper, by
Trummer and Koch, is a remarkable tour de force explo-
ration of the combination of the two. Here, the problem
is roughly the following. Given a partially specified query,
and multiple objectives for the resulting plan, find a set of
Pareto-optimal plans that can be chosen at run time by fill-
ing in all parameters.

Since the original query optimization problem and its vari-
ants are already very difficult, one might despair that simul-
taneously treating two substantial extensions would yield
a hopelessly intractable problem. Thus the current paper
is surprising in its elegance and effectiveness. The paper
embeds the problem in an insightful and expressive formal
framework, and specifies a solution that combines aspects
of piecewise linear functions, dynamic programming with
pruning based upon Pareto polytope analyses, and linear
programming. A thorough set of experiments with an im-
plementation of their algorithm completes the paper, and
indicates that all of this actually works.

23



