Technical Perspective:
Attacking the Problem of Consistent Query Answering

Wang-Chiew Tan
University of California, Santa Cruz
tan@cs.ucsc.edu

Inconsistent data refers to data that do not adhere to one
or more constraints. The term constraints refers to condi-
tions that need to be imposed on the data. Constraints of-
ten arise from organizational requirements or business logic,
such as the requirement that every employee in the database
must be uniquely identified by the employee id, or every em-
ployee must work on some project, or the expenses cannot
exceed the credit limit, or even a desired designated format
for storing phone numbers. The need to manage inconsistent
data arises in many settings. Quite typically, when one in-
tegrates data from different sources, the integrated data can
be inconsistent data even when the data sources may be in-
dividually consistent. Another scenario where inconsistency
in data can arise is when data and/or schema evolves, for
example, through the addition or removal of data, changes
in schema, or knowledge of new constraints.

There are generally two themes of research centered around
the management of inconsistent data. One theme of research
aims to make the data clean before the data is allowed to
be used or queried. In other words, data is modified so that
it becomes consistent prior to the execution of queries over
the data. The data cleaning process is typically algorithmic,
and sometimes heuristic, so that data can be manipulated,
somehow, into a final consistent state. While this approach
produces one final clean dataset that one can work with, it
is generally difficult to understand how the consistent state
of the data was arrived at. In contrast to data cleaning,
the other theme of research adopts a “lazy” perspective to-
wards the management of inconsistent data. In this line of
research, the inconsistent data is left unmodified and work
to determine what are the right answers is done only when
queries are to be executed over the inconsistent data. In
other words, the management of inconsistencies only occurs
at query time. To compute the answer of the query, one con-
siders all possible ways to repair the inconsistent database
and the intersection of the results of the query on each re-
pair forms the answer to the query. Since these are answers
that appear in the result of the query applied to every re-
pair, they are called the consistent answer to the query [1].
A notion of repair that has been widely considered in the
past is that of a consistent database instance that differs
from the original inconsistent database in a “minimal” way.
If the only constraints were key constraints, this amounts to
minimally removing tuples from the inconsistent database
so that the key constraints will no longer be violated.

14

The problem of computing the consistent query answer of
a query over an inconsistent database (CQA for short) has
received significant attention in the past several years. This
problem is known to be coNP-complete in general for the
class of conjunctive queries under primary key constraints [2].
However, for a number of years, it was unclear whether one
can provide exact conditions to determine, even for the spe-
cial class of self-join-free conjunctive queries, the exact com-
plexity of the query. There was a flurry of research activ-
ities on this problem in the past decade or so and finally,
the problem is resolved in [3], where the authors showed a
trichotomy result; for any self-join-free boolean conjunctive
query, it can be decided with an effective procedure whether
or not the CQA problem is in FO, P, or coNP-complete.

There are immediate practical implications of this result.
Existing implementations of systems for CQA tend to adopt
an (overly) expressive and hence computationally expensive
engine for computing the answer, or identify special classes
of queries for which CQA can be computed by means of
SQL queries. The latter allows one to leverage highly op-
timized relational database management systems and tends
to run fast. With this result at hand, it is now possible
to determine and delegate the computation of CQA to the
right engine; pushing computations to the RDBMS when-
ever possible, and relying on more algorithmic or expressive
engines otherwise.

Now, if you are curious about how they “attacked” the
CQA problem, read on.

References

(1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consis-
tent query answers in inconsistent databases. In Pro-
ceedings of the 18th ACM Symposium on Principles of
Database Systems (PODS), pages 68-79, 1999.

[2] J. Chomicki and J. Marcinkowski. Minimal-change in-
tegrity maintenance using tuple deletions. In Informa-
tion and Computation, 197(1-2):90-121, 2005.

[3] P. Koutris and J. Wijsen. The data complexity of con-
sistent query answering for self-join-free conjunctive
queries under primary key constraints. In Proceedings
of the 34th ACM Symposium on Principles of Database
Systems (PODS), pages 17-29, 2015.

SIGMOD Record, March 2016 (Vol. 45, No. 1)



