
Consistent Query Answering for Primary Keys

Paraschos Koutris
University of Wisconsin-Madison

Madison, Wisconsin, USA
paris@cs.wisc.edu

Jef Wijsen
University of Mons

Mons, Belgium
jef.wijsen@umons.ac.be

ABSTRACT
We study the complexity of consistent query answering with
respect to primary key violations, for self-join-free conjunc-
tive queries. A repair of a possibly inconsistent database
is obtained by selecting a maximal number of tuples with-
out selecting two distinct tuples with the same primary key
value. For any Boolean query q, CERTAINTY(q) is the prob-
lem that takes a database as input, and asks whether q is
true in every repair of the database. The complexity of this
problem has been extensively studied for q ranging over the
class of self-join-free Boolean conjunctive queries. A research
challenge is to determine, given q, whether CERTAINTY(q)
belongs to complexity classes FO, P, or coNP-complete.
We show that for any self-join-free Boolean conjunctive query
q, it can be decided whether or not CERTAINTY(q) is in FO.
Further, CERTAINTY(q) is either in P or coNP-complete,
and the complexity dichotomy is e↵ective. This settles a
research question of practical relevance that has been open
for ten years.

1. INTRODUCTION
A database is inconsistent if it violates one or more in-

tegrity constraints that the data is required to obey. Incon-
sistency in the data can arise in various settings, for exam-
ple, when we integrate data from heterogeneous sources, or
when the original data sources are imprecise or noisy.

The standard method of dealing with inconsistency is data
cleaning , where the database is first repaired to satisfy the
integrity constraints, and then we use the clean version to
answer queries. However, since we can typically repair a
database in many di↵erent ways, it is often the case that we
have to make arbitrary choices about which data to keep,
which means information may be lost. An alternative to
data cleaning is consistent query answering (CQA), which
was first introduced in [1]. In this framework, we answer
queries by considering all possible repairs of the inconsistent
database, and returning the intersection of the answers on
all repairs, which is called the consistent (or certain) answer.

In this article, we focus on integrity constraints that are
primary key constraints. Consider the database in Fig. 1,
which includes the table E that stores employee information
and the table D that stores department information. The
primary keys of E and D are EID and DNAME, respectively.
There are two foreign keys: every DNAME-value in E must
occur in the DNAME-column of D, and every MGR-value in

The original version of this article was published in PODS
2015.

E EID ENAME CITY DNAME

E1 Smith London Training

E2 Jones Paris Training

E3 Blake Paris HR

E3 Blake London HR

E4 Clark London HR

E5 Adams Athens HR

D DNAME BUDGET CITY MGR

Training 120 London E3

HR 300 Paris E3

HR 310 Paris E5

Figure 1: Example of inconsistent database that vi-
olates the primary key constraints.

D must occur in the EID-column of E. The CITY column in
table E stores the city of birth for each employee.
Both tables in the database contain primary key viola-

tions: for example, the employee with EID E3 has two entries
in table E. Two or more tuples that agree on their primary
key represent mutually exclusive possibilities. Such tuples
are said to form a block ; in Fig. 1, blocks are separated by
dashed lines for readability. The reader should notice that
even though we do not know the exact city where Blake was
born, we still know that it is either Paris or London; con-
trast this with the case where we would represent the city
with a single uninformative NULL.
Blocks with two or more tuples model uncertainty: ex-

actly one of the tuples is true, but we do not know which
one is true. Therefore, we use the term uncertain database
to refer to databases that can contain primary key viola-
tions. A repair (or possible world) of an uncertain database
is obtained by selecting exactly one tuple from each block.
In this article, we study how to answer conjunctive queries

on uncertain databases. We allow joins, but we disallow that
a table be joined with itself (called a self-join). It is natural
to distinguish between possible and certain answers: the
possible answer to a query consists of the tuples that are in
the answer to the query on some repair, while the certain
(or consistent) answer consists of the tuples that are in the
answer to the query on every repair. Consider, for example,
the query “Get the names of employees who were born in
London,”which is encoded in SQL as follows.

SIGMOD Record, March 2016 (Vol. 45, No. 1) 15

SELECT E1.ENAME

FROM E AS E1
WHERE E1.CITY=‘London’;

The possible answer to this query consists of Smith, Clark,
and Blake. The certain answer consists of Smith and Clark.
Blake does not belong to the certain answer, since the data-
base leaves open the possibility that Blake was born in Paris.
For conjunctive queries without self-join, it is easy to see
that the possible answer is obtained by executing the query
on the uncertain database. Computing certain answers is a
more di�cult task. Interestingly, the certain answer to the
above query is computed by the following SQL query.

SELECT E1.ENAME

FROM E AS E1
WHERE E1.CITY=‘London’
AND NOT EXISTS (SELECT *

FROM E AS E2
WHERE E2.EID=E1.EID
AND E2.CITY 6=‘London’);

The NOT EXISTS subquery checks the non existence of a
city of birth other than London, and thereby excludes Blake
from the answer. Unfortunately, it is not always possible to
obtain certain answers directly in SQL. We show in this pa-
per that for all conjunctive queries without self-joins, CQA
with respect to primary keys can be classified into one of
three exclusive classes of increasing complexity:

1) For some queries, the certain answer can be expressed
in relational calculus (or first-order logic), and hence can be
written in SQL. One such query was shown before; as we will
see in Section 3, another example is the query “Get names
for departments which are self-managed (i.e., are managed
by one of their own employees).”

SELECT D.DNAME FROM E, D
WHERE E.EID=D.MGR

AND E.DNAME=D.DNAME;

The certain answer consists of HR. Notice that although
there are two possibilities for the manager of HR, we know
for certain that HR is self-managed.

2) For some queries, the certain answer can be computed
in polynomial time (with respect to the database size), but
cannot be expressed in relational calculus. We will see in
Section 3 that an example of such a query is “Get names for
employees who manage the department for which they work.”

SELECT E.ENAME FROM E, D
WHERE E.EID=D.MGR

AND E.DNAME=D.DNAME;

The certain answer is empty.

3) For some queries, the certain answer cannot be obtained
in polynomial time (unless P = NP), since it is coNP-hard
to compute the certain answer. We will see in Section 3 that
an example of such query is “Get names for employees who
work in the city of their birth.”

SELECT E.ENAME FROM E, D
WHERE E.CITY=D.CITY
AND E.DNAME=D.DNAME;

The certain answer consists only of Smith.

Given a conjunctive query q without self-join, it can be
decided which of the three classes it belongs to. Moreover,
if the query falls into the first or second class, then we know
how to construct an SQL query or a polynomial-time algo-
rithm for computing its certain answer.
Our result provides a complexity classification for CQA

with respect to primary keys, when the query ranges over
the set of self-join-free conjunctive queries. This complexity
classification task has been an open problem since 2005 [8],
and culminates a long line of research [8, 10, 12, 20, 22].
In Section 6, we explain why our theoretical results are

of interest to practitioners and system builders. In short,
CQA has often been implemented by means of expressive
and computationally expensive languages, like Disjunctive
Logic Programming. The e�ciency of these algorithms is
likely to be far from optimal in the case that consistent an-
swers can be computed in polynomial time or, even faster,
by executing a single SQL query. The practical relevance of
our results is that they tell us when computationally expen-
sive formalisms can be avoided. Moreover, it turns out that
for many natural queries, consistent answers can be obtained
with low complexity.

Organization. Section 2 introduces the data and query
model. In Section 3, we define a syntactic tool, called attack
graph, and use it to state Theorem 1, which is the main result
of the article. Sections 4 and 5 zoom in on two important
complexity boundaries: Section 4 elaborates on first-order
expressibility, and Section 5 on polynomial-time tractability.
Section 6 discusses both the theoretical and systems-oriented
related work.

2. PRELIMINARIES
We assume disjoint sets of variables and constants. If ~x is

a sequence containing variables and constants, then vars(~x)
denotes the set of variables that occur in ~x. A valuation over
a set U of variables is a total mapping ✓ from U to the set
of constants. At several places, it is implicitly understood
that such a valuation ✓ is extended to be the identity on
constants and on variables not in U .

Atoms and key-equal facts. Each relation name R of
arity n, n � 1, has a unique primary key which is a set
{1, 2, . . . , k} where 1  k  n. We say that R has signature
[n, k] if R has arity n and primary key {1, 2, . . . , k}. We say
that R is simple-key if k = 1. Elements of the primary key
are called primary-key positions. For all positive integers
n, k such that 1  k  n, we assume denumerably many re-
lation names with signature [n, k]. For example, the relation
name E from Fig. 1 has signature [4, 1] and is simple-key.
If R is a relation name with signature [n, k], then the ex-

pression R(s
1

, . . . , sn) is called an R-atom (or simply atom),
where each si is either a constant or a variable (1  i  n).
Such an atom is commonly written as R(~x, ~y) where the
primary key value ~x = s

1

, . . . , sk is underlined and ~y =
sk+1

, . . . , sn. An R-fact (or simply fact) is an R-atom in

which no variable occurs. Two facts R
1

(~a
1

,~b
1

), R
2

(~a
2

,~b
2

)

are key-equal , denoted R
1

(~a
1

,~b
1

) ⇠ R
2

(~a
2

,~b
2

), if R
1

= R
2

and ~a
1

= ~a
2

. An R-atom or an R-fact is simple-key if R is
simple-key.
We will use letters F,G,H for atoms. For an atom F =

R(~x, ~y), we denote by key(F) the set of variables that occur
in ~x, and by vars(F) the set of variables that occur in F ,
that is, key(F) = vars(~x) and vars(F) = vars(~x) [vars(~y).

16 SIGMOD Record, March 2016 (Vol. 45, No. 1)

Uncertain databases, blocks, and repairs. An uncer-
tain database is a finite set db of facts using only the relation
names of a fixed database schema. We refer to databases as
“uncertain databases” to emphasize that such databases can
violate primary key constraints.

A block of db is a maximal set of key-equal facts of db.
The term R-block refers to a block of R-facts, i.e., facts with
relation name R. An uncertain database db is consistent if
no two distinct facts are key-equal (i.e., if every block of db
is a singleton). A repair of db is a maximal (with respect
to set inclusion) consistent subset of db.

Boolean conjunctive queries. A Boolean query is a
mapping q that associates true or false to each uncertain
database, such that q is closed under isomorphism [15]. We
write db |= q to denote that q associates true to db, in
which case db is said to satisfy q. A Boolean first-order
query is a Boolean query that can be defined in first-order
logic (with equality and constants, but without other built-in
predicates). A Boolean conjunctive query is a finite set q =
{R

1

(~x
1

, ~y
1

), . . . , Rn(~xn, ~yn)} of atoms. We denote by vars(q)
the set of variables that occur in q. The set q represents the
first-order sentence

9u
1

· · · 9uk

�

R
1

(~x
1

, ~y
1

) ^ · · · ^Rn(~xn, ~yn)
�

,

where {u
1

, . . . , uk} = vars(q). This query q is satisfied by
uncertain database db if there exists a valuation ✓ over
vars(q) such that for each i 2 {1, . . . , n}, Ri(~a,~b) 2 db with

~a = ✓(~xi) and ~b = ✓(~yi).
We say that a Boolean conjunctive query q has a self-join

if some relation name occurs more than once in q. If q has
no self-join, then it is called self-join-free. If q is a Boolean
conjunctive query, ~x = hx

1

, . . . , x`i is a sequence of distinct
variables that occur in q, and ~a = ha

1

, . . . , a`i is a sequence
of constants, then q

[~x 7!~a] denotes the query obtained from q
by replacing all occurrences of xi with ai, for all 1  i  `.

We write BCQ for the class of Boolean conjunctive queries,
and sjfBCQ for the class of self-join-free Boolean conjunctive
queries. If q is a sjfBCQ query with an R-atom, then, by an
abuse of notation, we write R to mean the R-atom of q.

Consistent query answering. For every Boolean query
q, the decision problem CERTAINTY(q) takes as input an
uncertain database db, and asks whether q is satisfied by
every repair of db.

Problem: CERTAINTY(q)
Input: uncertain database db
Question: Does every repair of db satisfy q?

Notice that the Boolean query q is not part of the input.
Hence, every Boolean query q gives rise to a new problem.
Since the input to CERTAINTY(q) is an uncertain database,
we consider the data complexity of the problem. The exten-
sion to non-Boolean queries will be discussed in Section 3.

3. ATTACK GRAPHS
The construct of attack graph is the main tool for solving

the complexity classification task of CERTAINTY(q). Attack
graphs were first introduced in [20] for studying first-order
expressibility of CERTAINTY(q) for acyclic (in the sense
of [2]) self-join-free conjunctive queries q.

R(x, y)

S(y, z)T (z, x)

U(x, u)

V (x, u, v)

Figure 2: Attack graph of the query in Example 1.

Let q 2 sjfBCQ. We define K(q) as the following set of
functional dependencies:

K(q) := {key(F)! vars(F) | F 2 q}.
For every atom F 2 q, we define F+,q as the following set
of variables:

F+,q := {x 2 vars(q) | K(q \ {F}) |= key(F)! x}.
The attack graph of q is a directed graph whose vertices
are the atoms of q. There is a directed edge from F to G
(F 6= G) if there exists a sequence

F
0

z1
a F

1

z2
a F

2

. . .
zn
a Fn (1)

where
• F

0

, . . . , Fn are atoms of q;
• F

0

= F and Fn = G; and
• for all i 2 {1, . . . , n}, zi 2 vars(Fi�1

) \ vars(Fi) and
zi 62 F+,q.

A directed edge from F to G in the attack graph of q is
also called an attack from F to G, denoted by F

q G. The
sequence (1) is called a witness for the attack F

q G.

If F
q G, then we also say that F attacks G (or that G

is attacked by F). An attack from F to G is called weak if
K(q) |= key(F)! key(G); otherwise it is strong . A directed
cycle in the attack graph of q is called weak if all attacks in
the cycle are weak; otherwise the cycle is called strong .

Example 1. Let q = {R(x, y), S(y, z), T (z, x), U(x, u),

V (x, u, v)}. We have R+,q = {x, u, v}. A witness for R
q T

is R
y

a S
z

a T . The complete attack graph is shown in Fig. 2.
All attacks are weak.

The above definition of an attack graph is purely syntac-
tic. Semantically, an attack from an R-atom to an S-atom
means that there exists an uncertain database db such that
every repair of db satisfies q, and such that two key-equal
R-facts join exclusively with two S-facts that are not key-
equal. For the query of Example 1, such a database could
be db = {R(1, a), R(1, b), S(a,↵), S(b,�), . . . }, in which
the two R-facts are key-equal, R(1, a) joins exclusively with
S(a,↵), and R(1, b) joins exclusively with S(b,�), and the
two S-facts are not key-equal. Therefore, the attack graph
of Fig. 2 contains a directed edge from the R-atom to the
S-atom.
Equipped with the notion of attack graph, we can now

present our result for the complexity classification task of

SIGMOD Record, March 2016 (Vol. 45, No. 1) 17

CERTAINTY(q). FO is the descriptive complexity class of
decision problems expressible in first-order logic.

Theorem 1. For every q 2 sjfBCQ,
1. if the attack graph of q is acyclic, then CERTAINTY(q)

is in FO;
2. if the attack graph of q is cyclic but contains no strong

cycle, then CERTAINTY(q) is in P and is L-hard; and
3. if the attack graph of q contains a strong cycle, then

CERTAINTY(q) is coNP-complete.
Furthermore, it can be decided in polynomial time in the size
of q which of the above three cases applies.

Before giving some examples, we explain how to deal with
non-Boolean queries, which are common in practice. If q 2
sjfBCQ and ~x is a sequence of distinct variables of vars(q),
then the rule ~x q denotes the conjunctive query that is
obtained from q by letting the variables of ~x be free variables.
Given an uncertain database db, the certain answer to this
rule is the set of tuples ~a (of the same length as ~x), such
that q

[~x 7!~a] is satisfied by every repair of db.
The attack graph of ~x q is the attack graph of q

[~x 7!~c] for
some sequence ~c of constants (of the same length as ~x). The
results that follow are independent of the choice of ~c. This
is tantamount to saying that free variables can be treated
like constants.
It is easy to show that Theorem 1 extends to rules ~x q,

where q is always assumed to be self-join-free:
1. if the attack graph is acyclic, then there exists a first-

order query that computes the certain answer;
2. if the attack graph is cyclic but contains no strong

cycle, then there exists a polynomial-time algorithm
(but no first-order query) that computes the certain
answer; and

3. if the attack graph constains a strong cycle, then, un-
less P = NP, there exists no polynomial-time algo-
rithm that computes the certain answer.

The query “Get names for departments which are self-
managed (i.e., are managed by one of their own employees),”
introduced in Section 1, is expressed by the following rule:

q
1

: d E(m,n, c
1

, d),D(d, b, c
2

,m).

Treating the free variable d as a constant, we obtain
E(m,n, c

1

, d)+,q1 = {m, b, c
2

} and D(d, b, c
2

,m)+,q1 = {}.
The only attack is from the D-atom to the E-atom. Since
the attack graph is acyclic, the certain answer to this query
can be computed in SQL.

Next, consider the query “Get names for employees who
manage the department for which they work.”

q
2

: n E(m,n, c
1

, d),D(d, b, c
2

,m).

We have E(m,n, c
1

, d)+,q2 = {m} and D(d, b, c
2

,m)+,q2 =
{d}. The E-atom attacks the D-atom because of the shared
variable d, and the D-atom attacks the E-atom because of the
shared variable m. The attack graph is cyclic, but contains
no strong cycle. Therefore, the certain answer to this query
can be computed in polynomial time, but not in first-order
logic or SQL.

Finally, consider the query “Get names for employees who
work in the city of their birth.”

q
3

: n E(e, n, c, d),D(d, b, c,m).

We have E(e, n, c, d)+,q3 = {e} and D(d, b, c,m)+,q3 = {d}.
Both atoms attack each other because of the shared variable

c. Moreover, the attack from the D-atom to the E-atom
is strong. Since the attack graph contains a strong cycle,
there exists no polynomial-time algorithm for computing the
certain answer to this query (unless P = NP).
Before providing more insights into the proof of Theo-

rem 1, one more definition is needed. So far we have defined
an attack from an atom to another atom. The following
definition introduces attacks from an atom to a variable.

Definition 1. Let q 2 sjfBCQ. Let R be a relation name
with signature [1, 1] such that R does not occur in q. For
F 2 q and z 2 vars(q), we say that F attacks z, denoted

F
q z, if F

q0 R(z) where q0 = q [{R(z)}.

Example 2. Clearly, if F
0

z1
a F

1

. . .
zn
a Fn is a witness for

F
0

q Fn, then F
0

q zi for every i 2 {1, . . . , n}. Notice also
that if q = {R(x, y)}, then the attack graph of q contains no

edge, yet R
q y.

4. FIRST-ORDER EXPRESSIBILITY
In this section, we elaborate on the first item in the state-

ment of Theorem 1, as well as the L-hard lower complexity
bound stated in the second item. Taken together, this leads
to the following characterization of first-order expressibility
of CERTAINTY(q).

Theorem 2. For every q 2 sjfBCQ, CERTAINTY(q) is in
FO if and only if the attack graph of q is acyclic.

To prove the only-if direction, the first step is to show
that for q

0

= {R
0

(x, y), S
0

(y, x)}, CERTAINTY(q
0

) is L-
hard. The query q

0

is in some sense the “simplest” query
for which consistent query answering is L-hard (an earlier
result in [21] showed the weaker result that CERTAINTY(q

0

)
is not in FO). Then, it is shown that for every q 2 sjfBCQ,
if the attack graph of q is cyclic, there exists a first-order
reduction from CERTAINTY(q

0

) to CERTAINTY(q), which
implies that CERTAINTY(q) is L-hard (and thus not in FO).
For the if-direction, assume that q 2 sjfBCQ such that

the attack graph of q is acyclic. Assume q = {R
1

(~x
1

, ~y
1

),
. . . , Rn(~xn, ~yn)}, where the atoms are listed in a topological
ordering of the attack graph. Then, it can be shown that
CERTAINTY(q) is solved by Algorithm 1, in which⇠ denotes
“is key-equal to.”

Input : Uncertain database db
Output: Does every repair of db satisfy q?

if 9s
1

2 R
1

8r
1

2 R
1

s.t. r
1

⇠ s
1

:
9s

2

2 R
2

8r
2

2 R
2

s.t. r
2

⇠ s
2

:
. . .
9sn 2 Rn 8rn 2 Rn s.t. rn ⇠ sn:

the tuples r
1

, r
2

, . . . , rn together satisfy q
then

return “yes”
else

return “no”

Algorithm 1: Algorithm for CERTAINTY(q) for an
sjfBCQ query q whose (acyclic) attack graph has topo-
logical ordering R

1

, R
2

, . . . , Rn.

18 SIGMOD Record, March 2016 (Vol. 45, No. 1)

In the if -condition of Algorithm 1, every existential quan-
tifier 9si selects an Ri-block, and the subsequent univer-
sal quantifier 8ri lets ri range over all facts of that block.
At the end, all facts ri together must satisfy the query.
It is easy to encode Algorithm 1 in first-order logic (or in
SQL). This implies that if the attack graph of q 2 sjfBCQ is
acyclic, we can e↵ectively construct a first-order definition
of CERTAINTY(q). Such a first-order definition is commonly
called a consistent first-order rewriting for q.

5. POLYNOMIAL-TIME TRACTABILITY
In this section, we outline a polynomial-time algorithm for

CERTAINTY(q) in case that the attack graph of q contains
no strong cycles (stated in the second item of Theorem 1).
We refer the reader to [13, 14] for the proof of the coNP-
hard lower bound in case that the attack graph contains a
strong cycle.

Theorem 3. For every q 2 sjfBCQ, if the attack graph of
q contains no strong cycle, then CERTAINTY(q) is in P.

Theorem 3 is proved roughly as follows by syntactic induc-
tion. Let q 2 sjfBCQ such that the attack graph of q contains
no strong cycle. If the attack graph of q contains an R

1

-atom
without incoming attacks, then this atom can be processed
like the R

1

-atom in the first line of Algorithm 1. The more
di�cult case is if all atoms have incoming attacks in the at-
tack graph of q. In this case, CERTAINTY(q) can be reduced
in polynomial time to some problem CERTAINTY(q0) which
is in polynomial time by induction hypothesis. The query
q0 is obtained from q by a technique called “dissolution of
Markov cycles.”

The proof of Theorem 3 is technically involved, and thus
we will only sketch the main ideas. The first important
idea is an extension of the data model that allows some
syntactic simplifications, which we explain in Section 5.1.
The central idea is the notion of Markov cycle, which we
present in Section 5.2. The dissolution of Markov cycles is
illustrated in Section 5.3.

5.1 Relations Known to Be Consistent
We extend the data model by distinguishing between two

kinds of relation names: those that can be inconsistent, and
those that cannot.

Every relation name has a unique and fixed mode, which
is an element in {i, c}. It will come in handy to think of i
and c as inconsistent and consistent respectively. We often
write Rc to denote that R is a relation name with mode c. If
q 2 sjfBCQ, then [[q]] denotes the subset of q containing each
atom whose relation name has mode c. The inconsistency
count of q, denoted incnt(q), is the number of relation names
with mode i in q. Modes carry over to atoms and facts: the
mode of an atom R(~x, ~y) or a fact R(~a,~b) is the mode of
R. The intended semantics is that if a relation name R has
mode c, then the set of R-facts of an uncertain database will
always be consistent.

The problem CERTAINTY(q) now takes as input an un-
certain database db such that for every relation name R in
q, if R has mode c, then the set of R-facts of db is consis-
tent. The problem is, as before, to determine whether every
repair of db satisfies q.

All constructs and results shown in previous sections as-
sumed that all relation names had mode i. However, having

relation names with mode c is convenient but not funda-
mental, since we can simulate relation names with mode c
by using relation names with mode i. Indeed, consider any
q 2 sjfBCQ and let Rc(~x, ~y) be an atom in q. Construct a
new query q0 = (q \ {Rc(~x, ~y)})[{R

1

(~x, ~y), R
2

(~x, ~y)}, where
R

1

, R
2

are two new relation names with mode i and the same
signature as R. Then CERTAINTY(q) and CERTAINTY(q0)
are equivalent under first-order reductions.
If relation names with mode c are allowed for syntactic

convenience, the definition of F+,q needs slight change:

F+,q := {x 2 vars(q) | K((q \ F) [[[q]]) |= key(F)! x}.
Modulo this redefinition, the notion of attack graph remains
unchanged.
Our polynomial-time algorithm relies on the notion of sat-

urated query, defined next, which we admit to be technical
and not intuitive. Lemma 1 states that CERTAINTY(q) can
be polynomially reduced to CERTAINTY(q0), where q0 is sat-
urated and syntactically simplified.

Definition 2. A query q 2 sjfBCQ is said to be saturated
if whenever x, z 2 vars(q) such that K(q) |= x ! z and
K([[q]]) 6|= x ! z, then there exists an atom F 2 q with

K(q) |= x! key(F) such that F
q x or F

q z.

Lemma 1. For each q 2 sjfBCQ, there exists a polynomial-
time many-one reduction from the problem CERTAINTY(q)
to CERTAINTY(q0) for some q0 2 sjfBCQ with the following
properties:

• incnt(q0)  incnt(q);
• no atom in q0 has two occurrences of the same variable;
• constants occur in q0 exclusively at the primary-key po-

sition of simple-key atoms;
• every atom with mode i in q0 is simple-key;
• q0 is saturated; and
• if the the attack graph of q contains no strong cycle,

then the attack graph of q0 contains no strong cycle
either.

5.2 Dissolving Markov Cycles
Our polynomial-time algorithm relies on a new tool called

Markov graph, which is defined next.

Definition 3. Let q 2 sjfBCQ such that every atom with
mode i in q is simple-key. For every x 2 vars(q), we define

Cq(x) := {F 2 q | F has mode i and key(F) = {x}}.
The Markov graph of q is a directed graph whose vertex

set is vars(q). There is a directed edge from x to y, denoted

x M�! y, if x 6= y and K(Cq(x) [[[q]]) |= x! y.

The use of the term Markov refers to the intuition that
along a path in the Markov graph, each variable functionally
determines the next variable on the path, independently of
preceding variables. A Markov cycle refers to a (directed)
cycle in the Markov graph.

Definition 4. A Markov cycle C is said to be premier if
there exists a variable x 2 vars(q) such that

• {x} = key(F
0

) for some atom F
0

with mode i that
belongs to an initial strong component of the attack
graph of q; and

• for some y in C, K(q) |= y ! x and the Markov graph
of q contains a directed path from x to y.

SIGMOD Record, March 2016 (Vol. 45, No. 1) 19

R(x, y, v) S(y, x)

V

c
1 (v, w)

W (w, v)

V

c
2 (w, y)

x

w

v

y

Figure 3: Attack graph (left) and Markov graph (right) of query {R(x, y, v), S(y, x), V c
1

(v, w), W (w, v) V c
2

(w, y)}.

Example 3. Let q = {R(x, y, v), S(y, x), V c
1

(v, w), W (w, v)
V c
2

(w, y)}. All atoms in q are simple-key. Then, [[q]] =
{V c

1

(v, w), V c
2

(w, y)}.
We have Cq(x) = {R(x, v, y)}. Since K(Cq(x) [[[q]]) |=

x! {y, v, w}, the Markov graph of q contains directed edges
from x to each of y, v, and w.

We have Cq(v) = ;. Since K(Cq(v) [[[q]]) |= v ! {y, w},
the Markov graph of q contains directed edges from v to
both y and w. The complete Markov graph of q is shown in
Fig. 3 (right).

The attack graph of q is shown in Fig. 3 (left). The two
atoms R(x, y, v) and S(y, x) together constitute an initial
strong component of the attack graph. It is then straight-
forward that each Markov cycle containing x or y must be
premier. Further, the Markov cycle hv, w, vi is also premier,
because K(q) |= v ! x and the Markov graph contains a
directed path from x to v.

Let q be like in Definition 3 and assume that the Markov
graph of q contains an elementary directed cycle C. Our key
result (Lemma 2) states that CERTAINTY(q) can be reduced
in polynomial time to CERTAINTY(q⇤), where q⇤ is obtained
from q by “dissolving” the Markov cycle C, a notion that is
defined next.

Definition 5. Let q 2 sjfBCQ such that every atom with
mode i in q is simple-key. Let C be an elementary directed
cycle of length k � 2 in the Markov graph of q. Then,
dissolve(C, q) denotes the sjfBCQ query defined next. Let
x
0

, . . . , xk�1

be the variables in C, and let q
0

=
Sk�1

i=0

Cq(xi).
Let ~y be a sequence of variables containing exactly once each
variable of vars(q

0

) \ {x
0

, . . . , xk�1

}. Let

q
1

= {T (u, x
0

, . . . , xk�1

, ~y)} [{Uc
i (xi, u)}k�1

i=0

where u is a fresh variable, T is a fresh relation name with
mode i, and U

1

, . . . , Uk�1

are fresh relation names with mode
c. Then, we define

dissolve(C, q) := (q \ q
0

) [q
1

.

Notice that dissolve(C, q) is unique up to a renaming of the
variable u and the relation names in q

1

.

Example 4. Let q be the query of Fig. 3. Let C be the cy-
cle hx,w, y, xi in the Markov graph of q. Using the notation
of Definition 5, we have

q
0

= {R(x, y, v), S(y, x),W (w, v)},
q
1

= {T (u, x, w, y, v), Uc
1

(x, u), Uc
2

(w, u), Uc
3

(y, u)}.

Hence, dissolve(C, q) = {V c
1

(v, w), V c
2

(w, y), T (u, x, w, y, v),
Uc

1

(x, u), Uc
2

(w, u), Uc
3

(y, u)}.

Lemma 2. Let q 2 sjfBCQ such that every atom with
mode i in q is simple-key. Let C be an elementary directed
cycle in the Markov graph of q, and let q⇤ = dissolve(C, q).
Then, there exists a polynomial-time many-one reduction
from CERTAINTY(q) to CERTAINTY(q⇤).

We will illustrate the reduction of Lemma 2 in Section 5.3.
In order to show that dissolving Markov cycles leads to a
polynomial-time algorithm, two more results are needed:

• We need to show that the “dissolution” of Markov cy-
cles can be done while keeping the attack graph free of
strong cycles (Lemma 3). Surprisingly, this turns out
to be true only for Markov cycles that are premier.

• We need to show the existence of premier Markov cy-
cles that can be “dissolved” (Lemma 4).

Lemma 3. Let q 2 sjfBCQ such that every atom with
mode i in q is simple-key. Let C be an elementary directed
cycle in the Markov graph of q such that C is premier, and
let q⇤ = dissolve(C, q). If the attack graph of q contains no
strong cycle, then the attack graph of q⇤ contains no strong
cycle either.

Lemma 4. Let q 2 sjfBCQ such that
• for every atom F 2 q, if F has mode i, then F is

simple-key and key(F) 6= ;;
• q is saturated;
• the attack graph of q contains no strong cycle; and
• the attack graph of q contains an initial strong compo-

nent with two or more atoms.
Then, the Markov graph of q contains an elementary directed
cycle that is premier and for every y in C, Cq(y) 6= ;.

The condition Cq(y) 6= ; , for every y in C, guarantees that
dissolve(C, q) will contain strictly less atoms of mode i than
q. This condition is needed in the proof of Theorem 3 which
runs by induction on the number of atoms with mode i.

5.3 The Reduction of Lemma 2
We will use an example to illustrate the main ideas behind

the reduction of Lemma 2. Let q 2 sjfBCQ, and assume
that q includes q

0

= {R(x, y), S(y, z), V (z, x)}. Then, the
Markov graph of q contains a cycle

x M�! y M�! z M�! x.

Let db be an uncertain database. Let db
0

be the subset
of db containing all R-facts, S-facts, and V -facts of db.

20 SIGMOD Record, March 2016 (Vol. 45, No. 1)

Assume that the following three tables represent all facts of
db

0

(for convenience, we use variables as attribute names,
and we blur the distinction between a relation name R and
a table representing a set of R-facts).

R x y

1 a

2 b
2 c

3 d
3 e
4 e
4 f

S y z

a ↵
a 

b �
c �

d �
e ✏
e �
f �

V z x

↵ 1
 1

� 2
� 2

� 3
✏ 3
� 4
� 4

o

db
01

o

db
02

9

>

=

>

;

db
03

As indicated, we can partition db
0

into three subsets
db

01

, db
02

, and db
03

whose active domains have, pairwise,
no constants in common. Consider each of these three sub-
sets in turn.

1. db
01

has two repairs, both satisfying q
0

. For every
repair r of db, we have either r |= q

0

[x,y,z 7!1,a,↵]

or
r |= q

0

[x,y,z 7!1,a,].
2. db

02

has two repairs, both satisfying q
0

. For every
repair r of db, we have either r |= q

0

[x,y,z 7!2,b,�] or
r |= q

0

[x,y,z 7!2,c,�].
3. db

03

has 16 repairs, and for s := {R(3, d), S(d, �),
V (�, 4), R(4, e), S(e, ✏), V (✏, 3), S(f,�), V (�, 4)}, we
have that s is a repair of db

03

that falsifies q
0

. It can
be easily seen that every repair of db satisfies q if and
only if every repair of db \ db

03

satisfies q. That is,
db

03

can henceforth be ignored.
The following table T summarizes our findings. In the first
column (named with a fresh variable u), the values 01 and
02 refer to db

01

and db
02

respectively. The table includes
two blocks (separated by a dashed line for clarity). The
first block indicates that for every repair r of db, either
r |= q

0

[x,y,z 7!1,a,↵]

or r |= q
0

[x,y,z 7!1,a,]. Likewise for the
second block.

T u x y z

01 1 a ↵

01 1 a 

02 2 b �

02 2 c �

The table Ux shown below is the projection of T on at-
tributes x and u. This table must be consistent, because
by construction, the active domains of db

01

and db
02

are
disjoint. Likewise for Uy and Uz.

Ux x u

1 01
2 02

Uy y u

a 01
b 02
c 02

Uz z u

↵ 01
 01
� 02
� 02

Let db0 be the database that extends db with all the
facts shown in the tables T , Ux, Uy, and Uz. Let q⇤ =
(q \ q

0

) [{T (u, x, y, z), Uc
x(x, u), U

c
y(y, u), U

c
z (z, u)}. From

our construction, it follows that every repair of db satisfies
q if and only if every repair of db0 satisfies q⇤.

Facts of db
0

can be omitted from db0, but that is not
important.

6. RELATED WORK
Theoretical developments. Consistent query answer-

ing (CQA) goes back to the seminal work by Arenas, Bertossi,
and Chomicki [1]. Fuxman and Miller [8] were the first
to focus on CQA under the restrictions that consistency is
only with respect to primary keys and that queries are self-
join-free conjunctive queries. The term CERTAINTY(q) was
coined in [20]. A recent and comprehensive survey on the
problem CERTAINTY(q) is [23].
In the past decade, a variety of techniques have been used

in the complexity classification task of CERTAINTY(q) for
sjfBCQ queries q. In their pioneering work, Fuxman and
Miller [8] introduced the notion of join graph (not to be
confused with the classical notion of join tree). Later, Wij-
sen [20] introduced the notion of attack graph. Kolaitis and
Pema [10] applied Minty’s algorithm [18]. Koutris and Su-
ciu [12] introduced the notion of query graph and the distinc-
tion between consistent and possibly inconsistent relations.
Little is known about CERTAINTY(q) beyond self-join-

free conjunctive queries. An interesting recent result by
Fontaine [6] goes as follows. Let UCQ be the class of Boolean
first-order queries that can be expressed as disjunctions of
Boolean conjunctive queries (possibly with constants and
self-joins). A daring conjecture is that for every UCQ query
q, CERTAINTY(q) is either inP or coNP-complete. Fontaine
showed that this conjecture implies Bulatov’s dichotomy
theorem for conservative CSP [4], the proof of which is highly
involved (the full paper contains 66 pages).
The counting variant of CERTAINTY(q), which has been

denoted]CERTAINTY(q), asks to determine the exact num-
ber of repairs that satisfy some Boolean query q. In [16],
it was shown that for every sjfBCQ query q, the counting
problem]CERTAINTY(q) is either in FP or]P-complete.
For conjunctive queries q with self-joins, the complexity of
]CERTAINTY(q) has been established under the restriction
that all atoms are simple-key [17].

Implemented systems. In the past, the paradigm of
consistent query answering, and CERTAINTY(q) in partic-
ular, has been implemented in expressive formalisms, such
as Disjunctive Logic Programming [9] and Binary Integer
Programming (BIP) [11]. In these formalisms, it is rel-
atively easy to express an exponential-time algorithm for
CERTAINTY(q). The drawback is that the e�ciency of these
algorithms is likely to be far from optimal in case that the
certain answer is computable in polynomial-time or express-
ible in first-order logic. In the latter case, the consistent an-
swer can be computed by a single SQL query using standard
database technology, including query optimization. In [3,
page 38], the author mentions that logic programs for CQA
cannot compete with first-order query rewriting mechanisms
when they exist. Likewise, in an experimental comparison
of EQUIP [11] and ConQuer [7], the authors of the former
system found that BIP never outperformed first-order query
rewriting.
The Hippo system [5] implements a polynomial-time al-

gorithm for CQA with respect to denial constraints, for
quantifier-free first-order queries. Since primary keys are
denial constraints, this algorithm can be used in our setting
for computing certain answers to self-join-free conjunctive
queries in which all variables are free. Note, however, that
such queries have an empty (and hence acyclic) attack graph,
in which case our results imply that the consistent answer

SIGMOD Record, March 2016 (Vol. 45, No. 1) 21

can also be computed by a single SQL query.
In summary, the practical relevance of our results is that

they tell us when computationally expensive formalisms can
be avoided in the computation of consistent answers. More-
over, by looking at practical examples, we found that many
natural self-join-free conjunctive queries have acyclic attack
graphs, meaning that the certain answer can be computed
by a single SQL query. That is, the “easiest” case is by no
means exceptional. For example, as soon as a self-join-free
conjunctive query, expressed in SQL, on the example data-
base of Fig. 1 satisfies one of the following conditions, then
its certain answer can be computed in SQL:

• the FROM clause contains only one table;
• the SELECT clause includes one or both primary keys

(i.e., E.EID or D.DNAME); or
• the WHERE clause joins E and D on either E.EID =

D.MGR or E.DNAME = D.DNAME (but not on both).
In other words, the join is a simple primary-to-foreign
key join.

7. CONCLUSION
This paper settles a long-standing open question in con-

sistent query answering, by providing a solution to the com-
plexity classification task of CERTAINTY(q) for sjfBCQ que-
ries q. We show that it is decidable, given q, whether the
problem CERTAINTY(q) is in FO, in P \ FO, or coNP-
complete. Moreover, if the problem is in FO or inP, then we
can e↵ectively construct a first-order query or a polynomial-
time algorithm for solving it.
An exciting question is whether our results can be ex-

tended beyond self-join-free conjunctive queries, to conjunc-
tive queries with self-joins and unions of conjunctive queries.

Acknowledgments
This work is supported in part by the NSF through NSF
grant NSF IIS-1115188.

8. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki.

Consistent query answers in inconsistent databases. In
PODS, pages 68–79. ACM Press, 1999.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On
the desirability of acyclic database schemes. J. ACM,
30(3):479–513, 1983.

[3] L. E. Bertossi. Database Repairing and Consistent
Query Answering. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[4] A. A. Bulatov. Complexity of conservative constraint
satisfaction problems. ACM Trans. Comput. Log.,
12(4):24, 2011.

[5] J. Chomicki, J. Marcinkowski, and S. Staworko.
Hippo: A system for computing consistent answers to
a class of SQL queries. In E. Bertino et al., editors,
EDBT, volume 2992 of Lecture Notes in Computer
Science, pages 841–844. Springer, 2004.

[6] G. Fontaine. Why is it hard to obtain a dichotomy for
consistent query answering? In LICS, pages 550–559.
IEEE Computer Society, 2013.

[7] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer:
E�cient management of inconsistent databases. In
F. Özcan, editor, SIGMOD Conference, pages
155–166. ACM, 2005.

[8] A. Fuxman and R. J. Miller. First-order query
rewriting for inconsistent databases. In T. Eiter and
L. Libkin, editors, ICDT, volume 3363 of Lecture
Notes in Computer Science, pages 337–351. Springer,
2005.

[9] G. Greco, S. Greco, and E. Zumpano. A logical
framework for querying and repairing inconsistent
databases. IEEE Trans. Knowl. Data Eng.,
15(6):1389–1408, 2003.

[10] P. G. Kolaitis and E. Pema. A dichotomy in the
complexity of consistent query answering for queries
with two atoms. Inf. Process. Lett., 112(3):77–85,
2012.

[11] P. G. Kolaitis, E. Pema, and W. Tan. E�cient
querying of inconsistent databases with binary integer
programming. PVLDB, 6(6):397–408, 2013.

[12] P. Koutris and D. Suciu. A dichotomy on the
complexity of consistent query answering for atoms
with simple keys. In Schweikardt et al. [19], pages
165–176.

[13] P. Koutris and J. Wijsen. The data complexity of
consistent query answering for self-join-free
conjunctive queries under primary key constraints. In
T. Milo and D. Calvanese, editors, PODS, pages
17–29. ACM, 2015.

[14] P. Koutris and J. Wijsen. A trichotomy in the data
complexity of certain query answering for conjunctive
queries. CoRR, abs/1501.07864, 2015.

[15] L. Libkin. Elements of Finite Model Theory. Springer,
2004.

[16] D. Maslowski and J. Wijsen. A dichotomy in the
complexity of counting database repairs. J. Comput.
Syst. Sci., 79(6):958–983, 2013.

[17] D. Maslowski and J. Wijsen. Counting database
repairs that satisfy conjunctive queries with self-joins.
In Schweikardt et al. [19], pages 155–164.

[18] G. J. Minty. On maximal independent sets of vertices
in claw-free graphs. J. Comb. Theory, Ser. B,
28(3):284–304, 1980.

[19] N. Schweikardt, V. Christophides, and V. Leroy,
editors. Proc. 17th International Conference on
Database Theory (ICDT), Athens, Greece, March
24-28, 2014. OpenProceedings.org, 2014.

[20] J. Wijsen. On the first-order expressibility of
computing certain answers to conjunctive queries over
uncertain databases. In J. Paredaens and D. V. Gucht,
editors, PODS, pages 179–190. ACM, 2010.

[21] J. Wijsen. A remark on the complexity of consistent
conjunctive query answering under primary key
violations. Inf. Process. Lett., 110(21):950–955, 2010.

[22] J. Wijsen. Certain conjunctive query answering in
first-order logic. ACM Trans. Database Syst., 37(2):9,
2012.

[23] J. Wijsen. A survey of the data complexity of
consistent query answering under key constraints. In
C. Beierle and C. Meghini, editors, FoIKS, volume
8367 of Lecture Notes in Computer Science, pages
62–78. Springer, 2014.

22 SIGMOD Record, March 2016 (Vol. 45, No. 1)

