SIGMOD Officers, Committees, and Awardees

Chair Vice-Chair Secretary/Treasurer

Juliana Freire Thab Francis Ilyas Fatma Ozcan

Computer Science & Engineering Cheriton School of Computer Science IBM Research
New York University University of Waterloo Almaden Research Center

Brooklyn, New York Waterloo, Ontario San Jose, California
USA CANADA USA
+1 646997 4128 +1 519 888 4567 ext. 33145 +1 408927 2737
juliana.freire <at> nyu.edu ilyas <at> uwaterloo.ca fozcan <at> us.ibm.com

SIGMOD Executive Committee:
Juliana Freire (Chair), Ihab Francis Ilyas (Vice-Chair), Fatma Ozcan (Treasurer), K. Selcuk Candan,
Yanlei Diao, Curtis Dyreson, Yannis loannidis, Christian Jensen, and Jan Van den Bussche.

Advisory Board:
Yannis loannidis (Chair), Phil Bernstein, Surajit Chaudhuri, Rakesh Agrawal, Joe Hellerstein, Mike
Franklin, Laura Haas, Renee Miller, John Wilkes, Chris Olsten, AnHai Doan, Tamer Ozsu, Gerhard
Weikum, Stefano Ceri, Beng Chin Ooi, Timos Sellis, Sunita Sarawagi, Stratos Idreos, Tim Kraska

SIGMOD Information Director:
Curtis Dyreson, Utah State University

Associate Information Directors:
Huiping Cao, Manfred Jeusfeld, Asterios Katsifodimos, Georgia Koutrika, Wim Martens

SIGMOD Record Editor-in-Chief:
Yanlei Diao, University of Massachusetts Amherst

SIGMOD Record Associate Editors:
Vanessa Braganholo, Marco Brambilla, Chee Yong Chan, Rada Chirkova, Zachary Ives, Anastasios
Kementsietsidis, Jeffrey Naughton, Frank Neven, Olga Papaemmanouil, Aditya Parameswaran,
AlKkis Simitsis, Wang-Chiew Tan, Nesime Tatbul, Marianne Winslett, and Jun Yang

SIGMOD Conference Coordinator:
K. Selcuk Candan, Arizona State University

PODS Executive Committee:
Jan Van den Bussche (Chair), Tova Milo, Diego Calvanse, Wang-Chiew Tan, Rick Hull, Floris Geerts

Sister Society Liaisons:
Raghu Ramakhrishnan (SIGKDD), Yannis loannidis (EDBT Endowment), Christian Jensen (IEEE TKDE).

Awards Committee:
Surajit Chaudhuri (Chair), David Dewitt, Martin Kersten, Maurizio Lenzerini, Jennifer Widom

Jim Gray Doctoral Dissertation Award Committee:

Ashraf Aboulnaga (co-Chair), Chris Jermaine (co-Chair), Paris Koutris, Feifei Li, Qiong Luo, loana
Manolescu, Lucian Popa, Renée Miller

SIGMOD Systems Award Committee:
Mike Stonebraker (Chair), Make Cafarella, Mike Carey, Yanlei Diao, Paul Larson

SIGMOD Record, September 2017 (Vol. 46, No. 3) 1

SIGMOD Officers, Committees, and Awardees (continued)

SIGMOD Edgar F. Codd Innovations Award
For innovative and highly significant contributions of enduring value to the development, understanding, or use
of database systems and databases. Recipients of the award are the following:

Michael Stonebraker (1992)
David DeWitt (1995)

Serge Abiteboul (1998)
Rudolf Bayer (2001)

Ronald Fagin (2004)
Jennifer Widom (2007)
Umeshwar Dayal (2010)
Stefano Ceri (2013)
Gerhard Weikum (2016)

SIGMOD Systems Award

Jim Gray (1993)

C. Mohan (1996)

Hector Garcia-Molina (1999)
Patricia Selinger (2002)
Michael Carey (2005)

Moshe Y. Vardi (2008)
Surajit Chaudhuri (2011)
Martin Kersten (2014)
Goetz Graefe (2017)

Philip Bernstein (1994)
David Maier (1997)

Rakesh Agrawal (2000)
Don Chamberlin (2003)
Jeffrey D. Ullman (2006)
Masaru Kitsuregawa (2009)
Bruce Lindsay (2012)
Laura Haas (2015)

For technical contributions that have had significant impact on the theory or practice of large-scale data

management systems.

Michael Stonebraker and Lawrence Rowe (2015)

Richard Hipp (2017)

SIGMOD Contributions Award

Martin Kersten (2016)

For significant contributions to the field of database systems through research funding, education, and
professional services. Recipients of the award are the following:

Maria Zemankova (1992)
Jeffrey Ullman (1996)

Raghu Ramakrishnan (1999)
Daniel Rosenkrantz (2001)
Surajit Chaudhuri (2004)
Hans-Jorg Schek (2007)
David Lomet (2010)
H.V.Jagadish (2013)

Samuel Madden (2016)

Gio Wiederhold (1995)
Avi Silberschatz (1997)
Michael Carey (2000)
Richard Snodgrass (2002)
Hongjun Lu (2005)

Klaus R. Dittrich (2008)
Gerhard Weikum (2011)
Kyu-Young Whang (2014)
Yannis E. loannidis (2017)

SIGMOD Jim Gray Doctoral Dissertation Award
SIGMOD has established the annual SIGMOD Jim Gray Doctoral Dissertation Award to recognize excellent
research by doctoral candidates in the database field. Recipients of the award are the following:

Yahiko Kambayashi (1995)
Won Kim (1998)

Laura Haas (2000)

Michael Ley (2003)

Tamer Ozsu (2006)

Beng Chin Ooi (2009)
Marianne Winslett (2012)
Curtis Dyreson (2015)

= 2006 Winner: Gerome Miklau. Honorable Mentions: Marcelo Arenas and Yanlei Diao.

= 2007 Winner: Boon Thau Loo. Honorable Mentions: Xifeng Yan and Martin Theobald.

= 2008 Winner: Ariel Fuxman. Honorable Mentions: Cong Yu and Nilesh Dalvi.

= 2009 Winner: Daniel Abadi. Honorable Mentions: Bee-Chung Chen and Ashwin Machanavajjhala.
= 2010 Winner: Christopher Ré. Honorable Mentions: Soumyadeb Mitra and Fabian Suchanek.

= 2011 Winner: Stratos Idreos. Honorable Mentions: Todd Green and Karl Schnaitterz.

= 2012 Winner: Ryan Johnson. Honorable Mention: Bogdan Alexe.
= 2013 Winner: Sudipto Das, Honorable Mention: Herodotos Herodotou and Wenchao Zhou.
= 2014 Winners: Aditya Parameswaran and Andy Pavlo.
= 2015 Winner: Alexander Thomson. Honorable Mentions: Marina Drosou and Karthik Ramachandra
= 2016 Winner: Paris Koutris. Honorable Mentions: Pinar Tozun and Alvin Cheung

= 2017 Winner: Peter Bailis. Honorable Mention: Immanuel Trummer

A complete list of all SIGMOD Awards is available at: https://sigmod.org/sigmod-awards/

SIGMOD Record, September 2017 (Vol. 46, No. 3)

[Last updated : June 30, 2017]

Editor’s Notes

Welcome to the September 2017 issue of the ACM SIGMOD Record!

First of all, we welcome Pinar T6ziin to join the editorial board of the SIGMOD Record as the new
associate editor of the Surveys column.

The first column of this issue is the Database Principles column, featuring an article by Guagliardo
and Libkin on correctness of SQL Queries on databases with nulls. Motivated by experimental evi-
dence that null values in a database introduce false positive answers, this article surveys efficient
approximation techniques for running SQL queries on data with nulls which come with correctness
guarantees. [t presents two recent approximation schemes and provides theoretical guarantees for
both. For the latter scheme, it also presents experimental results showing that its real-life behavior
in terms of the price of correctness falls in several major categories: among them, the first, and
largest, group of queries incur a small price for correctness guarantees, while the last group incurs
a significant performance penalty, which has to do with how commercial optimizers handle disjunc-
tions in queries. These results point to a real opportunity to fix many of the issues related to the
handling of nulls in RDBMSs, at a reasonable cost in terms of query evaluation.

The Research column features an article by Pham et al. on uninterruptible migration of continuous
queries. The elasticity brought by cloud infrastructure provides a solution for a data stream man-
agement system to handle variable workloads through scale out when heavily loaded, or scale in
otherwise. Key to such a solution is an efficient mechanism that can migrate a query from one node
to another with zero downtime and minimum overheads on the compute nodes. The article by
Pham et al. presents a migration protocol, named UniMiCo, that satisfies those requirements and
extends the state of the art with multiple stateful operators per continuous query and a variety of
window definitions.

The Systems and Prototypes column features an article on stream processing for edge clouds by
Esteves et al. An edge cloud is a network fabric that resides between the core network and the ac-
cess network for the end user and consists of a geographically distributed network of small data-
centers serving a limited number of end users. Common stream processing systems (SPS) such as
Spark are designed to operate a stream processing cluster within a single datacenter, but not to
span multiple data-centers (in different geographic areas). To support stream processing in edge
clouds, this article presents a system based on an earlier prototype, CHive, which orchestrates mul-
tiple SPS clusters, one for each datacenter, to collectively compute a query plan. An important fea-
ture of the system is to decouple the CHive query planner and optimizer from its underlying
runtime environment and support multiple runtime engines that may suit different applications.

The Distinguished Profiles column features Ron Fagin from the IBM Almaden Research Center. Ron
is an IBM Fellow, Fellow of ACM and IEEE, and member of the National Academy of Engineering and
the American Academy of Arts and Sciences. He has won the IEEE McDowell Award (the highest
award of the IEEE Computer Society), the SIGMOD Edgar F. Codd Innovations Award, and most re-
cently, the Godel Prize (the highest award for a paper in Theoretical Computer Science). In this
interview, Ron discusses the most important scientific results achieved in his career, including
Fagin’s Algorithm, Threshold Algorithm, and Fagin’s 0-1 Law. He also discusses his mission as an
IBM Fellow, that is, to convince theoreticians that they will prove better theorems and they will do
more interesting work if they keep talking to practitioners.

SIGMOD Record, September 2017 (Vol. 46, No. 3) 3

The Centers column features an article by Wolfgang Lehner on the Database Systems Group at
Technische Universitat Dresden, Germany. The Dresden Database Systems Group focuses on the
advancement of data management techniques from a system’s perspective as well as information
management’s perspective. The group is involved in research projects ranging from activities to
exploit modern hardware for scalable storage engines to advancing statistical methods for large-
scale time series management.

The issue finally closes with a call for nomination of ICDT 2018 Test-of-Time Award, which is due
on November 1, 2017.

On behalf of the SIGMOD Record Editorial board, I hope that you enjoy reading the September 2017
issue of the SIGMOD Record!

Your submissions to the SIGMOD Record are welcome via the submission site:
http://sigmod.hosting.acm.org/record

Prior to submission, please read the Editorial Policy on the SIGMOD Record’s website:
https://sigmodrecord.org

Yanlei Diao

September 2017

Past SIGMOD Record Editors:

Ioana Manolescu (2009-2013) Alexandros Labrinidis (2007-2009) Mario Nascimento (2005-2007)

Ling Liu (2000-2004) Michael Franklin (1996-2000) Jennifer Widom (1995-1996)
Arie Segev (1989-1995) Margaret H. Dunham (1986-1988) Jon D. Clark (1984-1985)
Thomas J. Cook (1981-1983) Douglas S. Kerr (1976-1978) Randall Rustin (1974-1975)

Daniel O’Connell (1971-1973) Harrison R. Morse (1969)

4 SIGMOD Record, September 2017 (Vol. 46, No. 3)

Correctness of SQL Queries on Databases with Nulls

Paolo Guagliardo
School of Informatics
The University of Edinburgh
pguaglia@inf.ed.ac.uk

ABSTRACT

Multiple issues with SQL’s handling of nulls have been
well documented. Having efficiency as its main goal,
SQL disregards the standard notion of correctness on in-
complete databases — certain answers — due to its high
complexity. As a result, the evaluation of SQL queries
on databases with nulls may produce answers that are
just plain wrong. However, SQL evaluation can be mod-
ified, at least for relational algebra queries, to approxi-
mate certain answers, i.e., return only correct answers.
We examine recently proposed approximation schemes
for certain answers and analyze their complexity, both
theoretical bounds and real-life behavior.

1. INTRODUCTION

The way incomplete information is handled in com-
mercial DBMSs, specifically by SQL, has been heavily
criticized for producing counter-intuitive and just plain
incorrect answers [4, 9]. This is often blamed on SQL’s
3-valued logic (3VL), and there are multiple discussions
in the literature on the relative merits of SQL’s 3VL and
some alternatives; see, e.g., [11, 33, 6]. They often try to
justify a logic within itself, without having an external
yardstick definition of correctness. Given the futility of
such an approach, we first need to settle on what consti-
tutes the notion of correctness.

For this, we adapt the standard approach found in the
database literature: correct answers are those that we are
certain about. Intuitively, this means that such answers
will be true no matter how we interpret incomplete in-
formation that is present in the database. This approach,
first proposed in the late 1970s [13, 26], is now domi-
nant in the literature and it is standard in all applications
where incomplete information appears (data integration,
data exchange, ontology-based data access, data clean-
ing, etc.).

Why cannot SQL then just compute certain answers?
The reason is that SQL’s designers had first and fore-
most efficient evaluation in mind, but correctness and
efficiency do not always get along. Computing certain
answers is CONP-hard for most reasonable semantics,

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Leonid Libkin
School of Informatics

The University of Edinburgh
libkin@inf.ed.ac.uk

if we deal with relational calculus/algebra queries [2].
On the other hand, SQL evaluation is very efficient; it is
in AC® (a small parallel complexity class) for the same
class of queries, and so it provably cannot compute cer-
tain answers.

If SQL provably cannot produce what is assumed to
be the correct answers, then what kinds of errors can it
generate? To understand this, consider the simple data-
base in Figure 1. It shows orders for books, information
about customers paying for them, and basic information
about customers themselves.

Decision support queries against such a database may
include finding unpaid orders:

SELECT O.order_id FROM Orders O

WHERE O.order_id NOT IN
(SELECT order_id FROM Payments)

or finding customers who have not placed an order:

SELECT C.cust_id FROM Customers C
WHERE NOT EXISTS
(SELECT » FROM Orders O, Payments P
WHERE C.cust_id = P.cust_id
AND P.order_id = O.order_id)

As expected, the first query produces a single answer
Ord3, while the second returns the empty table. But now
assume that just a single entry in these tables is replaced
by nurL: specifically, the value of order_id in the sec-
ond tuple of Payments changes from Ord2 to nurL. Then
the answers to queries change drastically, and in differ-
ent ways: now the unpaid orders query returns the empty
table, and the customers without an order query returns
Cust2. That is, due to the presence of nulls, we can both
miss answers, and invent new answers!

Let us analyze this in more detail. If we consider cer-
tain answers as the correct behavior of query answering
over incomplete databases, then SQL evaluation can dif-
fer from it in two ways:

e SQL can miss some of the tuples that belong to cer-
tain answers, thus producing false negatives; or

e it can return some tuples that do not belong to cer-
tain answers, that is, false positives.

In the previous example, Cust2 returned by the second

5

ORDERS

PAYMENTS

CUSTOMERS

order_id title price

cust_id order_id

cust_id name

Ordl BigData 30
Ord2 SQL 35

Custl Ord1 Custl John
Cust2 Ord2

Cust2 Mary

Ord3 Logic 50

Figure 1: A database of orders, payments, and customers.

query is a false positive. The unpaid orders query does
not generate any false negatives: certain answers are ac-
tually empty since we cannot know which order was un-
paid. But a simple query

SELECT cust_id FROM Payments
WHERE order_id = 'Ord2' OR order_id <> 'Ord2'

returns only Custl in the database with null as described
above, while the certain answer is { Custl, Cust2 }.

To sum up, SQL cannot compute certain answers due
to the complexity gap. Furthermore, it can produce both
false positives and false negatives. However, the gap in
complexity does not yet justify such a behavior: it leaves
open the possibility that a query evaluation scheme pro-
duces only one type of undesirable results.

For now we take the view that false positives are the
worst of the two: after all, they produce an outright lie
as opposed to hiding some of the truth. We admit that
an alternative point of view has merits too [6], and in
fact we shall address it later. One can accept one type
of errors — false negatives — as the price to be paid for
lowering complexity.

This idea is not new: it was first explored more
than 30 years ago [29, 32]. Those papers assumed the
model of databases as logical theories and could not
lead to implementations that would handle familiar rela-
tional databases with nulls. Some ad hoc translations of
SQL queries were studied later but without any formally
proved correctness guarantees [19].

The first approach to fixing SQL’s evaluation scheme
that provides provable correctness guarantees was pre-
sented surprisingly recently, in [25] (with the conference
version appearing in 2015). It showed how to translate
a relational algebra query Q into a query Q! of true an-
swers such that:

e false positives never occur: (' returns a subset of

certain answers to (J;

e data complexity of Q" is still AC’; and

o on databases without nulls, @ and Q' coincide.

Given the attractive theoretical properties of the ap-
proach, it was natural to ask two questions. First, do we
address a real problem, that is, do false positives occur
in real queries? And second, do theoretical guarantees
of the approach translate into good behavior in practice?
What is the price to pay, in terms of query evaluation

6

performance, for correctness guarantees?

These questions were addressed in [15]. It provided
experimental evidence that false positives are indeed a
real-life problem. It then noticed that the translation
of [25] cannot be implemented as-is: queries in trans-
lations tend to build very large Cartesian products and
are thus impractical, despite very good theoretical com-
plexity bounds.

To remedy this, [15] proposed a new translation Q) —
(QF, Q") of relational algebra queries. The query Q7
shares the desirable properties of !, and @’ addresses
the alternative point of view that false negatives are evil:
it eliminates false negatives but can produce false posi-
tives instead. The translations are by mutual recursion,
hence one cannot define Q1 without Q° and vice versa.

Algorithms in [15] introduced extra steps to restore
correctness. We do not, therefore, expect them to out-
perform native SQL evaluation, which was designed to
optimize execution time. We can hope, however, that the
overhead is sufficiently small. If this is so, one can envi-
sion two modes of evaluation: the standard one, where
efficiency is the only concern, and an alternative, per-
haps slightly more expensive one, that provides correct-
ness guarantees. The difference between the two is the
price of correctness.

The goal of this short survey is to report recent de-
velopments in finding efficient approximations of SQL
queries on databases with nulls that come with correct-
ness guarantees. Experimental evidence shows that false
positives are a real issue. We present the approximation
schemes of [25] and [15] and provide theoretical guar-
antees for both. For the latter, we also present an exper-
imental evaluation showing that its real-life behavior in
terms of the price of correctness falls into three major
categories:

o for the first, and largest, group of queries, the price
of correctness is small, as was indeed hoped (the
overhead ranges between 1% and 4%);

e for another group, somewhat surprisingly, there is
a significant improvement in performance despite
the query performing additional checks;

e for the last group, performance becomes an issue,
but it has to do with the well documented issues in
the way commercial optimizers handle disjunctions
in queries [5]; depending on the size of the data-

SIGMOD Record, September 2017 (Vol. 46, No. 3)

base, the approximating query Q@ runs at between
one quarter to half the speed of Q.

These results point to a real opportunity to fix many of
the issues related to the handling of nulls in RDBMSs,
at a reasonable cost in terms of query evaluation.

2. PRELIMINARIES

We consider incomplete databases with nulls inter-
preted as missing values. Much of the following is stan-
dard in the literature on databases with incomplete in-
formation; see, e.g., [1, 18, 31]. The usual way of mod-
eling missing values in a database is to use marked (or
labeled) nulls, which often appear in applications such
as data integration and exchange [3, 22]. In this model,
databases are populated by two types of elements: con-
stants and nulls, coming from countably infinite sets de-
noted by Const and Null, respectively. Nulls are denoted
by L, sometimes with sub- or superscripts. For the pur-
pose of the general model we follow the textbook ap-
proach assuming one domain Const for all non-null ele-
ments appearing in databases. In real life, such elements
can be of many different types, and those appearing in
the same column must be of the same type. Adjusting
results and translations of queries for this setting is com-
pletely straightforward.

A relational schema is a set of relation names with as-
sociated arities (numbers of attributes). With each k-ary
relation symbol S from the vocabulary, an incomplete
relational instance D associates a k-ary relation S over
Const U Null, that is, a finite subset of (Const U Null)¥.
When the instance is clear from the context, we write S
instead of SP for the relation itself. We denote the arity
of S by ar(.9), and use the same notation for queries.
Note that we now assume set semantics of queries; we
shall comment on bag semantics, which is used in real-
life DBMSs, in Section 5.

The sets of constants and nulls that occur in a database
D are denoted by Const(D) and Null(D), respectively.
The active domain of D is the set adom(D) of all ele-
ments occurring in it, that is, Const(D) U Null(D). If
D has no nulls, we say that it is complete. A valuation
v on a database D is a map v : Null(D) — Const. We
denote by v(D) the result of replacing each null L with
v(L) in D. An incomplete database represents the col-
lection of complete databases {v(D) | v is a valuation};
this is often referred to as the closed-world semantics of
incompleteness [28].

Query languages. As our query language, we consider
relational algebra with the standard operations of selec-
tion o, projection 7, Cartesian product X (or join),
union U, and difference —. This corresponds to the basic
fragment of SQL — which we use in the experiments of
Section 4 — consisting of the usual SELECT-FROM-WHERE

SIGMOD Record, September 2017 (Vol. 46, No. 3)

queries, with (correlated) subqueries preceded by In and
EXISTS, as well as their negations. We shall comment in
more detail about the correspondence between SQL and
relation algebra in Section 5.

We assume that selection conditions are positive
Boolean combinations of equalities of the form A = B
and A = ¢, where A and B are attributes and c¢ is a
constant value, and disequalities A # B and A # c.
Note that these conditions are closed under negation,
which can simply be propagated to atoms: e.g., = ((A =
B)V (B # 1)) is equivalent to (A # B) A (B = 1).

We also use conditions const(A) and null(A) in se-
lections, indicating whether the value of an attribute is a
constant or a null. These correspond to A 1s NOT NULL
and A 1s NuLLin SQL.

Correctness guarantees. The standard notion of cor-
rect query answering on incomplete databases is certain
answers, that is, tuples that are present in the answer to
a query regardless of the interpretation of nulls. For a
query @ and a database D, they are typically defined as
tuples a that are present in Q(v(D)) for all valuations v;
see [1, 18].

This definition has a serious drawback, though, as tu-
ples with nulls cannot be returned, while standard query
evaluation may well produce such tuples. For instance,
if we have a relation R = {(1, 1), (2,3)}, and a query
returning R, then the only certain answer according to
the above definition is (2, 3), while intuitively we would
expect the entire relation.

In light of this, we use a closely-related but more gen-
eral notion from [27], called certain answers with nulls
in [25]. Formally, for a query () and a database D, these
are tuples a over adom(D) such that v(a) € Q(v(D))
for every valuation v on D. The set of all such tuples is
denoted by cert(Q, D). In the above example, the cer-
tain answers with nulls are (1, L) and (2, 3). The stan-
dard certain answers are exactly the null-free tuples in
cert(Q@, D) [25].

Definition 1. A query evaluation algorithm has cor-
rectness guarantees for query @ if for every database D
it returns a subset of cert(Q, D).

In other words, with correctness guarantees, false posi-
tives are not allowed: all returned tuples must be certain
answers.

Often our evaluation algorithms will be of the follow-
ing form: translate a query () into another query Q’, and
then run @’ on D. If Q’(D) C cert(Q, D) for every D,
then we say that ' has correctness guarantees for Q.

Some results concerning correctness guarantees are
known. By naive evaluation for a fragment of relational
algebra we mean the algorithm that treats elements of
Null as if they were the usual database entries, i.e., each

7

evaluation | = ¢ for ¢ € Const is false and | = 1’ is
true iff | and 1’ are the same element in Null.

Recall that the positive fragment of relational algebra
is the fragment without the difference operator and with-
out disequalities in selection conditions. It corresponds
to the fragment of SQL in which negation does not ap-
pear in any form, i.e., EXCEPT is not allowed, there are
no negations in WHERE conditions and the use of NOT IN
and NoT Ex1sTs for subqueries is prohibited.

FAcT 1 ([12, 18, 25]). For positive relational alge-
bra queries, naive evaluation computes exactly certain
answers with nulls, and thus it has correctness guaran-
tees. This remains true even if we extend the language
with the division operator as long as its second argu-
ment is a relation in the database.

Recall that division is a derived relational algebra op-
eration; it computes tuples in a projection of a relation
appearing in all possible combinations with tuples from
another relation (e.g., ‘find students taking all courses’).

SQL evaluation. The query evaluation procedure in
SQL is different from naive evaluation: it is based on a
3-valued logic. Comparisons suchas 1. = ¢,or L = 1/,
evaluate to unknown, which is then propagated through
conditions using the rules of 3VL.

More precisely, selection conditions can evaluate to
true (t), false (f), or unknown (u). If at least one attribute
in a comparison is null, the result of the comparison is
u. The interaction of u with Boolean connectives fol-
lows the rules of SQL’s 3VL (which is Kleene’s 3-valued
logic) shown below for the cases when u is involved:

u=u unf=f uvt=t
uAt=u uAu=u
uvf=u uvu=u

Then, oy selects tuples on which 6 evaluates to t (that is,
f and u tuples are not selected). We refer to the result of
evaluating a query () in this way as Evalgq (Q, D).

FACT 2 ([25]). Evalgqy has correctness guarantees
for positive relational algebra.

Thus, it is the negation in queries — that may appear
in various forms — that causes SQL’s behavior to deviate
from correct answers. Not surprisingly, all the example
queries in the introduction used some form of negation.

3. APPROXIMATION SCHEMES WITH
CORRECTNESS GUARANTEES

Due to the high complexity of certain answers, we
must settle for approximations that can be computed ef-
ficiently. As we have seen, although efficient, standard

8

SQL evaluation may produce answers that are not cer-
tain, so we need alternative evaluation schemes that have
correctness guarantees and tractable complexity.

One such scheme was first devised in [25], but despite
its promising complexity bounds it was not effectively
applicable in practice. For this reason, [15] proposed a
new evaluation scheme with correctness guarantees and
the same theoretical complexity of the previous one, but
that can also be implemented efficiently.

We will now present and discuss these two schemes in
more detail for queries expressed in relational algebra.

3.1 A simple translation

The key idea of the approximation scheme of [25] is
to translate a query @ into a pair (Q*, Q') of queries that
have correctness guarantees for () and its complement
Q, respectively. That is, tuples in Q'(D) are certainly
true, and tuples in Qf(D) are certainly false:

Q' (D) C cert(Q,D) (1)
Q'(D) C cert(Q,D))

To describe the translation, we need the following.

Definition 2. Two tuples 7 and 5 of the same length
over Const U Null are unifiable, written as 7 1 s, if there
exists a valuation v of nulls such that v(7) = v(3).

For example, (L, 2, L") 1+ (2, L, 3) with the valuation
v(Ll) = 2and v(Ll’) = 3, but (1,3, 1) and (2, 1,3)
do not unify. Checking whether tuples unify is very ef-
ficient: it can be done in linear time, and in fact can be
expressed by a condition in WHERE.

The translations of [25] are shown in Figure 2, where
adom refers to the query computing the active domain.
For a single relation R with attributes Ay, ..., A, this
is adom(R) = 74, (R) U ... Umy, (R), and for a da-
tabase D with relations Ry, ..., Ry, it is adom(D) =
adom(Ry) U...Uadom(R;,). Recall that ar(Q) is the
arity of (), so adom®(@ refers to the Cartesian product
adom X ... x adom taken ar(Q) times.

The translation also uses conditions 8* which are ob-
tained by translating selection conditions 6 as defined
inductively by the following rules:

(A=B) = (A=B)
(A=c¢)" = (A=c¢) ifcisaconstant
) (A # B) A const(A) A const(B)
(A#c¢)" = (A#c)Aconst(A)
)
)

S

e
w
I

01V)" = 07V 65
(91/\92 = QTAH;

THEOREM 1 ([25]). The translations of Figure 2
have correctness guarantees: (1) and (2) hold. More-

over, both queries Q' and Q' have ACP data complexity,
and Q*(D) = Q(D) for complete databases.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Rt =R

)= QIUQY

)= QinQ,

(70(Q))" = oo+ (@Q"

(Q1x Q2)' = @} x Q4
)" = mal(@Y

Rf = {§€ adomar(R) | ﬂfe R: fﬂg}

) = Qings

F = QluQ,
) = QF x adom™@2) U adom™(@V) x Qf
) = Wa(Qf) — Ta (adOmar(Q) _ Qf)

Figure 2: Relational algebra translations of [25].

While (1) and (2) ensure correctness guarantees for
all relational algebra queries, and queries Q' and Qf
have good theoretical complexity, they suffer from a
number of problems that severely hinder their practi-
cal implementation. Crucially, they require the compu-
tation of active domains and, even worse, their Carte-
sian products. While expressible in relational algebra,
the Qf translations for selections, products, projections,
and even base relations become prohibitively expensive.
Several optimizations have been suggested in [25] (at
the price of missing some certain answers), but the cases
of projection and base relations do not appear to have
any reasonable alternatives. Yet another problem is the
complicated structure of the queries Qf. When transla-
tions are applied recursively, this leads to very complex
queries @' if () used difference.

In fact we tried a simple experiment with the transla-
tions in Figure 2, and found that they are already infea-
sible for very small databases: some of the queries start
running out of memory on instances with fewer than 103
tuples.

All this tells us that good theoretical complexity is
not yet a guarantee of real-life efficiency, and we need
an implementable alternative, which we present next.

3.2 An implementation-friendly transla-
tion

To overcome the practical difficulties posed by the
translation in Figure 2, [15] proposed an alternative
translation that is implementation-friendly and comes
with sufficient correctness guarantees. This translation
does not produce a second query Q' that underapprox-
imates certain answers to the negation of the query,
which was the main source of complexity. To see what
we can replace it with, note that, in the Q' translation,
Q" was only used in the rule for difference: a tuple a is
a certain answer to Q1 — Q) if

1. a is a certain answer to (01, and

2. @ is a certain answer to the complement of Q)5.

That necessitated working with the complex Q transla-
tion.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

But we can use a slightly different rule: a tuple a is a
certain answer to (1 — Qs if

1. a is a certain answer to (01, and

2. @ does not match any tuple that could possibly be
an answer to Q.

The advantage of this is that the query that approxi-
mates possible answers can be built in a much simpler
way than Qf. For instance, for a base relation R, it will
be just R itself, as opposed to the complex expression in-
volving adom we used before. Then the rule for Q1 — Q2
involves a left anti-semijoin (to be defined soon) of the
approximation of certain answers to (7 and possible an-
swers to (0s.

We need to formally say what “(not) matching possi-
ble answers” means. To this end, we define approxima-
tions of possible answers and two matching-based semi-
join operators. There already exists a notion of maybe-
answers [2, 31] — answers that appear in Q(’U(D)) for
at least one valuation v — but those can be infinite, and
include arbitrary elements outside of adom(D). What
we need instead is a compact representation.

Definition 3. Given a k-ary query () and an incom-
plete database D, we say that a set A C adom(D)¥
represents potential answers to Q on D if Q(v(D)) C
v(A) for every valuation v. A query Q' represents po-
tential answers to @ if Q'(D) represents potential an-
swers to on D, for every D.

Obviously, there are trivial ways of representing po-
tential answers: take, e.g., adom(D)k. But we shall be
looking for good approximations, just as we are looking
for good approximations of cert(Q@, D), for which bad
ones can also be found easily (e.g., the empty set). In
general, testing if a set A represents potential answers
to a query is computationally hard:

PROPOSITION 1 ([15]). There is a fixed relational
algebra query Q) such that the following problem is
CONP-complete: given a database D and a set A of tu-
ples over adom(D), does A represent potential answers
toQonD?

Rt*=R 3.1
(@QUQ)T =QT UQy (3.2)
(Q1— Q)" =Qf % Q3 (3.3)

(06(Q)) " = 00-(Q") (3.4)
(Q1x Q)T =Qf xQF (3.5)
(1a(Q)) " = mal Q*) (3.6)

R'=R 4.1)
(@QUQy)" = Q1UQ2 (4.2)
(@ QQY =Qi—QF 4.3)

(06(Q)" = 7o~ (Q") (44)
(Q1 x Q2)° = Q x Q3 (4.5)
(7a(Q)" =70 (Q) (4.6)

Figure 3: Improved relational algebra translations of [15].

However, we shall see that potential answers can be
efficiently approximated, which is what we need for the
translation.

To express conditions involving matching, we shall
need two semijoin operations based on unifiable tuples
(see Definition 2).

Definition 4. For relations R, S over Const U Null,
with the same set of attributes, the left unification semi-
Jjoin is

RxyS={reR|3Is5e€S:715}
and the left unification anti-semijoin is

RxyS=R—(RxyS)={FeR|HF5€S: 7015}

These are similar to the standard definition of (anti)
semijoin; we simply use unifiability of tuples as the join
condition. They are definable operations: we have that
R xy S =mr(0og, (R % S)), where the projection is on
all attributes of R and condition 6, is true for a tuple
rs € R x Siff 7 5. The unification condition 6 is ex-
pressible as a selection condition using predicates const
and null [25]. Note that, in this notation, R! of Figure 2
is adom® () 5 xq R.

We now define the translation Q — (Q*, Q). For
Q™ with correctness guarantees, all of the rules are the
same as in Figure 2, except the one for difference, which
becomes

(@1 —Q2)" = QF X3 Q3
This is precisely the set of tuples certainly in (1 that do
not match potential answers to QJ5.

For queries QQ°, the translation follows the structure of
the query closely, but it needs a different translation of
selection conditions: 6 — 6™ is given by 6™ = —(—6)*.
Recall that negating selection conditions means propa-
gating negations through them, and interchanging = and
#, and const and null. For completeness, we provide it
below:

(A#B)y* = (A#B)
(A#c¢)™ = (A+#c) ifcisaconstant

10

)™ = (A= B)Vnull(4) Vnull(B)
(A=¢)" = (A=c¢)Vnull(4)
(91 \/(92)** = 61‘*\/95*
= 07 NOF

—

)
il

>

D
no

~—
\

The full translation is given in Figure 3.

THEOREM 2 ([15]). For the translation Q — (Q,
Q") in Figure 3, the query Q% has correctness guaran-
tees for Q, and Q" represents potential answers to Q.

In particular, Q* (D) C cert(Q, D) and
v(QF(D)) € Qu(D)) € v(Q'(D))

for every database D and every valuation v.

The theoretical complexity bounds for queries QT
and Q! are the same: both have the low ACY data com-
plexity. However, the real world performance of QT
will be significantly better, as it completely avoids large
Cartesian products.

We conclude this section with a few remarks. First,
the translation of Figure 3 is really a family of transla-
tions: our result is more general.

COROLLARY 1. Ifin the translation in Figure 3 one
replaces the right sides of rules by queries

e contained in those listed in (3.1)—(3.6), and

e containing those listed in (4.1)—(4.6),
then the resulting translation continues to satisfy the
claim of Theorem 2.

This opens up the possibility of optimizing translations
(at the expense of potentially returning fewer tuples).
For instance, if we modify the translations of selection
conditions so that 6* is a stronger condition than the
original and 6™ is a weaker one, we retain overall cor-
rectness guarantees. In particular, the unification condi-
tion 0 is expressed by a case analysis that may become
onerous for tuples with many attributes; the above ob-
servation can be used to simplify the case analysis while
retaining correctness.

Next, we turn to the comparison of Q+ with the result
of SQL evaluation, i.e., Evalsq (@, D). Given that the

SIGMOD Record, September 2017 (Vol. 46, No. 3)

latter can produce both types of errors — false positives
and false negatives — it is not surprising that the two are
in general incomparable. To see this, consider first a
database Dy where R = {(1,2),(2, 1)}, S = {(1,2),
(L,2)} and T = {(1,2)}, and the query Q1 = R —
(SNT). The tuple (2, L) belongs to Evalsq (@1, D)
and it is a certain answer, while QT(D) = &. On the
other hand, for Dy with R = {(L, L)} over attributes
A, B, and Q2 = 0 4-p(R), the tuple (L, L) belongs to
Q5 (Ds), but Evalsqy (Q2, D2) = @.

4. EXPERIMENTAL EVALUATION

‘We now report on the experiments carried out in [15]
that answer two questions posed in the introduction: Do
false positives occur in real-life queries? Does the ap-
proximation scheme (Q*, Q) perform well in practice?

We have seen that what breaks correctness guarantees
is queries with negation; the example in the introduction
was based on a Not Ex1sTs subquery. To choose con-
crete SQL queries for our experiments, we consider the
well established TPC-H benchmark that models a busi-
ness application scenario and typical decision support
queries [30]. Its schema contains information about cus-
tomers who place orders consisting of several items, and
suppliers who supply parts for those orders.

Only few TPC-H queries use NOT EXISTS, SO We Sup-
plement them with very typical database textbook [10]
queries (slightly modified to fit the TPC-H schema) that
are designed to teach subqueries.

Another issue is that the standard TPC-H data gener-
ator, DBGen, only produces instances without nulls, so
we need to insert nulls to make them fit for our purpose.
To this end, we separate attributes into nullable and non-
nullable ones; the latter are those where nulls cannot oc-
cur (due to primary key constraints, or NoT NULL decla-
rations). For nullable attributes, we choose a probability,
referred to as the null rate of the resulting instance, and
simply flip a coin to decide whether the corresponding
value is to be replaced by a null. The resulting instances
contain a percentage of nulls in nullable attributes that is
roughly equal to the null rate with which nulls are gen-
erated. We consider null rates in the range 0.5%—-10%.

The smallest instance DBGen generates is about 1GB
in size, containing just under 9-10° tuples. We measured
the relative performance of our translated queries w.r.t.
the original ones on instances of size comprised between
1GB and 10GB.

Estimating the amount of false positives in query an-
swers in queries is trickier, since finding certain answers
is computationally hard. We overcome this difficulty by
using ad hoc algorithms for the specific queries we ex-
periment with, and by using smaller instances generated
by a configurable data generator, DataFiller [7]. These
instances are compliant with the TPC-H specification in

SIGMOD Record, September 2017 (Vol. 46, No. 3)

everything but size, which we scale down by a factor of
103. For additional details of the experimental setup, we
refer to [15].

4.1 How many false positives?

A false positive answer is a tuple that is returned by
the SQL evaluation and yet is not certain; that is, the set
of false positives produced by a query () on a database
Dis Q(D) — cert(Q, D). They only occur on databases
with nulls; on complete databases, Q(D) = cert(Q, D).
A simple example was given in the introduction; our
goal now is to see whether real-life queries indeed pro-
duce false positives. For this, we shall run our test
queries on generated instances with nulls and compare
their output with certain answers. As explained above,
for each test query we designed a specialized algorithm
to detect (some of the) false positives. This will tell us
that at least some percentage of SQL answers are false
positives.

Recall that null values in instances are randomly gen-
erated: each nullable attribute can be null with the same
fixed probability, referred to as the null rate. To get good
estimates, we generated 100 instances for each null rate
in the range 0.5%-10%, and we ran each query 5 times,
with randomly generated values for its parameters. At
each execution, a lower bound on the percentage of false
positives is calculated by means of the algorithms men-
tioned above.

The outcome of the experiment showed that the prob-
lem of incorrect query answers in SQL is not just the-
oretical but it may well occur in practical settings: ev-
ery single query we tested produced false positives on
incomplete databases with as low as 0.5% of null val-
ues. In extreme cases, false positives constitute almost
the totality of answers, even when few nulls are present.
Other queries appear to be more robust (as we only find
a lower bound on the number of false positives), but the
overall conclusion is clear: false positives do occur in
answers to very common queries with negation, and ac-
count for a significant portion of the answers.

4.2 The price of correctness

Our goal was to test whether the translation Q) —
Q™ works in practice. For this, we executed our test
queries and their translations with correctness guar-
antees on randomly generated incomplete TPC-H in-
stances to compare their performance.

The translation) — Q% was given at the level of
relational algebra. While there are multiple relational
algebra simulators freely available, we carried out our
experiments using a real DBMS on instances of realis-
tic size (which rules out relational algebra simulators).
Thus, we took test SQL queries, applied the translation
Q@ — Q7 to their relational algebra equivalents, and

11

then ran the results of the translation as SQL queries.

Note that we measured the relative performance of
the correct translations Q7s, i.e., the ratio between the
running times of () and of the original queries). We
used the DBGen tool to generate instances and popu-
lated them with nulls, depending on the prescribed null
rate. For each null rate in the range 1%-5%, in steps of
1%, we generate multiple incomplete instances, and ran
queries multiple times for randomly generated values of
their parameters. The reported results were averages of
those runs.

Regarding the size of instances, it seems, intuitively,
that the ratio of execution times of Q1 and @ should
not significantly depend on the size of the generated in-
stances. With this hypothesis in mind, we first did a
detailed study for the smallest allowed size of TPC-H
instances (roughly 1GB). After that, we tested our hy-
pothesis using instances up to 10GB. For the majority
of queries relative performances indeed remained about
the same for all instance sizes as we expected, although
we did find an exception (we shall discuss this later).

One of the key changes that our translation introduces
is to convert conditions of the form a=s to

A=B OR A IS NULL OR B IS NULL

inside correlated NoT Ex1IsTs subqueries. The reason for
this should be clear when one looks at the translation
6 — 6™ of conditions in queries Q. This is the trans-
lation that is applied to negated subqueries, due to the
rule (Q1 — Q2)T = QF %y QF, thus resulting in such
disjunctions.

In general, and this has nothing to do with our transla-
tion, when several such disjunctions occur in a subquery,
they may not be handled well by the optimizer [5]. One
could in fact observe that for a query of the form

SELECT » FROM R WHERE NOT EXISTS

(SELECT x FROM S, ..., T
WHERE (A=B OR A IS NULL OR B IS NULL)
AND --- AND

(X=Y OR X IS NULL OR Y IS NULL))

the estimated cost of the query plan can be thousands
of times higher than for the same query from which the
1s NuLL conditions are removed.

One way to overcome this is quite simple and takes
advantage of the fact that such disjunctions will oc-
cur inside NoT Ex1STs subqueries. We can then prop-
agate disjunctions in the subquery, which results in a
Nor ExIsTs condition of the form —=3% \/ ¢;(Z), where
each ¢; now is a conjunction of atoms. This in turn can
be split into conjunctions of =3Z ¢;(Z), ending up with
a query of the form
SELECT » FROM R WHERE NOT EXISTS

(SELECT » FROM S;, i€ I1 WHERE A ¢})
AND --- AND NOT EXISTS
(SELECT x FROM S;, i€ Iy WHERE A;¢F)

12

where formulae wé are comparisons of attributes and
statements that an attribute is or is not null, and relations
S; for ¢ € I; are those that contain attributes mentioned
in the 1)s.

Based on the experiments we conduct, we observe
three types of behavior, discussed below.

Small overhead. In half of the queries, the price of cor-
rectness is negligible for most applications, under 4%.
The 1s NuLL disjunctions introduced by our translation
are well handled by the optimizer, resulting in small
overheads. In some cases, these overheads get lower
as the null rate gets higher. This is most likely due to
the fact that with a higher null rate it is easier to sat-
isfy the 1s NuLL conditions in the wHERE clause of the
NOT EXISTS subquery. As a result, a counterexample to
the NoT EXISTS subquery can be found earlier, resulting
in an overall faster evaluation.

Significant speedup. The translation with correctness
guarantees is much faster than the original query; in fact
we observed that it could be more than 3 orders of mag-
nitude faster on average. This behavior arises when the
translation with correctness guarantees results in decor-
related subqueries, which allows one to quickly detect
that the correct answer is empty and terminate execu-
tion early, while the original query, on the other hand,
spends most of its time looking for incorrect answers.
In fact, this behavior was observed for queries with a
rate of false positive answers close to 100%. As in-
stances grow larger, the speedup of the translated query
increases, since the original query is forced to spend
more time looking for incorrect answers.

Moderate slowdown. The translated queries with cor-
rectness guarantees run at roughly half the speed of the
original ones on 1GB databases. The slowdown is worse
for bigger instances, increasing to about a quarter of the
speed on 10GB databases, but it may still be tolerable if
correctness of results is very important.

This behavior may arise when there are complex multi-
way joins with large tables in NoT Ex1isTS subqueries.
Without splitting the 1s NurLL disjunctions introduced
by our translation, PostgreSQL produces query plans
with astronomical costs, as it resorts to nested-loop joins
even for large tables. This is due to the fact that it under-
estimates the size of joins, which is a known issue for
major DBMSs [21]. In order to make the optimizer pro-
duce better estimates and a reasonable query plan, the
direct translation of these queries may also require some
additional hand-tuning involving common table expres-
sions.

We conclude our experimental evaluation by address-
ing the standard measures for assessing the quality of
approximation algorithms, namely precision and recall.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

The first refers to the percentage of correct answers
given. With the correctness guarantees proven in Sec-
tion 3, we can state that the precision of our algorithms
is 100%. Recall refers to the fraction of relevant answers
returned. In our case, we can look at the certain answers
returned by the standard SQL evaluation of a query @,
and see how many of them are returned by Q. The
ratio of those is what we mean by recall in this scenario.

In some artificial examples, QT may miss several, or
even all, certain answers returned by (). Thus, we can-
not state a theoretical bound on the recall, but we can see
what it is in the scenarios represented by our test queries.
For this, we could use algorithms for identifying false
positives, as explained in Section 4.1, on smaller TPC-
H instances generated by DataFiller. In all those cases,
the behavior we observed was that the translated queries
returned precisely the answers to the original queries ex-
cept false positive tuples. That is, for those instances,
the recall rate was 100%, and no certain answers were
missed.

S. THEORETICAL MODELS VS. REAL
LIFE

We saw that good theoretical complexity bounds do
not guarantee efficiency in real systems: the evaluation
schemes with correctness guarantees presented in Sec-
tion 3 are both very efficient in theory, yet only one of
them performs well in practice. The mismatch between
theoretical results and their practicality is not limited to
efficiency. Before our approach [15] could be success-
fully applied in real life scenarios, several other impor-
tant factors must be taken into account. We discuss them
below.

5.1 Bag semantics and certain answers

As prescribed by the SQL Standard, relational data-
base management systems use bag semantics in query
evaluation. With bags, a tuple a can have a multiplicity
(number of occurrences) #(a, R) in a table R, which is
a number in N. Thus, instead of saying that a tuple is
certainly in the answer, we have more detailed informa-
tion: namely, the range of the numbers of occurrences
of the tuple in query answers. This is captured by the
following definitions, that extend the notion of certain
answers with nulls:

inn(D, a) = min#(v(a),Q(v(D))) (6a)
max(D,a) = max#(v(@),Q(u(D)) (6b)
where v ranges over valuations. Note that, if a has no
nulls, ming (D, @) and maxg (D, @) are simply the min-
imum and the maximum numbers of occurrences of @ in

the answer to) over all databases v(D) represented by
D. Then we know with certainty that every query an-

SIGMOD Record, September 2017 (Vol. 46, No. 3)

swer must contain at least ming(a, D) occurrences of
a, and no answer will contain more than maxg(a, D)
of them. When a query is evaluated under set semantics,
ming (D, a) = 1 means that @ € cert(Q, D).

Relational algebra operations under bag semantics are
interpreted in a way that is consistent with SQL evalu-
ation: union, for example, adds up occurrences and, for
difference, #(a, R—S) = max (#(d, R)—#(a,S), O).
We refer to [14] for a survey on the subject and the
full definition of all operations of relational algebra
(0,7, X, U, —) under bag semantics.

The complexity of the bounds (6a) and (6b) mimics
analogous results for set semantics: for every relational
algebra query () interpreted under bag semantics, and
for every m € N, checking whether ming (D,¢) > m
or whether maxg(D,¢) < m can be done in CONP
with respect to data complexity, and the problems could
be CONP-hard already without duplicates.

The difference with the set case comes when we look
at positive relational algebra which, as before, excludes
difference.!

THEOREM 3 ([8]). For each positive relational al-
gebra query @, under bag semantics, ming (D, ¢) can
be computed in polynomial time (in fact, DLOGSPACE)
with respect to data complexity.

However; there is a positive relational algebra query
Q such that checking, for given D, a, and m, whether
maxg (D, a) < m is CONP-complete.

In fact, CONP-hardness is witnessed by an extremely
simple query that returns a relation in a database, that is,
SELECT « FROM R.

Next, we look at possible extensions of the approxi-
mation schemes of Section 3 to bag semantics. A simple
analysis of the definition of queries Q*, Qf shows that for
every tuple a,

#(a,QY(D))
#(a, Q"(D))

This suggests a natural extension of the translation
scheme (Q*, QF) to bags: we simply omit modulo 2 from
addition, since it was only needed to force multiplicities
to be either O or 1. But this is suddenly very problematic,
as maxq (D, a) is hard computationally, for all queries,
since we cannot even compute it efficiently for base re-
lations! Thus, implementing this approximation scheme
in a real-life RDBMS (which is bag-based) is infeasible
not only practically but also theoretically when we use
bag semantics.

IN

in(D.
len(a)

IN

(1+ mgx(D, a)) mod 2

"Please note that Theorems 3 and 4, as stated in [8], referred
to languages that also erroneously included duplicate elimina-
tion. However, the claims hold only when this operation is not
part of the language.

13

On the other hand, (5) suggests a natural extension of
the correctness criterion for the translation scheme (Q,
Q"), namely:

#(a,Q*(D)) < ming(a,D) < #(a,Q"(D)) ()

for every database D and every tuple a of elements of
D. Indeed, for bags By and Bs, we have that By C By
iff #(b, B1) < #(b, Bs) for every element b.

THEOREM 4 ([8]). The translation Q — (Q%,Q7)
in Figure 3 satisfies (7) when queries are interpreted un-
der bag semantics.

In summary, the translation of Figure 2 loses its good
theoretical complexity bounds and becomes intractable
under bag semantics, while the approximation scheme
of Figure 3 remains provably feasible also under bag se-
mantics, thus strengthening the claim of its efficiency,
practicality, and robustness.

5.2 Relational algebra vs SQL

The translations [15] in Section 3 work at the level of
relational algebra, while the experimental evaluation in
Section 4 was carried out with concrete SQL queries on
a real DBMS. This was achieved by first translating an
SQL query @ to relational algebra, applying the trans-
lation with correctness guarantees, and then translating
the resulting RA query Q" back to SQL.

Unfortunately, database textbooks provide only a few
examples of translations between SQL and RA, and de-
tailed translations that appeared in the literature made
simplifying assumptions that deviate significantly from
the behavior of SQL specified by the Standard, such as
the use of set semantics and the omission of nulls along
with the associated three-valued logic.

Recently, [16] proposed a formal semantics of SQL
that captures the core of the real language and that was
experimentally validated on a very large number of ran-
domly generated queries and databases. The semantics
was applied to provide precise translations between the
core fragment of SQL and relational algebra, yielding
the first formal proof that they have the same expressive
power. Using this formal semantics, [16] also showed
that the three-valued logic of SQL is not really neces-
sary for query evaluation, despite what is commonly be-
lieved, and that the usual Boolean logic with only true
and false suffices.

The test queries we used in Section 4 go slightly be-
yond relational algebra as used in the translations of Fig-
ure 3. Given their decision support nature, many TPC-H
queries involve aggregation, but this is not important for
our purposes: if a tuple without an aggregate value is a
false positive, it remains so even when an extra attribute
value is added. Thus, since we only need to measure the
ratio of false positives, and the relative change of speed

14

in query evaluation, we can safely drop aggregates from
the output of those queries. As for aggregate subqueries,
we just treated them as a black box, that is, we viewed
the result of such a subquery as a constant value c.

5.3 Marked nulls vs SQL nulls

The approximation schemes of [25] and [15] rely on
the standard theoretical model of incompleteness where
missing values in a database are represented by marked
nulls. In SQL, however, we only have a single syntactic
object for this purpose: Nurr. Marked nulls are more
expressive than SQL nulls, in that two unknown values
can be asserted to be the same simply by denoting them
with the same null. Indeed, L = 1 is true indepen-
dently of which concrete value is assigned to L ;. On the
other hand, the comparison NuLL = NuLL in SQL evalu-
ates to unknown, because we do not know whether the
two occurrences of NULL refer to the same value.

Due to the coarseness of SQL nulls, the translations
Q1 and Q7 must be slightly adjusted to work correctly
when evaluated as SQL queries. As expected, the adjust-
ment occurs in selection conditions. For the 6* transla-
tion in Q*, we need to make sure that attributes com-
pared for equality are not nulls (the existing translation
already does that for disequality). For the 6™ translation
in 7, the situation is symmetric: we need to include the
possibility of attributes being nulls for disequality com-
parisons (the existing translation already does that for
equality). That is, we change the translations as follows:

(A= B)" = (A= B) Aconst(A) A const(B)
(A#B)* = (A# B) Vnull(4) V null(B)

and likewise for (A = ¢)* and (A # ¢)*. Observe that,
as stronger conditions are used for equality rules in 6*
and weaker ones for disequality rules in 8*, by Corol-
lary 1 the adjusted translations ensure that Q* continues
to underapproximate certain answers and @’ continues
to represent potential answers on databases with marked
nulls, but now we also take into account SQL’s behavior
in comparisons with nulls.

There is one more issue we need to address. Usually,
at least in the theoretical literature, SQL nulls are iden-
tified with Codd nulls, that is, marked nulls that do not
repeat. The idea is to interpret each occurrence of NULL
as a fresh marked null that does not appear anywhere
else in the database. However, [17] recently showed that
this way of modeling SQL nulls does not always work.
If SQL nulls are to be interpreted as Codd nulls, this in-
terpretation should apply to input databases as well as
query answers, which are incomplete databases them-
selves. To explain this point, let codd(D) be the result
of replacing SQL nulls in D with distinct marked nulls;
as this choice is arbitrary, technically codd(D) is a set
of databases, but these are all isomorphic. To ensure that

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Codd nulls faithfully represent SQL nulls for a query @,
we need to enforce the condition in the diagram below:

Q

D Q(D)
codd codd
L w)

Intuitively, it says the following: take an SQL database
D, and compute the answer to Q on it, i.e., Q(D). Now
take some D’ in codd(D), and compute Q(D’). Then
Q(D') must be in codd (Q(D)), that is, there must be a
way of assigning Codd nulls to SQL nulls in Q(D) that
will result in Q(D’).

Unfortunately, [17] showed that this condition does
not hold already for simple queries computing the Carte-
sian product of two relations. Furthermore, the class of
relational algebra queries that transform SQL databases
into Codd databases is not recursively enumerable, and
therefore it is impossible to capture it by a syntactic frag-
ment of the language. Exploiting NOT NULL constraints
declared on the schema, [17] then proposes mild syntac-
tic restrictions on queries that can be checked efficiently
and are sufficient to guarantee the condition in the above
diagram (i.e., that SQL nulls behave like Codd nulls).

We remark that the queries — and their translations —
used for the experimental evaluation in Section 4 satisfy
these restrictions and therefore they work correctly with
the SQL implementation of nulls. However, the results
of [17] tell us that in full generality we cannot guarantee
correctness for all queries unless a proper implementa-
tion of marked nulls is available.

6. OUTLOOK & OPEN PROBLEMS

The main conclusion is that it is practically feasible to
modify SQL query evaluation over databases with nulls
to guarantee correctness of its results. This applies to the
setting where nulls mean that a value is missing, and the
fragment of SQL corresponds to first-order, or relational
algebra, queries. We saw that the modified queries with
correctness guarantees run at roughly a quarter of the
speed in the worst case, to almost 10* times faster in the
best case. For several queries, the overhead was small
and completely tolerable, under 4%. With these trans-
lations, we also did not miss any of the correct answers
that the standard SQL evaluation returned.

Given our conclusions that wrong answers to SQL
queries in the presence of nulls are not just a theoretical
myth — there are real world scenarios where this hap-
pens — and correctness can be restored with syntactic
changes to queries at a price that is often tolerable, it is
natural to look into the next steps that will lift our solu-
tion from the first-order fragment of SQL to cover more

SIGMOD Record, September 2017 (Vol. 46, No. 3)

queries and more possible interpretations of incomplete-
ness. We shall now discuss those.

Aggregate functions. An important feature of real-life
queries is aggregation which, in fact, is present in most
of the TPC-H queries. However, here our understanding
of correctness of answers is quite poor; SQL’s rules for
aggregation and nulls are rather ad-hoc and have been
persistently criticized [4, 9]. Therefore, much theoreti-
cal work is needed in this direction before practical al-
gorithms emerge.

Incorporating constraints. In the definition of certain
answers we disregarded constraints, even though every
real-life database will satisfy some, typically keys and
foreign keys. While a constraint 1) can be incorporated
into a query ¢ by finding certain answers to ¢ — ¢, for
common classes of constraints we would like to see how
to make direct adjustments to rewritings. One example
of this that we actually used in query rewriting is that
the presence of a key constraint let us replace R x; S by
R — S. Ideally such query transformations need to be
automated for common classes of constraints.

Other types of incomplete information. We dealt with
nulls representing missing values, but there are other in-
terpretations. For instance, non-applicable nulls [23, 34]
arise commonly as the result of outer joins. We need to
extend the notion of correct query answering and trans-
lations of queries to them. One possibility is to adapt
the approach of [24] that shows how to define certainty
based on the semantics of inputs and outputs of queries.
At the level of missing information, we would like to see
whether our translations could help with deriving partial
answers to SQL queries, when parts of a database are
missing, as in [20].

Direct SQL rewriting. We have rewritten SQL queries
by a detour via relational algebra. With the assistance of
the formal semantics of [16], we should look into direct
rewritings from SQL to SQL, without an intermediate
language. This would also allow us to run queries with
correctness guarantees directly on a DBMS.

Marked nulls in SQL. The results of [17] show us that
with standard SQL nulls we can only guarantee correct-
ness for a restricted class of queries, which cannot even
be captured syntactically. To overcome this limitation,
we are currently working towards extending SQL with a
proper implementation of marked nulls.

Acknowledgments

This survey is based on the work originally published in
[15, 25], which greatly benefited from discussions with

15

Marco Console, Chris Date, Hugh Darwen, Ron Fagin,
Chris Ré, and Cristina Sirangelo. Work partly supported
by EPSRC grants N023056 and M025268.

7. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, P. C. Kanellakis, and G. Grahne. On
the representation and querying of sets of possible
worlds. Theoretical Computer Science,
78(1):158-187, 1991.

[3] M. Arenas, P. Barcelo, L. Libkin, and F. Murlak.
Foundations of Data Exchange. Cambridge
University Press, 2014.

[4] 1. Celko. SQL for Smarties: Advanced SQL
Programming. Morgan Kaufmann, 1995.

[5] J. ClauBen, A. Kemper, G. Moerkotte,

K. Peithner, and M. Steinbrunn. Optimization and
evaluation of disjunctive queries. IEEE Trans.
Knowl. Data Eng., 12(2):238-260, 2000.

[6] E. E. Codd and C. J. Date. Much ado about
nothing. In C. J. Date, editor, Relational Database
Writings 1991-1994. 1995.

[7] F. Coelho. DataFiller — generate random data from
database schema. https://www.cri.ensmp.fr/
people/coelho/datafiller.html.

[8] M. Console, P. Guagliardo, and L. Libkin. On
querying incomplete information in databases
under bag semantics. In IJCAI, pages 993-999.
ijcai.org, 2017.

[9] C. Date and H. Darwen. A Guide to the SQL
Standard. Addison-Wesley, 1996.

[10] C.J. Date. An Introduction to Database Systems.
Pearson, 2003.

[11] G. H. Gessert. Four valued logic for relational
database systems. SIGMOD Record, 19(1):29-35,
1990.

[12] A. Gheerbrant, L. Libkin, and C. Sirangelo. Naive
evaluation of queries over incomplete databases.
ACM Trans. Database Syst., 39(4):31:1-31:42,
2014.

[13] J. Grant. Null values in a relational data base. Inf.
Process. Lett., 6(5):156-157, 1977.

[14] S. Grumbach, L. Libkin, T. Milo, and L. Wong.
Query languages for bags: expressive power and
complexity. SIGACT News, 27(2):30-44, 1996.

[15] P. Guagliardo and L. Libkin. Making SQL queries
correct on incomplete databases: A feasibility
study. In PODS, pages 211-223. ACM, 2016.

[16] P. Guagliardo and L. Libkin. A formal semantics
of SQL queries, its validation, and applications.
PVLDB, 11(1), 2017.

16

[17] P. Guagliardo and L. Libkin. On the Codd
semantics of SQL nulls. In AMW, 2017.

[18] T. Imielinski and W. Lipski. Incomplete
information in relational databases. J. ACM,
31(4):761-791, 1984.

[19] H. Klein. How to modify SQL queries in order to
guarantee sure answers. SIGMOD Record,
23(3):14-20, 1994,

[20] W. Lang, R. V. Nehme, E. Robinson, and J. F.
Naughton. Partial results in database systems. In
SIGMOD, pages 1275-1286, 2014.

[21] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204-215, 2015.

[22] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233-246, 2002.

[23] N. Lerat and W. Lipski. Nonapplicable nulls.
Theor. Comput. Sci., 46(3):67-82, 1986.

[24] L. Libkin. Certain answers as objects and
knowledge. Artificial Intelligence, 232:1-19,
2016.

[25] L. Libkin. SQL’s three-valued logic and certain
answers. ACM TODS, 41(1):1:1-1:28, 2016.

[26] W. Lipski. On semantic issues connected with
incomplete information databases. ACM
Transactions on Database Systems, 4(3):262-296,
1979.

[27] W. Lipski. On relational algebra with marked
nulls. In PODS, pages 201-203, 1984.

[28] R. Reiter. On closed world data bases. In Logic
and Data Bases, pages 55-76, 1977.

[29] R. Reiter. A sound and sometimes complete query
evaluation algorithm for relational databases with
null values. Journal of the ACM, 33(2):349-347,
1986.

[30] Transaction Processing Performance Council.
TPC Benchmark™ H Standard Specification,
Nov. 2014. Revision 2.17.1.

[31] R. van der Meyden. Logical approaches to
incomplete information: A survey. In Logics for
Databases and Information Systems, pages
307-356, 1998.

[32] M. Vardi. Querying logical databases. Journal of
Computer and System Sciences, 33(2):142—-160,
1986.

[33] K. Yue. A more general model for handling
missing information in relational databases using
a 3-valued logic. SIGMOD Record, 20(3):43-49,
1991.

[34] C. Zaniolo. Database relations with null values. J.
Comput. Syst. Sci., 28(1):142-166, 1984.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Uninterruptible Migration of Continuous Queries
without Operator State Migration

Thao N. Pham, Nikos R. Katsipoulakis, Panos K. Chrysanthis, Alexandros Labrinidis
Department of Computer Science, University of Pittsburgh, USA
{thao, katsip, panos, labrinid}@cs.pitt.edu

ABSTRACT

The elasticity brought by cloud infrastructure provides
a promising solution for a data stream management sys-
tem to handle its incoming workload, which can be
highly variable: the system can scale out when heav-
ily loaded, and scale in otherwise. In such a solution,
the efficiency of the mechanism used to migrate a query
from one node to another is very important. Generally, a
stream application requires real-time outputs for its con-
tinuous queries, and downtime is not acceptable. More-
over, the migration should not add considerable process-
ing cost to a node that could have been already over-
loaded. In this paper, we present our migration pro-
tocol, named UniMiCo, which satisfies those require-
ments. We implemented UniMiCo in a DSMS prototype
and experimentally show that the protocol preserves cor-
rectness, while introducing no noticeable changes in the
response time of the continuous query being migrated.

1. INTRODUCTION

Today, the ubiquity of sensing devices as well as mo-
bile and web applications leads to the generation of huge
amounts of data, which take the form of streams. Those
data streams are typically high-volume, high-velocity
(fast) and have high-variability (bursty). Data stream
management systems (DSMSs) have become the popu-
lar solution to handle data streams, by efficiently sup-
porting continuous queries (CQs), which process data
as they arrive on the fly.

The bursty incoming workload can overload the
DSMS during its peaks. As a result, output is delayed
and fails to meet the real-time requirements of moni-
toring applications and of emerging “Big Data” appli-
cations [8]. Most modern cloud infrastructures provide
elasticity, which can be used to handle overloading sit-
uations [9]. Flux [12] was one of the early attempts to
introduce a monitoring and load detection operator in a
query network, and provided a state migration protocol
to move CQs across different machines. Another solu-
tion uses backup Virtual Machines (VMs) for periodi-
cally storing state [3]. In the event of load imbalance,

SIGMOD Record, September 2017 (Vol. 46, No. 3)

the migrated CQs restore the state from the backup VM's
and apply incremental changes before resuming execu-
tion. Similarly, the operation migration mechanism in
[10] follows the state migration paradigm. The effi-
ciency of the migration mechanism is crucial, and no
system downtime is acceptable since it translates to loss
of data (hence the term “live” in previous work).

As part of the effort to scale-up/-down AQSIOS [4],
our DSMS prototype, we implemented our own query
migration protocol, named UniMiCo (Uninterruptible
Migration of Continuous Queries). UniMiCo has the
ability to (i) migrate stateful CQs without the need to
transfer any state, and (ii) do the migration in a “live”
fashion (i.e., no downtime).

Our approach on CQ migration generalizes the idea
of the Window Recreation Protocol (WRP) presented in
[7] in two functional ways: First, while WRP was pro-
posed to handle the migration of a sub-query with only
one stateful operator, the UniMiCo protocol allows mi-
grating a query with multiple stateful operators, each
of which could have a different window specification.
Second, in contrast to WRP that considers only time-
based windows, UniMiCo’s protocol has been designed
in a general way to handle both time-based and tuple-
based windows. A minor difference between WRP and
UniMiCo is that UniMiCo does not involve the upstream
data source in synchronizing the migration point, oth-
erwise the two protocols share the same performance
advantages and limitations. Both migration protocols
are equally effective in migrating operators without state
migration and query downtime, yet they might not be
suitable when the window is too large (e.g., 24 hours
[7]) since they may prolong an overloaded situation at
the originating node.

We make the following contributions in this paper:

e We present the complete UniMiCo protocol that
migrates a CQ with multiple stateful operators
from one node to another.

e We experimentally show that UniMiCo migrates
a CQ correctly without incurring any noticeable
“hiccups” in its response time.

17

2. SYSTEM MODEL

We assume a system consisting of multiple shared-
nothing nodes, connected by a reliable, high-speed net-
work. One node serves the role of the coordinator, while
the others are peers and each one of them runs one in-
stance of AQSIOS. AQSIOS is our experimental DSMS,
extended from the STREAM source code [2]. Our ex-
tensions include new operator implementation [6], op-
timization schemes [5], new scheduling policies [13],
load shedders [11], and UniMiCo, our protocol to trans-
fer a CQ from one node to another.

Based on the workload of each node reported by AQ-
SIOS’s load manager, the coordinator initializes a CQ
migration when necessary. For a specific CQ migration
between two nodes, we refer to the node which is run-
ning the CQ as originating node, and the node which
is going to receive the CQ as target node. The migra-
tion can be materialized either through direct commu-
nication between the originating and target nodes, or
through indirect communication via the coordinator. In
this paper we assume the former, but UniMiCo can work
equally well with the latter.

AQSIOS supports a CQ execution model similar to
Borealis and Apache Flink. Each AQSIOS node keeps a
copy of the whole query network, but, only a subset of it
is active on the node. A node only connects to the stream
sources that are necessary for the active queries in the
node. Data streams, coming from (possibly) different
sources, are received by the source operators, which are
the most upstream operators in a CQ. Figure 1 is an ex-
ample of our system model with two AQSIOS nodes.
The CQs comprised of dark operators are those active at
the node. The dashed lines represent network connec-
tions among the nodes.

In this paper we consider the whole query as the mi-
gration unit. However, the protocol can also be used to
migrate only a segment of a CQ: the operator(s) right be-
fore the migrated segment becomes the stream source(s)
for that segment. and their downstream operators act as
source(s) in the corresponding CQs.

Window-based operators

There are two types of operators in a CQ: stateless and
stateful operators. A stateless operator, such as selection
(o), produces an output tuple based solely on the current
input tuple. Conversely, a stateful operator, such as join
or aggregation, needs to refer to values from previous
input tuples. Due to the fact that input streams are infi-
nite, DSMSs use either tumbling or sliding windows, to
limit the state of operators. Sliding windows allow the
output to be continuously computed based on the most
recent “portion” of the stream data. In addition, a sliding
window is specified through a length (or range) /, and a
slide s, which can be either time interval or tuple count.

18

AQSIOS Node 1

Stream 1

Stream 2 ..>._’.—’

O—0O—
O—CO—-0O—>

Coordinator

AQSIOS Node 2

O o

o
Stream 3 . .

Stream 4 . . .

Figure 1: System model

These two types of windows are called time-based and
tuple-based windows, respectively [2].

While most DSMSs embed the window definition into
the stateful operator, some systems treat it as a separated
operator (e.g., [2]). In this paper, when the semantics of
the stateful operator are not important, we refer only to
the window aspect of it as if the window is a separate op-
erator. UniMiCo works the same way no matter whether
the window operator is physically merged to the corre-
sponding aggregate/join operator or not.

3. UNIMICO

The key goal of UniMiCo is to avoid transferring state
during the migration of a CQ containing stateful opera-
tors. To achieve this, UniMiCo migrates a CQ at a win-
dow boundary, meaning that the originating node con-
tinues processing until it completes the last in-progress
window, while the farget node starts processing from the
first tuple of the next window. Given that two consecu-
tive sliding windows overlap, the tuples belonging to the
overlap of the two windows are processed by both the
originating and the target nodes. This way, the state of
the operator is reconstructed at the farget node so there
is no need to migrate it.

We illustrate this strategy in Figure 2. In this exam-
ple, the sliding window of a stateful operator (e.g., ag-
gregate) has a size of 4 seconds and a slide of 2 sec-
onds, with input rate 1 tuple/second. The number in

Last window produced at originating node

W3 Wl
—HEEEE

First tuple read by target node

W,

First window produced at target node

Figure 2: UniMiCo’s migration strategy

SIGMOD Record, September 2017 (Vol. 46, No. 3)

each stream tuple is its timestamp, which is assumed
to monotonically increase over time (i.e. in-order pro-
cessing of tuples). By the time the migration process
starts, the most recent window produced is wi, whose
start timestamp is 1. In addition, the first tuple received
by the target node after it connects to the stream has a
timestamp of 4. UniMiCo determines that (1) the orig-
inating node will continue processing until wy expires,
which happens to be the last window with start times-
tamp less than 4, and (2) the corresponding CQ at the
target node will start processing tuples with timestamp
greater or equal to 5 (ws).

3.1 Migration timestamp

The migration timestamp marks a CQ hand-off from
the originating to the target node. That timestamp is
used to synchronize the stop of the last window at the
originating node and the start of the next window at the
target node.

Definition The migration timestamp is the start times-
tamp of the last window to be processed at the originat-
ing node.

In the example in Figure 2, the start timestamp of wo,
which is 3, is the migration timestamp.

3.1.1 Calculating the migration timestamp

The exact calculation of the migration timestamp de-
pends on the implementation details of the window op-
eration. In this section we present how to calculate
the migration timestamp on both time-based and tuple-
based cases. In all the equations below, s denotes the
slide of the window.

Time-based, single-input window: Assuming a time-
based window of length [and slide s, let ts44,¢ denote
the timestamp of the first input tuple the stream source
at rarget node was able to read after connecting to the
stream. Furthermore, ts;qs:., is the timestamp of the
most recent window processed. The migration times-
tamp, denoted t¢s,,; is calculated as follows (note that
now s is in number of tuples):

P tSiastw if tSstart < tslast,w
m tSstart — 0 Otherwise

)]

where § = { s if (tsstm‘t - tslast,w)%s : 0
(tSstart — tSiastw) %08 otherwise
Tuple-based, single-input window: For tuple-based
windows, the calculation is the same in the case when
tSstart < tsln,st,uw When tSstart > tslast,w’ UniMiCo
needs to wait until a tuple £ comes to the window opera-
tor, whose timestamp is equal to or greater than tsgyq¢.
This way, UniMiCo is aware of the number of tuples
with timestamps between ¢s;4s¢. and tsgyq¢ (let that

SIGMOD Record, September 2017 (Vol. 46, No. 3)

number be N). The migration timestamp can be calcu-
lated by the following equation:

tSmi = timestamp(5*" tuple preceding)

~ sif (N+1)%s =0 @)
where § = { (N + 1)%s otherwise

Multiple-input window: The most common example
of window-based operator with multiple inputs is a bi-
nary join. For time-based windows, Equation 1 can be
used, with tSstart = Mmax(tSstart,), Where tSsiqre, 18
the timestamp of the first input tuple the stream source
1 at target node was able to read. For tuple-based win-
dow, the number of tuples V; coming between tSstqrt,
and 545t 1S calculated separately for each input ¢. Af-
terwards, Equation 2 is applied with N = maxz(V;).

Multiple window operators: A CQ can have multiple
window-based operators with different window specifi-
cations (i.e., length and slide), such as a query with an
aggregation on top of a join. For these cases, we intro-
duce the concept of the controlling window operator.

Definition The controlling window operator is the last
window operator of the CQ. The controlling window op-
erator handles the calculation of the migration times-
tamp, as well as controlling the start and stop of the mi-
grated query at the farget and originating nodes.

For simplicity, we assume that the timestamp of an
output tuple of a window-based operator is the earliest
timestamp of input tuples involved in the calculation of
that output tuple (we discuss later how this assumption
is relaxed). When the aforementioned condition holds,
we know that all the original input tuples, contributing
to the result produced by the farthest window of start
timestamp ts, have timestamps greater than or equal to
ts. Therefore, only the farthest window operator (i.e.,
the controlling window operator) in the CQ needs to be
involved, and the calculation is the same as in the case
of single window. Note that the previous assumption is
not required for the controlling window operator.

Figure 3 shows an example of a CQ consisting of two
window-based operators: a binary join, whose window
has length of 4 seconds and slide 2 seconds, followed
by an aggregation, whose window has length of 3 tu-
ples and size of 2 tuples. For each tuple its timestamp
is shown on the upper and its join key on the bottom
part. For the controlling window, the most recent win-
dow being produced is w1, whose start timestamp is 1
(i.e., tSjast.w = 1). In addition, assume that out of the
two first tuples read from S and T by the target node,
the latest timestamp £ss:q,+ €quals 5. In this case, the
migration timestamp is calculated as if there is only the
controlling window operator (i.e, the aggregation) with
two inputs S and T. Because the controlling window op-
erator is tuple-based, UniMiCo has to wait until tuple

19

W13 W12 Wll
S . cEEEE S 3 B2 E
= [1/[8] 6] (8 [9]) 2] [5]|[2] [o]| 5w

_T s [9][8 7|6 [5 4 32 1]
2 4 (8] 184 2] = 2 o] ol

Wy Wy,

W21
ts
m m S.a
m m Ta

8l 4

Figure 3: Calculating migration timestamp with two consecutive windows

t of timestamp 7 arrives to know that there are 3 tuples
whose timestamps are between 1 and 5, i.e., N = 3.
Applying the calculation from Equation 2 for the case
of tuple-based window, UniMiCo decides that the mi-
gration timestamp is that of the tuple preceding ¢, which
is 4. That is, the last window produced at target is wo; .

When the previous condition on output tuples’ times-
tamps of preceding window operators does not hold,
tsstart 18 measured as the timestamp of the first tuple ar-
riving at the controlling window operator on the target
node. Note than when this condition holds, ¢s¢,+ 1S the
timestamp of the first tuple coming to the source opera-
tor, i.e., it can be captured earlier. With the new tsg¢qr¢,
all of the above calculations of the migration timestamp
are still applicable. Note that in this case if tSgtqr¢ 18
smaller than £s;44; ., there will be some wasted process-
ing at the target to process tuples from source up to the
controlling window between t5stqr¢ and tS;qst_- Since
migration happens when the target is lightly loaded, it
is expected that processing at the target node will be at
least as fast as that at the originating node, hence the
wasted processing, if any, would be small.

3.2 Stoping and resuming CQs

3.2.1 Stopping the query at the originating node

Once the migration timestamp is determined, stop-
ping the query at the originating node is relatively
straightforward: all operators in the CQ continue to
process normally until they receive the signal from the
controlling window operator to deactivate themselves,
unless they are shared with other CQs. This happens
when the controlling window operator has consumed
its last window, i.e., the window started with the migra-
tion timestamp. Shared operators are not deactivated at
the originating node and continue to process normally to
serve the remaining queries. Upon stopping, an operator
cleans up all its queues.

When the controlling window operator is associated
with a join, a minor adjustment is needed in order to
avoid duplicate outputs between the originating and tar-
get nodes. Normally, when there is a match between a
tuple ¢ of one input and ¢’ of the other, the join tuple
tt’" is produced only once, even if both ¢ and ¢’ fall in
the overlap of two (or more) consecutive windows. If

20

we start migrating from one of the windows, the join
tuple ¢’ will be produced once at the originating node,
and again at the target node. In the latter case, the pro-
duction of a duplicate tuple is avoided by suppressing
the production of the join result at the originating node.
Note that when two matching tuples have their times-
tamps in the window overlap, the previous adjustment
is needed only if the join is the last window-based op-
erator in the query. In the event that a join is followed
by another window operator, the duplicated intermediate
output tt’ is needed, as it is an input for the subsequent
window at the target node.

3.2.2 Starting the query at target node

The operators of a migrated CQ can be activated at
the rarget node, as soon as the migration is initialized.
However, full activation is attained by controlling the
flow of tuples based on the migration timestamp. That
process is different for time- and tuple-based windows,
as we describe below.

Time-based controlling window operator: If the CQ
has a time-based controlling window operator, the
stream source operator(s) calculate(s) the activation
timestamp as migration timestamp increased with the
slide of the window. Then, the stream source operator
discards any input tuples, which carry timestamps less
than the activation timestamp. In addition, it starts pro-
ducing tuples with timestamp equal to or greater than
the activation timestamp. With tuples being outputted
from the stream source(s), the query is fully activated.

Tuple-based controlling window operator: In this case,
the stream source operator(s) start(s) producing results
from tuples with timestamps greater than the migration
timestamp. But, the controlling window operator will
discard all first (s — 0) tuples, where s is the slide of
the window and § is calculated from Equation 2 by the
originating node.

For both types of windows, if the output timestamp
of the preceding window-based operator is not the win-
dow’s start timestamp, the controlling window operator
has the only authority to decide when to output tuples.
Thus, the source operator cannot do any early filtering.

Algorithms 1 and 2 outline the UniMiCo protocol ex-
ecuted at farget and originating node, respectively.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Algorithm 1 UniMiCo protocol at target node

1: BEGIN

. Receive(originating_node, migrate(Q))

: for ¢ = 0;4 < Q.num_streams; 7 + + do
connect(Q.streams[i])
tSstart[i] = read(Q.streamsl[i])

end for

: Send(originating_node, tSstart)

. Receive(originating_node,ts ;)

. Resume Q based on tS,,;

10: END

OB W

Algorithm 2 UniMiCo protocol at originating node

: INPUT: Query Q to be migrated

: BEGIN

. Send(target_node, migrate(Q)

. Receive(target_node, tSstart)

tsmi = calculate_migration_timestamp
. Send(target_node, t5y,;)

: Finish_processing(Q, tsm;)

END

4. EXPERIMENTAL EVALUATION

While UniMiCo enhances WRP’s functionality, at the
same time it inherits from WRP both its performance
advantages and its limitations as stated in Introduction.
Since these were experimentally shown in [7], our ex-
perimental evaluation focused on showing that UniM-
iCo migrates CQs with single and multiple stateful op-
erators correctly without impacting their response time.

We implemented and evaluated UniMiCo in a dis-
tributed setup of AQSIOS. As mentioned earlier, the
window operator in AQSIOS is a separate operator,
which receives stream tuples as input, and injects mi-
nus tuples to the stream to mark the boundary of a win-
dow [1]. Windows can have either time-based or tuple-
based length, but the window slide is always 1 tuple.
Therefore, window-based operators, such as join or ag-
gregation, will rely on those minus tuples to perform
their window-based processing. With the separation of
the window operator, each input to a join operator can
have a window of different length and type. In this pa-
per, we assume that join inputs have windows of the
same length and the same type, however, our design can
be extended to heterogeneous window environments.

We ran two types of experiments: (1) simple CQs
with a single window operator and (2) a complex CQ
consisting of two window operators. Given our focus
on correctness and not performance, window size is not
an important parameter in our experiments. We ran each
CQ twice, under the same settings, and changed only if a
migration took place. Then, we compared CQs’ outputs
and response times around the migration point.

4.1 Simple cQ migration (Figures 4 & 5)

We used UniMiCo to migrate a CQ with a join oper-
ator (Q1), and another one with an aggregate operator

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Output with migration

[10051579000]:+:location03, 3, 98, location03, 3, 98
[10051589000]:-:location03, 3, 98, location03, 3, 98
[10052632000]:+:location09, 30, 56, location09, 30, 56
[10052642000]:-:location09, 30, 56, location09, 30, 56

[10053685000]:+:location16, 2, 77, location16, 2, 77
[10053695000]:-:location16, 2, 77, location16, 2, 77
[10054737000]:+:location20, 43, 21, location20, 43, 21
[10054747000]:-:location20, 43, 21, location20, 43, 21

Output without migration

[10051579000]:+:location03, 3, 98, location03, 3, 98
[10051589000]:-:location03, 3, 98, location03, 3, 98
[10052632000]:+:location09, 30, 56, location09, 30, 56
[10052642000]:-:location09, 30, 56, location09, 30, 56
[10053685000]:+:location16, 2, 77, location16, 2, 77
[10053695000]:-:location16, 2, 77, location16, 2, 77
[10054737000]:+:location20, 43, 21, location20, 43, 21
[10054747000]:-:location20, 43, 21, location20, 43, 21

N
o

With migration

Without migration --------

i
o

response time (ms)
=
o

1
9.5 10 10.5 11 115 12
time(s)

o
©
o |
\ | == =
©

Figure 4: Results and response time of Q1 around
the migration point at 10’" sec. The response time
lines corresponding to ‘“with migration” and ‘“‘with-
out migration” are indistinguishable as the migra-
tion adds no noticeable delay

(Q2). These two queries written in CQL [2] are:

Ql Q2

SELECT «

FROM S [Range 10 seconds],
T [Range 10 seconds]

WHERE S.1 = T.1;

SELECT sum(m)
FROM S [Rows 5];

where S and T are input streams. Q1 is associated
with time-based windows with size 10 seconds (i.e.,
[Range 10 seconds]) whereas Q2 is associated with a
tuple-based window of size 5 (i.e., [ROWS 5]).

Figures 4 and 5 show the results of Q1 and Q2 around
the migration point, respectively. In Figure 4, the top
plot is the result under migration, in which the rows
above the dashed line are the last output tuples at the
originating node, and those below are the first output
tuples at the farget node. The middle plot shows the re-
sult without migration, which is exactly the same as the
concatenation of the two parts of the top plot. Similar
observations can be made in Figure 5 for Q2. As one
can see, the correctness of the output is maintained by
using UniMiCo, and its protocol succeeds in performing
the hand-off without losing any data.

The bottom plots in Figures 4 and 5 show the response
time of queries Q1 and Q2 two seconds before and af-
ter the migration point of about the 10" second. As
can be seen in both figures, there are no noticeable “hic-
cups” in the response time of the queries throughout the

21

Output with migration

[10054323000]:+:92
[10054323000]:-:46
[10054323000]:+:87
[10054323000]:-:92
[10055771000]:+:102
[10055771000]:-:87
[10055771000]:+:99
[10055771000]:-:102

Output without migration

[10054323000]:+:92
[10054323000]:-:46
[10054323000]:+:87
[10054323000]:-:92
[10055771000]:+:102
[10055771000]:-:87
[10055771000]:+:99
[10055771000]:-:102

With migration

response time (ms)

time(s)

Figure 5: Results and esponse time of Q2 around the
migration point at 10'" second. The response time
lines corresponding to “with migration” and “with-
out migration” are indistinguishable as the migra-
tion adds no noticeable delay

migration. For QI, the average and standard deviation
of the response time in this period without migration is
3.751 ms and 3.99 ms, respectively, while under migra-
tion they are 3.750 ms and 3.97 ms. For Q2, the corre-
sponding numbers are 3.155 ms and 3.923 ms without
migration, and 3.101 ms and 3.836 ms with migration.
In both cases, the difference is negligible.

4.2 Complex cQ migration (Figure 6)

In this experiment we migrated a more complex query
Q3, consisting of a join and an aggregate operator, each
using a different window definition as below:

Q3: SELECT sum(S.m)
FROM ISTREAM (SELECT %
FROM S [Range 10 seconds],
T [Range 10 secon
WHERE S.1 = T.1) [ROWS 5];

In this case, the last window, which is the tuple-based
window of size 5 (i.e., [ROWS 5]) associated with the
aggregation, plays the role of the controlling window.

Figure 6 shows the output tuples and the response
time of the query Q3 around the migration point, com-
pared with the run when there is no migration. Sim-
ilar to the cases of the simple queries, the query out-
put is preserved and the cost of migration is not notice-
able. The average and standard deviation of the response
time without migration are 6.568 ms and 6.133 ms re-
spectively, while those with migration are 6.658 ms and
6.217 ms.

5. CONCLUSIONS

We presented UniMiCo, a general migration protocol
for CQs, used in distributed DSMSs. UniMiCo achieves

22

Output with migration

[10022574000]:+:109
[10022574000]:-:104
[10022574000]:+:104

Output without migration

[10022574000]:+:109
[10022574000]:-:104
[10022574000]:+:104
[10022574000]:-:109
[10028529000]:+:107
[10028529000]:-:104
[10028529000]:+:70

[10028529000]:-:107

[10028529000]:+:107
[10028529000]:-:104
[10028529000]:+:70

[10028529000]:-:107

50

Without migration --------

With migration

40
30
20
10 J

response time (ms)

i . 1 il b s ikl
8 8.5 9 9.5 10 105 11 115 12
time(s)

Figure 6: Results and response time of the complex
query Q3 around the migration point at 10*" second.
The response time lines corresponding to ‘“with mi-
gration” and “without migration” are indistinguish-
able as the migration adds no noticeable delay

migration without the need to transfer state or stop pro-
cessing input tuples during CQ hand-off. UniMiCo is
more general than previous work by being applicable
to CQs with different window semantics and with mul-
tiple stateful operations. Our experimental evaluation
demonstrated UniMiCo’s feasibility, by implementing it
in a full-fledged prototype DSMS (AQSIOS). Our exper-
iments showed its correctness and that it does not incur
any noticeable delays in the CQ’s response time.

6. REFERENCES

[1] A. Arasu et al. Stream: The stanford data stream management
system. Technical report, Stanford InfoLab, 2004.

[2] B. Babcock, S. Babu, et al. Models and issues in data stream

systems. In PODS "02.

R. Castro Fernandez et al. Integrating scale out and fault

tolerance in stream processing using operator state

management. In SIGMOD ’13.

[4] P. K. Chrysanthis. AQSIOS - Next Generation Data Stream

Management System. CONET Newsletter, 2010.

S. Guirguis et al. Optimized processing of multiple aggregate

continuous queries. In CIKM ’11.

[6] S. Guirguis et al. Three-level processing of multiple aggregate

continuous queries. In ICDE’12.

V. Gulisano et al. Streamcloud: An elastic and scalable data

streaming system. IEEE TPDS, 2012.

[8] H. V. Jagadish et al. Big data and its technical challenges.

CACM, Jul 2014.

N. R. Katsipoulakis et al. Ce-storm: Confidential elastic

processing of data streams. In SIGMOD, 2015.

[10] Q.Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed
stream join processing. In SIGMOD ’15.

[11] T.N. Pham, P. K. Chrysanthis, and A. Labrinidis. Avoiding
class warfare: Managing continuous queries with
differentiated classes of service. VLDBJ, 2016.

[12] M. A. Shah et al. Flux: an adaptive partitioning operator for
continuous query systems. In /CDE’03.

[13] M. Sharaf et al. Algorithms and metrics for processing
multiple heterogeneous continuous queries. ACM TODS, 2008.

3

=

[5

=

[7

—

[9

[

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Empowering Stream Processing through Edge Clouds

Sergio Esteves!; Nico Janssens?, Bart Theeten?, and Luis Veiga!
'INESC-ID, Instituto Superior Tecnico, Universidade de Lisboa
2Bell Labs, Nokia, Antwerp

ABSTRACT

CHive is a new streaming analytics platform to run dis-
tributed SQL-style queries on edge clouds. However,
CHive is currently tightly coupled to a specific stream
processing system (SPS), Apache Storm. In this paper
we address the decoupling of the CHive query planner
and optimizer from the runtime environment, and also
extend the latter to support pluggable runtimes through a
common API. As runtimes, we currently support Apache
Spark and Flink streaming. The fundamental contribu-
tion of this paper is to assess the cost of employing inter-
stream parallelism in SPS. Experimental evaluation in-
dicates that we can enable popular SPS to be distributed
on edge clouds with stable overhead in terms of through-
put.

1. INTRODUCTION

Stream Processing Systems (SPS) are vastly used
by companies and organizations to extract insights
and value from continuous streams of user data in
near real-time. Storm [5], Spark [4], and Flink [2]
are popular examples of such systems. At present
date, there has been an accentuated demand for
these systems to 1) fully support geo-distributed
scenarios and 2) support SQL-like queries at inter-
active speeds. The former implies that partial com-
putation graphs can be computed at possibly dis-
tant geographic locations and connected by a same
cluster. As for the latter, there have been some
recent efforts like Catalyst [7] for Spark. However,
this native support for structured queries is yet lim-
ited to data sets of fixed size, and precludes contin-
uous streams of data.

In our previous work, CHive [15] is a stream-
ing analytics platform tailored for distributed edge
clouds.'It enables SQL-like queries, that are exe-

*This work was carried out while the author was an intern at
Bell Labs

1A typical telecommunications network is built up into multi-
ple layers: the core network, the edge network and the access

network. The core network is located at the central office of

SIGMOD Record, September 2017 (Vol. 46, No. 3)

cuted over continuous streams of data, to be par-
titioned and distributed over constelations of micro-
datacenters (i.e., following an edge computing model).
CHive’s fundamental contribution is that it opti-
mizes query plans in such a way that the overall
bandwidth consumption is minimal.

CHive targets a new scenario of edge clouds that
is yet uncommon and not supported by major SPS.
Typical widely-deployed SPS, such as Spark, are de-
signed to operate on large clusters within a single
datacenter, and assume nodes to be interconnected
through high-throughput, low latency, Local Area
Networks with full bandwidth availability. Further,
CHive is tightly coupled with its runtime environ-
ment, Storm, which hinders the adoption of CHive
by users of different SPS.

In this paper, we report our experience while ad-
dressing this problem of decoupling the CHive query
planner and optimizer from its underlying runtime
environment. We also propose a middleware layer,
named CHive Deployer, that supports the plugging
of different runtimes into CHive through a common
API. Currently, we provide support for two major
and recent SPS, Spark and Flink streaming.

Since commonly used SPS (e.g., Spark) are not
designed to allow a cluster to span multiple data-
centers (in different geographic areas), CHive relies
on orchestrating multiple SPS clusters: each of the
clusters typically corresponds to a datacenter, and
CHive is responsible for connecting them accord-
ing to a query plan. This, not commonly explored
scenario, follows a edge computing model in which
multiple datacenters are combined to execute differ-
ent parts of a single distributed query. For exam-
ple, a cluster might handle the first part of a query,

the operator, while the access network is where the end-user
communication lines are terminated. In between sits the edge
layer, which is a geographically distributed network of smaller
datacenters serving only a limited number of end users. Over
the recent years, general purpose compute resources have been
added to these distributed datacenters, effectively building out

a distributed cloud, also called an edge cloud.

23

which relies on performing a project and a filter over
data coming from a nearby source (in order to re-
duce the data stream volume), and another cluster
might compute the rest of the query which relies
on counting the tuples, within a temporal window,
grouped by some key.

Supporting multiple runtimes is challenging be-
cause it involves using different programming APIs
and models that have their own specificities. In ad-
dition, the distributed deployment of client appli-
cations, that interact directly with the SPS, varies
immensely across different systems (e.g., complete
Scala application without restrictions, or just a spec-
ification of the job computation graph). We aim
at making CHive Deployer neutral, with respect to
overhead introduced on the underlying SPS, and
transparent for applications.

The fundamental contribution of this paper is to
generalize CHive so it can be used with widely-
deployed SPS. By doing so, we empower commonly
used SPS to be distributed on edge clouds and enjoy
major bandwidth reductions.

In the next section we survey related work. Sec-
tion 3 describes the architecture design of the CHive
Deployer, and Section 4 its evaluation in a distributed
scenario. Finally, Section 5 concludes the paper and
points out future work directions.

2. RELATED WORK

Performing streaming data analytics on the edge
of networks follows a computing model that has
been gaining significant traction lately, specially af-
ter the advent of IoT. This model permits to a great
extent reducing the amount of data that needs to
be transmitted and stored in a central system to
perform analytics.

In addition, supporting SQL-style queries over
continuous streams of data is a significantly trend-
ing topic, especially in an industrial setting. The
advantages of using SQL-style are many, includ-
ing short development cycles and lower maintaince
costs when compared to low-level general purpose
languages, such as Java and C++, to express analytic-
based computations [14]. As aforementioned, the

work in this paper builds upon and extends CHive [15],

which enables such support for structured queries
with windowing-based operators over a edge com-
puting model.

In the research literature, SPSs like Aurora and
Medusa [9] have corroborated our vision that stream-
based systems can be inherently geographically dis-
tributed. They propose a distributed federation of
participating nodes (e.g., datacenters) in different
administrative domains, that can be scattered in

24

different locations around the globe. Global ap-
plications include market data analytics, network
monitoring, global surveillance, and e-fraud detec-
tion. Despite the author’s described intentions re-
garding declarative query support, it is not clear
whether Aurora supports in practice such SQL-style
queries.

Apache Edgent [1] is a new project tailored to IoT
that allows analyzing data on distributed edge de-
vices. It consists of a programming model and run-
time for edge devices. Analytics can be performed
locally or in a back-end system according to their
complexity. Unlike CHive, devices do not coordi-
nate and share data among themselves, thereby al-
ways requiring a centralized system to answer queries
involving more than 1 device. Edgent highlights
however the necessity of running analytics on the
edge of network (premise shared with CHive).

To the best of our knowledge, there is a con-
siderable gap between theory and practice in what
concerns to SQL support over streams of data (ex-
amples include [10, 8]). Other projects, although
claiming to have SQL-like queries support imple-
mented [11, 16, 12], have remained as research projects
mainly used by academics, and not available for the
general public nor companies. Following, we focus
on open-source available solutions.

In the open-source domain, SparkSQL [7] is a new
module that enables relational processing, and SQL
queries, in Apache Spark. It introduces a highly ex-
tensible optimizer, Catalyst, that makes it easy to
add new optimization techniques. Although it is
part of the authors’ future plans, SparkSQL with
Catalyst currently do not support the streaming
component of Spark. To overcome this, Stream-
ingSQL [6] attempts to extend SparkSQL with win-
dowing based capabilities. However, StreamingSQL
functionality is still limited and inefficient, since
queries can only be executed over data frames (like
a table in a traditional DBMS) that are obtained by
converting the results of stream transformations.

MRQL [3] is the closest project to ours: it shares
our goals of providing a query processing and op-
timization system that can be plugged to different
underlying data processing systems. Nevertheless,
the streaming support is still a work in progress.
Despite that, the query optimization techniques are
unaware of any network topology, unlike CHive which
follows an edge computing model that distributes
operators across different datacenters. To the best
of our knowledge, none of the available and popu-
lar open-source project allows a query to be parti-
tioned and distributed across more than one clus-
ter /datacenter.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Meta Info Deployment
Query (event type Network
Expression || description, event o
source URL, etc) Description

CHiveQL

PR il il ————

Query Parser/ Network Topology
Lexer Discovel
AST Network Graph

RQP Generator

Optimal Query Plan
for central execution,

/ \

Minimal Steiner
Tree Calculator
heapest interconnect |
OQP Generator |/ncl. all sources and smk:

{ Query Deployment Engine Query Plan per Node

1
1
[Storm Deployment] :

DR e e e e e e e S S

Figure 1: CHive architecture and work flow

CHIVE QUERY PLANNER

CHIVE
PLANNER

Optimized Logical Plan (JSON)

CHIVE DEPLOYER

CHIVE
DEPLOYER

SPARK FLINK
RUNNER RUNNER

Figure 2: CHive Deployer architecture

3. DESIGN AND IMPLEMENTATION

Figure 1 depicts the general architecture and work
flow of the original CHive. Aside from the input
layer on top, we can see that there are two main
layers in this architecture, represented by the Query
Plan Compiler and the Query Deployment Engine
components.

Briefly, the query plan compiler generates a refer-
ence query plan by using a CHive query expression
along with meta information describing event types
and event source URLs (among other parameters).
Soon after, this reference query plan is combined
with a Network topology description and an Opti-
mized Query Plan (OQP) is generated. This OQP
that is outputted from the query compiler speci-
fies which chain of operators (or query primitives)
should run on which datacenters. This mapping
between operators and datacenters is made in a
way such that the overall bandwidth consumption is
minimal. Afterwards, the deployment engine takes
the OQP, which in fact contains a local query plan
per datacenter, and deploys them to run on top of
Storm, the SPS used with CHive. For more details
we refer to [15].

SIGMOD Record, September 2017 (Vol. 46, No. 3)

In this work we focus on decoupling the Query
Plan Compiler from the Query Deployment Engine,
which is specific to Storm in the original CHive.
We also change and extend the deployment engine
so that different and widely-deployed SPS can be
plugged into CHive. Figure 2 clearly depicts the
separation that we want to achieve and the archi-
tecture overview of the CHive Deployer (Query De-
ployment Engine in the original CHive).

3.1 Work flow

Figure 3 illustrates the distributed architecture
that we get with Spark for a simple pipeline job
with 3 stages. In darker grey, we have the compo-
nents addressed in this paper. The general work
flow works as follows. First, the CHive Deployer re-
ceives an OQP from the the CHive Query Planner
and translates it into a common specification lan-
guage (more details are given in Section 3.2). Then,
this specification is sent to the selected runner and
SPS computation graphs are generated.

Soon after, the runner launches the client appli-
cations (Spark Driver) to run onto (geo-distributed)
remote clusters. These applications, in their turn,
submit jobs to the spark executors and collect the
corresponding results. Also, these applications, ex-
cept the one on the last cluster, execute connectors,
which serve their corresponding output data to the
next downstream cluster.

Finally, a source injects data into the first cluster,
which performs some initial computation on it, and
sends the results to the next cluster in the middle.
This cycle is repeated for the other 2 clusters, using
as sources the output of the previous cluster, until
the final computation results are sunk to the client.

3.2 CHive Deployer

The CHive Deployer, which takes an OQP from
the CHive Planner, is responsible for preparing the
local plans therein contained to be deployed on an
SPS. This preparation involves translating and adapt-
ing the local plans to a common abstract SPS spec-
ification. For example, CHive query plans refer to
schema attributes, such as to perform a project over
name and age of a stream of data containing peo-
ple’s information. Since most SPS are schemaless,
CHive Deployer replaces the attribute’s names (e.g.,
age) by the position by which they appear in the
stream of data against a string separator; if our
stream of data is composed of text lines containing
name|address|age|telephone, then name and age
would be replaced by 0 and 2 respectively (against
the separator |). Hence, this abstract specification
is an attempt to find the greatest common denom-

25

CLIENTS i?

SINI

1

1

SPARK EXECUTOR ‘

]
xSz
255
o °3 CHIVE QUERY PLANNER
3
o
P Optimized Logifal Plan (JSON)
e
<
g @ CHIVE DEPLOYER
w ¥
5128
z9 -
5%
G SPARK | FLINK
SOURCE RUNNER RUNNER
LAUNCH DRIVERS
s x Local OLP 1 (JSON) o Local OLP 2 {(JSON) b Local OLP 3 t4SON)
E I..I_J K . I'.L_J . E . .
x @ - . 7] . »
R E ; ER g : g .
! SPARK DRIVER °: SPARK DRIVER '. o: SPARKDRIVER ~ ——
g 8 g: 8 g :
& - 1SUBMIT/COLLE.CT & - 1SUBMIT/COLLE_¢': e isuleT/cou_Ecr

SPARK EXECUTOR ‘

SPARK EXECUTOR ‘

Figure 3: Distributed architecture for

inator between the majority of SPS.

In its turn, a runner is responsible for translat-
ing this common SPS specification to a target run-
time, which includes using the programming model
and APIs that are specific to a given SPS. Dif-
ferent runners can be plugged into the CHive De-
ployer through a common API, which mainly com-
municates the common SPS specification. Further,
this specification must be as fine grained as possi-
ble, since some operators of some SPS can perform
all-in-one actions; e.g., reduceByKeyAnd Window in

simplified pipeline job spanning 3 clusters

sically needs to add sources and sinks to all local
execution graphs that do not have them, so that
all clusters get connected into a single distributed
execution graph.

Developing a runner takes a considerable effort:
since each SPS has a unique programming model
and API, it is necessary to implement all functions
and operators that concretize the common specifi-
cation in a target SPS runtime. Currently, the com-
mon abstract specification generated by the CHive
Deployer is fully compatible with Spark and Flink,

Spark versus keyBy().time Window().reduce() in Flink. but as we add new features to CHive, it might be

By design, it is not currently possible to execute
a query plan over heterogeneous runners (e.g., ex-
ecuting a plan using clusters of distinct SPSs). In
theory, however, this is possible, since client SPS
applications can implement custom code to handle
all different types of data and data sources.

3.3 Runner

A runner is responsible for building the computa-
tion graph for each local plan (which has been trans-
lated into the common specification) that will run
on each cluster or datacenter, thereby making use
of the underlying programming model that is spe-
cific to a given SPS. A runner is also responsible for
launching the SPS client applications onto remote
clusters. These client applications (one per clus-
ter) interact directly with the SPS, namely submit-
ting jobs, corresponding to the local plans, and col-
lecting results to be shipped out to the next down-
stream clusters.

Finally, a runner should also take care of con-
necting the stream of data across clusters. It ba-

26

possible that not all runners support them (e.g.,
session windows are available in Flink but not in
Spark).

3.4 Connectors

A connector is a component that is responsible for
connecting the stream of data across intermediate
clusters. For example, having a pipeline job com-
prising 3 stages spanned across clusters, we would
have one cluster to get the input from a given ex-
ternal source; one cluster to sink the final results of
the entire computation; and one intermediate clus-
ter that would use connectors to: i) receive its input
from the output of the first cluster; and ii) send its
output to the input of the last cluster.

A connector can be embedded in SPS client ap-
plications or launched as an external process on
the same cluster nodes as of the client applications.
Whenever possible, connectors should be embedded
in SPS client applications, since it is slightly more
efficient to send records directly from the applica-
tion than piping them to an external process. How-

SIGMOD Record, September 2017 (Vol. 46, No. 3)

ever, for some SPS this is not possible: Flink, for
instance, only allows job graphs to be launched onto
remote clusters, and not general full client applica-
tions (like it is allowed by Spark).

At its core, a connector maintains an open server
connection (e.g., socket based) so that records can
be shipped out to the next downstream clusters. In
practice, the next downstream clusters fetch input
data from the servers opened by connectors.

In case of embedded connectors, they are depen-
dent of the SPS, and thus they need to be developed
for each runner. Otherwise, external connectors can
be used by different runners, and thus the develop-
ment effort is reduced at the expense of a slightly
slower inter-cluster connection (as aforementioned).

4. EXPERIMENTAL EVALUATION

All benefits of CHive, especially in terms of band-
width, were already demonstrated in our previous
work [15]. In this paper we evaluate the neutrality
of the CHive Deployer; i.e., we assess the impact
that the CHive Deployer has in terms of overhead
on the underlying SPS. Specifically, we show that
the CHive Deployer runners are coherent with their
corresponding single cluster versions (i.e., without
being distributed in a edge clouds model). The ob-
jective of this evaluation is to understand whether
the overhead of the CHive Deployer is stable and not
highly influenced by the specific underlying SPS.

All tests were conducted using 6 machines with
an Intel Core i7-2600K CPU at 3.40GHz, 11926 MB
of RAM memory, and HDD 7200RPM SATA 6Gb/s
32MB cache, connected by 1 Gbps LAN (which en-
sures a fair reference comparison, given that the net-
work latency between all machines was the same).
Also, we used Spark Streaming 1.5.2 and Flink 0.10.2
in our two provided runners.

To evaluate the CHive Deployer we relied on a
scenario to calculate the top 20 websites generating
the highest download volumes in the last 10 seconds,
from a stream of real-world traces of a large mobile
operator. Figure 4 depicts the Optimized Query
Plan that we get from the CHive Planner for this
considered scenario. We can see that the respective
query is distributed across 6 different datacenters,
corresponding to 6 different machines in our exper-
iment. The normal triangles, ellipses, and inverted
triangle represent data sources, operators, and the
sink respectively.

In a first experiment, we measured the through-
put obtained for the considered scenario in terms
of total number of records processed, per window
of 10 seconds, for the entire computation. We mea-
sured this throughput for our two implemented run-

SIGMOD Record, September 2017 (Vol. 46, No. 3)

DC1.1.1 DC1.1.2 Dc1.21

SOURCE 1 SOURCE 2 SOURCE 3

==l

Figure 4: OQP for the top 20 websites with
the highest download volumes

ners, Spark and Flink, and compared CHive with
the baseline system. In CHive mode (i.e., using
a edge computing model), there are 6 Spark/Flink
separate clusters where each executes part of the
computation graph (like depicted in Figure 4). As
for the baseline mode, which represents a classic
situation, it comprises a single Spark/Flink cluster
spanned across 6 machines where each one runs the
entire computation graph on different data parti-
tions. Note that these systems are not designed to
run across different geographic locations that are
distant from one another; i.e., there are strong lim-
itations in spanning a cluster across multiple data-
centers [13] (unlike the CHive approach).

We observed that the baseline mode yields higher
throughput than the CHive mode for both consid-
ered SPS. That is to be expected, since input data in
the baseline system is given to all of the 6 machines,
whereas in CHive only 3 machines (corresponding
to 3 clusters) are fed with data from the sources.
(Refer to our previous work to see the advantages
of CHive against other systems, especially in terms
of bandwidth.) The important point to note here is
the neutrality of the CHive Deployer: on each con-
sidered SPS, the throughput difference remains in
(almost) the same proportion between baseline and
CHive modes.

Table 1 shows the differences of throughput in
proportion (i.e., we divide the throughput obtained
with baseline by the one of CHive for Spark and
Flink). In both SPS, the ratio between baseline and
CHive is the same within a deviation of less than
5%, which indicates that CHive Deployer is neutral

27

Table 1: Deviation (as percentage change)
of throughput ratios between baseline and
CHive with Spark and Flink runners

Spark Flink Deviation
1.32 1.37 4%
(2832/2150) (1184/863) (1.37/1.32-1)

Table 2: Deviation (as percentage change) of
total number of bytes ratios between baseline
and CHive with Spark and Flink runners

Spark Flink Deviation
1.50 1.38 9%
(148631/99159) (62372/45175) (1.50/1.38-1)

and not intrusive in relation to the baseline system.

In a second experiment, and using the same setup
and query as of the first experiment, we assessed
the deviation in the results, originated by differ-
ent throughputs (within a window), with the objec-
tive of seeing how far results are between baseline
and CHive. Specifically, we have counted the total
number of bytes that we obtain from the output,
which corresponds to the sum of the bytes of all
top 20 websites, in a 10 second window for Spark
and Flink, while comparing the CHive mode against
the baseline system. This comparison consisted of
the division between the total number of bytes in
baseline and CHive, for Spark and Flink, as shown
in Table 2. The result accuracy difference that we
obtain for both SPS is the same within a deviation
of less that 10% (cf. table below), which indicates
CHive Deployer is significantly coherent across run-
ners.

As a side effect, we have also shown a compari-
son between Spark and Flink themselves. For our
specific workload, Spark outperformed Flink. This
was mainly due to some operators/tasks that have
higher parallelism levels and are more optimized in
Spark (such as sorting tuples within a window).

S. CONCLUSION

In our previous work, CHive [15] enables struc-
tured interactive queries to run distributed on con-
tinuous streams of data, over edge clouds, in a band-
width efficient manner. This computing model, that
has been gaining significant traction lately (spe-
cially with the advent of IoT), is made available to
popular SPS through the generalization of CHive
(that is addressed in this paper).

In particular, this paper addressed the decoupling
of the CHive query planner from its underlying run-

28

time environment. We have built CHive Deployer, a
middleware layer that makes possible to use differ-
ent and widely-deployed SPS with CHive through a
common API. We have also demonstrated the fea-
sibility of plugging runners and SPS to CHive De-
ployer by developing two for popular SPS: Spark
and Flink. Experimental evaluation, with real-world
data, indicates that CHive Deployer is neutral (not
affected by the underlying technology) and does not
introduce any additional overhead.
Acknowledgements: This work was supported by national
funds through Fundagao para a Ciéncia e a Tecnologia with ref-

erence UID/CEC/50021/2013.

6. REFERENCES

[1] Apache Edgent. http://edgent.incubator.apache.org/.

[2] Apache Flink. http://flink.apache.org/.

[3] Apache MRQL. https://mrql.incubator.apache.org/.

[4] Apache Spark. http://spark.apache.org/.

[5] Apache Storm. http://storm.apache.org/.

[6] Streaming SQL for Apache Spark.
https://github.com/Intel-bigdata/spark-streamingsql.

[7] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
and M. Zaharia. Spark sql: Relational data processing in
spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 1383-1394, New York, NY, USA,
2015. ACM.

[8] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Rec., 30(3):109-120, Sept. 2001.

[9] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable
Distributed Stream Processing. In CIDR 2003 - First
Bienntal Conference on Innovative Data Systems
Research, Asilomar, CA, January 2003.

[10] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
Spade: The system s declarative stream processing engine.
In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages
1123-1134, New York, NY, USA, 2008. ACM.

[11] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref,

A. C. Catlin, A. K. Elmagarmid, M. Eltabakh, M. G.
Elfeky, T. M. Ghanem, R. Gwadera, I. F. Ilyas,

M. Marzouk, and X. Xiong. Nile: a query processing
engine for data streams. In Data Engineering, 2004.
Proceedings. 20th International Conference on, pages
851—, March 2004.

[12] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, resource management, and
approximation in a data stream management system. In
Proceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR), pages
245-256, Asilomar, California, Jan. 2003.

[13] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula,

A. Akella, P. Bahl, and I. Stoica. Low latency
geo-distributed data analytics. In Proceedings of the 2015
ACM Conference on Spectial Interest Group on Data
Communication, SIGCOMM ’15, pages 421-434, New
York, NY, USA, 2015. ACM.

[14] M. Stonebraker, U. Cetintemel, and S. Zdonik. The 8
requirements of real-time stream processing. SIGMOD
Rec., 34(4):42-47, Dec. 2005.

[15] B. Theeten and N. Janssens. Chive: Bandwidth optimized
continuous querying in distributed clouds. Cloud
Computing, IEEE Transactions on, 3(2):219-232, April
2015.

[16] Y. Wei, S. H. Son, and J. A. Stankovic. Rtstream:
real-time query processing for data streams. In Object and
Component-Oriented Real-Time Distributed Computing,
2006. ISORC 2006. Ninth IEEE International
Symposium on, pages 10 pp.—, April 2006.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

Ron Fagin Speaks Out on

His Trajectory as a Database
Theoretician

Marianne Winslett and Vanessa Braganholo

Ron Fagin
http://researcher.ibm.com/person/us-fagin

Welcome ACM SIGMOD Record’s series of interviews with distinguished members of the database community. I'm
Marianne Winslett, and today we are in Snowbird, Utah, USA, site of the 2014 SIGMOD and PODS conference. 1
have here with me Ron Fagin, who has spent many years as a researcher at IBM. He is an IBM Fellow. He is a
Fellow of ACM, IEEE, and the American Association for the Advancement of Science. He was elected to the
National Academy of Engineering and the American Academy of Arts and Sciences. He has won the IEEE
McDowell Award (the highest award of the IEEE Computer Society), the IEEE Technical Achievement Award, and
the SIGMOD Edgar F. Codd Innovations Award, and he has won a bunch of Best Paper and Test-of-Time Awards.
He was named Docteur Honoris Causa by the University of Paris. Most recently, he won the Godel Prize in 2014.
Ron’s Ph.D. is in mathematics, from Berkeley.

SIGMOD Record, September 2017 (Vol. 46, No. 3) 29

So, Ron, welcome!
Thank you, Marianne.

Tell me about the work that you received the Gddel
Prize for.

Well, actually it was a bit of a long story. It arose when
Laura Haas knocked on my door one day and said,
“Okay Mr. Database Theoretician, we’ve got a
problem.” So I said, “Laura, what’s the problem?” and
she said, “Well we have this middleware database
system called Garlic, and it is on top of pure database
systems like DB2, and it’s also on top of QBIC.”
QBIC (“Query by Image Content”) is a system where
you can query by image content: you search for objects
based on color, shape, or texture. She said, “The
trouble is that there are mixed data types. The answer
to a query in a normal database system is a set (or a
bag), and the answer to these multimedia queries is a
sorted list.” She said, “So what do we do? How do we
combine the results together?”

I thought about it and came up with a solution
involving fuzzy logic (where a proposition can be not
just true or false, but somewhere in between). I was
very excited. I went to see Laura and said, “Laura, |
got you an answer. Use fuzzy logic.” She said, “That’s
good, Ron. But we don’t have time to look at every
single item in the database and assign some kind of
fuzzy score to it. We need to get our answers fast. [
need an efficient algorithm.” So I said, “Okay, fine.”

I went back to my office and a day or two later I came
back and said, “Laura, good news, I got a square root
of n algorithm for you (where n is the number of
objects in the database).” She said, “Great! Square root
of n beats linear, but you know what Ron, we database
people are spoiled. We are used to log n algorithms
like in B-trees.” I’ll never forget what she said to me
next. She said, “Ron, be smarter. Go back to your
office and get me a log n algorithm.”

So I went back to my office and came back a day or so
later and said, “Laura, I can prove square root of n is
the best you can do. It’s a matching upper and lower
bound. ” She said, “Fine; we’ll take it.” And it was
implemented in Garlic. Then a few years later (and
here’s where the Godel Prize winning work came in), I
was doing some work with Moni Naor and Amnon
Lotem, and we miraculously came up with a new
algorithm called the Threshold Algorithm, which beat
Fagin’s Algorithm (“Fagin’s Algorithm” is the name of
the algorithm that I originally gave to Laura -- she
named it that, and it appeared in papers that way). The
Threshold Algorithm is optimal but in a stronger sense
than Fagin’s Algorithm. Fagin’s Algorithm is optimal
in a certain worst-case sense, which is the usual

30

standard for optimality of an algorithm. The Threshold
Algorithm is optimal not just in the worst case, or in
the average case, but in every case! We called this
property “instance optimality”. Thus, the adversary can
design his own database and his own algorithm fine-
tuned to that database, and our algorithm can perform
just as well on the adversary’s database as the
adversary’s algorithm performs on the adversary’s
database. Even though the algorithm is only about ten
lines long this paper won the Godel Prize, which is the
highest award for a paper in Theoretical Computer
Science! It was hard to find that algorithm, but once
you have it, it is easy to verify. Our paper is the only
database paper ever to win the Godel Prize. Our
definition of instance optimality is a strong notion -- it
was an exciting notion to the people in the Computer
Science Community.

My goal is to convince
theoreticians that they will
prove better theorems and
they’ll do more interesting

work if they just talk to
practitioners.

Okay, you have won two Test-of-Time Awards from
PODS and one from ICDT. What were those pieces of
work about?

Well, the first Test-of-Time Award from PODS' was
for the work that eventually won the Godel Prize. It
also won the Best Paper Award for that conference.
The other two Test-of-Time Awards, the one from
ICDT, which we got last year’, and the one from
PODS that we are getting this year’, both had to do
with data exchange. Data exchange deals with
converting data from one format (the source) to
another (the target). In data exchange, there are certain
first-order logic formulas called “tuple-generating
dependencies” (or TGDs) that specify a relationship
between the source and the target, but do not

' Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal
Aggregation Algorithms for Middleware. In: PODS, 2001.

2 Ronald Fagin, Phokion Kolaitis, Renee Miller, and Lucian
Popa. Data Exchange: Semantics and Query Answering.
In: ICDT, 2003.

3 Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang
Chiew Tan. Composing schema mappings: Second-order
dependencies to the rescue. In: PODS, 2004.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

completely specify the target. In the first paper, which
won the Test-of-Time Award last year, we described a
particular family of choices for the target (which we
called “universal solutions”) with a number of
desirable properties. The concept of universal solutions
became widely accepted.

This year’s Test-of-Time Award for PODS was for
composition. There, the question is “If you convert
data from format A to format B and then convert from
format B to format C, how do you convert directly
from format A to format C?” To our amazement, it
turned out that even if the methods that go from A to B
and from B to C are both specified by these simple
TGDs, going from A directly to C not only could take
you away from TGDs but even out of first-order logic!
We had to go to second-order logic. We invented
something called second-order TGDs, and we proved
that those were exactly the right ones for the task.
Specifically, every composition where each component
is specified by first-order TGDs can be specified by a
second-order TGD, and for every second-order TGD,
there is some sequence of compositions where each
component is specified by a first-order TGD that gives
that second-order TGD.

You just got named to the American Academy of Arts
and Sciences too!

True! I’'m really very proud of that because, for
example, Wikipedia calls it one of the nation’s highest
honors. Something really cool about it is that it was
founded during the American Revolution, and the first
class included George Washington and Benjamin
Franklin. Each year the Academy selects something
like 7 or 8 people from each discipline. Like 7 or 8
computer scientists, 7 or 8 mathematicians, 7 or 8
physicists, and (since it’s arts and sciences) they even
pick people from movies and TV. So it’s exciting to be
invited to become a member of that select group.

What will you guys do?

Well, I think one of the main purposes of all these
National Academies is to figure out whom we elect for
the next year (laughs). It seems to be! (More laughs).

I know from the National Academy of Engineering
that this selection process seems to be the immediate
task. In my short time of my being a member, we spent
a lot of time figuring out who is going to be next year’s
candidates. I know that an important role of the
National Academies is to conduct policy studies. I
have not been involved in that, and I’m not sure how
much I could contribute to policy. I'm currently
excited that the National Academy of Engineering is
going to have a black tie inauguration. I have to

SIGMOD Record, September 2017 (Vol. 46, No. 3)

actually go in a tuxedo, since they take this very
seriously.

1t’s like the prom all over again!
Exactly like the prom!

Well, congratulations on that too. Now it must be
pretty cool to have a theorem named after you. What is
Fagin’s Theorem?

What it does is to tie together complexity theory on the
one hand with logic on the other hand. There’s the
important complexity class NP, and there’s also
something called existential second-order logic. What
Fagin’s Theorem says is that they are really equivalent
(for example, the class of 3-colorable graphs is both in
NP and expressible in existential second-order logic).
On the face of it, NP and existential second-order logic
look very different; they’re from different disciplines
(one from complexity theory and one from
mathematical logic). Because of this equivalence, you
can use tools from one area to help you in the other
area. It’s always cool when you get a connection
between two very different fields, and that’s what
Fagin’s Theorem does. There has been much follow-up
work.

And that was done back in your dissertation.

Correct. Incidentally, my Ph.D. thesis seemed to be
completely unnoticed for a number of years. There is
probably a moral in there about keeping the faith.

1 feel like much of your career was the Golden Age of
Logic for Computer Science? It seems like things are
switching over to the Golden Age of Statistics in
Computer Science. Have you seen that too?

Yeah, I do see some of the statistics, but logic is still
going strong. In fact, Jeff Ullman and I were two of the
founding fathers of relational database theory, where
Jeff focused on the algorithms, and I focused on the
logic. Both tracks are still very active. But you’re right
Marianne, there are other things that are entering in the
picture, but logic is an important track and is still very
much there.

Okay, you've already mentioned Fagin’s Algorithm.
We’ve got Fagin’s Theorem, Fagin’'s Algorithm,
Fagin’s 0-1 Law, Fagin games, Ajtai-Fagin Games,
and the Fagin-inverse. It’s good that you don’t have a
really long name I guess. So what’s Fagin’s 0-1 Law?

31

It’s one of my favorite theorems ever. It says the
following: take any sentence in first-order logic
involving only relational symbols, and it’s either going
to be almost always true or almost always false in the
asymptotic sense. That is, as the size of the finite
structures get larger and larger, the fraction of
structures that obey the sentence will converge, and it
will converge to either 0 or 1. So first-order sentences
are either almost always true or almost always false.
That’s what the 0-1 Law says.

IBM has been around for
more than 100 years now,
and you’re not around for

more than 100 years by just
continuing to do what you
have always done, because
what you do eventually
becomes obsolete and then
you have to move on.

Is there an impact on the practical side of Computer
Science from that?

Well, some people say they use the 0-1 Law to help
them understand the average case behavior of things.
I’m not quite sure if I buy into that. I mean, it’s a
motivation I’ve heard people give because there’s been
a lot of work on the 0-1 Law, extending it to other
logics and so on. People argue that it has this practical
impact. To me, it’s this beauty. To me, it’s just very
neat that things perform in such a very simple, natural
way. You’d think that either the probabilities might not
converge, or they might converge to a half or two-
thirds or something, but no, they always converge, and
always to 0 or 1. To me, it’s just mathematically
beautiful. That’s why I love it so much. I have to say
that I love my proof too. In fact, of all of my results
over the years, my proof of the 0-1 law is probably my
favorite.

What about Fagin games and Ajtai-Fagin Games?

So-called “Ehrenfaucht-Fraisse games” are used to
prove inexpressibility results in logic. In an
Ehrenfaucht-Fraisse game, there are two players,
called the Spoiler and the Duplicator, and they take
turns picking points. There are two structures, and the
Spoiler picks point 1 in one structure (either the first
structure or the second structure), and then the

32

Duplicator picks point 1 in the other structure. Then
the Spoiler picks point 2 in one structure (again, either
the first structure or the second structure), and then the
Duplicator picks point 2 in the other structure. This
continues for a fixed number of rounds. Consider the
mapping between the two structures, where for each £,
the kth point selected in the first structure maps to the
kth point selected in the second structure. The
Duplicator wins if this mapping is an isomorphism,
and otherwise the Spoiler wins. Proving that the
Duplicator has a winning strategy gives an
inexpressibility result for first-order logic.

There are a lot of variations to that game. Fagin games
arise when you try to prove inexpressibility results in a
logic called existential monadic second-order logic.
Then the rules get a little more complicated. In Fagin
games, you again have the Spoiler and the Duplicator,
and they first color the points. Thus, the Spoiler colors
the points in the first structure and then the Duplicator
colors the points in the second structure. Then they
play the Ehrenfaucht-Fraisse game I described earlier,
but now for the Duplicator to win, the isomorphism
must respect colors. Miki Ajtai and I came up with
new games (now called “Ajtai-Fagin games”) in which
we changed the rules of the Fagin game in an
interesting way to make it much easier for the
Duplicator to win, which gives a much easier proof of
inexpressibility results.

Okay, and that leaves the Fagin-inverse.

That’s something from data exchange. I talked earlier
about converting from format A to format B, but what
if you say, “I want to go back from B to A. How do |
do that?” The Fagin-inverse is all about going
backwards. There are a lot of very subtle issues that
arise: the inverse may not exist, and even if it exists it
may not be unique. So I defined this thing that is now
called the Fagin-inverse and described how you take a
mapping that goes from A to B and when and how you
can invert it, using the Fagin-inverse, to go from B to
A. It’s not obvious. It’s not obtained by simply
reversing the arrows. Since then, there have been a
number of other flavors of inverses that have been
studied.

Okay, being an IBM Fellow gives you a bit of hope for
evangelizing for your favorite technical causes inside
IBM. How have you used that?

I’m glad you asked. My mission as an IBM Fellow has
been to convince theoreticians and practitioners to
work together. My goal is to convince theoreticians
that they will prove better theorems and they’ll do
more interesting work if they just talk to practitioners.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

By talking to practitioners, they will discover new
exciting problems that no one else has considered
before, and then other people will jump on the
bandwagon. You will be creating a new field, and
you’ll have a real impact. The best example I can give
of this is that resolving the very practical problem that
Laura Haas posed to me led to the Gddel Prize.

I also have to convince practitioners they should work
with theoreticians to make their products better: they’1l
get new algorithms, they’ll get performance
guarantees, and they’ll have a much more solid system
with features that other systems don’t have. So as an
IBM Fellow, my mission has been going around to
IBM’s worldwide research labs, giving lectures on this,
talking to the young people to mentor them and to
spread my gospel on applying theory to practice. I
have recently expanded my mission by giving my
speech on applying theory to practice at a number of
major universities. My goal is to get theoreticians and
practitioners to interact more with each other.

Do you think they believe you?

Well, they seem to. It is much easier for theoreticians
to work only with other theoretician, to just talk to
people who speak their language. It’s a real effort to
speak to someone outside your field. There are two
ways I tell people it can happen. One way is like the
way I told you with the story of Laura knocking on my
door and saying, “I’ve got a problem.” But there’s
another way it can happen, and this is what happened
in the work on data exchange that we won the two
Test-of-Time awards for. The data exchange project
called Clio, also led by Laura Haas, had been going on
for over a year, and because of how well things went
with Laura earlier on the Garlic project, I had been
regularly attending Clio meetings. Then Phokion
Kolaitis, Lucian Popa, Renee Miller and I (later joined
by Wang-Chiew Tan) said, “This data exchange work
at IBM has been going on for a long time. But let’s see
how we would do data exchange if we did it from
scratch. Let’s see what the right way to do it is. Let’s
have no preconceived ideas, and just say: if we were
doing data exchange and no one told us anything about
it, how would we do it, using principles from database
theory?” That’s what we did with data exchange, and it
led to a very successful body of work. In fact, our ideas
were implemented in Clio. This included the use of
second-order TGDs as the internal mapping language
of Clio. (As I mentioned earlier, second-order TGDs
arose as the result of our theory work on composition
of TGDs that received the PODS Test-of-Time Award
in 2014.) And because of our work, every major
database conference started having special sections on
data exchange. We felt good that we brought data

SIGMOD Record, September 2017 (Vol. 46, No. 3)

exchange out as a discipline with interesting technical
results. There has been a lot of work done on data
exchange ever since.

That list of people that you gave... Most of them I'd
say are more from the theory side.

True. Lucian, however, played a very key role. Lucian
lives on both sides of the aisle. Lucian was heavily
involved in the actual implementation side of Clio, and
he also does theory. One of the great things about
working with Lucian was that he was our bridge to the
other world. He understood what the issues were and
he would keep us honest. For example, when we
discussed technical issues, he might say “Okay, guys,
now we’re going off into never-never land. No
practitioner cares about the issue we are now
discussing, so let’s consider this other direction
instead.”

What about the finite model theory?

Finite model theory is the topic of my Ph.D. thesis, and
so is really near and dear to my heart. My thesis is
where Fagin’s Theorem, the 0-1 Law, and Fagin games
appeared. I’'m happy that people consider me the
founder of finite model theory. Now, lots of work is
being done in the area, and finite model theory has
been applied in a number of different ways. That’s
something I’m proud of.

That idea, did that come from talking to practitioners?

No. I was at Berkeley writing my Ph.D. thesis, and the
ideas all arose in different ways. For example, my 0-1
Law arose from a huge question in finite model theory,
which is closure under complement of various classes.
For example, if a property can be expressed in
existential second-order logic, which I showed is the
class NP, is the complement also expressible in this
logic? This is really close to the P vs. NP problem: it’s
the NP vs. Co-NP problem. While playing with the
notion of closure under complement, I realized to my
surprise that in ordinary first-order logic, if a property
is interesting, then its complement seemed to be very
uninteresting. For example, consider the conjunction of
the field axioms. That is an interesting first-order
sentence. But its negation (which defines the
complement) is very uninteresting, since there are
many ways to fail to be a field. I wondered how I
might prove some theorem that says that in first-order
logic, if a property is interesting, then its complement
is very uninteresting. I concluded, “I can use
asymptotic probabilities.” Specifically, I decided to
interpret “very uninteresting” to mean “almost always

true”. This would imply that either a first-order

33

sentence or its negation is almost always true. And
that’s what I proved, via the 0-1 Law. As for your
question, I got to this without talking to any
practitioners.

Okay. You'’ve been at IBM for over 40 years. The IT
companies that were big back in the mid-70s are all
dead now, except for IBM. Why did IBM survive when
so many others did not?

I think its adaptability. IBM has been around for more
than 100 years now, and you’re not around for more
than 100 years by just continuing to do what you have
always done, because what you do eventually becomes
obsolete and then you have to move on. There are
Harvard Business School studies about this issue. If
your company is extremely successful at something,
and you see something new coming up that is going to
replace your very profitable line of business, it’s hard
to switch to it, because, in the short term you’re going
to lose a lot of money since you’re suddenly pushing
customers from your expensive solution that was your
bread and butter to something else. But if you don’t do
it, someone else will, so you better do it. IBM has
learned that lesson, and IBM has adapted a number of
times. IBM is doing that right now, by the way.

What have they been giving up right now?

The issue isn’t a matter of IBM giving up on things,
but rather a matter of IBM devoting more and more of
its resources to areas that are crucial for the future.

What are the new big things at IBM?

The big new things are “CAMSS”: cloud, analytics,
mobile, social, and security — and, of course, artificial
intelligence. So IBM is moving heavily into all these
areas.

You knew Ted Codd, didn’t you? Tell me a story from
the early days.

Oh, so let me tell you how I got involved with Ted
Codd. I transferred from IBM Watson to IBM San
Jose, and when I transferred, I looked around and said,
“Okay, who’s interesting here to work with?” There
were a number of interesting people, but the guy who I
thought was most interesting was Ted Codd, and I
went to him and said, “I’d like to work with you.” I
was thrilled that he said yes. So Ted was my mentor,
and he was my hero. He really helped my career.

One thing I remember (even though it’s not a big deal,
but to me it was huge at the time) is that he took me to
a SIGMOD conference after I’d done some work with

34

him and he put his arm around me either literally or
figuratively (I'm not sure which) and he introduced
everyone to me saying “This is Ron Fagin, he’s a new
employee at IBM and he’s doing great work on
relational databases.” 1 just glowed, and I thought,
“Wow the great Ted Codd, who is already the icon, is
saying these nice things about me.” That was even
before Ted was an IBM Fellow, and before he won the
Turing Award. I got into databases because of Ted
Codd. He was my mentor, and he was doing relational
databases, so by golly, I did relational databases.

[...] what’s important for
me, Marianne, is completely
understanding something.
Putting my arm around it,
totally, deeply, completely
understanding it.

So besides positive feedback, you said he had a big
influence on your career.

Just talking to him — I would talk about relational
databases, and he would understand it, of course,
totally, deeply and that would help me understand it
better. This was why I got into relational database
theory. From talking with Ted, I had a good feeling
about what databases were all about, what they could
do, and why relational databases were different from
previous ways of doing databases. I then began to
understand what he was doing and how important it
was, and I wanted to get involved, and I did.

Do you have any words of advice for fledgling or mid-
career database researchers?

My advice I give all young people is to go to lots of
talks, interact with lots of people, do different things,
and open your mind. You’ll never know when you will
find something cool and exciting. And then follow
your heart and work on what seems most important to
you.

If you magically had enough extra time to do one
additional thing at work that you are not doing now,
what would it be?

This is kind of off the wall but believe it or not,
cosmology. I am fascinated by the notion of multiple
universes, and in fact I’m almost obsessed by it.
Actually, I even wrote an unpublished paper about how

SIGMOD Record, September 2017 (Vol. 46, No. 3)

to calculate the probability of our own universe
colliding with another universe. It sounds weird, but I
based it on what I called the probability of a big bang
per cubic meter per second.

How high is that probability?

It’s pretty low, but I wrote this little paper on it. Then I
put “colliding universes” into Google, and to my
delight, it turned out that the world expert on colliding
universes was a UC Santa Cruz professor whom I had
met at a party! So I thought, “Okay, I’ll send him my
paper and see what he says.” I thought he would just
ignore it, but he was kind and said, “You have some
nice new ideas. However, your paper violates both
relativity and quantum mechanics.” Oops. I’'m not a
physicist, so I wrote my paper from a Newtonian point
of view. But I’'m still fascinated by the notion of
multiple universes, even though I’m a bit discouraged
about my prospects for winning the Nobel Prize in
physics through my cosmology work, given that it
violates fundamental laws of physics.

By the way, I want to say something about laws of
physics. I don’t understand quantum mechanics. I
admit it freely. I didn’t go into physics but went into
mathematics and later computer science because I just
don’t understand quantum mechanics. It isn’t at all
intuitive to me. And I felt much better, years later,
when I found out that Richard Feynman said, “If you
think you understand quantum mechanics, then you
don’t understand quantum mechanics.” 1 thought,
“Yes, it’s not just me, it’s everybody! If Richard
Feynman, a Nobel Laureate in physics, says that, then
none of us understand quantum mechanics, so it’s okay
that I don’t understand it at all.”

But does that mean that you should have gone into
physics afterward?

No, because what’s important for me, Marianne, is
completely understanding something. Putting my arm

SIGMOD Record, September 2017 (Vol. 46, No. 3)

around it, totally, deeply, completely understanding it.
I feel like the reason I’m in mathematics is because I
felt like I could do that. I felt like I could take that area
and study it and think about it and read about it. It
would be mine. I would own it. I would totally
completely understand it in every way. In physics, I
realized, I could never do that, because no one can. In
some ways, physicists blindly follow some mysterious
formalism that they don’t completely understand. They
may not view it that way, but I can’t work like that. So
I’m really glad I didn’t go into physics, I wouldn’t be
happy just pushing equations around. I have to totally,
completely understand things, and deep in my soul, I
don’t understand physics.

Well, it’s good for computer science, I guess, that it
turned out that way, but if you could change one thing
about yourself as a computer science researcher, what
would it be?

Actually, you know what? I’'m not sure if I would
change anything. I feel like I've been very lucky.
Things have fallen my way, and I feel like I’ve made
some good choices. Working with Ted Codd and
getting into databases is an example. And it’s gone so
well, I don’t think I’d change a thing. I never dreamed,
by the way, of ever becoming an IBM Fellow, because
the typical IBM Fellow brings like a billion dollars to
IBM and I thought there’s no chance that IBM would
take a theoretician like me and make him an IBM
Fellow. But, miraculously, they did. So things fell my
way, and I’'m delighted with how things have turned
out. I couldn’t ask for it to go any better so I wouldn’t
change a thing.

Okay, well thank you very much for talking with me
today.

Thank you, Marianne. It was fun.

35

The Dresden Database Systems Group

Wolfgang Lehner
Technische Universitat Dresden — Faculty of Computer Science
01062 Dresden, Germany
wolfgang.lehner@tu-dresden.de

ABSTRACT

The Dresden Database Systems Group focuses on
the advancement of data management techniques from
a system level as well as information management per-
spective. With more than 15 PhD students the research
group is involved in a variety of larger research projects
ranging from activities to exploit modern hardware for
scalable storage engines to advancing statistical meth-
ods for large-scale time series management. The group
is visible at an international level as well as actively
involved in cooperations with national and regional re-
search partners.

1. INTRODUCTION

The efficient processing of large volumes of data

without compromising many of the traditional database

system properties like consistency, descriptive query
specification, durability, etc. is one of the core pil-
lars of many user-level applications or domains like
Machine Learning. Data management solutions have
therefore gained significant relevance and are also
constantly faced with a wide variety of requirements
ranging from application access (analytical vs. trans-
actional) and different operator types (relational
model, linear algebra, graph processing etc.) to
different data characteristics (from relational rows
to documents to tensors etc.). These application
requirements are met by potentials and capacities
on the hardware side. Especially in the recent past,
hardware platforms have changed dramatically, pro-
viding substantial new opportunities for data man-
agement solutions in many areas. However, these
golden prospects come along with severe constraints
and increased overall system complexity.
Processing: The early multi-core era with double-
digit numbers of cores per system has passed. Nowa-
days, multi-socket systems with up to 1,000 cores
have become economically feasible. In addition,
GPUs and FPGAs have made significant progress
in providing general purpose processing units, but
still require specific support from the software layer.

36

Memory: While disks are still highly usable for
cold data, the increase of main memory capacities
often allows to keep all working data close to the
processing units. With this, the focus shifts from
buffer pool management to cache optimization. In
addition, non-volatile RAM will allow to directly
work on primary data without copying content from
the persistent to the transient memory world.

Network: Recent improvements in network tech-
nologies (e.g. Infiniband, Nx10GB Ethernet) in
combination with RDMA etc. blur the boundaries
between “local” (or in-node memory) and “remote”
memory within a cluster, providing the opportunity
to re-consider scale-up and scale-out.

Overview of research activities
Reflecting on the requirements from the application
side and the opportunities on the hardware side,
database systems are currently sandwiched between
these two layers and have to mediate in order to
provide the best service using the most efficient hard-
ware environment. In order to holistically embrace
these technological challenges and provide excellent
research contributions, the Dresden Database Sys-
tems Group is structured into two topic areas:
System architecture: Research activities gen-
erally investigate novel system architectures as well
as specific technologies to exploit modern hardware
opportunities within modern storage engines. Indi-
vidual topics, as detailed in Section 2, range from
energy optimization via data encoding and compres-
sion to hybrid data structures for heterogeneous

mMemory.
Data Processing: Within this field, research is

conducted to push the envelope in the context of data
extraction and data imputation for semi-structured
data sets as well as forecasting and managing large-
scale time series data. Section 3 will provide more
detailed information.

Scientific environment

The Dresden Database Systems Group is located in
Dresden (Germany), the capital of the state of Sax-

SIGMOD Record, September 2017 (Vol. 46, No. 3)

ony. Located at the heart of the Elbe valley, Dresden
is famous for its baroque buildings, Mediterranean
flair, and worldwide renowned cultural activities. In
addition, Dresden is also one of the main research
centers in Europe with important institutions like
the Max Planck Society (3 institutes), Fraunhofer
Society (11 institutes), Leibniz Society (4 institutes),
and of course the Technische Universitat Dresden
(TUD), one of eleven German universities that were
awarded the “University of Excellence”. Moreover,
Dresden is one of the largest semiconductor cen-
ters worldwide with more than 1,500 IT companies
forming the region known as “Silicon Saxony”.
The “Technische Universitit Dresden'” was founded

in 1828 as the “Saxon Technical School®” to educate
workers in technological subjects such as mechan-
ical engineering, and ship construction. Today it
is among the Top-3 universities for Engineering in
Germany and with approximately 37,000 students,
it is one of the largest universities in Germany. The
Faculty of Computer Science consists of six insti-
tutes with more than 1,700 bachelor and master
students, and 180 doctoral students. Dresden has
been the main research hub for computer science in
Eastern Europe, making cutting-edge database re-
search a big part of its long tradition. The database
systems group is headed by Wolfgang Lehner since
October 2002 and currently consists of 5 postdoc-
toral researchers and 15 PhD students. The group is
involved in many national and international research
projects and activities (Section 5). In addition to
the summary below, the website of the group at
https://wwwdb.inf.tu-dresden.de/ is providing
further information.

2. SYSTEM ARCHITECTURE

The group’s research field in the context of efficient
and scalable data processing systems embraces differ-
ent research directions investigating the benefits of
modern hardware and developing novel algorithms
and data structures. The core question that drives
the research activities is: “How should database
systems be designed to optimally match new appli-
cation requirements with new hardware opportuni-
ties?”. To answer this question, the group develops a
scalable data management platform (ERIS?), which
is agnostic with respect to logical data models as
well as physical implementations. The basic idea of
this platform is to factor out as many general data
management services like visibility, data and query

"https://tu-dresden.de/
’https://en.wikipedia.org/wiki/TU_Dresden
Shttps://wwwdb.inf.tu-dresden.de/
research-projects/eris/

SIGMOD Record, September 2017 (Vol. 46, No. 3)

distribution, connection management, etc. as pos-
sible and provide a plug-in mechanism for operator
implementations as well as individual physical de-
signs. In addition, the platform also systematically
deploys the concept of control loops for different
aspects at different levels and provides a rich set
of telemetry data. For example, access statistics
at the physical container level serve as input for
self-optimizing access path selection. Performance
counters at the CPU-level serve as input for energy
optimization as well as data placement strategies. In
general, this project acts as an envelope and imple-
mentation sandbox, to which individual and specific
PhD projects contribute.

Energy Management

While energy consumption is a well-known issue for
large-scale computing, it has also become a serious
challenge in the context of individual computing sys-
tems. In this domain, our research work investigates
the potentials and opportunities for fine-tuning en-
ergy consumption without compromising the overall
system performance. To our own surprise, there are
significant opportunities for saving energy — both
from the energy efficiency and the energy proportion-
ality perspective. Figure 1 outlines energy profiles
for different workloads defined by operating indi-
vidual cores and the socket infrastructure (caches,
controller etc.) at different frequencies. The dia-
grams show individual configurations (dot size =
number of active cores, dot color = average core
frequency with uncore frequency in the middle) or-
ganized in a performance versus energy efficiency
manner [24]. As we can see, different performance
for the same work can be achieved by different config-
urations exhibiting different energy behaviors. With
background knowledge of the type of work (column
scan, hash-based aggregation, etc.) the system may
pick the most energy-efficient configuration for a
particular task. As we demonstrated in the context
of ERIS, we can achieve up to 30% energy savings
compared to the standard Linux power governor
without compromising performance.

Heterogenous Systems

While using GPUs for data management activities
has a long research history, most of the work focused
on special implementations for highly specialized
hardware configurations. In the context of hetero-
geneous systems research, we investigated different
approaches to integrate different compute units into
a single query processing environment. In [14], we
propose an iteratively refined cost model to deter-
mine the optimal work distribution with respect to

37

Energy Efficiency [%]
@
g
.
%
x
x
1
|
x
\
|
x|
i
|
X
|
|

—x»— Baseline —e— ECLRTI

0 10 20 30 40 50 60 70 80 90 100

Performance [%]

Figure 1: Energy profiles using different
workloads; 12 core, 4 different core frequen-
cies, 3 different uncore frequencies, resulting
in 144 configurations

traditional CPUs or an alternative implementation
using a GPU. We also showed that the distribution of
a single operations over heterogenous devices is often
not practical [13] and devised an allocation scheme
on a per-operator basis. The approach nicknamed
HERO (“HEterogeneous Resource Optimization”)
provides a pseudo OpenCL device which on the
one side can be registered at any OpenCL-enabled
database engine and on the other side may decide
on the optimal operator as well as data placement.

Non-Volatile RAM

While heterogeneity is a quite well-understood fact
at the level of processing units, we see a similar
trend at the level of memory. The “black-and-white”-
model of RAM with buffer pool against a disk is long
gone. Large main memories with different character-
istics have taken over, ranging from extremely fast
MCDRAM-like memories to non-volatile but still
byte addressable memory systems. Within different
research activities, we investigate basic character-
istics and the impact on data structure design of
future NVRAM. For example, Figure 2 shows that
the HW-prefetcher of a CPU is able to hide most of
the penalty derived from higher memory latencies
for scan-based memory access patterns. However,
for data structures required to follow pointers (e.g.
SkipLists), the latency is directly visible as addi-
tional overhead [22].

Based on these characteristics, we developed the
FP-Tree [21], a hybrid data structure spanning volatile
DRAM (for the inner nodes) as well as NVRAM
holding the leaf nodes for the raw data. This allows
the data structure to be completely self-constrained,
i.e. it does not rely on a global log but provides
a micro-logging approach to bring the data struc-
ture into a consistent state after failure recovery
[23]. Moreover, since HTM is a scalable method
for DRAM-based data manipulation, it is inherently

38

[% over using DRAM]|
1001" e S1MD-Scan
—=— SIMD-Scan-Prefetch
S0 +— Skip List - read . a
o —— SKkip List - write . N .
= ”
2 60 : .
O » »
8 &
g -
E 40 /
S .
= -
20 /' . -
/ =
4
0

0 90 200 300 400 500 600 700

SIMD: 16bit case / SL: 64Byte Latency[ns]

Figure 2: Performance overhead for varying
memory latencies

incompatible with NVRAM-based data structure
modifications. Therefore, the FP-tree intertwines
different concurrency schemes, the volatile as well
as the non-volatile part. Research on efficient data
structure design has a tradition within the group.
A team of PhD students won the SIGMOD 2011
Programming Contest with a solution based on in-
memory optimized prefix trees [17], which again was
followed by the KISS-tree, a highly optimized prefix
tree for supporting 32bit key lookups with exactly
3 memory accesses, independent of data cardinality
and skew [18].

Data encoding schemes

The traditional disk-based layout uses a row-based
or columnar data layout to represent the raw data
(in combination with secondary index structures).
Due to extremely high access latencies, the phys-
ical data layout of logical entities was not in the
focus of optimization. Main-memory systems how-
ever demand and allow more sophisticated encoding
schemes, especially compression schemes to limit the
data transfer between memory and CPU as well as
to increase cache utilization. Moreover, since raw as
well as intermediate data are both located in main
memory and therefore exhibit the same access char-
acteristics, it seems beneficial to apply lightweight
compression schemes also for intermediates.

Unfortunately, compression algorithms are highly
dependent on the individual data characteristics and
implementation details. Within [4], we reported on
39 different implementations of different compression
algorithms ranging from logical schemes like RLE,
Differential Coding, Dictionary Encoding to physical
schemes like null suppression to eliminate leading
zeroes in the binary representation. As expected,
there is no single best algorithm, the decision is not
trivial and depends on system environment as well
as data characteristics. The experimental study how-
ever provides a solid base for an automated selection
mechanism.

SIGMOD Record, September 2017 (Vol. 46, No. 3)

As counterpart to compression schemes, we also
investigate the impact of encoding schemes for fail-
ure detection and failure discovery, which becomes
more and more relevant with larger and denser main-
memories. We look at applying AN coding schemes
for column stores, which turns out to be a great
solution for detecting multi-bit flips, as it results
in a significantly lower probability for silent data
corruption in combination with a simple arithmetic
model. While previous work only used expensive
division operations for decoding, AN coding allows
transforming divisions into relatively cheap multipli-
cations by using inverses.

3. DATA PROCESSING

As already mentioned, the research field of data
processing addresses applications for managing and
analyzing data. Research activities range from ex-
tracting structured data out of unstructured data
to large-scale time series management.

Database Augmentation

In the era of Big Data, the number and variety of
data sources is increasing every day. However, not
all of this new data is available in well-structured
databases or warehouses. Instead, heterogeneous
collections of individual datasets such as data lakes
are becoming more prevalent. This new wealth of
data, though not integrated, has enormous potential
for generating value in ad-hoc analysis processes,
which are becoming more and more common with
increasingly agile data management practices. How-
ever, in today’s database management systems there
is a lack of support for ad-hoc data integration of
such heterogeneous data sources.

We therefore developed the entity augmentation
system REA [7] that, given a set of entities and a
large corpus of possible data sources, automatically
retrieves the missing attributes. Due to the inherent
uncertainty of the data sources and the matching
process in general, REA produces not one but k dif-
ferent augmentations from which the user can choose.
To this end, we developed an extended version of
the Set Cover problem, called Top-k Consistent Set
Covering, onto which we map our requirements.

On top of that, we built DrillBeyond [6] by inte-
grating REA with PostgreSQL, that allows to com-
bine structured and unstructured query processing
and enables seamless SQL queries over both RDBMS
and the Web of Data. Therefore, we designed a novel
plan operator that encapsulates the retrieval part
and allows direct integration of such systems into
relational query processing. The operator is placed
in a cost-based manner to create query plans, that

SIGMOD Record, September 2017 (Vol. 46, No. 3)

are optimized for large invariant intermediate re-
sults which can be reused between multiple query
evaluations.

Dresden Web Table Corpus (DTWC)

The Web has become a comprehensive resource not
only for unstructured or semi-structured data, but
also for relational data. Millions of relational ta-
bles embedded in HTML pages or published in the
course of Open Data/Open Government initiatives
provide extensive information on entities and their
relationships from almost every domain. Researchers
have recognized these Web tables as an important
source of information for applications such as fac-
tual search, entity augmentation and ontology en-
richment. Therefore, we extracted the Dresden Web
Table Corpus? [5] a large corpus consisting of 125
million unique tables extracted from the July 2014
incarnation of the Common Crawl. The DWTC
is used as a source of semi-structured data for our
augmentation project but also triggered other re-
search projects, e.g. in [3] we proposed a semantic
normalization approach for Web tables containing
multiple concepts, whereas in [1, 2] we proposed
techniques to recover the meaning of columns by in-
ferring knowledge base class labels and considering
the Web table context.

DeExcelerator

Spreadsheets are one of the most successful content
generation tools, used in almost every enterprise to
perform data transformation, visualization, and anal-
ysis. The high degree of freedom provided by these
tools results in very complex sheets, intermingling
the actual data with formatting, formulas, layout ar-
tifacts, and textual metadata. To unlock the wealth
of data contained in spreadsheets, a human analyst
will often have to understand and transform the data
manually. To overcome this cumbersome process,
we proposed the DeExcelerator [8] that is able to
automatically infer the structure and extract the
data from these documents in a canonical form [19,
20].

Large-scale time series forecasting

Many analytical applications are based on empiri-
cally collected data sets derived from sensors that
form large time series. Our research activities started
by treating timeseries as first class citizens within a
database system and introducing forecast operators
to support predictive modeling. In a first step, we
developed a solution that natively integrates time
series forecasting into an existing DBMS, the Flash-

‘https://wwwdb.inf.tu-dresden.de/misc/dwtc/

39

v [TTTITT] [TTTTTT]

O OO | oo O

v [TITTTITI

v oDOoo | IO O

v [TTTTTTT] |
"'\«,:":.- . prediction 3)’{1‘: -

Figure 3: CSAR model with one seasonal and
two non-seasonal AR components

Forward Database System (F?DB) [9]. It supports a
new query type—the forecast query—that enables fore-
casting for any database user and is transparently
processed by the core engine of an existing DBMS. A
key component of our system is a specialized model
index structure that stores pre-built forecast models,
transparently finds existing models for a given query,
and maintains materialized models.

Based on this work, we reached out into multiple
directions. On the one hand, we devised a novel fore-
casting method “The Cross-sectional Autoregression
Model” (CSAR) for large-scale data sets that are
highly dynamic and often noisy. While traditional
forecasting approaches are focused on individual
time series, resulting in a high model creation effort
for a large data sets, CSAR trades depth for width
by incorporating only the relevant sections of multi-
ple time series into a model. In doing so, it provides
a balance between low latency and high accuracy
at individual aggregate levels. Figure 3 outlines
the basic idea of CSAR with details provided—for
example—in [10].

On the other hand, we investigate ways for the
systematic description of time series characteristics.
We developed a feature-based approach that allows
us to create synthetic time series based on a given
set of reference series data. As shown in [16], the
approach allows users to formulate specific what-if
scenarios by “tweaking” individual characteristics of
the underlying time series and instantaneously see
the impact in the time series data. This mechanism
can be used to systematically generate time series
data for simulations, model evaluation, or scalability
experiments [15].

SAP HANA Database Campus: The group
maintains a research relationship with the product
development group of SAP HANA mostly located
in Walldorf, Seoul, and Waterloo for more than 10
years. A variety of research activities have jointly
resulted in high-profile publications as well as direct
product impact. Directly involved PhD students of
the Dresden group are physically located in Walldorf
together with fellow PhD students from other univer-
sities forming the SAP HANA Database Campus®.

Center for advancing electronics Dresden®
(cfAED): cfAED was established within the Ger-
man excellence initiative that represents the flagship
of research funding instruments in Germany. The
center aims at exploring new technologies for elec-
tronic information processing which overcomes the
limits of today’s predominant CMOS technology.
The database systems group is actively involved in
two research paths: the investigation of resilience
mechanisms for data structures (using different en-
coding schemes), and the creation of mechanisms
to bridge the gap between traditional silicon-based
systems and systems based on novel materials po-
tentially providing completely different computing
characteristics.

Research Center on Highly Adaptive Energy-
Efficient Computing” (HAEC): The HAEC project
systematically and holistically investigates energy
efficiency in computer systems. Starting from the
hardware perspective it goes all the way up to impli-
cations for application development, compiler design,
and runtime support. Wolfgang Lehner is acting a co-
chairman and is responsible for all software-related
activities.

Research Training Group on Role-based Soft-
ware Infrastructures for continuous-context-
sensitive Systems® (RoSI): Software with long
life cycles is faced with continuously changing con-
texts, e.g. new functionality has to be added, new
platforms have to be addressed, and existing busi-
ness rules have to be adjusted. The concept of
role modeling has been introduced in different fields
and at different times in order to model context-
related information. The central research goal of
this project is to deliver proof of the capability of
consistent role modeling and its practical applicabil-

4. PARTICIPATION IN MAJOR RESE ARCH ty- Research activities within the database systems

ACTIVITIES

All individual research activities of the database
systems group are integrated into different larger
research projects funded by industrial partners, the
German Research Foundation (DFG), and the Eu-
ropean Union. The following list provides a compre-
hensive overview.

40

group try to integrate the notion of role-modeling
into the database system and develop novel agile

Shttps://wiki.scn.sap.com/wiki/display/SAPHANA/
Research+at+the+SAP+HANA+Database+Department
Shttps://cfaed.tu-dresden.de
"https://tu-dresden.de/ing/forschung/sfb912
Shttps://wwwdb.inf.tu-dresden.de/grk/

SIGMOD Record, September 2017 (Vol. 46, No. 3)

schema evolution methods to efficiently control the
real-world constraints based on playing individual
roles. Additionally, novel agile schema evolution
methods [12, 11] are subsumed under this project
[12, 11]. Wolfgang Lehner is the spokesman of this
initiative, which is funded by the DFG.
Information Technologies for Business In-
telligence - Doctoral College’ (IT4BI-DC):
IT4BI-DC is a doctoral program addressing six fun-
damental challenges in the area of Business Intelli-
gence: Modeling and Semantics, Information Dis-
covery, Information Integration, Business Analytics,
Large-Scale Processing, and Collaboration and Pri-
vacy. The curriculum is jointly delivered by Uni-
versité Libre de Bruxelles (Belgium), Aalborg Uni-
versitet (Denmark), Technische Universitit Dresden
(Germany), Universitat Politecnica de Catalunya

(Spain), and Poznan University of Technology (Poland).

Associated partners from around the world include
top-ranked universities, leading industries in BI, pub-
lic and private research organizations, consulting
companies, and public authorities. The consortium
jointly designs a set of research topics, which are
jointly co-supervised by two partners of the con-
sortium. Graduates perform their research at two
of these universities and upon completion of the
program are awarded with a joint degree.

S. CONTRIBUTION TO THE COMMU-
NITY

The Dresden Database Systems Group is sup-
porting the database community at different levels
and in different roles. At the regional and national
level, Wolfgang Lehner was acting as the spokesman
of the database special interest group within the
“Gesellschaft fiir Informatik” (= German equivalent
of ACM). Since April 2012, Wolfgang Lehner is
elected member of the Computer science review
panel of the German Research Foundation (DFG)
and acts as the chairman since April 2016. At the
international level, Wolfgang Lehner was member of
the editorial board of the VLDB Journal from 2005
to 2011. He was Co-PC-Chair of VLDB 2011, ICDE
2015, and currently serves on the VLDB Endow-
ment. Wolfgang Lehner is also PC member of all
high-profile database conferences and was awarded
with the “Distinguished PC Member” award at SIG-
MOD 2017. All of these activities have only been
possible with a great team that is supporting and
contributing. Thea team is the source of all of these
fascinating research results and therefore deserves
recognition for all of these remarkable achievements.

https://it4bi-dc.ulb.ac.be/

SIGMOD Record, September 2017 (Vol. 46, No. 3)

6. REFERENCES

[1] K. Braunschweig, M. Thiele, J. Eberius, and W. Lehner.
Column-specific context extraction for web tables. In
SAC, pages 1072-1077, 2015.

[2] K. Braunschweig, M. Thiele, E. Koci, and W. Lehner.
Putting web tables into context. In KDIR, 2016.

[3] K. Braunschweig, M. Thiele, and W. Lehner. From web
tables to concepts: A semantic normalization approach.
In ER, pages 247-260, 2015.

[4] P. Damme et al. Lightweight data compression
algorithms: An experimental survey (experiments and
analyses). In EDBT, pages 72-83, 2017.

[5] J. Eberius, K. Braunschweig, M. Hentsch, M. Thiele,
A. Ahmadov, and W. Lehner. Building the dresden web
table corpus: A classification approach. In BDC, 2015.
J. Eberius, M. Thiele, K. Braunschweig, and W. Lehner.
Drillbeyond: processing multi-result open world SQL
queries. In SSDBM, pages 16:1-16:12, 2015.

J. Eberius, M. Thiele, K. Braunschweig, and W. Lehner.

Top-k entity augmentation using consistent set covering.

In SSDBM, pages 8:1-8:12, 2015.

[8] J. Eberius et al. Deexcelerator: a framework for

extracting relational data from partially structured

documents. In CIKM, pages 2477-2480, 2013.

U. Fischer, C. Schildt, C. Hartmann, and W. Lehner.

Forecasting the data cube: A model configuration

advisor for multi-dimensional data sets. In JCDE, 2013.

[10] C. Hartmann et al. CSAR: The cross-sectional
autoregression model. In DSAA, 2017.

[11] K. Herrmann, H. Voigt, A. Behrend, J. Rausch, and
W. Lehner. Living in parallel realities: Co-existing
schema versions with a bidirectional database evolution
language. In SIGMOD, pages 1101-1116, 2017.

[12] T. Jakel, T. Kiihn, H. Voigt, and W. Lehner. Towards a
role-based contextual database. In ADBIS, 2016.

[13] T. Karnagel, D. Habich, and W. Lehner. Limitations of
intra-operator parallelism using heterogeneous
computing resources. In ADBIS, pages 291-305, 2016.

[14] T. Karnagel, D. Habich, and W. Lehner. Adaptive work
placement for query processing on heterogeneous
computing resources. PVLDB, 10(7):733-744, 2017.

[15] L. Kegel, M. Hahmann, and W. Lehner. Template-based
time series generation with loom. In EDBT, 2016.

[16] L. Kegel, M. Hahmann, and W. Lehner. Generating
what-if scenarios for time series data. In SSDBM, 2017.

[17] T. Kissinger et al. A high-throughput in-memory index,
durable on flash-based SSD: insights into the winning
solution of the SIGMOD programming contest 2011.
SIGMOD Record, 41(3):44-50, 2012.

[18] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner.
KISS-Tree: smart latch-free in-memory indexing on
modern architectures. In DaMoN, pages 16-23, 2012.

[19] E. Koci, M. Thiele, O. Romero, and W. Lehner. A
machine learning approach for layout inference in
spreadsheets. In KDIR, pages 77-88, 2016.

[20] E. Koci, M. Thiele, O. Romero, and W. Lehner. Table
identification and reconstruction in spreadsheets. In
CAiSE, pages 527-541, 2017.

[21] I. Oukid et al. Fptree: A hybrid SCM-DRAM persistent
and concurrent b-tree for storage class memory. In
SIGMOD, pages 371-386, 2016.

[22] I. Oukid and W. Lehner. Data structure engineering for
byte-addressable non-volatile memory. In SIGMOD,
pages 1759-1764, 2017.

[23] I. Oukid, W. Lehner, T. Kissinger, T. Willhalm, and
P. Bumbulis. Instant recovery for main memory
databases. In CIDR, 2015.

[24] A. Ungethiim, T. Kissinger, D. Habich, and W. Lehner.
Work-energy profiles: General approach and in-memory
database application. In TPCTC, pages 142-158, 2016.

(6

[7

&)

41

[|
pP= q
T
ED%DT
h wd
@

CALL FOR NOMINATIONS
ICDT 2018 TEST-OF-TIME AWARD

Nominations are solicited for the ICDT 2018 Test of Time Award. In order to provide
comprehensive coverage of past ICDT conferences, the ICDT Council has determined that the
ICDT 2018 ToT award will cover papers published in ICDT 1999 and 2001.

The ICDT 2018 ToT Award Committee consists of Pablo Barcelo, Richard Hull, and Victor Vianu.
The committee will select the paper or a small number of papers from the ICDT 1999 and 2001
proceedings that has had the most impact in terms of research, methodology, conceptual
contribution, or transfer to practice. All papers are nominated by default, but the committee
welcomes input from our community. Please feel free to nominate a paper if you think it has had
great impact, even if you have not thoroughly compared it to the other eligible papers. The usual
conflict of interest rules apply.

Please email your nominations to Pablo Barcelo (pbarcelo@gmail.com) with subject line
"ICDT 2018 ToT Award nomination" together with a brief justification. Please send your
nominations no later than November 1, 2017. Nominations are confidential and will only be shared
among the committee members.

The ICDT ToT award for 2018 will be presented during the EDBT/ICDT 2018 Joint Conference,
March 26-29, 2018 in Vienna, Austria.

The ICDT 1999 papers can be found at http://dblp.uni-trier.de/db/conf/icdt/icdt99.html
and the ICDT 2001 papers at http://dblp.uni-trier.de/db/cont/icdt/icdt2001.html

42 SIGMOD Record, September 2017 (Vol. 46, No. 3)

