Technical Perspective:
Natural Language to SQL Translation by Iteratively
Exploring a Middle Ground

Jeffrey F. Naughton
University of Wisconsin—Madison
Madison WI, U.S.A.

A fundamental question in data management is how re-
lational database management systems (RDBMSs) should
be queried. Ideally, the query interface should be powerful
enough to express arbitrary queries, yet simple enough to
learn that users require virtually no training. Natural lan-
guage is an obvious and appealing approach — presumably
most users already know at least one natural language and
use it to “query” other humans constantly. Unfortunately,
employing natural language to query RDBMSs is highly non-
trivial, and for the most part, not used. However, with the
growing power and ubiquity of Natural Language Processing
(NLP) systems, it makes sense to redouble efforts in apply-
ing NLP to database querying.

At the most basic level, relational database systems are
queried using SQL. (For that matter, most “NoSQL” sys-
tems are also queried using SQL.) SQL is very powerful and
precise, and, for novices, very hard to write. So SQL can-
not be used as a user interface for anyone but power users.
Nonetheless, as the most widely used RDBMS query lan-
guage, SQL is the most natural language into which to trans-
late natural language questions over relational data. This
translation is the focus of the following paper, “Understand-
ing Natural Language Queries over Relational Databases”,
by Li and Jagadish.

The first important decision made by the authors of this
paper is to reject a one-shot, one-way translation process
from a natural language query to a corresponding SQL query.
Instead, the authors advocate an iterative dialog between
the person posing the query and the system building the re-
lational query. This makes perfect sense — even in the much
simpler world of keyword search systems, users iteratively
refine their queries. Unfortunately, adopting this approach
for RDBMS querying does not yield an easy problem — in
fact, it uncovers a highly interesting and difficult challenge:
how should the user and the system communicate in this

SIGMOD Record, March 2016 (Vol. 45, No. 1)

iterative process?

Answering this question is difficult. Unlike the case for
keyword search systems, the answer to the query may not
help the user know if the executed query was what they re-
ally wanted. For example, consider the simple query “find
the difference between sales this year and last year.” In gen-
eral the RDBMS will return a number — and it is very hard
to tell just from that number if the query was correct or not.
It would be far more precise for the system to respond to the
user by presenting the generated SQL query itself. But this
would require the person posing the natural language query
to be able to read and understand SQL, which contradicts

a major motivation for the system in the first place.
Now we come to what is perhaps the heart of this paper:

the decision to adopt an intermediate language the authors
call “Query Tree,” a two-way domain-independent communi-
cation model allowing the user and system to understand one
other. A query tree aids mapping a user query to its corre-
sponding semantically correct SQL and translating a query
plan to its corresponding natural language interpretation.
The authors harness the schema knowledge, schema-driven
similarity metrics, query tree reformulation and ranking to
make the problem tractable for the system and the user.

The authors close with a user study evaluating the ap-
proach. The user study itself is interesting, including the
aspect of using Chinese to convey the queries to the sub-
jects instead of English to avoid bias through the phrasing
in the query description (presumably the subjects already
spoke Chinese!) The experiments show that the approach is
best for simple to medium complexity queries.

This paper represent a significant improvement in the
state of the art, and it is an ideal springboard for future
advances. In an area as difficult and important as natu-
ral language querying of relational database systems, this is
indeed a major contribution.



