
SIGMOD Officers, Committees, and Awardees
	

	

	

Chair	
 Vice-­‐Chair	
 Secretary/Treasurer	

Juliana	
 Freire	
 Ihab	
 Francis	
 Ilyas	
 Fatma	
 Ozcan	

Computer	
 Science	
 &	
 Engineering	
 Cheriton	
 School	
 of	
 Computer	
 Science	
 IBM	
 Research	

New	
 York	
 University	
 University	
 of	
 Waterloo	
 Almaden	
 Research	
 Center	

Brooklyn,	
 New	
 York	
 Waterloo,	
 Ontario	
 San	
 Jose,	
 California	

USA	
 CANADA	
 USA	

+1	
 646	
 997	
 4128	
 +1	
 519	
 888	
 4567	
 ext.	
 33145	
 +1	
 408	
 927	
 2737	

juliana.freire	
 <at>	
 nyu.edu	
 ilyas	
 <at>	
 uwaterloo.ca	
 fozcan	
 <at>	
 us.ibm.com	

	

	

SIGMOD	
 Executive	
 Committee:	
 	
 	

Juliana	
 Freire	
 (Chair),	
 Ihab	
 Francis	
 Ilyas	
 (Vice-­‐Chair),	
 Fatma	
 Ozcan	
 (Treasurer),	
 K.	
 Selçuk	
 Candan,	

Yanlei	
 Diao,	
 Curtis	
 Dyreson,	
 Yannis	
 Ioannidis,	
 Christian	
 Jensen,	
 and	
 Jan Van den Bussche.
	

Advisory	
 Board:	
 	

Yannis	
 Ioannidis	
 (Chair),	
 Phil	
 Bernstein,	
 Surajit	
 Chaudhuri,	
 Rakesh	
 Agrawal,	
 Joe	
 Hellerstein,	
 Mike	

Franklin,	
 Laura	
 Haas,	
 Renee	
 Miller,	
 John	
 Wilkes,	
 Chris	
 Olsten,	
 AnHai	
 Doan,	
 Tamer	
 Özsu,	
 Gerhard	

Weikum,	
 Stefano	
 Ceri,	
 	
 Beng	
 Chin	
 Ooi,	
 Timos	
 Sellis,	
 Sunita	
 Sarawagi,	
 Stratos	
 Idreos,	
 Tim	
 Kraska	

	

SIGMOD	
 Information	
 Director:	
 	
 	

	
 Curtis	
 Dyreson,	
 Utah	
 State	
 University	
 	

	

Associate	
 Information	
 Directors:	
 	
 	

	
 Huiping	
 Cao,	
 Manfred	
 Jeusfeld,	
 	
 Asterios	
 Katsifodimos,	
 Georgia	
 Koutrika,	
 Wim	
 Martens	

	

SIGMOD	
 Record	
 Editor-­‐in-­‐Chief:	
 	
 	

	
 Yanlei	
 Diao,	
 University	
 of	
 Massachusetts	
 Amherst	
 	

	

SIGMOD	
 Record	
 Associate	
 Editors:	
 	
 	

	
 Vanessa	
 Braganholo,	
 Marco	
 Brambilla,	
 	
 Chee	
 Yong	
 Chan,	
 Rada	
 Chirkova,	
 Zachary	
 Ives,	
 	
 Anastasios	
 	

	
 Kementsietsidis,	
 Jeffrey	
 Naughton,	
 Frank	
 Neven,	
 Olga	
 Papaemmanouil,	
 	
 Aditya	
 Parameswaran,	
 	

	
 Alkis	
 Simitsis,	
 Wang-­‐Chiew	
 Tan,	
 Nesime	
 Tatbul,	
 Marianne	
 Winslett,	
 and	
 Jun	
 Yang	

	

SIGMOD	
 Conference	
 Coordinator:	
 	
 	

K.	
 Selçuk	
 Candan,	
 Arizona	
 State	
 University	
 	

	

PODS	
 Executive	
 Committee:	
 	

	
 Jan	
 Van	
 den	
 Bussche	
 (Chair),	
 Tova	
 Milo,	
 Diego	
 Calvanse,	
 Wang-­‐Chiew	
 Tan,	
 Rick	
 Hull,	
 Floris	
 Geerts	

	

Sister	
 Society	
 Liaisons:	
 	
 	

	
 Raghu	
 Ramakhrishnan	
 (SIGKDD),	
 Yannis	
 Ioannidis	
 (EDBT	
 Endowment),	
 Christian	
 Jensen	
 (IEEE	
 TKDE).	

	

Awards	
 Committee:	
 	

Surajit	
 Chaudhuri	
 (Chair),	
 David	
 Dewitt,	
 Martin	
 Kersten,	
 Maurizio	
 Lenzerini,	
 Jennifer	
 Widom	

	

Jim	
 Gray	
 Doctoral	
 Dissertation	
 Award	
 Committee:	
 	
 	

Ashraf	
 Aboulnaga	
 (co-­‐Chair),	
 Chris	
 Jermaine	
 (co-­‐Chair),	
 Paris	
 Koutris,	
 Feifei	
 Li,	
 Qiong	
 Luo,	
 Ioana	

Manolescu,	
 Lucian	
 Popa,	
 Renée	
 Miller	

	

SIGMOD	
 Systems	
 Award	
 Committee:	
 	
 	

Mike	
 Stonebraker	
 (Chair),	
 Make	
 Cafarella,	
 Mike	
 Carey,	
 Yanlei	
 Diao,	
 Paul	
 Larson	

	

	

	

SIGMOD	
 Officers,	
 Committees,	
 and	
 Awardees	
 (continued)	

SIGMOD Record, June 2017 (Vol. 46, No. 2) 1

SIGMOD	
 Edgar	
 F.	
 Codd	
 Innovations	
 Award	
 	

For	
 innovative	
 and	
 highly	
 significant	
 contributions	
 of	
 enduring	
 value	
 to	
 the	
 development,	
 understanding,	
 or	
 use	

of	
 database	
 systems	
 and	
 databases.	
 Recipients	
 of	
 the	
 award	
 are	
 the	
 following:	
 	

	

Michael	
 Stonebraker	
 (1992)	
 	
 Jim	
 Gray	
 (1993)	
 	
 	
 	
 Philip	
 Bernstein	
 (1994)	
 	

David	
 DeWitt	
 (1995)	
 	
 	
 C.	
 Mohan	
 (1996)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 David	
 Maier	
 (1997)	
 	

Serge	
 Abiteboul	
 (1998)	
 	
 	
 Hector	
 Garcia-­‐Molina	
 (1999)	
 	
 	
 	
 	
 	
 	
 Rakesh	
 Agrawal	
 (2000)	
 	

Rudolf	
 Bayer	
 (2001)	
 	
 	
 Patricia	
 Selinger	
 (2002)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Don	
 Chamberlin	
 (2003)	
 	

Ronald	
 Fagin	
 (2004)	
 	
 	
 Michael	
 Carey	
 (2005)	
 	
 	
 	
 	
 	
 	
 	
 Jeffrey	
 D.	
 Ullman	
 (2006)	
 	

Jennifer	
 Widom	
 (2007)	
 	
 	
 Moshe	
 Y.	
 Vardi	
 (2008)	
 	
 	
 	
 	
 	
 	
 	
 Masaru	
 Kitsuregawa	
 (2009)	
 	

Umeshwar	
 Dayal	
 (2010)	
 	
 	
 Surajit	
 Chaudhuri	
 (2011)	
 	
 	
 	
 	
 	
 	
 Bruce	
 Lindsay	
 (2012)	

Stefano	
 Ceri	
 (2013)	
 	
 	
 Martin	
 Kersten	
 (2014)	
 	
 	
 	
 	
 	
 	
 	
 Laura	
 Haas	
 (2015)	

Gerhard	
 Weikum	
 (2016)	
 	
 	
 Goetz	
 Graefe	
 (2017)	

	

SIGMOD	
 Systems	
 Award	
 	

For technical contributions that have had significant impact on the theory or practice of large-scale data
management systems.
	

Michael	
 Stonebraker	
 and	
 Lawrence	
 Rowe	
 (2015)	
 	
 	
 	
 Martin	
 Kersten	
 (2016)	
 	

Richard	
 Hipp	
 (2017)	

	

SIGMOD	
 Contributions	
 Award	
 	

For	
 significant	
 contributions	
 to	
 the	
 field	
 of	
 database	
 systems	
 through	
 research	
 funding,	
 education,	
 and	

professional	
 services.	
 Recipients	
 of	
 the	
 award	
 are	
 the	
 following:	
 	

	

Maria	
 Zemankova	
 (1992)	
 	
 Gio	
 Wiederhold	
 (1995)	
 	
 	
 Yahiko	
 Kambayashi	
 (1995)	
 	

Jeffrey	
 Ullman	
 (1996)	
 	
 	
 Avi	
 Silberschatz	
 (1997)	
 	
 	
 Won	
 Kim	
 (1998)	
 	

Raghu	
 Ramakrishnan	
 (1999)	
 	
 Michael	
 Carey	
 (2000)	
 	
 	
 Laura	
 Haas	
 (2000)	
 	

Daniel	
 Rosenkrantz	
 (2001)	
 	
 Richard	
 Snodgrass	
 (2002)	
 	
 Michael	
 Ley	
 (2003)	
 	

Surajit	
 Chaudhuri	
 (2004)	
 	
 	
 Hongjun	
 Lu	
 (2005)	
 	
 	
 Tamer	
 Özsu	
 (2006)	
 	

Hans-­‐Jörg	
 Schek	
 (2007)	
 	
 	
 Klaus	
 R.	
 Dittrich	
 (2008)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Beng	
 Chin	
 Ooi	
 (2009)	
 	

David	
 Lomet	
 (2010)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Gerhard	
 Weikum	
 (2011)	
 	
 	
 Marianne	
 Winslett	
 (2012)	

H.V.	
 Jagadish	
 (2013)	
 	
 	
 Kyu-­‐Young	
 Whang	
 (2014)	
 	
 Curtis	
 Dyreson	
 (2015)	

Samuel	
 Madden	
 (2016)	
 	
 	
 Yannis	
 E.	
 Ioannidis	
 (2017)	

	
 	

SIGMOD	
 Jim	
 Gray	
 Doctoral	
 Dissertation	
 Award	
 	

SIGMOD	
 has	
 established	
 the	
 annual	
 SIGMOD	
 Jim	
 Gray	
 Doctoral	
 Dissertation	
 Award	
 to	
 recognize	
 excellent	

research	
 by	
 doctoral	
 candidates	
 in	
 the	
 database	
 field.	
 	
 Recipients	
 of	
 the	
 award	
 are	
 the	
 following:	
 	

	

§ 2006	
 Winner:	
 Gerome	
 Miklau.	
 Honorable	
 Mentions:	
 Marcelo	
 Arenas	
 and	
 Yanlei	
 Diao.	
 	

§ 2007	
 Winner:	
 Boon	
 Thau	
 Loo.	
 Honorable	
 Mentions:	
 Xifeng	
 Yan	
 and	
 Martin	
 Theobald.	
 	

§ 2008	
 Winner:	
 Ariel	
 Fuxman.	
 Honorable	
 Mentions:	
 Cong	
 Yu	
 and	
 	
 Nilesh	
 Dalvi.	
 	

§ 2009	
 Winner:	
 Daniel	
 Abadi.	
 	
 Honorable	
 Mentions:	
 Bee-­‐Chung	
 Chen	
 and	
 Ashwin	
 Machanavajjhala.	

§ 2010	
 Winner:	
 Christopher	
 Ré.	
 Honorable	
 Mentions:	
 Soumyadeb	
 Mitra	
 and	
 Fabian	
 Suchanek.	

§ 2011	
 Winner:	
 Stratos	
 Idreos.	
 Honorable	
 Mentions:	
 Todd	
 Green	
 and	
 Karl	
 Schnaitterz.	

§ 2012	
 Winner:	
 Ryan	
 Johnson.	
 Honorable	
 Mention:	
 Bogdan	
 Alexe.	

§ 2013	
 Winner:	
 Sudipto	
 Das,	
 Honorable	
 Mention:	
 Herodotos	
 Herodotou	
 and	
 Wenchao	
 Zhou.	

§ 2014	
 Winners:	
 Aditya	
 Parameswaran	
 and	
 Andy	
 Pavlo.	
 	

§ 2015	
 Winner:	
 Alexander	
 Thomson.	
 Honorable	
 Mentions:	
 Marina	
 Drosou	
 and	
 Karthik	
 Ramachandra	

§ 2016	
 Winner:	
 Paris Koutris.	
 Honorable	
 Mentions:	
 Pinar Tozun	
 and	
 Alvin Cheung	

§ 2017	
 Winner:	
 Peter	
 Bailis.	
 Honorable	
 Mention:	
 Immanuel	
 Trummer	

	

A	
 complete	
 list	
 of	
 all	
 SIGMOD	
 Awards	
 is	
 available	
 at:	
 https://sigmod.org/sigmod-­‐awards/	
 	

	

	

	

	

[Last	
 updated	
 :	
 June	
 30,	
 2017]	

2 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Editor’s Notes
	

Welcome	
 to	
 the	
 June	
 2017	
 issue	
 of	
 the	
 ACM	
 SIGMOD	
 Record!	
 	

	

First	
 of	
 all,	
 we	
 welcome	
 the	
 new	
 officers	
 of	
 the	
 SIGMOD	
 Executive	
 Committee,	
 including	
 Juliana	

Freire	
 as	
 the	
 Chair,	
 Ihab	
 Francis	
 Ilyas	
 as	
 the	
 Vice-­‐Chair,	
 and	
 Fatma	
 Ozcan	
 as	
 the	
 Treasurer.	
 The	
 new	

SIGMOD	
 Executive	
 Committee	
 takes	
 office	
 in	
 June	
 2017.	

	

The	
 first	
 column	
 of	
 this	
 issue	
 is	
 the	
 Database	
 Principles	
 column,	
 featuring	
 an	
 article	
 by	
 Barceló,	
 Pi-­‐
eris,	
 and	
 Romero	
 on	
 semantic	
 optimization	
 of	
 Conjunctive	
 Queries	
 (CQs).	
 As	
 one	
 of	
 the	
 most	
 fun-­‐
damental	
 classes	
 of	
 database	
 queries,	
 CQs	
 correspond	
 to	
 select-­‐project-­‐join	
 queries	
 in	
 relational	

algebra.	
 The	
 database	
 theory	
 community	
 has	
 identified	
 the	
 classes	
 of	
 CQs	
 that	
 can	
 be	
 evaluated	
 in	

polynomial	
 time,	
 i.e.,	
 the	
 CQs	
 that	
 admit	
 a	
 suitable	
 tree	
 decomposition	
 of	
 small	
 width.	
 Furthermore,	

semantic	
 information	
 about	
 the	
 data,	
 in	
 the	
 form	
 of	
 constraints,	
 can	
 be	
 used	
 to	
 enrich	
 query	
 optimi-­‐
zation	
 by	
 guiding	
 the	
 query	
 transformation	
 process.	
 This	
 article	
 considers	
 such	
 semantic	
 query	

optimization	
 for	
 the	
 tractable	
 classes	
 of	
 CQs	
 and	
 answers	
 questions	
 including	
 whether	
 a	
 set	
 of	
 con-­‐
straints	
 can	
 be	
 used	
 to	
 reformulate	
 a	
 CQ	
 as	
 one	
 of	
 small	
 width,	
 and	
 if	
 so,	
 what	
 is	
 the	
 cost	
 of	
 compu-­‐
ting	
 and	
 evaluating	
 such	
 a	
 reformulation.	
 As	
 such,	
 the	
 article	
 provides	
 us	
 with	
 a	
 theoretical	
 frame-­‐
work	
 for	
 reasoning	
 about	
 the	
 efficiency	
 of	
 such	
 query	
 reformulations.	

	

The	
 Survey	
 column	
 features	
 an	
 article	
 by	
 Singh	
 and	
 Bawa	
 on	
 MapReduce-­‐based	
 spatial	
 query	
 pro-­‐
cessing	
 approaches.	
 Support	
 of	
 high	
 performance	
 queries	
 on	
 spatial	
 data	
 has	
 been	
 an	
 important	

topic	
 in	
 database	
 research.	
 This	
 article	
 presents	
 classification	
 and	
 analysis	
 of	
 recent	
 spatial	
 query	

processing	
 approaches,	
 implemented	
 in	
 the	
 MapReduce	
 framework,	
 into	
 two	
 categories.	
 The	
 first	

category	
 includes	
 hierarchical	
 index	
 approaches	
 and	
 the	
 second	
 category	
 includes	
 key-­‐value	
 stor-­‐
age	
 based	
 index	
 approaches,	
 with	
 the	
 main	
 differences	
 lying	
 in	
 the	
 way	
 that	
 a	
 spatial	
 index	
 is	
 im-­‐
plemented	
 on	
 the	
 partitioned	
 dataset.	
 	

	

The	
 Systems	
 and	
 Prototypes	
 column	
 features	
 an	
 article	
 on	
 the	
 ARCHIMEDES	
 system	
 for	
 efficient	
 que-­‐
ry	
 processing	
 over	
 probabilistic	
 knowledge	
 bases.	
 Due	
 to	
 the	
 uncertainty	
 of	
 information	
 extraction	

algorithms	
 and	
 the	
 limitations	
 of	
 human	
 knowledge,	
 current	
 knowledge	
 bases	
 are	
 still	
 incomplete	

and	
 uncertain.	
 The	
 ARCHIMEDES	
 system	
 addresses	
 query	
 processing	
 in	
 probabilistic	
 knowledge	
 ba-­‐
ses	
 with	
 three	
 key	
 technical	
 components:	
 (a)	
 knowledge	
 expansion	
 derives	
 implicit	
 knowledge	

from	
 knowledge	
 bases	
 using	
 large	
 rule	
 sets;	
 (b)	
 query-­‐driven	
 inference	
 improves	
 inference	
 perfor-­‐
mance	
 by	
 focusing	
 MCMC	
 on	
 the	
 query	
 variables;	
 (c)	
 the	
 system	
 further	
 leverages	
 unified	
 data-­‐	
 and	

graph-­‐parallel	
 computation	
 to	
 improve	
 performance.	

	

The	
 Distinguished	
 Profiles	
 column	
 features	
 Beng	
 Chin	
 Ooi,	
 Distinguished	
 Professor	
 of	
 Computer	

Science	
 at	
 the	
 National	
 University	
 of	
 Singapore	
 (NUS).	
 Beng	
 Chin	
 is	
 the	
 recipient	
 of	
 the	
 2009	
 SIG-­‐
MOD	
 Contributions	
 Award,	
 and	
 he	
 is	
 an	
 IEEE	
 and	
 ACM	
 Fellow	
 and	
 Fellow	
 of	
 Singapore	
 National	

Academy	
 of	
 Science.	
 In	
 this	
 interview,	
 Beng	
 Chin	
 talks	
 about	
 his	
 research	
 vision	
 (in	
 2011	
 when	
 this	

interview	
 took	
 place),	
 how	
 he	
 built	
 up	
 a	
 successful	
 research	
 group	
 and	
 advised	
 students	
 at	
 NUS,	

how	
 he	
 interacted	
 with	
 the	
 Chinese	
 database	
 research	
 community,	
 his	
 entrepreneur	
 experience,	

and	
 finally	
 his	
 work	
 ethic	
 and	
 favorite	
 pastimes.	

	

	

SIGMOD Record, June 2017 (Vol. 46, No. 2) 3

The	
 Reports	
 column	
 features	
 a	
 report	
 on	
 the	
 third	
 workshop	
 on	
 Algorithms	
 and	
 Systems	
 for	

MapReduce	
 and	
 Beyond	
 (BeyondMR’16)	
 held	
 in	
 conjunction	
 with	
 the	
 2016	
 SIGMOD	
 conference	
 in	

San	
 Francisco,	
 California,	
 USA.	
 The	
 goal	
 of	
 the	
 workshop	
 was	
 to	
 bring	
 together	
 researchers	
 and	

practitioners	
 to	
 explore	
 algorithms,	
 computational	
 models,	
 architectures,	
 languages	
 and	
 interfaces	

for	
 systems	
 that	
 need	
 large-­‐scale	
 parallelization	
 and	
 systems	
 designed	
 to	
 support	
 efficient	
 parallel-­‐
ization	
 and	
 fault	
 tolerance.	
 The	
 workshop	
 program	
 featured	
 two	
 very	
 well	
 attended	
 invited	
 talks	
 by	

Ion	
 Stoica	
 from	
 AMPLab,	
 University	
 of	
 California	
 Berkeley	
 and	
 Carlos	
 Guestrin	
 from	
 the	
 University	

of	
 Washington.	
 The	
 program	
 also	
 included	
 5	
 regular	
 and	
 5	
 short	
 papers	
 on	
 specialized	
 program-­‐
ming	
 and	
 data	
 management	
 systems	
 based	
 on	
 MapReduce	
 and	
 extensions,	
 graph	
 processing	
 sys-­‐
tems,	
 and	
 data-­‐intensive	
 workflow	
 and	
 dataflow	
 systems.	

	

On	
 behalf	
 of	
 the	
 SIGMOD	
 Record	
 Editorial	
 board,	
 I	
 hope	
 that	
 you	
 enjoy	
 reading	
 the	
 June	
 2017	
 issue	

of	
 the	
 SIGMOD	
 Record!	
 	

	

Your	
 submissions	
 to	
 the	
 SIGMOD	
 Record	
 are	
 welcome	
 via	
 the	
 submission	
 site:	

http://sigmod.hosting.acm.org/record	
 	

	

Prior	
 to	
 submission,	
 please	
 read	
 the	
 Editorial	
 Policy	
 on	
 the	
 SIGMOD	
 Record’s	
 website:	
 	

https://sigmodrecord.org	
 	

	

Yanlei	
 Diao	

June	
 2017	

	

	

Past	
 SIGMOD	
 Record	
 Editors:	

	

Ioana	
 Manolescu	
 (2009-­‐2013)	
 Alexandros	
 Labrinidis	
 (2007–2009)	
 Mario	
 Nascimento	
 (2005–2007)	
 	

Ling	
 Liu	
 (2000–2004)	
 	
 Michael	
 Franklin	
 (1996–2000)	
 	
 	
 Jennifer	
 Widom	
 (1995–1996)	
 	

Arie	
 Segev	
 (1989–1995)	
 	
 Margaret	
 H.	
 Dunham	
 (1986–1988)	
 	
 Jon	
 D.	
 Clark	
 (1984–1985)	
 	

Thomas	
 J.	
 Cook	
 (1981–1983)	
 	
 Douglas	
 S.	
 Kerr	
 (1976-­‐1978)	
 	
 	
 Randall	
 Rustin	
 (1974-­‐1975)	
 	

Daniel	
 O’Connell	
 (1971–1973)	
 	
 Harrison	
 R.	
 Morse	
 (1969)	

4 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Semantic Optimization in
Tractable Classes of Conjunctive Queries∗

Pablo Barceló
Center for Semantic Web Research &

DCC, University of Chile
pbarcelo@dcc.uchile.cl

Andreas Pieris
School of Informatics

University of Edinburgh
apieris@inf.ed.ac.uk

Miguel Romero
Center for Semantic Web Research &

DCC, University of Chile
mromero@dcc.uchile.cl

ABSTRACT
This paper reports on recent advances in semantic query
optimization. We focus on the core class of conjunctive
queries (CQs). Since CQ evaluation is NP-complete,
a long line of research has concentrated on identify-
ing fragments of CQs that can be efficiently evaluated.
One of the most general such restrictions corresponds
to bounded generalized hypertreewidth, which extends
the notion of acyclicity. Here we discuss the problem of
reformulating a CQ into one of bounded generalized hy-
pertreewidth. Furthermore, we study whether knowing
that such a reformulation exists alleviates the cost of CQ
evaluation. In case a CQ cannot be reformulated as one
of bounded generalized hypertreewidth, we discuss how
it can be approximated in an optimal way. All the above
issues are examined both for the constraint-free case,
and the case where constraints, in fact, tuple-generating
and equality-generating dependencies, are present.

1. INTRODUCTION
Conjunctive queries (CQs) are one of the most fun-

damental classes of database queries (see, e.g., [2, 18,
34, 42, 50]). In particular, CQs correspond to select-
project-join queries in relational algebra and to select-
from-where queries in SQL. However, CQ evaluation is
not an easy task, especially over large volumes of data.
This has led to a flurry of activity for developing heuris-
tics that alleviate CQ evaluation in practice.

One important method of this kind is CQ optimiza-
tion. Recall that query optimization is a basic database
task that amounts to transforming a query into one that is
more efficient to evaluate. The database theory commu-
nity has developed several principled methods for op-
timization of CQs, many of which are based on static-
analysis tasks such as containment [2]. In a nutshell,
such methods compute a minimal equivalent version of

*Part of this work was done while Romero was visiting the Simons In-
stitute for the Theory of Computing. Barceló and Romero are funded
by the Millennium Nucleus Center for Semantic Web Research un-
der Grant NC120004. Pieris is supported by the EPSRC Programme
Grant EP/M025268/.

a CQ, where minimality refers to the number of atoms.
As argued by Abiteboul, Hull, and Vianu [2], this pro-
vides a theoretical notion of “true optimality” for the
reformulation of a CQ, as opposed to practical consid-
erations based on heuristics. For each CQ q, the min-
imal equivalent CQ is its core q′ [40]. Although the
static analysis tasks that support CQ minimization are
NP-complete [18], this is not a major problem for most
real-life applications, as the input (the CQ) is small.

It is known, on the other hand, that semantic infor-
mation about the data, in the form of constraints, can be
used to enrich query optimization by guiding the query
transformation process. This is often referred to as se-
mantic query optimization [16]. In the aforementioned
analysis of CQ minimization, however, constraints play
no role, as CQ equivalence is defined over all databases.
Adding constraints yields a refined notion of CQ equiv-
alence, which holds over those databases that satisfy
a given set of constraints only. Minimization of CQs
under this refined notion thus provides a principled ap-
proach to semantic query optimization [23].

An important shortcoming of the results on CQ min-
imization (under constraints) mentioned above is that
there is no theoretical guarantee that the minimized ver-
sion of a CQ is in fact easier to evaluate (recall that,
in general, CQ evaluation is NP-complete [18]). We
know, on the other hand, quite a bit about classes of
CQs which can be evaluated in polynomial time: These
are the ones that admit a suitable tree decomposition of
small width [19, 21, 35, 38]. Our proposal is to study the
fundamental problem of semantic optimization in such
tractable classes of CQs; i.e., whether a set of constraints
can be used to reformulate a CQ as one of small width,
and if so, what is the cost of computing and evaluating
such a reformulation. Following Abiteboul et al., this
would provide us with a theoretical guarantee of “true
efficiency” for those reformulations.

Due to its relative importance in the database lit-
erature and mature theoretical status, we concentrate
on the classes of CQs of bounded generalized hyper-
treewidth (see [33] for a recent survey). In particular,

1SIGMOD Record, June 2017 (Vol. 46, No. 2) 5

CQs of generalized hypertreewidth one correspond to
the oldest and most studied tractability condition for
CQs: acyclicity [50]. In terms of constraints, we con-
sider tuple-generating dependecies (tgds) and equality-
generating dependencies (egds), which subsume all
real-life database constraints; in particular, tgds extend
inclusion dependencies, while egds extend functional
dependencies. Tgds and egds are widely applied in
data integration [43], data exchange [25], and ontology-
based data access [13], as a tool for expressing rich
semantic constraints among different relations in the
database. Due to this fact, they can be used to enhance
the semantic optimization process studied here.

In this survey, we present several recent results that
serve as a theoretical framework for the problem of how
to obtain maximal benefit from semantic optimization in
classes of CQs of bounded generalized hypertreewidth.
We focus on the following questions:

1. For which classes of constraints is the reformula-
tion problem decidable? Also, in these decidable
classes, what is the complexity of the problem?

2. How semantic optimization in tractable classes of
CQs can be used to tackle the ultimate problem of
evaluating CQs more efficiently?

Potential impact. While most of the CQs encountered in
practical situations are of low hypertreewidth [33], the
work presented here is relevant due to the following:

1. Evaluating a CQ q of generalized hypertreewidth
k, for k ≥ 1, over a database D takes time
O(|D|k+1 · |q|) [35]. Even if k is small, say k =
3, finding an equivalent CQ q′ of smaller hyper-
treewidth might improve the complexity of evalu-
ation (especially when the database D is large).

2. Assume that q is of hypertreewidth k > 1. In the
case that an equivalent CQ of hypertreewidth k′ <
k cannot be found, the tools presented here provide
an approximation of q of hypertreewidth k′. Such
an approximation is a CQ q′ of hypertreewidth k′

that is maximally contained in q. That is, q′ returns
sound (but not necessarily complete) answers to
q over those databases that satisfy the constraints,
and there is no CQ q′′ of hypertreewidth k′ that
gets “closer” to q than q′. Evaluating such an ap-
proximation q′ might be convenient for obtaining
quick and sound answers to q when exact evalua-
tion is infeasible or is taking too long.

CQs of bounded hypertreewidth require specialized
algorithms for their implementation, and there is cur-
rently an important body of research integrating them
into some optimizers [1, 3, 5, 30, 31]. This suggests

that semantic optimization techniques based on hyper-
treewidth have the potential to provide new practical op-
timization tools. A nice example is the INSIDEOUT sys-
tem from LogicBlox [6], which uses related techniques
based on the notion of fractional hypertreewidth [38] to
obtain efficient bounds for CQ evaluation.

Organization. Preliminaries are in Section 2. In Sec-
tion 3, we study when a CQ can be reformulated as one
of bounded generalized hypertreewidth in the absence of
constraints, and how such a reformulation helps query
evaluation. The extension of such an investigation to
the case where constraints are available is considered in
the next two sections: Section 4 deals with reformula-
tion and Section 5 with evaluation. Approximations are
studied in Section 6. Final remarks are in Section 7.

2. PRELIMINARIES

Databases. A schema is a finite set of relation symbols,
each one of which has an associated arity n > 0. A
database D over a schema σ is a finite set of atoms of
the formR(ā), whereR is a relation symbol in σ of arity
n > 0 and ā is an n-ary tuple of constants. We write D
also for the set of elements mentioned in D.

Conjunctive queries. A conjunctive query (CQ) q over a
schema σ is a rule of the form:

Ans(x̄) ← R1(x̄1), . . . , Rm(x̄m), (1)

such that (a) each Ri(x̄i) is an atom over σ, for 1 ≤ i ≤
m, (b) x̄ is a sequence of variables taken from the x̄i’s,
and (c) Ans is a distinguished relation symbol that repre-
sents the answer of q. We write q(x̄) to denote that x̄ is
the sequence of variables that appear in such an answer.

As usual, the evaluation of a CQ q of the form (1) over
a database D is obtained by computing the join of the
atoms in the set {R1(x̄1), . . . , Rm(x̄m)}, and then pro-
jecting only the variables x̄ in the answer of q. For the
purposes of this paper, it is convenient to formally de-
fine this in terms of the notion of homomorphism from
q to D. Recall that these are the mappings h from the
set of variables in q to the elements of D such that
Ri(h(x̄i)) ∈ D for each 1 ≤ i ≤ m. The evaluation
of q(x̄) over D, denoted q(D), consists then of those tu-
ples h(x̄) such that h is a homomorphism from q to D.

Example 1. We describe a social network using a
schema σ with two binary relation symbols: Friends and
Likes. The first one establishes when two persons are
friends, while the second one establishes when a person
likes a post. Suppose that we want to retrieve all the
pairs of mutual friends that have some post they like in
common. We can express this as a CQ q(x, y) defined as
Ans(x, y)← Friends(x, y), Likes(x, z), Likes(y, z).

26 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Tractable classes of CQs. The evaluation problem for
CQs is defined as follows: Given a CQ q, a database D,
and a tuple t̄ of constants in D, check if t̄ ∈ q(D). This
problem is NP-complete [18], but becomes tractable for
several syntactically defined subclasses of CQs. The
oldest such tractability condition corresponds to acyclic-
ity [11, 32]. Intuitively, a CQ q is acyclic if its atoms can
be arranged in the form of a tree while preserving the
connectivity of its variables. More formally, q is acyclic
if it admits a join tree, that is, a tree T whose nodes are
the atoms of q, and for each variable x that appears in
q it is the case that the set of nodes in which x is men-
tioned defines a connected subtree of T . We denote by
AC the class of acyclic CQs. Yannakakis’s seminal work
established that AC defines a tractable class of CQs; in
fact, the queries in this class can be evaluated in linear
time O(|D| · |q|), where |D| and |q| are the size of the
database D and the CQ q, respectively [50].

Example 2. The CQ in Example 1 is not acyclic.
In any way we arrange its atoms as the nodes of a
tree, we will lose the connectivity for at least one
variable. On the other hand, the CQ Ans(x, y) ←
Friends(x, y), Likes(x, z), Likes(y, z′), which is ob-
tained from q by “breaking” the join on variable z, is
in AC. This is witnessed by the join tree whose root is
the atom Friends(x, y), and the atoms Likes(x, z) and
Likes(y, z′) are its children. Such CQ retrieves pairs of
mutual friends each one of which likes some post.

It has been observed, however, that a significant
proportion of the CQs that appear in practice are not
acyclic, but are in some sense mildly acyclic (see, e.g.,
[33]). This motivated the search for notions that rep-
resent the degree of acyclicity of a CQ, and for effi-
cient evaluation algorithms for CQs with low degree of
acyclicity. The degree of acyclicity of a CQ in this con-
text is traditionally known as its width. Such width can
be defined by using the notion of generalized hypertree
decomposition, which extends the notion of join tree by
allowing each node of the tree to be associated with sev-
eral atoms of the query. The formal definition follows.

A generalized hypertree decomposition of a CQ q :=
Ans(x̄) ← R1(x̄1), . . . , Rm(x̄m) is a tuple (T, λ, χ),
where T is a tree, λ is a mapping that assigns a sub-
set of the variables in q to each node t of T , and
χ is a mapping that assigns a subset of the atoms
{R1(x̄1), . . . , Rm(x̄m)} to each node t of T , such that:

1. For each 1 ≤ i ≤ m, the variables in x̄i are con-
tained in λ(t), for some t ∈ T .

2. For each variable x in q, the set of nodes t of T for
which x occurs in λ(t) is connected.

3. For each t ∈ T , the variables in λ(t) are “covered”
by the atoms in χ(t); i.e., λ(t) ⊆ ⋃Ri(x̄i)∈χ(t) x̄i.

For a generalized hypertree decomposition (T, λ, χ),
its width is defined as the maximal size of a set of the
form χ(t) over all nodes t of T . The generalized hy-
pertreewidth of a CQ q is the minimum width over all
generalized hypertree decompositions of q. We denote
by GHW(k), for k ≥ 1, the set of CQs of generalized
hypertreewidth bounded by k. The notion of bounded
generalized hypertreewidth subsumes acyclicity; in par-
ticular, AC = GHW(1) [35].

Example 3. Recall that the CQ in Example 1 is not
acyclic, i.e., is not in GHW(1) = AC. It is, how-
ever, in GHW(2). The generalized hypertree decom-
position of width two that witnesses this fact has only
one node t such that λ(t) = {x, y, z} and χ(t) =
{Likes(x, z), Likes(y, z)}.

It can be shown, by using tools based on the existen-
tial pebble game [20], that CQs of bounded generalized
hypertreewidth can be evaluated in polynomial time.

THEOREM 1. Fix k ≥ 1. The evaluation problem for
the CQs in GHW(k) can be solved in polynomial time.

At this point, it should be stressed that in the above
theorem we assume that the input query already falls
in GHW(k), for some fixed k ≥ 1. However, one can
claim that this is not a realistic assumption. In gen-
eral, the input query is an arbitrary CQ for which we
do not know a priori whether it falls in GHW(k). In
this case, we should first check whether it belongs to
GHW(k), and, if this is the case, then proceed with the
actual evaluation. This brings us to the recognizabil-
ity problem for GHW(k), that is, checking if a given
CQ q is in GHW(k). It is known that for k = 1 (i.e.,
for acyclic queries), the above problem can be solved in
linear time [49]. However, for k > 1, it becomes NP-
complete [28]. This implies that, given a CQ q, we can
check in time 2|q|

c

, for some integer c ≥ 1, whether
q belongs to GHW(k), and, if this is the case, then a
generalized hypertree decomposition of q of width k is
constructed. Now, having such a hypertree decomposi-
tion in place, we can evaluate q over the input database
D in time O(|D|k+1 · |q|) [35].

Summing up, there is an integer c ≥ 1 such that, given
a CQ q, a database D, and a tuple of constants t̄, check-
ing if q belongs to GHW(k), and, if this is the case, then
check if t̄ ∈ q(D), can be carried out in time:

2|q|
c

+ O(|D|k+1 · |q|).

The fact that we spend exponential time in the size of
the query for checking whether q belongs to GHW(k)
is not a big practical drawback since this check cor-
responds to a static analysis task, i.e., it only depends

3SIGMOD Record, June 2017 (Vol. 46, No. 2) 7

on the size of the “small” CQ. For such tasks, a single-
exponential time procedure is considered to be accept-
able, and it is actually the norm in many cases including
database and verification problems; see, e.g., [2, 46, 48].

A restriction of the notion of generalized hyper-
treewidth, which ensures tractability of recognizition,
known as hypertreewidth, has been also studied in the
literature [33, 35]. However, due to the nature of the
problems that we consider here, it is convenient to use
the less restrictive notion of generalized hypertreewidth,
even at the extra cost of recognition.

CQ containment and equivalence. Two notions that are
crucial for query optimization purposes are CQ contain-
ment and equivalence. Let q and q′ be CQs. Then, q
is contained in q′, denoted q ⊆ q′, if q(D) ⊆ q′(D),
for every database D. Further, q is equivalent to q′, de-
noted q ≡ q′, if q ⊆ q′ and q′ ⊆ q (or, equivalently,
if they return the same answers over every database,
i.e., q(D) = q′(D) for each database D). Interestingly,
containment is polynomially equivalent to CQ evalua-
tion. Given a CQ q, let Dq be the so-called canonical
database of q obtained from q by replacing each vari-
able x in q with a new constant c(x). Then:

PROPOSITION 2. [18] Let q(x̄), q′(x̄′) be CQs. It
holds that q ⊆ q′ iff c(x̄) ∈ q′(Dq).

The above proposition implies that CQ containment
and equivalence are NP-complete problems [18].

The core of a CQ. In CQ minimization one is interested
in finding a minimal CQ (in terms of number of joins)
that is equivalent to a given CQ q. Such a minimal
equivalent CQ always corresponds to a core of q [39].
This is a CQ q′ that is obtained by deleting atoms from
q and the following hold: (a) q ≡ q′, and (b) q is not
equivalent to any CQ q′′ that is obtained by removing
one or more atoms from q′. In other words, a core of
q is a minimally equivalent CQ that is obtained by re-
moving atoms from q. Clearly, a core of a CQ q always
exists. Moreover, all cores of q are isomorphic [39], and,
therefore, we can talk about the core of q.

3. REFORMULATION IN THE AB-
SENCE OF CONSTRAINTS

It is instructive to start our investigation by focussing
on semantic optimization in classes of bounded gener-
alized hypertreewidth in the absence of constraints. We
concentrate on the following problems:

• Reformulation: Fix k ≥ 1. Given a CQ q, is
it the case that it can be reformulated as a CQ that
falls in GHW(k) that yields the same answers over
all databases? More formally, is there a CQ q′ in
GHW(k) such that q ≡ q′?

• Evaluation: In case the latter holds, can we effi-
ciently perform query evaluation for q? Notice that
this is not a priori obvious: Although we know that
the reformulation q′ of q can be efficiently evalu-
ated (since it is in GHW(k)), the cost of computing
such a reformulation might be prohibitively high.

3.1 Reformulation of CQs in GHW(k)

We denote by Equiv(GHW(k)) the class of CQs q that
are equivalent to some CQ q′ ∈ GHW(k). In particular,
the CQs in Equiv(GHW(1)) are known as semantically
acyclic [7, 10]. It is easy to show that semantic acyclic-
ity is incomparable to the notion of bounded generalized
hypertreewidth, i.e., for each k ≥ 1, there is a semanti-
cally acyclic CQ that is not in GHW(k).

Here we study the following problem for k ≥ 1:

PROBLEM : Reformulation(GHW(k))
INPUT : A CQ q.
QUESTION : Is q in Equiv(GHW(k))?

The main tool that we exploit in the investigation of
the above problem is a simple characterization of the
classes Equiv(GHW(k)), for k ≥ 1, in terms of the core:

PROPOSITION 3 (IMPLICIT IN [10]). Fix k ≥ 1.
For each CQ q the following are equivalent:

• q ∈ Equiv(GHW(k)).

• The core of q is in GHW(k).

The upward implication is trivial: if the core q′ of q
is in GHW(k), then q ∈ Equiv(GHW(k)) since q ≡ q′

by definition. The downward implication states that if a
CQ q is equivalent to some CQ q′ ∈ GHW(k), then q′

can always be assumed to be the core of q. The proof
of this fact for the case k = 1 can be found in [10], but
the same ideas can be used to show that this holds for
any k ≥ 1. It is worth noticing that similar techniques
have also been used to prove analogous results for the
notion of bounded treewidth [21]. This is yet another
tractability-ensuring condition for CQ evaluation, which
is particularly well-suited for the case when the arity of
the schema is fixed [37].

Since the core of a CQ q is obtained by removing
atoms from q, and such a core is equivalent to q, Propo-
sition 3 implies the following small query property:

PROPOSITION 4. Fix k ≥ 1 and let q be a CQ. If q ∈
Equiv(GHW(k)), then there exists a CQ q′ ∈ GHW(k),
where |q′| ≤ |q|, such that q ≡ q′.

The above small query property allows us not only
to establish that Reformulation(GHW(k)) is decidable,
but also to pinpoint its exact complexity. Given a CQ
q, here is a simple procedure that decides whether q ∈

48 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Equiv(GHW(k)): Guess a CQ q′ of size at most |q|, and
verify that (a) q′ ∈ GHW(k), and (b) q ≡ q′. Since, as
mentioned before, both (a) and (b) can be carried out in
NP, we conclude that the whole procedure can be per-
formed in NP. A matching lower bound can be proved
using more elaborate techniques [21]. From the above
discussion we get that:

THEOREM 5. For each fixed k ≥ 1, the problem
Reformulation(GHW(k)) is NP-complete.

3.2 Evaluation of CQs in Equiv(GHW(k))

Does knowing that a CQ q can be reformulated as a
CQ q′ in GHW(k) alleviate the cost of query evaluation?
As for CQs in GHW(k), it can be shown, by exploiting
techniques based on the existential pebble game [20],
that CQs in Equiv(GHW(k)), for some fixed k ≥ 1, can
be evaluated in polynomial time.

THEOREM 6. Fix k ≥ 1. The evaluation of CQs in
Equiv(GHW(k)) can be solved in polynomial time.

In the previous theorem, we assume that the input
query falls in Equiv(GHW(k)), for a fixed k ≥ 1. How-
ever, as already discussed in Section 2 for GHW(k), this
is not a realistic assumption. In a practical context, we
should first check whether the input query belongs to
Equiv(GHW(k)), and, if this is the case, then proceed
with the actual evaluation. From Theorem 5 (and the
underlying algorithm) we know that, given a CQ q, we
can check in time 2|q|

c

, for some integer c ≥ 1, whether
q belongs to Equiv(GHW(k)). Now, if this is the case,
then a CQ q′ such that q ≡ q′ and |q′| ≤ |q| that be-
longs to GHW(k), and a generalized hypertree decom-
position of q′ of width k are constructed; actually, q′

is the core of q. Having q′ and its decomposition in
place, we can evaluate it over the input database D in
time O(|D|k+1 · |q|) [35]. Summing up:

COROLLARY 7. Fix k ≥ 1. There is an integer
c ≥ 1 such that, given a CQ q, a database D, and
a tuple of constants t̄, checking whether q belongs to
Equiv(GHW(k)), and, if this is the case, then check
whether t̄ ∈ q(D), can be solved in time:

2|q|
c

+ O(|D|k+1 · |q|).

This bound simply states that, after a preprocessing
step that takes single-exponential time in the size of the
CQ q to check whether q belongs to Equiv(GHW(k)), an
evaluation step that takes polynomial time is performed.
While the running time of the procedure is not polyno-
mial in the combined size of the database D and the CQ
q, it can still be considered as efficient for the reasons
already explained in Section 2.

4. REFORMULATION IN THE PRES-
ENCE OF CONSTRAINTS

As said above, in the constraint-free case, a CQ q is
equivalent to one in GHW(k) iff its core is in GHW(k).
Hence, the only reason why q is not in GHW(k) in the
first place is because it has not been minimized (since
CQ minimization reduces to computing the core). Thus,
semantic optimization in GHW(k) is not really differ-
ent from usual CQ minimization. The presence of con-
straints, on the other hand, yields a more interesting
notion of semantic optimization. This is because con-
straints can be applied on CQs to produce GHW(k) re-
formulations of them. Let us show this via an example.

Example 4. Consider a database that stores informa-
tion about customers, records, and musical styles. The
relation Interest contains pairs (c, s) such that the cus-
tomer c is interested in the style s. The relation Class
contains pairs (r, s) such that the record r is of style s.
Finally, the relation Owns contains a pair (c, r) when
the customer c owns the record r. Consider now a CQ
q(x, y) defined as follows:

Ans(x, y) ← Owns(x, y),Class(y, z), Interest(x, z).

The above query asks for pairs (c, r) such that the cus-
tomer c owns the record r and has expressed interest in
at least one of the styles with which r is associated. It
can easily be proved that q is the core of itself but it is
not acyclic. Therefore, Proposition 3 implies that q is
not equivalent to an acyclic CQ (without constraints).

Assume now that the record store keeps a full list of
interests for its customers, based on the styles of the
records each customer has bought in the past. In other
words, the database satisfies the constraint τ defined as:

∀x∀y∀z
(
Owns(x, y),Class(y, z)→ Interest(x, z)

)
.

Having this information in place, we can reformulate
q(x, y) as the following acyclic CQ q′(x, y):

Ans(x, y) ← Owns(x, y),Class(y, z).

Notice that q and q′ are in fact equivalent over every
database that satisfies the constraint τ .

Before we proceed further, let us introduce the classes
of constraints that we consider in this paper, and some
basics on CQ equivalence under constraints.

Constraints. We consider the two most important classes
of database constraints; namely:

1. Tuple-generating dependencies (tgds), i.e., expres-
sions of the form ∀x̄∀ȳ

(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
,

where φ and ψ are conjuntions of atoms. Notice
that the constraint in Example 4 is a tgd. Tgds

5SIGMOD Record, June 2017 (Vol. 46, No. 2) 9

subsume the central class of inclusion dependen-
cies (IDs) [24]. For example, assuming that R and
P are binary relations, the ID R[1] ⊆ P [2], which
simply states that the set of values occurring in the
first attribute ofR is a subset of the set of values in
the second attribute of P , is expressed via the tgd
∀x∀y(R(x, y)→ ∃z P (z, x)).

2. Equality-generating dependencies (egds), i.e., ex-
pressions of the form ∀x̄

(
φ(x̄) → y = z

)
, where

φ is a conjunction of atoms and y, z are variables
in x̄. Egds subsume the important classes of keys
and functional dependencies (FDs). For exam-
ple, assuming that R is a ternary relation, the FD
R : {1} → {3}, i.e., the first attribute of R func-
tionally determines the third attribute of R, is ex-
pressed via the egd ∀x∀y∀z∀y′∀z′(R(x, y, z) ∧
R(x, y′, z′)→ z = z′). Notice that FDs that have
more than one attribute in the right-hand side, are
expressed via a set of egds.

A database D satisfies a tgd of the above form if the
following holds: for each tuple (ā, b̄) of elements such
that all atoms in φ(ā, b̄) are in D, there is a tuple c̄ of
elements such that all atoms in ψ(ā, c̄) are in D. Anal-
ogously, D satisfies an egd ∀x̄(φ(x̄) → y = z) if, for
each tuple ā of elements such that all atoms in φ(ā) are
in D, the elements in ā that correspond to variables y
and z are the same. Finally, D satisfies a set Σ of con-
straints if it satisfies every tgd and egd in Σ.

CQ equivalence under constraints. In semantic opti-
mization, one uses the information provided by the con-
straints to replace a given CQ q by an equivalent one
that is easier to evaluate. However, in this context the
right notion of equivalence corresponds to the one that
is measured over those databases that satisfy the con-
straints only (as we know that our datasets satisfy such
constraints). We formalize this as follows. Let q, q′ be
CQs and Σ a set of constraints. Then q is equivalent to q′

under Σ, denoted q ≡Σ q′, if and only if q(D) = q′(D)
for each database D that satisfies Σ. The notion of con-
tainment is defined analogously, and we write q ⊆Σ q′.

If Σ consists only of egds, then deciding q ≡Σ q′ re-
mains NP-complete. This is obtained by applying the
well-known chase procedure [45] on q and q′, respec-
tively, and then checking for equivalence of the resulting
queries. When applied on a CQ q, the chase procedure
fires each egd on the canonical database Dq of q, equat-
ing variables if needed in order to restore consistency.
The procedure finishes when the resulting database sat-
isfies all egds in Σ.

On the other hand, the situation is more difficult if Σ
consists of tgds. Although a characterization based on
the chase procedure exists, the result of the chase un-
der a set of tgds is, in general, infinite. Hence, this tool

no longer provides a decision procedure. This is not
surprising since checking CQ containment/equivalence
under arbitrary sets of tgds is undecidable [12]. This
negative result has motivated a long search for practical
restrictions of the class of tgds with decidable CQ con-
tainment (and, thus, equivalence) problems. Such re-
strictions are often classified into four main paradigms:

1. Full tgds: These are tgds without existentially
quantified variables, i.e., of the form ∀x̄(φ(x̄) →
ψ(x̄)). In the database literature, such sets are par-
ticularly important as they correspond to queries
expressible in the widely studied Datalog lan-
guage [2]. CQ containment is decidable for sets
of full tgds since the chase always terminates.

2. Guardedness: A tgd is guarded if its body φ(x̄, ȳ)
contains an atom, called the guard, that contains
all the variables in (x̄∪ ȳ). Although the chase un-
der guarded tgds does not necessarily terminate,
CQ containment is decidable in this case since the
result of such a chase has finite treewidth [13]. A
crucial subclass of guarded tgds is the class of lin-
ear tgds [14], i.e., tgds with only one atom in the
body, which subsume inclusion dependencies.

3. Non-recursiveness: A set Σ of tgds is non-
recursive if its predicate graph contains no di-
rected cycles. (Non-recursive sets of tgds are also
known as acyclic [25, 44], but we reserve this term
for CQs). This class ensures the termination of the
chase, and thus decidability of CQ containment.

4. Stickiness: The goal of stickiness is to capture
joins among variables that are not expressible via
guarded tgds, but without forcing the chase to ter-
minate. The definition is based on an inductive
marking procedure that marks the variables that
could violate a particular semantic property of the
chase [15]. Decidability of CQ containment is ob-
tained by applying query rewriting techniques.

The complexity of CQ containment and equivalence
varies from class to class. It is EXPTIME-complete for
full tgds [22] and sticky sets of tgds [22], 2EXPTIME-
complete for guarded tgds [13], PSPACE-complete for
linear tgds [14, 41], and NEXPTIME-complete for non-
recursive sets of tgds [44]. Fixing the schema, or even
its arity, yields better complexities in most of the cases.

4.1 Reformulation with tgds
One of the main tasks of our work is to study the prob-

lem of checking if a CQ q can be reformulated as a CQ
in GHW(k), for a fixed k ≥ 1, over those databases
that satisfy a set Σ of tgds. We formally define such
a reformulation problem below. Given a set Σ of con-
straints, we write Equiv(GHW(k))Σ for the set of CQs

610 SIGMOD Record, June 2017 (Vol. 46, No. 2)

q for which there exists a CQ q′ in GHW(k) such that
q ≡Σ q′. We assume in the following that C is a class of
sets of tgds (e.g., guarded, non-recursive, sticky, etc.):

PROBLEM : Reformulation(GHW(k),C)
INPUT : A CQ q and a finite set Σ ∈ C.
QUESTION : Is q in Equiv(GHW(k))Σ?

One might be tempted to think, in view of the Exam-
ple 4, that when a reformulation q′ ∈ GHW(k) of q un-
der a set Σ of tgds exists, then such a q′ is not very “big”,
or at least its size is bounded by |q| + |Σ|. This would
allow us to state a small query property for the reformu-
lation problem, and thus establish its decidability. As
explained next, this is not the case since the decidabil-
ity of Reformulation(GHW(k),C) depends not only on
the decidability of CQ containment under sets of tgds in
C, but also on other considerations.
Undecidable cases. Under mild syntactic assumptions
on its input, Reformulation(GHW(k),C) is as hard as
CQ containment under C, i.e, we can obtain decidability
of Reformulation(GHW(k),C) only for those C’s for
which CQ containment is decidable [7]. At this point,
one might think that some version of the converse also
holds, i.e., Reformulation(GHW(k),C) is reducible to
CQ containment under sets of tgds in C. This would
imply the decidability of Reformulation(GHW(k),C)
for any class C of sets of tgds for which CQ contain-
ment is decidable (in particular, for the full, guarded,
non-recursive, and sticky sets of tgds). The next result
shows that the picture is more complicated than this, as
the reformulation problem is undecidable even if we fo-
cus on the class AC = GHW(1) of acyclic CQs and the
class F of sets of full tgds:

THEOREM 8. [7] Reformulation(GHW(1),F) is
undecidable.

The question that comes up is whether the reformu-
lation problem is decidable for the remaining classes of
tgds, i.e., guarded, non-recursive and sticky, that have a
decidable CQ containment problem, and if yes, what is
the exact complexity of the problem.
Decidable cases. The next proposition is the main tool
that we use to show the decidability of the reformulation
problem under certain classes of tgds:

PROPOSITION 9. Fix k ≥ 1. Let q and q′ be CQs
over schema σ such that q′ ∈ GHW(k) and q′ ⊆ q.
There is a CQ q′′ ∈ GHW(k) such that q′ ⊆ q′′ ⊆ q and
|q′′| ≤ |q| · (2k+ 1) ·aσ , where aσ is the maximum arity
over all predicates of σ.

PROOF (SKETCH). Since, by hypothesis, q′(x̄′) ⊆
q(x̄), it is the case from Proposition 2 that there exists a

homomorphism h from q toDq′ such that h(x̄) = c(x̄′).
Also, since q′ ∈ GHW(k), it admits a generalized hy-
pertree decomposition (T, λ, χ) of width k. Assume
that α1, . . . αn are the atoms of q. By definition, the
atoms h(α1), . . . , h(αn) are covered by some nodes
v1, . . . , vm, where m ≤ n, of T . In other words, for
each i ∈ {1, . . . , n}, there exists j ∈ {1, . . . ,m} such
that the elements occurring in h(αi) form a subset of
λ(vj). Consider now the subtree Tq of T consisting of
v1, . . . , vm and their ancestors. From Tq we extract the
tree F = (V,E) defined as follows:

• V consists of all the root and leaf nodes of Tq , and
all the inner nodes of Tq with at least two children.

• For v, u ∈ V , (v, u) ∈ E iff u is a descendant of
v in Tq , and the only nodes of V that occur on the
unique simple path from v to u in Tq are v and u.

Our intention is to construct the desired CQ q′′ by
transforming the atoms occurring in F into a CQ. Let
J =

⋃
v∈V χ(v). Notice that F is not necessarily a gen-

eralized hypetree decomposition ofJ . Indeed, it may be
the case that there exists an atom R(t̄) in J , but there is
no node v in F such that t̄ ⊆ λ(v). Interestingly, we can
transform F into a generalized hypertree decomposition
(F, λ′, χ′) of some instance J ′, by renaming some of
the terms in J , and then exploit J ′ for constructing q′′.
For example, a node v in F labeled by λ(v) = {t1, t2}
and χ(v) = {R(t1, t

′), P (t2, t
′, t′′)} will be trans-

formed into a node labeled by λ′(v) = {t1, t2,#1,#2}
and χ′(v) = {R(t1,#1), P (t2,#1,#2)}, where #1

and #2 are fresh constants. The set J ′ is then defined
as {h(α1), . . . , h(αn)} ∪⋃v∈V χ′(v).

It is not difficult to verify that (F, λ′, χ′) is a gen-
eralized hypertree decomposition of J ′ of width k.
Moreover, by construction, F has at most 2 · |q| nodes,
and each such node is labeled (via χ′) with at most k
atoms. Thus, |J ′| ≤ 2·|q|·k+|q| = |q|·(2k+1). There-
fore, by transforming J ′ into a CQ, we obtain a query
in GHW(k) of size at most |J ′| ·aσ ≤ |q| · (2k+1) ·aσ;
let q′′(x̄′) be this query. Observe that c(x̄′) ∈ q(Dq′′)
since the homomorphism h maps q to Dq′′ . This fact
allows us to conclude that q′′ ⊆ q by Proposition 2.
Furthermore, there exists a homomorphism, obtained
by reversing the renaming substitutions applied during
the construction of (F, λ′, χ′), that maps q′′ toDq′ . This
allows us to show that c(x̄′) ∈ q′′(Dq′), and, therefore,
that q′ ⊆ q′′ from Proposition 2. Consequently, q′′ is
the desired CQ, and Proposition 9 follows. 2

We write G, L,NR and S for the classes of guarded,
linear, non-recursive, and sticky sets of tgds, respec-
tively. By exploiting Proposition 9, we can establish a
small query property, analogous to Proposition 4 for the
constraint-free case, for all the above classes. We de-

7SIGMOD Record, June 2017 (Vol. 46, No. 2) 11

fine, for each C ∈ {G,L,NR,S}, a function fC from
the set of pairs (Σ, q), where Σ ∈ C and q is a CQ, to the
natural numbers, which will be used to bound the size of
the “small” query. Given a set Σ of tgds and a CQ q, let
(i) pΣ,q be the number of predicates in Σ and q, (ii) aΣ,q

the maximum arity over all those predicates, and (iii) bΣ
the maximum number of atoms in the body of a tgd in
Σ. Then:

fC(Σ, q) =





|q|, C = G,
|q|, C = L,
|q| · (bΣ)pΣ,q , C = NR,
pΣ,q · (aΣ,q · |q|+ 1)aΣ,q , C = S.

We can now state the following small query property:

PROPOSITION 10. Fix k ≥ 1. Let Σ be a finite set
of tgds in C ∈ {G,L,NR,S} and q a CQ . If q ∈
Equiv(GHW(k))Σ, then there is a CQ q′ ∈ GHW(k),
where |q′| ≤ fC(Σ, q)·(2k+1)·aΣ,q , such that q ≡Σ q′.

PROOF (SKETCH). We first focus on the class G; the
same proof applies for linear tgds since L ⊆ G. By
hypothesis, q ∈ Equiv(GHW(k))Σ, which means that
there exists a CQ q′(x̄′) in GHW(k) such that q ≡Σ q′.
Let qΣ and q′Σ, respectively, be the CQs that are obtained
by applying the chase procedure over the atoms of q and
q′, respectively, using the tgds of Σ. Notice that such
queries might contain an infinite number of atoms. The
notion of evaluation, as well as generalized hypertree
decomposition and generalized hypetreewidth, naturally
extend to such infinite queries. It is well-known that
q ⊆Σ q′ iff qΣ ⊆ q′; see, e.g., [13].

Guarded tgds enjoy a property called generalized hy-
petreewidth preserving chase. This means that if we
chase a CQ in GHW(k) using guarded tgds, the resulting
query also falls in GHW(k). Therefore, q′Σ ∈ GHW(k).
It can easily be checked that Proposition 9 holds even
if the left-hand side query q′ is infinite. Since q′Σ ⊆ q,
there exists a CQ q′′ ∈ GHW(k) such that q′Σ ⊆ q′′ ⊆ q
and |q′′| ≤ |q| · (2k + 1) · aΣ,q . Since q′′ ⊆ q, we
have that q′′ ⊆Σ q. Moreover, q ⊆Σ q′′. This follows
from the fact that q ⊆Σ q′ (by hypothesis) and q′ ⊆Σ q′′

(since q′Σ ⊆ q′′). We conclude that q ≡Σ q′′.
We now focus on non-recursive sets of tgds. It is not

difficult to verify that this class does not enjoy the gen-
eralized hypetreewidth preserving chase property, and,
thus, we cannot apply the same argument as for guarded
tgds. However,NR enjoys some other crucial property,
which is very useful for our purposes. Given a CQ q, and
a set Σ ∈ NR, we can construct a union of CQs (UCQ)
Q such that: for every q′(x̄′), it holds that q′ ⊆Σ q iff
c(x̄′) ∈ Q(Dq′). Moreover, the height of such a rewrit-
ing Q, that is, the maximal size of its disjuncts, is at
most fNR(Σ, q); for more details see [36].1 We can
now explain how Proposition 10 is obtained for NR.
1Let us clarify that the work [36] does not explicitly consider

Since q ∈ Equiv(GHW(k))Σ, there is a CQ q′(x̄′) in
GHW(k) such that q ≡Σ q′. AsNR is UCQ rewritable,
there is a UCQ Q such that c(x̄′) ∈ Q(Dq′), i.e., there
exists a CQ qr (one of the disjuncts of Q) such that
c(x̄′) ∈ qr(Dq′). Hence, q′ ⊆ qr by Proposition 2.
From Proposition 9, there is a CQ q′′ ∈ GHW(k) such
that q′ ⊆ q′′ ⊆ qr and |q′′| ≤ |qr| · (2k+1) ·aΣ,q . Since
|qr| ≤ fNR(Σ, q), we have |q′′| ≤ fNR(Σ, q)·(2k+1)·
aΣ,q . We claim now that q ≡Σ q′′. In fact, q ⊆Σ q′ by
hypothesis, and thus q ⊆Σ q′′ (since q′ ⊆ q′′). On the
other hand, qr ⊆Σ q (otherwise, Q would not be a UCQ
rewriting), and since q′′ ⊆ qr, we get that q′′ ⊆Σ q.

Finally, for the class of sticky sets of tgds, we follow
the same approach as for non-recursive sets of tgds.
The class S is UCQ rewritable, and, given a set Σ ∈ S
and a CQ q, the height of each UCQ rewriting of q and
Σ is at most fS(Σ, q); for more details see [36]. 2

Since CQ containment is decidable for any class C ∈
{G,L,NR,S}, Proposition 10 provides a decision pro-
cedure for Reformulation(GHW(k),C). Given a CQ q
and a finite set Σ ∈ C, this procedure is as follows:

1. Guess a CQ q′ that falls in GHW(k) of size at most
fC(Σ, q) · (2k + 1) · aΣ,q; and

2. Verify that q ≡Σ q′.

By exploiting known results on the complexity of CQ
containment for the classes of tgds under consideration
(see above), and carefully analyzing the time and space
complexity of the above procedure, we obtain worst-
case optimal upper bounds, apart from the case of sticky
sets of tgds for which the complexity remains open. The
lower bounds are inherited from CQ containment. Then:

THEOREM 11. Fix k ≥ 1 and a class of tgds C ∈
{G,L,NR,S}. Reformulation(GHW(k),C) is

• 2EXPTIME-complete for C = G.
• PSPACE-complete for C = L.
• NEXPTIME-complete for C = NR.
• in NEXPTIME and EXPTIME-hard for C = S.

If we assume that the underlying schema is fixed, then
in all cases the complexity becomes NP-complete. Bet-
ter complexity results can be obtained in the case of G,
L and S if the arity of the schema is fixed, while forNR
it remains NEXPTIME-hard; for details see [7].

4.2 Reformulation with egds
The reformulation problem under egds is quite chal-

lenging, and not very well-understood up to date. Al-
though the CQ containment problem under egds can
easily be shown to be decidable (as said before, it is
the class NR. However, the rewriting algorithm in that paper
works also for non-recursive sets of tgds.

812 SIGMOD Record, June 2017 (Vol. 46, No. 2)

NP-complete), currently we do not even know the de-
cidability status of the reformulation problem under the
simple class of egds that correspond to keys.

A positive, yet very challenging result in this direction
has been recently obtained by Figueira [26]. It states that
the reformulation problem is decidable for the class of
unary FDs, denoted UFD, when restricted to schemas
consisting of unary and binary relations. Recall that
unary FDs are FDs of the form R : A → B, where
the cardinality of A is one. The following holds:

THEOREM 12. [26] Fix k ≥ 1. Given a finite set Σ ∈
UFD over a schema with unary and binary relations,
and a CQ q, we can decide in double-exponential time
if there exists a CQ q′ ∈ GHW(k) such that q ≡Σ q′.

Let us clarify that in [26] the above result is shown for
CQs of bounded treewidth. However, the proof adapts
to CQs of bounded generalized hypetreewidth [27].

5. THE EVALUATION PROBLEM
As we observed earlier, in the absence of constraints

the property of being equivalent to a CQ in GHW(k),
for k ≥ 1, has a positive impact on query evaluation.
We observe here that, at least partially, this good behav-
ior extends to the notion of being equivalent to a CQ
in GHW(k), for k ≥ 1, under the decidable classes
of constraints we identified in the previous section. In
particular, evaluation of CQs in Equiv(GHW(k))Σ, for
sets Σ of constraints in such classes can be solved by a
fixed-parameter tractable (fpt) algorithm, assuming the
parameter to be |q|+ |Σ|. Recall that this means that the
problem can be solved in timeO(|D|c ·f(|q|+ |Σ|)), for
c ≥ 1 and f : N→ N a computable function. This is an
improvement over general CQ evaluation for which no
fpt algorithm is believed to exist; see, e.g., [29, 47].

Fix k ≥ 1 and a class C of constraints. We study the
following problem in this section:

PROBLEM : Evaluation(GHW(k),C)
INPUT : Σ ∈ C, a CQ q ∈ Equiv(GHW(k))Σ,

a database D such that D satisfies Σ,
and a tuple t̄ of elements in D.

QUESTION : Is t̄ ∈ q(D)?

5.1 Evaluation under tgds
Recall that Theorem 6 establishes that the evalua-

tion problem for CQs that can be reformulated in the
class GHW(k) in the absence of constraints is feasible
in polynomial time. As stated next, this good behavior
extends to the class G of sets of guarded tgds:

PROPOSITION 13. Evaluation(GHW(k),G) is fea-
sible in polynomial time, for each fixed k ≥ 1.

The proof of Proposition 13 for the case k = 1 can be
found in [7]. A slight modification of this proof yields
the result for any k ≥ 1. We do not know if this good be-
havior extends to the classes NR and S. We can prove,
nevertheless, that the problem in question retains some
good properties; in fact, it is fixed-parameter tractable
under such classes:

PROPOSITION 14. Fix k ≥ 1 and C ∈ {NR,S}.
Evaluation(GHW(k),C) is fixed-parameter tractable.

Evaluation(GHW(k),C), as in the constraint-free
case, makes the unrealistic assumption that we know
in advance that the CQ q is in Equiv(GHW(k))Σ, for a
given set Σ of tgds in C. To study the more realistic sce-
nario in which we want to first check if this is the case,
and then, if so, check whether t̄ ∈ q(D), we have to re-
turn to the guess-and-check procedure from Section 4.1.
This procedure checks in double-exponential time if a
CQ q is in Equiv(GHW(k))Σ, for any set of tgds Σ ∈ C.
More importantly, in case that q ∈ Equiv(GHW(k))Σ

it also yields an equivalent CQ q′ in GHW(k) of at
most exponential size in |q| + |Σ|. We can then com-
pute and evaluate such a query q′ on D, and return
q(D) = q′(D). We know that the latter can be done
in time O(|D|k+1 · |q′|), which is |D|k+1 · 2O(|q|+|Σ|).
Summing up:

COROLLARY 15. Fix k ≥ 1 and C ∈ {G,NR,S}.
Given a CQ q, a set Σ of tgds in C, a database D sat-
isfying Σ, and a tuple t̄ in D, the problem of checking if
q is in Equiv(GHW(k))Σ, and, if this is the case, then
check whether t̄ ∈ q(D), can be solved in time:

22O(|q|+|Σ|)
+ |D|k+1 · 2O(|q|+|Σ|).

Notice that Proposition 14 follows directly from this
result. The algorithm presented above, however, can
hardly be claimed to be practical. In fact, it requires
a preprocessing step for computing an equivalent re-
formulation of q under Σ that takes double-exponential
time. Although this is a static analysis task, a double-
exponential time procedure is too costly in practice even
for small q and Σ. Thus, it would be useful to develop
heuristics that lower the complexity of this task to at
least single-exponential time. A notable exception is the
class of linear tgds since, in this case, the guess-and-
check algorithm from Section 4.1 takes exponential time
to check if a CQ q is in Equiv(GHW(k))Σ, for Σ ∈ L.

5.2 Evaluation under egds
Following the same approach as above, we can prove

that Evaluation(GHW(k),UFD) is fixed-parameter
tractable, when restricted to schemas with unary and bi-
nary relations. This is because, again, the procedure that
checks reformulation for a CQ q under a set Σ ∈ UFD,

9SIGMOD Record, June 2017 (Vol. 46, No. 2) 13

used in the proof of Theorem 12, yields an equivalent
CQ q′ in GHW(k) in case that such a q′ exists. Impor-
tantly enough, this fixed-parameter tractable algorithm
works without the unrealistic assumption that q belongs
to Equiv(GHW(k))Σ, for the given set Σ.

Notably, it follows from techniques in [7] that fixed-
parameter tractability of evaluation extends to the whole
class EGD of sets of egds. Moreover, for the class FD
of FDs it is even possible to obtain tractability:

PROPOSITION 16. Fix k ≥ 1. It holds that:

1. Evaluation(GHW(k),EGD) is fixed-parameter
tractable.

2. Evaluation(GHW(k),FD) can be solved in poly-
nomial time.

In contrast to the case of UFD, though, the evaluation
algorithms underlying Proposition 16 require knowing
in advance that q ∈ Equiv(GHW(k))Σ, for the given set
Σ of egds. However, checking whether such a promise
holds for q might be an undecidable problem.

6. APPROXIMATIONS
Let C be any of the decidable classes of finite sets of

tgds we study in this paper (i.e., G,NR, or S). Then, for
any CQ q and set Σ of constraints in C, our techniques
yield the maximally contained CQs q′ in GHW(k) un-
der Σ.2 Following the recent database literature, such
q′s correspond to the GHW(k)-approximations of q un-
der Σ; see, e.g., [8, 9, 10]. Computing and evaluat-
ing the GHW(k)-approximations of q might help find-
ing “quick” (i.e., fixed-parameter tractable) answers to
it when exact evaluation is infeasible.

We define the notion of GHW(k)-approximation of
q under Σ below, following the idea that such approxi-
mations correspond to its maximally contained CQs in
GHW(k) under Σ:

Definition 1. (GHW(k)-approximations) Fix k ≥ 1.
Let q be a CQ and Σ a finite set of tgds. A GHW(k)-
approximation of q under Σ is a CQ q′ ∈ GHW(k) that
satisfies the following two conditions:

• Soundness: q′ only retrieves sound answers with
respect to q; in other words, q′ ⊆Σ q.

• Maximality: There is no CQ q′′ in GHW(k) that
approximates q better in terms of containment; i.e.,
for every q′′ ∈ GHW(k) it is the case that:

q′ ⊆Σ q′′ ⊆Σ q =⇒ q′ ≡Σ q′′.

Notice that whenever q is in Equiv(GHW(k))Σ, i.e.,
there is a CQ q′ ∈ GHW(k) such that q ≡Σ q′, then
2As said, the decidability of reformulation under egds is not
well-understood. Thus, we concentrate on tgds in this section.

the unique GHW(k)-approximation of q under Σ is q′

itself. That is, the notion of GHW(k)-approximation
provides a suitable extension of the notion of GHW(k)-
reformulation. We show in the following example that
computing an approximation might be useful when ex-
act reformulation is impossible.

Example 5. Recall the database given in Example 4
whose schema is {Interest,Class,Owns}. Suppose we
additionally have a relation Incompatible that contains
pairs (s1, s2) whenever style s1 is incompatible with
style s2. Consider now the query that retrieves all the
customers c that own a record r from a style s in which
he/she is interested, and also c has shown interest in at
least two incompatible styles. This query can be ex-
pressed by the following CQ q(x):

Ans(x) ← Owns(x, y),Class(y, z),

Interest(x, z), Interest(x, z1), Interest(x, z2),

Incompatible(z1, z2).

As in Example 4, suppose that the database satisfies
the constraint τ := ∀x∀y∀z

(
Owns(x, y),Class(y, z)→

Interest(x, z)
)
. As it turns out, q cannot be reformu-

lated in GHW(1). The intuition is that, although we can
remove atom Interest(x, z) as in Example 4, the cycle
over variables {x, z1, z2} is still present. Nevertheless,
we can approximate q in GHW(1) via the CQ q′(x):

Ans(x) ← Owns(x, y),Class(y, z),

Interest(x,w), Incompatible(w,w).

Note that q′ is obtained by removing Interest(x, z) from
q, and identifying the variables z1 and z2 with w. Inter-
estingly, this example also shows that approximations
can improve in the presence of constraints. Indeed, a
possible approximation of q, ignoring τ , is q′′(x):

Ans(x) ← Owns(x, t),Class(t, t), Interest(x, t),

Interest(x,w), Incompatible(w,w).

It is easy to verify that q′′ (Σ q′.

6.1 Approximations in the absence of con-
straints

As in the case of the reformulation problem, it is in-
structive to start by studying approximations in the ab-
sence of constraints. We call GHW(k)-approximations
of q under Σ = ∅ simply GHW(k)-approximations of
q. As shown in [8], GHW(k)-approximations have good
properties in this context that justify its application. In
particular, they always exist, are of polynomial size, and
can be computed in single-exponential time in the size
of the CQ q. For brevity, we write Approx(q,GHW(k))
for the set of all the GHW(k)-approximations of q (up
to equivalence). The following holds:

1014 SIGMOD Record, June 2017 (Vol. 46, No. 2)

THEOREM 17. Fix k ≥ 1. Then:

1. Every CQ q has a GHW(k)-approximation.
2. Given a CQ q, there is an exponential time algo-

rithm that computes the set Approx(q,GHW(k)).
3. For each CQ q, each CQ in Approx(q,GHW(k))

is of polynomial size.

The proof of the above result relies on Proposition 9.
Recall that the latter proposition states that for every CQ
q and CQ q′ ∈ GHW(k) such that q′ ⊆ q, we can find a
CQ q′′ ∈ GHW(k) that approximates q at least as well
as q′, i.e., q′ ⊆ q′′ ⊆ q, and its size is polynomially
bounded by that of q. Let us now explain how Theo-
rem 17 follows from Proposition 9.

First, observe that for every CQ q there is at least one
q′ in GHW(k) of polynomial size such that q′ ⊆ q. Sim-
ply take a single variable x and add a tuple R(x, . . . , x)
for each symbol R in the underlying schema σ. The re-
sulting CQ q′ is in GHW(1), and thus in GHW(k) for
each k ≥ 1. Moreover, there is a homomorphism from
q to the canonical databaseDq′ of q′: just map each vari-
able of q to c(x). Thus, (c(x), . . . , c(x)) ∈ q(Dq′), and
hence q′ ⊆ q from Proposition 2. It is clear that q′ is
of polynomial size. Let tσ : N → N be the polynomial
such that tσ(n) = max{|q′|, n · (2k + 1) · aσ}. (Recall
that aσ is the maximum arity of a relation in σ).

Consider now the set Cont(q,GHW(k)) of CQs q′

in GHW(k) over σ of size at most tσ(|q|) such that
q′ ⊆ q. From the above discussion, this set is nonempty.
Let us consider the set Maximal(q,GHW(k)) consist-
ing of the ⊆-maximal elements of Cont(q,GHW(k)).
We claim that Maximal(q,GHW(k)) consists of all the
GHW(k)-approximations of q (up to equivalence). We
first show that each GHW(k)-approximation q′ of q is
equivalent to some CQ q′′ ∈ Maximal(q,GHW(k)).
Consider such a GHW(k)-approximation q′ of q. By
definition, q′ ∈ GHW(k) and q′ ⊆ q, and, thus, from
Proposition 9 there is a CQ q∗ ∈ GHW(k) such that
q′ ⊆ q∗ ⊆ q and the size of q∗ is at most tσ(|q|). There-
fore, q∗ ∈ Cont(q,GHW(k)), and there is a CQ q′′ ∈
Maximal(q,GHW(k)) such that q′ ⊆ q∗ ⊆ q′′ ⊆ q. By
definition, q′′ ∈ GHW(k) and, thus, q′ ≡ q′′ since q′

is a GHW(k)-approximation of q. The proof that each
CQ q′ in Maximal(q,GHW(k)) is, in fact, a GHW(k)-
approximation of q follows a similar reasoning.

Notice that Maximal(q,GHW(k)) contains at least
one CQ (since Cont(q,GHW(k)) is nonempty). Thus,
each CQ q has at least one GHW(k)-approximation.
This yields item (1) of Theorem 17. For item (2), it is
sufficient to observe that the set Maximal(q,GHW(k))
can be computed in single-exponential time. This is
done by simply enumerating all CQs q′ of size at most
tσ(|q|), and for each one of them checking the follow-
ing: (a) q′ ∈ GHW(k), (b) q′ ⊆ q, and (c) there is no
q′′ ∈ GHW(k) such that q′ (q′′ ⊆ q and the size of q′′

is at most tσ(|q|). Each one of these steps can be carried
out in single-exponential time.
Evaluation of approximations. Let us look at the prob-
lem of evaluating the GHW(k)-approximations of q, i.e.,
given a CQ q, a databaseD, and a tuple t̄ inD, checking
whether t̄ ∈ q′(D) for some GHW(k)-approximation q′

of q. Since each such a q′ is contained in q, we can then
be sure that t̄ also belongs to q(D).

As explained above, the set Approx(q,GHW(k))
of GHW(k)-approximations of q can be computed in
single-exponential time. Hence, checking if t̄ ∈ q′(D)
for some GHW(k)-approximation q′ of q can be carried
out by a fixed-parameter tractable algorithm in time:

2r(|q|) + |D|k+1 · 2r′(|q|),
for polynomials r, r′ : N→ N. Notably, unless P = NP
this problem cannot be solved in polynomial time:

PROPOSITION 18. Fix k ≥ 1. Given a CQ q, a
databaseD, and a tuple t̄ inD, checking if t̄ ∈ q′(D) for
some GHW(k)-approximation q′ of q is NP-complete.

Let us end up by explaining more in detail why it
might be convenient, in some cases, to evaluate the ap-
proximations of a CQ q as as way to obtain quick an-
swers when exact evaluation is infeasible or is taking
too long. Suppose, in particular, that q cannot be refor-
mulated as a CQ in GHW(k). Hence, it must be the case
that q ∈ GHW(k′) for some k′ > k. Let us assume that
a generalized hypertree decomposition of q of width k′

is available to us. We can then use this decomposition to
solve the exact evaluation problem for q over D in time
O(|D|k′+1 · |q|). Still, in the realistic case in which D
is too large – in particular, when 2r(|q|) + 2r

′(|q|) � |D|
– we have that evaluating the GHW(k)-approximations
of q over D in time 2r(|q|) + |D|k+1 · 2r

′(|q|) can
be considerably faster than evaluating q itself in time
O(|D|k′+1 · |q|).
Number of approximations. Theorem 17 establishes a
single-exponential upper bound on the number of
GHW(k)-approximations that a CQ can have. As es-
tablished next, this is optimal even for the case k = 1.

PROPOSITION 19. [8] There is a family {qn}n≥1 of
CQs such that each CQ qn is of size at most O(n) and
has Ω(2n) non-equivalent GHW(1)-approximations.

6.2 Approximations with tgds
Let us now study GHW(k)-approximations under

sets Σ of tgds. Our main result establishes that if Σ
comes from one of the well-behaved classes of sets of
tgds we study in the paper (i.e., G, NR, or S), then
the GHW(k)-approximations under Σ continue to have
good properties in terms of existence and computation.
For brevity, we write Approx(q,GHW(k), Σ) for the set

11SIGMOD Record, June 2017 (Vol. 46, No. 2) 15

of all the GHW(k)-approximations of q under Σ (up to
equivalence). The following holds:

THEOREM 20. Fix k ≥ 1 and C ∈ {G,NR,S}:
1. Every CQ q has a GHW(k)-approximation under

Σ, where Σ ∈ C.
2. Given a CQ q and a set Σ ∈ C, there is a double-

exponential time algorithm that computes the set
Approx(q,GHW(k), Σ).

3. For each CQ q and set Σ ∈ C, each CQ in
Approx(q,GHW(k), Σ) is of exponential size.

As for the case of Theorem 17, we prove Theorem 20
by exploiting a small query property:

PROPOSITION 21. Fix k ≥ 1 and assume that C ∈
{G,NR,S}. There is a polynomial t : N → N such
that for each CQs q, q′ and set Σ ∈ C, if q′ ∈ GHW(k)
and q′ ⊆Σ q, then there is a CQ q′′ ∈ GHW(k) such
that q′ ⊆Σ q′′ ⊆Σ q and |q′′| ≤ 2t(|q|+|Σ|).

The explanation of how Theorem 20 follows from
Proposition 21 mimics the explanation of how Theo-
rem 17 follows from Proposition 9. Let us note that
Proposition 21 follows from the proof of Proposition 10,
and moreover, we can refine the upper bound for |q′′| to
be fC(Σ, q) · (2k + 1) · aΣ,q . Since fG(Σ, q) is polyno-
mial, we can obtain an improved version of Theorem 20,
for the case of guarded tgds, stating that the approxima-
tions are of polynomial size.

The comparison of Theorem 17 and Theorem 20
shows that the addition of constraints does not come for
free: (1) Computing the set of approximations under sets
of tgds in C takes double-exponential time, as opposed
to the single-exponential time procedure obtained in the
absence of them. (2) Approximations in the presence of
non-recursive and sticky sets of tgds can be of exponen-
tial size, while they are polynomial in their absence.
Evaluation of approximations. From Theorem 20, we
obtain that evaluating GHW(k)-approximations under
Σ, where Σ is a set of tgds in C, can be solved in time:

22r(|q|+|Σ|)
+ |D|k+1 · 22r′(|q|+|Σ|)

,

for suitable polynomials r, r′ : N → N. That is, this
problem is fixed-parameter tractable. On the other hand,
the double-exponential dependence on |q| + |Σ| is im-
practical. It would be important then to develop heuris-
tics that find at least some of these approximations in at
most single-exponential time on the size of q and Σ.

7. FINAL REMARKS
We have not only surveyed, but also provided a com-

mon framework for recent results about semantic opti-
mization in the classes GHW(k) – of CQs of bounded

generalized hypertreewidth – under tgds or egds. Sur-
prisingly, there are cases where CQ containment is de-
cidable, while reformulation is undecidable. Such cases
include the class of full tgds. We have then focussed on
the main classes of tgds for which CQ containment is de-
cidable, and do not subsume full tgds, i.e., guarded, non-
recursive and sticky sets of tgds. For all these classes we
have explained why the reformulation problem is de-
cidable, and provided several complexity results. Re-
garding egds, we have presented a deep result that es-
tablishes the decidability of the reformulation problem
under unary FDs over binary schemas.

We have also considered the problem of evaluating
a query that can be reformulated in GHW(k) over a
database that satisfies certain constraints. In all cases,
when the refomulation problem is decidable such an
evaluation problem can be solved by a fixed-parameter
tractable procedure. This procedure is “realistic”, as it
also checks whether the query satisfies the reformula-
tion requirements. By lifting this condition, one can
further show that the aforementioned evaluation prob-
lem remains fixed-parameter tractable under any sets of
egds, and even tractable for sets of guarded tgds or FDs.

Finally, we explained how the techniques developed
for studying the reformulation problem also yield the
GHW(k)-approximations of a query when an exact re-
formulation in GHW(k) cannot be found. Such approx-
imations can be used to “quickly” find sound answers to
the query when its exact evaluation is infeasible.

Interestingly, all the complexity results on reformula-
tion under tgds presented in the paper continue to hold
for a more liberal version of reformulation under con-
straints that is based on unions of CQs. In such case
we are given a UCQ Q and a finite set Σ of tgds, and
the question is whether there is a union Q′ of CQs in
GHW(k) that is equivalent to Q under Σ. Moreover,
when such a reformulation exists we obtain that evalua-
tion, as above, is fixed-parameter tractable.

Many challenging problems remain open, the most
noticeable being the decidability status of reformulation
under egds/FDs. For egds, we have some indications
that the problem is undecidable; in fact, that the existing
proof of undecidability for the reformulation problem
under full tgds can be recast in terms of egds. For FDs
we have no understanding whatsoever at this stage.

So far, decidability results for reformulation have
been obtained separately for tgds, on the one hand, and
egds, on the other. But in practice tgds and egds often
appear together. The decidability boundary for CQ con-
tainment in the presence of both types of constraints is
delicate [17], but some restricted decidable instances of
the problem have been identified [4]. It deserves to be
explored whether such restrictions also yield decidabil-
ity for the reformulation problem studied here.

1216 SIGMOD Record, June 2017 (Vol. 46, No. 2)

8. REFERENCES
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and

Christopher Ré. Emptyheaded: A relational engine for graph
processing. In SIGMOD, pages 431–446, 2016.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[3] F. Afrati, M. Joglekar, C. Ré, S. Salihoglu, and J. D. Ullman.
GYM: A multiround join algorithm in mapreduce. CoRR,
abs/1410.4156, 2014.

[4] Antoine Amarilli and Michael Benedikt. Finite open-world
query answering with number restrictions. In LICS, pages
305–316, 2015.

[5] K. Amroun, Z. Habbas, and W. Aggoune-Mtalaa. DBToaster:
Higher-order delta processing for dynamic, frequently fresh
views. VLDB, 5(10):968–979, 2012.

[6] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E-
Pasalic, T. L. Veldhuizen, and G. Washburn. Design and
Implementation of the LogicBlox System. SIGMOD, pages
1371–1382, 2015.

[7] Pablo Barceló, Georg Gottlob, and Andreas Pieris. Semantic
acyclicity under constraints. In PODS, pages 343–354, 2016.

[8] Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient
approximations of conjunctive queries. SIAM J. Comput.,
43(3):1085–1130, 2014.

[9] Pablo Barceló, Reinhard Pichler, and Sebastian Skritek.
Efficient evaluation and approximation of well-designed
pattern trees. In PODS, pages 131–144, 2015.

[10] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic
acyclicity on graph databases. In SIAM J. Comput., 2016.

[11] Catriel Beeri, Ronald Fagin, David Maier, Alberto O.
Mendelzon, Jeffrey D. Ullman, and Mihalis Yannakakis.
Properties of acyclic database schemes. In STOC, pages
355–362, 1981.

[12] Catriel Beeri and Moshe Y. Vardi. The implication problem for
data dependencies. In ICALP, pages 73–85, 1981.

[13] Andrea Calı̀, Georg Gottlob, and Michael Kifer. Taming the
infinite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res., 48:115–174, 2013.

[14] Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. A
general Datalog-based framework for tractable query
answering over ontologies. J. Web Sem., 14:57–83, 2012.

[15] Andrea Calı̀, Georg Gottlob, and Andreas Pieris. Towards
more expressive ontology languages: The query answering
problem. Artif. Intell., 193:87–128, 2012.

[16] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based
approach to semantic query optimization. ACM Trans.
Database Syst., 15(2):162–207, 1990.

[17] A. K. Chandra and M. Y. Vardi. The implication problem for
functional and inclusion dependencies. SIAM J. of Comput.,
14:671–677, 1985.

[18] Ashok K. Chandra and Philip M. Merlin. Optimal
implementation of conjunctive queries in relational data bases.
In STOC, pages 77–90, 1977.

[19] Chandra Chekuri and Anand Rajaraman. Conjunctive query
containment revisited. TCS, 239(2):211–229, 2000.

[20] Hubie Chen and Vı́ctor Dalmau. Beyond hypertree width:
Decomposition methods without decompositions. In CP, pages
167–181, 2005.

[21] Vı́ctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi.
Constraint satisfaction, bounded treewidth, and finite-variable
logics. In CP, pages 310–326, 2002.

[22] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic
programming. ACM Comput. Surv., 33(3):374–425, 2001.

[23] Alin Deutsch, Lucian Popa, and Val Tannen. Query
reformulation with constraints. SIGMOD Record, 35(1):65–73,
2006.

[24] Ronald Fagin. A normal form for relational databases that is
based on domains and keys. ACM Trans. Database Syst.,
6(3):387–415, 1981.

[25] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and
Lucian Popa. Data exchange: Semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[26] Diego Figueira. Semantically acyclic conjunctive queries
under functional dependencies. In LICS, pages 847–856, 2016.

[27] Diego Figueira, 2017. Personal communication.
[28] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler.

General and fractional hypertree decompositions: Hard and
easy cases. CoRR, abs/1611.01090, 2016.

[29] Jörg Flum and Martin Grohe. Parameterized Complexity
Theory. Springer-Verlag, 2006.

[30] L. Ghionna, L. Granata, G. Greco, and F. Scarcello. Hypertree
decompositions for query optimization. In ICDE, pages 36–45,
2007.

[31] L. Ghionna, L., G. Greco, and F. Scarcello. H-DB: A hybrid
quantitative-structural SQL optimizer. In CIKM, pages
2573–2576, 2011.

[32] Nathan Goodman and Oded Shmueli. Tree queries: A simple
class of relational queries. ACM Trans. Database Syst.,
7(4):653–677, 1982.

[33] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco
Scarcello. Hypertree decompositions: Questions and answers.
In PODS, pages 57–74, 2016.

[34] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The
complexity of acyclic conjunctive queries. J. ACM,
48(3):431–498, 2001.

[35] Georg Gottlob, Nicola Leone, and Francesco Scarcello.
Hypertree decompositions and tractable queries. J. Comput.
Syst. Sci., 64(3):579–627, 2002.

[36] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Query
rewriting and optimization for ontological databases. ACM
Trans. Database Syst., 2014.

[37] Martin Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other side. J.
ACM, 54(1), 2007.

[38] Martin Grohe and Dániel Marx. Constraint solving via
fractional edge covers. ACM Trans. Algorithms,
11(1):4:1–4:20, 2014.

[39] Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete
Mathematics, 109:117–126, 1992.

[40] Pavol Hell and Jaroslav Nešetřil. Graphs and
Homomorphisms. Oxford University Press, 2004.

[41] David S. Johnson and Anthony C. Klug. Testing containment
of conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

[42] Paris C. Kanellakis. Elements of relational database theory. In
Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pages 1073–1156. 1990.

[43] Maurizio Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[44] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris,
and Gerardo I. Simari. From classical to consistent query
answering under existential rules. In AAAI, pages 1546–1552,
2015.

[45] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv.
Testing implications of data dependencies. ACM Trans.
Database Syst., 4(4):455–469, 1979.

[46] S. Malik and L. Zhang. Boolean satisfiability: from theoretical
hardness to practical success. CACM, 52(68):76–82, 2009.

[47] Christos H. Papadimitriou and Mihalis Yannakakis. On the
complexity of database queries. J. Comput. Syst. Sci.,
58(3):407–427, 1999.

[48] A. Robinson and A. Voronkov. Handbook of Automated
Reasoning. The MIT Press, 2001.

[49] Robert Endre Tarjan and Mihalis Yannakakis. Simple
linear-time algorithms to test chordality of graphs, test
acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J. Comput., 13(3):566–579, 1984.

[50] Mihalis Yannakakis. Algorithms for acyclic database schemes.
In VLDB, pages 82–94, 1981.

13SIGMOD Record, June 2017 (Vol. 46, No. 2) 17

A Survey of Traditional and MapReduce-Based
Spatial Query Processing Approaches

Hari Singh
∗

Computer Science and Engineering Department
N.C. College of Engineering

Israna, Panipat, Haryana, India

harirawat@rediffmail.com

Seema Bawa
Computer Science and Engineering Department

Thapar University
Patiala, Punjab, India

seema@thapar.edu

ABSTRACT
Various indexing methods of spatial data have come out af-
ter rigorous efforts put by many researchers for fast process-
ing of spatial queries. Parallelizing spatial index building
and query processing have become very popular for improv-
ing efficiency. The MapReduce framework provides a mod-
ern way of parallel processing. A MapReduce-based works
for spatial queries consider the existing traditional spatial
indexing for building spatial indexes in parallel. The ma-
jority of the spatial indexes implemented in MapReduce use
R-Tree and its variants. Therefore, R-Tree and its variant-
based traditional spatial indexes are thoroughly surveyed in
the paper. The objective is to search for still less explored
spatial indexing approaches, having the potential for par-
allelism in MapReduce. The review work also provides a
detailed survey of MapReduce-based spatial query process-
ing approaches - hierarchical indexed and packed key-value
storage based spatial dataset. Both approaches use differ-
ent data partitioning strategies for distributing data among
cluster nodes and managing the partitioned dataset through
different indexing. Finally, a number of parameters are se-
lected for comparison and analysis of all the existing ap-
proaches in the literature.

Keywords
Spatial, Index, MapReduce, R-Tree

1. INTRODUCTION AND MOTIVATION
Support of high performance queries on spatial data has
become important due to the large volume, high compu-
tational complexity of spatial data, and considerable time
taken by complex spatial queries [70]. The representation
of semi-structured spatial data in Well-Known-Text (WKT)
and Well-Known-Binary (WKB) spatial data storage for-
mat, specified by the Open Geospatial Consortium (OGC)
[4], makes it interoperable. Distributed spatial database sys-
tems offer a variety of spatial query functions and indexes
for fast data retrieval but lacks in scalability [28]. Limita-
tion of spatial databases for fixed schema and strict database
norms does not make these suitable for handling big spatial
data [63].

The distributed computing technology has witnessed high
scalability and an excellent performance through its com-

∗Hari Singh has been presently working as a faculty in Com-
puter Science & Engineering Department at Panipat Insti-
tute of Engineering & Technology, Panipat, Haryana, India.

putational power. It has encouraged the evolution of mod-
ern parallel processing frameworks, such as the MapReduce-
based Hadoop [1], HBase [2, 71], Cassandra [43] and BigTable
[19]. The pros and cons of these frameworks are discussed
in [9, 32, 37, 45]. These frameworks provide an excellent
scope for scalability and high performance computational
power over traditional stand-alone systems for processing a
large amount of data [3, 30, 31, 56]. Recently, MapReduce
parallel frameworks have been extensively used for dealing
with semi-structured spatial data and related queries effi-
ciently [8, 66, 72]. CG Hadoop contains a suite of MapRe-
duce algorithms for various computational geometry prob-
lems for dealing with large scale spatial data [21]. However,
the key-value storage based techniques do not process spa-
tial queries efficiently, as these require exhaustive searching.
These techniques are able to scale, but cannot handle multi-
dimensional spatial data [68]. Due to limitations of spatial
databases and the key-value storage based distributed sys-
tems, integration of well known spatial indexing methods on
MapReduce has evolved for improving the data access.

The research in the field of spatial index construction and
spatial query has always been inspired by minimizing in-
dex construction and query execution time. Top-down or
bottom-up approaches for well-known datasets, also known
as batch-oriented methods [12, 39, 40, 44, 46, 59], over the
slow and incremental methods [11, 14, 15, 29, 35, 41, 62] are
the result of such motivation. Parallel processing techniques
for the bulk loading spatial index and spatial query execu-
tion has continued this research trend. A single processor-
multiple disk system [35], multiple processors-multiple disk
system [55] and, now, a MapReduce-based systems [7, 8, 17,
18, 27, 47, 49, 65, 66, 68, 69, 70, 72] are the results of such
researches.

Recently, a lot of work has been done for indexing spatial
data and implementing spatial queries for fast data retrieval.
Many algorithms, discussed in Section 2, are available for
the same. The MapReduce framework for parallel process-
ing is proven handy for operations requiring intense com-
puting and improved execution time to a considerable ex-
tent. Through this survey, it has been found that in the
last few years the MapReduce framework has been exploited
in the field of spatial data. The Section 3 discusses re-
search works, for parallelizing existing traditional spatial
indexes, for speeding up spatial query execution. Proba-
bly, the most relevant review of the present survey work

18 SIGMOD Record, June 2017 (Vol. 46, No. 2)

is the survey of a large-scale analytical query processing in
MapReduce [20]. It has provided a very good classifica-
tion of existing approaches for optimizing the performance
of MapReduce and analyzed join queries in MapReduce.
However, in the present paper, spatial data-oriented data
access methods have been surveyed to 1) analyze the ex-
isting non-disjoint decomposition methods for bulk-loading
spatial indexes, which forms an integral part for processing
spatial queries based on spatial index methodology, and 2)
analyze the work done so far in the domain of spatial query
processing on MapReduce.

The rest of the survey is organized as follows. Section 2 re-
views the existing traditional indexing approaches for spa-
tial data. Section 3 presents classification and details of re-
cent spatial query processing approaches, implemented in
MapReduce, into two categories. The first category dis-
cusses a hierarchical indexed approaches on spatial dataset
and the second category discusses key-value storage based
indexed approaches. The two categories differ in the way
spatial index is implemented on the partitioned dataset.
The approaches in both categories mainly differ in the spa-
tial data partitioning strategies on cluster nodes. Section 4
presents summary of the paper.

2. TRADITIONAL SPATIAL INDEXING
APPROACHES

In this section, existing spatial indexes, for non-disjoint de-
composition, in the serial programming environment, are
discussed. These are categorized according to the approach
used for building an R-Tree and its variants, as shown in Fig.
1. The intent is to identify a good spatial index, having the
potential for parallelization. Various dynamic and static
indexing techniques, in a serial programmed environment
are discussed in Section 2.1 and 2.2, respectively. The R-
Tree and its variant indexes have been explored thoroughly
with regard to parameters, such as space utilization, inser-
tion cost, spatial query performance for uniformly and non-
uniformly distributed data, number of nodes to be searched
for spatial query, applicability in high dimensions and worst-
case performance. A summary of traditional spatial indexes
describing support for various functionalities is presented in
Table 1.

2.1 Dynamic Indexes
The dynamic index is built at run-time for dynamic data.
The techniques mentioned in this section for spatial index
structures, mainly work on one or a combination of more
factors, such as coverage, margin and overlap, for creating
index structure. Firstly, we discuss the basic R-Tree [5,
29], R*-Tree [11], and R+-Tree[62] and secondly, various
improvements over these basic tree structures for optimizing
the parameters and its effect on query execution [12, 14, 41].

2.1.1 The Basic R-Tree Variants
The index of a dynamic R-Tree provides a high load time,
sub-optimal space utilization, and a poor R-Tree structure
[5, 29]. The index takes a large search time due to high
overlapping of rectangles. The R-Tree optimization metrics
require enclosing rectangle to be of larger size and contains
the maximum number of data rectangles as per the node ca-
pacity. This causes assignment of a large number of entries

Figure 1: Traditional Spatial Indexing Approaches

to a node, and consequently, a high overlap among nodes.
The query performance of R-Tree deteriorates with skewed
data, as it causes increased overlapping. The directory rect-
angles from the early-inserted data rectangles may not ef-
ficiently represent the current data. Various node splitting
and re-insertion methods provide solutions to the problem
that distinguishes dynamic variants of the R-Tree.

R*-Tree optimizes coverage, margin and overlap of enclos-
ing rectangles in internal nodes for data insertion and node
splitting [11]. It is due to the split and forced reinsert algo-
rithms of the R*-Tree that preserves the proximity of smaller
rectangles in a node. The R*-Tree has a better retrieval per-
formance due to a better tree structure. A better structure
of R*-Tree than the R-Tree causes the insertion cost of R*-
Tree comparable to R-Tree for uniformly distributed data,
but much better for skewed data. The execution time of
the spatial-join queries improves for R*-Tree on processor
time and Input/Output (I/O) [16]. The R+-Tree provides
a zero overlap among intermediate nodes through a disjoint
decomposition [62]. The search performance of R+-Tree, in
terms of disk accesses, is more than 50% than R-Tree for
point queries, but space consumption of R+-Tree structure
is more than the R*-Tree due to disjoint search space.

2.1.2 The Improved R-Tree Variants
The improved R-Tree variants work towards a better node-
split for minimizing overlap among partitioned MBRs. Node
splitting algorithm in RR*-Tree considers, a degree of the
balance of a split and the perimeter based strategy, apart
from the criteria, coverage, margin and overlap considered
in R*-Tree [12]. The RR*-Tree shows a better performance
than R-Tree variants due to its overlap optimization at all di-
rectory levels. It becomes better for high dimensional space
due to a good balance maintaining splitting algorithm and
perimeter based optimization. However, the overlap and
perimeter based optimization is more compute-intensive for
insertions. The WeR-Tree achieves better space utilization

SIGMOD Record, June 2017 (Vol. 46, No. 2) 19

Table 1: A Summary of Traditional Spatial Indexes in Serial Programming Environment
Approach Types Index A B C1 C2 C3 C4 C5 D E F G
Dynamic
indexes

Basic R-Tree variants R-Tree [5, 29] X X X X X X X X X X X

R*-Tree [11] X X X X X X X X X X X
R+-Tree [62] X X X X X X X X X X X

Improved R-Tree variants Revised R*-Tree [12] X X X X X X X X X X X
WeR-Tree [14] X X X X X X X X X X X
X-Tree [41] X X X X X X X X X X X

Static
indexes

Data clustering approach cR-Tree using k-means
clustering [15]

X X X X X X X X X X X

R-Tree through iterative
optimization [26]

X X X X X X X X X X X

Sorting MBRs approach Hilbert R-Tree [39, 40] X X X X X X X X X X X
STR R-Tree [46] X X X X X X X X X X X
Lowx R-Tree [59] X X X X X X X X X X X
Hilbert-curve on a tree
structure [44]

X X X X X X X X X X X

MR-Tree [67] X X X X X X X X X X X
Top-down approach TGS R-Tree [25] X X X X X X X X X X X

Priority R-Tree [10] X X X X X X X X X X X
Cache-conscious approach CR-Tree [42] X X X X X X X X X X X

CR-Tree variant [34] X X X X X X X X X X X

X- Support for functionality exists and X - Support for functionality does not exist
A-Efficient storage utilization, B-Reducing insertion cost, Spatial query performance for uniformly distributed data: C1-
Query Rectangle/ Enclosure query, C2-Point query, C3-Intersection query, C4-Spatial-join query, C5-Nearest-neighbor query,
D-Effect of data skewness-a kind of non-uniform data distribution, E-Number of nodes to be searched for spatial query,
F-Applicability in high dimension, and G–Worst-case performance

and search performance than the R*-Tree [14]. It uses a
packing technique to organize its structure better than R*-
Tree, however, it takes a significant amount of time to bulk-
load and reconstructing a sub-tree of unbalanced node.

The packing causes data points to be stored uniformly in
leaf nodes that lead to fewer activated paths for queries. The
insertion strategy searches for an unbalanced node location
to insert a new entry in the existing R-Tree and partially
builds a sub-tree there by keeping nodes in balance. The
R*-Tree splits nodes for minimizing the volume of the result-
ing MBRs and thus causes more overlap in high dimensions
and reduces the efficiency of an index structure. The X-Tree
introduced overlap-free split policy and high page capacity
nodes, named Super-nodes [41]. The overlap-free node split
along a particular axis uses split history for data insertion.
The Super-nodes handle unbalancing of node-fill caused due
to overlap-free split and store more entries as compared to
simple nodes to provide more storage utilization.

2.2 Static Indexes
Index building with dynamic insertion algorithms provide
a significant dead space in nodes and results in bad perfor-
mance. R-Tree variants do not exploit known dataset during
insertion. However, if R-Tree is built statically, then, space
utilization improves, as heuristic pack the input data space.
This section categorizes different static indexes for spatial
data on the basis of heuristic packing used for building in-
dex and discusses the effect of packing spatial datasets for
constructing R-Tree and variants [10, 15, 25, 26, 39, 40, 44,
46, 59, 67], as well as spatial query performance.

2.2.1 Data Clustering Approach
The clustering technique splits spatial objects in the nodes
on the basis of spatial proximity according to some param-
eter to minimize data access time. The K-means clustering
technique is used for constructing the cR-Tree [15]. The
k-means algorithm is order independent, unlike linear split
heuristic of R-Tree and, time and space complexity of K-
means is analogous to linear split algorithm of R-Tree. It
uses multi-way split procedure than the traditional two-way
split procedure for realizing an efficient R-Tree. The low in-
dex building time of cR-Tree is due to significant time saving
on following a simple insertion algorithm as compared to the
one used in R*-Tree. In another D-dimensional and batch
oriented packing, the dimensional sort curve builds R-Tree
by partitioning the D-dimensional data space into K par-
titions such that the volume of all the enclosing rectangles
is minimized [26]. Though the linear packing methods are
fast, but the D-dimensional approach better packs the data.
It takes into account positions and spatial extents of objects
in all dimensions that are achieved by a linear method. The
batch oriented methods follow a bottom-up approach level
by level, and consequently, achieves a high degree of paral-
lelism. The method is poor, as it uses a large number of
disk accesses and the efficiency deteriorates with data skew
and dimensionality. The clustering method for constructing
R-Tree in high dimensions is compute intensive as compared
to R*-Tree and Hilbert R-Tree, but it performs better than
the two on query execution time. It is because the latter two
assign rectangles from different clusters to the same R-Tree
node [15, 26].

20 SIGMOD Record, June 2017 (Vol. 46, No. 2)

2.2.2 Sorting MBRs Approach
One class of R-Tree indexes is bulk-loaded by sorting the
MBRs either along one dimension or both dimensions in a
two dimensional space. The tree leaves are filled-up first
and, then, the rest of the index is built step-by-step in a
bottom-up manner [39, 40, 44, 46, 59, 67]. In one such ap-
proach, the correspondence between points on space-filling
curve, Hilbert-curve, and their sequence numbers are ex-
pressed as a tree structure [44]. It provides an overlap free
tree node structure for the Hilbert-curve of a particular or-
der. However, it is impractical to store the mapping of
space filling curves to a tree representation explicitly and
the traversal from the root to a leaf takes excessive node
accesses.

In another approach, the Lowx R-Tree, a packed R-Tree
for static environment, provides a simple method of pack-
ing spatial data using a dimension sort curve [59]. It sorts
the rectangles with their x or y coordinates of one of the
corners of the rectangle. It provides thin, long bounding
rectangles along one dimension that results in nodes hav-
ing less area but large perimeter. It performs well for point
queries, but not so well for larger queries, such as region
queries. The performance of queries decreases for skewed
data. The solution to the problem was obtained by apply-
ing sorting and partitioning step for each of the dimensions
[46]. The authors presented a Sort-Tile-Recursive (STR)
packing algorithm to improve load time, space utilization
and data retrieval efficiency of R-Tree. In another two-tier
index MR-Tree, a combination of grid index and STR R-
Tree index, two disk accesses take the search to a local STR
R-Tree [67]. It reduces the search space and the number of
node accesses in the MR index. However, the MR index is
inferior to STR index in terms of spatial efficiency of the in-
dex. It is due to the low spatial efficiency of the grid index.
The I/O cost of MR-Tree is lower as compared to STR-Tree
for similar reason.

The Hilbert-curve based packing shows higher performance
for uniformly and skewed data by minimizing area and
perimeter of R-Tree leaf nodes [39, 40]. A slight variation of
it sort MBRs on the basis of the Hilbert value of the center
of rectangles for constructing R-Tree [40]. The nodes of the
tree, put similar MBRs together and minimize the area and
perimeter of MBRs under one node and achieve high space
utilization. This approach brings proximity to the data ob-
jects in R-Tree nodes, and consequently, provides more space
utilization by reducing the perimeter and area of the nodes.
The Hilbert R-Tree performs better for all types of data
than R*-Tree in terms of the number of node accesses. It
achieves a high space utilization but the insertion time is
comparable to R*-Tree due to ordering of data according
to Hilbert-curve. The STR and Lowx R-Tree are better
than Hilbert-curve based R-Tree for uniformly distributed
points and region data [46, 59]. It is because the index-
ing methods based on space-filling curves (SFC) for R-Tree
construction do not preserve spatial locality well and pro-
duce approximate results. For the same reason, STR-based
R-Tree is much better than Hilbert-curve based R-Tree for
skewed data for point and region queries. However, Lowx-
based R-Tree performs poorly because of poor packing of
data.

2.2.3 Top-Down Approach
One class of R-Tree indexes is bulk-loaded in a top-down
manner. The R-Tree index is constructed in two steps:
firstly, a good partition of the data is generated recursively,
and secondly, the index is built from root to leaf. A Top-
down Greedy Split (TGS) algorithm divides input dataset
into two subsets through a recursive split procedure and con-
structs R-Tree in a top-down manner [25]. The split applies
heuristic, such that the cost of some objective function on
MBRs of each split subset is minimized and each subset has
sufficient number of rectangles, so that resulting sub-trees
are packed. The bulk-loading in TGS R-Tree requires more
I/Os as compared to other R-Tree variants, since it scans all
the rectangles to make the partition decision. However, TGS
R-Tree performs comparable to Hilbert R-Tree and STR R-
Tree on uniformly distributed data, and outperforms the
latter two for large rectangles and skewed data, for point
and range query. In another top-down approach, a Priority
R-Tree is built from the priority leaves, that contain ex-
treme rectangles along each dimension of the dataset, and
the rest of the rectangle is further divided into two subsets
of approximately equal size, and pseudo PR-Tree is con-
structed recursively [10]. The PR-Tree bulk-loading algo-
rithm executes a window query in the optimal number of
O((N/B)1−1/d+T/B) I/Os in the worst case as compared
to other R-Tree bulk loading methods, where N is the total
number of dataset rectangles in the R-Tree, B is the block
size of the disk, and T is the output size. The PR-Tree out-
performs all the others for window query on highly skewed
data. The bulk-loading time of PR-Tree is more than the
TGS R-Tree. However, the window query performance of
PR-Tree is slightly better than the TGS R-Tree.

2.2.4 Cache-Conscious Approach
One class of R-Tree index has focused on cache-conscious
indexes, similar to the cache-conscious B+-Tree [58], to op-
timize R-Trees [34, 42]. A cache-conscious version of R-
Tree, CR-Tree, uses compressed MBR keys as indexed keys
to obtain a wider and smaller R-Tree [42]. The compres-
sion is done with a Quantized Relative Minimum Bounding
Rectangle (QRMBR) technique and the output is quantized.
The QRMBR compresses the MBR keys by representing a
child MBR relatively to its parent MBR. The compression
and quantization technique used has the drawback that the
false hits increase. However, selecting a proper quantiza-
tion level, false hits are reduced. The authors found that in
two, three and four dimensions, the number of node accesses
for CR-Tree is smaller than R-Tree and the performance of
CR-Tree improves with increasing node size. The number
of cache misses is also smaller for CR-Tree in comparison
to R-Tree in all dimensions. However, the cache miss graph
initially decreases for a rise in node size in certain node size,
and thereafter, the graph declines with a rise in node size.
The cause of such a shape is the increased overhead due to a
large node size that costs more than the gain obtained due to
wider and smaller R-Tree. The solution to the problem was
proposed by reducing the amount of L2 cache misses in the
cache-conscious QRMBR R-Tree variants for better mem-
ory utilization and improved query performance [34]. The
authors introduced Optimistic Latch Free Index Traversal
(OLFIT) technique to overcome the cache miss problem of
conventional index concurrency control by using a version
and a latch in each node.

SIGMOD Record, June 2017 (Vol. 46, No. 2) 21

3. SPATIAL QUERY PROCESSING
APPROACHES IN MAPREDUCE

In the past, parallelization of bulk-loading spatial indexes
and spatial querying is achieved through one processor in
communication with multiple disk architecture [35] and a
shared-nothing architecture [55]. The MapReduce program-
ming model offers a new distributed environment for parallel
processing that provides high efficiency for executing tasks
[8, 66, 72]. However, the MapReduce framework incurs high
data transfer overhead, which need to be dealt carefully [8,
47, 49, 53]. A lot of work is found in literature that considers
different methods of spatial query processing from the serial
programming model and revising these in distributed envi-
ronments, especially in MapReduce environment, for paral-
lelization. The performance of spatial queries is found better
over the indexed dataset as compared to the default hashing-
based key-value storage in the Hadoop [2, 16, 50, 60]. In this
section, spatial query processing approaches in MapReduce,
based on a hierarchically indexed (Section 3.1) and packed
key-value storage based (Section 3.2) approaches, have been
surveyed. Both approaches use different spatial data parti-
tioning methods, as shown in Figure 2, and then organizing
spatial index on the partitioned dataset. The hierarchically
indexed dataset uses uniform data partitioning [6, 22, 23,
24], random-sampling-based data partitioning [6, 22, 23, 24],
clustering-based data partitioning [17], space-filling-curve
based data partitioning such as Hilbert-curve based [47, 49,
66, 68], STR packing based [47], Z-curve based [17, 18] and
X-mean algorithm based [17], Quadtree-based spatial data
partitioning, such as Quadtree-based recursive tile partition-
ing for R*-Tree indexing [7, 8], a quadtree partitioning and
Hilbert-curve based local indexing [72], quadtree-based data
partitioning for implementing the PR-Quadtree based local
index in MapReduce[38]. The key-value storage basde ap-
proaches are based on uniform data partitioning [27], SFC-
based space partitioning [65, 69, 70] and spatio-temporal
partitioning [52].

A survey of the two approaches for various functionalities
is presented in Table 2. It describes whether the research
works under the approaches provides support for function-
alities. The functionalities considered under the survey
are spatial proximity of distributed spatial data on cluster
nodes, index build-time, efficiency of query execution, load
balancing, data transmission overhead through network, ap-
plicability in high dimensions, latency for random access for
large number of concurrent reads, latency for sequential ac-
cess for large number of concurrent reads, effect of cluster
scaling on query execution, effect of index-node size, effect
of packet-data size and performance for non-uniformly dis-
tributes dataset.

3.1 Spatial Query Processing on Hierarchi-
cally Indexed Spatial Dataset

MapReduce speeds-up bulk-loading of spatial index and
query execution. The benefits of building spatial index,
such as R-Tree in MapReduce framework is that MapReduce
abstracts data load-balancing, process scheduling and fault
tolerance from the application logic, and manages transpar-
ently [18]. Otherwise, a lot of difficulty was involved in
managing these distributed computing aspects earlier [55,
61].

Figure 2: Spatial Query Processing Approaches in
MapReduce

The MapReduce framework is also enhanced due to use of
spatial indexes on MapReduce, as these improve latency for
random reads [72].

This section discusses spatial query processing on the basis
of various hierarchical indexes on spatial dataset. The hier-
archical indexes mainly differ in data partitioning strategies
and building spatial indexes on the partitioned dataset.

3.1.1 Uniform Data Partitioning
The method divides input spatial space into equal sized rect-
angles depending on number of mappers in MapReduce.
The spatial data is partitioned into n rectangles, and the
data that overlap in rectangles is redundantly assigned to
overlapping rectangles. The number and size of rectangles
are decided by the number of partitions required for input
data. Each partitioned data are taken by a cluster node
and processed there. For a grid index, the input space is
partitioned in

√
n x
√
n rectangles of uniform size and the

number of partitions (n) is calculated by dividing the input
data size with HDFS block size [22, 23, 24].

Then, each slave node builds a local index in memory and
writes it to disk. Lastly, a global index is built by mas-
ter node. The index building time is very small due to
the simple process and computations involved. The uniform
or rectilinear space partitioning approach is easy to imple-
ment, but it causes non-uniform data distribution among
cluster nodes for processing in MapReduce, especially for
non-uniformly distributed and skewed dataset. This affects
load balancing and hence efficiency of queries. Some of the
nodes complete their task early and sit idle, waiting for other
heavily loaded nodes to complete their tasks. The efficiency
of spatial queries is not very good, as the data are unorga-
nized and it takes a lot of time to search query data. The
method works fine for uniformly distributed data, but per-
forms poorly for non-uniformly distributed and skewed data.

22 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Table 2: A Summary of Hierarchically Indexed and Packed Key-Value Storage Based Spatial Dataset in
MapReduce

Approach Data partitioning Index re-
alized on
MapReduce

A B C1 C2 C3 C4 D E F G H I J K L

Hierarchically
indexed

Uniform and Random-
sampling-based [22, 23,
24]

Grid index X X X X X X X X X X X X X X X

Clustering-based (x-
mean) [17]

R-Tree X X X X X X X X X X X X X X X

SFC-based (Z-curve) [17] R-Tree X X X X X X X X X X X X X X X
SFC-based (Z-curve) [18] R-Tree X X X X X X X X X X X X X X X
SFC-based (Hilbert-
curve) [47]

R-Tree on
STR packing

X X X X X X X X X X X X X X X

SFC-based (Hilbert-
curve) [49]

R-Tree X X X X X X X X X X X X X X X

SFC-based (Hilbert-
curve) [66]

R-Tree X X X X X X X X X X X X X X X

SFC-based (Hilbert-
curve) [68]

R-Tree X X X X X X X X X X X X X X X

Quadtree-based recur-
sive tile partitioning [7,
8]

R*-Tree X X X X X X X X X X X X X X X

Quadtree-based [72] R-Tree X X X X X X X X X X X X X X X
Quadtree-based [38] PR-Quadtree X X X X X X X X X X X X X X X

Based on
packed

key-value
storage

Uniform [27] (uses
Controlled-Replicate
approach)

Default key-
value pair

X X X X X X X X X X X X X X X

Uniform [69] (uses
H-BRJ and H-BNLJ)
and SFC-based (uses
H-zkNNJ)

Default key-
value pair

X X X X X X X X X X X X X X X

SFC-based [65] (uses
PBSM)

Default key-
value pair

X X X X X X X X X X X X X X X

SFC-based [70] (SJMR) Default key-
value pair

X X X X X X X X X X X X X X X

Hybrid: spatio-temporal
[52]

PMI- and
OMI-based
key-value pair

X X X X X X X X X X X X X X X

X- Support for functionality exists and X - Support for functionality does not exist
A-Evaluating spatial proximity of distributed spatial data on cluster nodes, B-Index build-time, Efficiency of query execution:
C1-Spatial Selection(Point, Line, Window and Range search query), C2-Spatial Aggregation, C3-Spatial-join, C4-Spatio-
temporal, D-Load balancing: data distribution among cluster nodes, E-Data transmission overhead through network, F-
Applicability in high dimensions, G-Latency of random access for large number of concurrent reads, H-Latency of sequential
access for large number of concurrent reads, I-Effect of cluster scaling on query execution, J-Effect of index-node size, K-
Effect of packet-data size, and L-Performance for non-uniformly distributed dataset

3.1.2 Clustering-Based Data Partitioning
The method partitions spatial objects into groups according
to their spatial clustering. A comparison between the Z-
curve based data partitioning and the X-means clustering-
based data partitioning has been done for parallel R-Tree
construction [17]. It is observed that the Z-curve has a lin-
ear complexity of the mappers input and generates almost
equal sized partitions, but the spatial locality is not always
well preserved. The X-means based iterative clustering al-
gorithm uses Bayesian Information Criteria (BIC) score to
rank clusters according to the Gaussian distribution. In this
scheme, though the number of partitions is estimated but

the size of partition varies considerably and iterations cause
expensive computations. For nearest-neighbor queries, the
X-means better approximates spatial data distribution and
reduces overlapping as compared to the Z-curve which di-
rectly relates to data retrieval efficiency. But, the X-means
takes almost double time for R-Tree index creation than
the Z-order and significant time is elapsed in the clustering
phase.

3.1.3 Random-Sampling-Based Data Partitioning
In this approach, random sampling of spatial data is dis-
tributed among clustered nodes. The SpatialHadoop frame-

SIGMOD Record, June 2017 (Vol. 46, No. 2) 23

work uses it for implementing R-Tree and R+-Tree [23, 24].
The bulk-loading of indexes is done using an STR packing
technique. Partitioning the data of input file is guided by
the boundaries of the leaf node. The index building time
of R-Tree and R+-Tree is more as compared to the grid
index due to the complexity of index building process and
computations involved [22]. However, the efficiency of spa-
tial query is very good, as data is indexed and query data
search time is low. The method works fine for uniformly dis-
tributed data, but does not work that well for non-uniformly
distributed and skewed data.

3.1.4 SFC-Based Data Partitioning
The space-filling curve is used to transform multi-
dimensional location information into one-dimensional
space. A Z-curve based uniform data partitioning is used
for data partitioning during the map-phase [17, 18, 49].
In MD-HBase, a scalable multi-dimensional data store on
HBase, a similar approach is used to distribute the data on
cluster nodes. Multidimensional index structures, K-d Tree
and Quadtree, are implemented on the partitioned dataset
for demonstrating the scalability and efficiency of range and
kNN queries [54].

A similar SFC-based approach for bulk-loading R-Tree on
MapReduce uses the Hilbert-curve [66, 68]. The partition-
ing function puts objects in same partition to keep spatial
proximity by using the sorted MBR values of object nodes
from the Hilbert-curve and transforms to a standard and
proven multi-dimensional index structure, R-Tree, through
parallelizarion in MapReduce. In another SFC-based ap-
proach, parallel-gopt (p-gopt), a parallel R-Tree is built on
the SFC and gopt-partitioned dataset [6]. The leaf nodes
of R-Tree are filled-up in order to minimize a cost function
named gopt-loading, rather than filling-up nodes to the max-
imum. Initially, the input dataset is sorted, in parallel, ac-
cording to a space-filling curve. The sorted sequence is par-
titioned into sub-sequences according to gopt-partitioning
method. The method makes sub-sequences of sizes between
b (lower limit) and B (upper limit) according to a cost func-
tion, where each sub-sequence corresponds to a leaf node.
The bulk-loading time of R-Tree using the p-gopt partition-
ing is more than the other parallel R-Tree construction ap-
proaches in MapReduce. However, the method outperforms
other parallel R-Trees for average spatial queries in terms of
node accesses.

The packing algorithms, such as STR and Hilbert packing
guarantee the proximity of spatial data in R-Tree leaf nodes
to reduce query response time and data transfer overhead,
through network [47]. The buffer management and R-Tree
node size further improves query efficiency. The buffer man-
agement speeds-up data access by keeping less space occupy-
ing internal nodes in the buffer to 1) minimize the disk access
2) avoid the bottleneck caused in case of concurrent access.
A limited number of leaf nodes are permitted in the buffer,
depending on space availability to further reduce the disk
access time. A large index node size reduces data transfer
overhead for two reasons. 1) High I/O costs of loading data
from HDFS than local storage device 2) High cost of ran-
dom reads than sequential reads in HDFS. The cost paid for
low data transfer overhead and improved I/O is increased
CPU effort for filtering more data objects. However, the

space-filling curve based data partitioning approaches lose
on preserving spatial locality due to a mapping from the
higher dimensions to one-dimensional space, but it works
better in high dimensions.

3.1.5 Quadtree-Based Data Partitioning
Quadtree-based data partitioning preserves spatial locality
of objects and provides a uniform recursive decomposition
of space into partitions until the number of objects in a
partition are not more than a defined limit. The approach
is highly suitable for parallel processing, but it is difficult
to apply in high dimensions. Though, the performance of
Quadtree-based indexes for index building and query pro-
cessing is well established [13, 33, 36, 48]. It is due to the
regular disjoint decomposition approach of Quadtree-based
indexes which takes less index building and query process-
ing time, as compared to non-disjoint and irregular disjoint
decomposition approach, in R-Tree and variants. However,
Quadtree-based approaches incur high data transfer and I/O
costs [64].

One class of MapReduce-based approaches, for construct-
ing R-Tree, uses a Quadtree-based space partitioning [7, 8,
72]. The VegaGiStore consists of a Quadtree-based global
index and Hilbert-curve local index [72]. The former index
finds data blocks and the latter locates spatial objects for
efficient data retrieval with low latency access. It was ob-
served that Quadtree-based regular disjoint decomposition
technique, for spatial data partitioning, gives a stable per-
formance for increasing k in kNN queries as compared to the
other key-value storage systems, such as Hadoop, Cassan-
dra, HBase, and the traditional spatial databases such as
PostGIS, Oracle Spatial, etc. In another two-tier indexed
approach, a global partition indexing for regions and lo-
cal spatial indexing for objects in tiles, is used [7, 8]. The
bulk-loading of spatial index is performed on each dataset
by using the R*-Tree. It uses a recursive partitioning ap-
proach and multiple-assignment approach for load-balancing
and boundary object problems, respectively. The indexing
improves latency time of random read queries. The perfor-
mance of spatial queries improve with the scalability of clus-
ter, but it causes a high intermediate data transfer overhead.
However, the proposed approaches have not considered the
effect of index-node size and data-packet size.

A different technique, HQ-Tree, uses a recursive regular
quadtree partitioning for handling point data [38]. It is
a MapReduce implementation of PR-Quadtree index. It
is free from order of data insertion and space overlap due
to disjoint decomposition spatial occupancy approach. The
efficiency of index creation in MapReduce environment is
found better for both uniform and non-uniform data than
over the standalone machine. It is good at dealing with
skewed data of point objects for search queries. However,
the storage of index is high due to disjoint storage of objects.
The HQ-Tree approach has not been compared with other
MapReduce-based non-disjoint decomposition approaches,
such as R-Tree and variants. The approach is limited to
spatial point objects and can be extended to other spatial
data, such as lines, rectangles, and polygons in spatial data.
The authors found an increase in read-time with increasing
index-node size due to the rise of communication overhead
with increasing node size. The read-time increases drasti-

24 SIGMOD Record, June 2017 (Vol. 46, No. 2)

cally when the size of index node becomes greater than the
size of HDFS data packet i.e. 64 KB.

3.2 Spatial Query Processing on Packed Key-
Value Storage Based Spatial Dataset

Packed key-value storage based indexes in MapReduce do
not build a hierarchical index on partitioned dataset. These
uses key-value pair on a partitioned dataset in the MapRe-
duce framework as an index for spatial query processing.
The hierarchical tree structures, such as R-Tree and its vari-
ants, are good for queries that access only a particular part
of the dataset, such as range and region search. However,
for complex spatial queries that require reading the dataset
in a linear fashion, the packed key-value storage data per-
forms better under conditions, such as the characteristic of
data distribution. Various approaches that deal with com-
plex spatial queries use different clustering methods, such
as uniform data partitioning [27, 69], space-filling curve [65,
69, 70] and spatio-temporal [52], for packing input spatial
objects.

3.2.1 Uniform Data Partitioning
Similar to the uniform data partitioning approach of hier-
archical indexed spatial dataset, there are many techniques
in the domain of packed key-value storage index which are
based on uniform data partitioning. The Hadoop-Block R-
Tree Join (H-BRJ) builds a parallel R-Tree index on one
of the dataset for executing kNN query. It uses a uniform
sized partitioning for distributing input data over the clus-
ter nodes and builds an R-Tree index there. Similarly, a
Hadoop-Block Nested Loop Join (H-BNLJ) approach does
not use indexing on any dataset and use a nested loop for
kNN join. Here also, the uniform data partitioning shows
similar characteristics, such as ease of implementation and
non-uniform distribution among cluster nodes that subse-
quently leads to poor load balancing and efficiency of queries
[69].

In an advancement over the uniform data partitioning, the
efficiency of spatial-join query is observed to improve dras-
tically when undesired data, duplicate data and data that
does not form a part of the query space, are eliminated
[27]. It uses a Controlled-Replicate framework for running
multi-way spatial-join, that controls the replication of rect-
angles and, avoids unnecessary replication and processing,
and hence, reduces both communication I/O costs.

3.2.2 SFC-Based Data Partitioning
The space-filling curve based data partitioning approach in
MapReduce arranges original input spatial dataset accord-
ing to a SFC and partitions input spatial dataset into blocks
of uniform size. A key-value storage index is applied to the
packed partitioned dataset for spatial queries. A Z-value
based SFC is used in MapReduce for handling kNN query
(H-zkNNJ) [69]. The method reduces excessive communica-
tion and computation cost incurred by H-BNLJ and H-BRJ.
The Z-curve based partitioning approximates the solution
and requires only linear number of reducers. The advantage
of this method is a linear communication and computation
cost as compared to quadratic costs involved with baseline
methods H-BNLJ and H-BRJ that use a quadratic number
of reducers for kNN-join. The cost paid for lower computa-

tion and communication in H-zkNNJ is in terms of accuracy
of query results, as Z-order based SFCs do not well pre-
serve the spatial locality. The Z-order based H-zkNNJ per-
forms better than R-Tree based H-BRJ for index building
and querying with increasing number of reducers. It is be-
cause the size of data blocks decreases and a large number
of smaller R-Trees are constructed in parallel that conse-
quently increase building costs.

A double-transformation technique, PBSM [56], is imple-
mented in a parallel programming environment in MapRe-
duce [65, 70]. A pending file structure and redundant parti-
tion method are used to reduce communication overhead and
to deal with the boundary objects problem, in MapReduce
[65]. The authors observed that the quantity of buckets and
tiles, tile coding method, and tile-to-bucket mapping strat-
egy affect performance. Therefore, two SFCs, Z-curve and
Hilbert-curve were used. The Z-curve used for tile coding
provides weak position consistency, but the convenience of
implementation. The Hilbert-curve provides a better posi-
tion consistency, but needed intense computation. The two-
dimensional plane sweeping technique lowers computation
cost in the absence of an index, to accelerate computations.
The approach performs better for the ANN query for par-
allel spatial databases, such as Oracle Spatial, and query
performance improves with scalability.

The SJMR technique partitions dataset with disjoint par-
titions evenly at map function with a Z-curve tile coding
method and a round-robin tile to partition mapping method
[70]. The SJMR approach uses a duplication avoidance
strategy, named reference tile method, to avoid replication
overhead increased by spatial objects. It is present in tiles
from multiple partitions by replicating these in all parti-
tions. The Z-curve tile coding method in combination with
a round-robin mapping scheme works as a spatial partition-
ing function. The reference tile method returns result pair
for common smallest tile falling inside current partition and
strip of two records. A strip-based plane sweeping method
produces a superset of spatial-join result through overlapped
MBRs. The performance of SJMR increases with an increase
in the number of strips in the plane sweeping algorithm and
with a number of nodes in the cluster. The SJMR performs
better than the Parallel PBSM [65]. The SJMR carries out
partitioning of the dataset and, then, elimination of dupli-
cates in the map phase before a spatial-join is performed by
a reduce task. A single MapReduce task carries out spatial-
join, while the Parallel-PBSM uses two MapReduce tasks
for executing spatial-join. Firstly, a map task performs data
partitioning and a reduce task computes spatial-join. Sec-
ondly, the next MapReduce task eliminates duplication. The
performance of both increases with increase in reduce task
number up to a level, however, beyond it, the performance
of both methods deteriorates as reduce task is not able to
complete in one cycle.

3.2.3 Spatio-Temporal Data Partitioning
The spatio-temporal data represent spatial objects with re-
spect to time, such as the trajectory of a moving object. It
is represented as (x,y,t), where x and y are coordinates of
an object and t represents a timestamp of an object at a
specified position. A framework is described for query pro-
cessing in sequential trajectory data of moving objects based

SIGMOD Record, June 2017 (Vol. 46, No. 2) 25

on MapReduce [52]. The MapReduce framework is not suit-
able for handling continuously changing trajectory data as
frequent updates are inefficient and costs too much in a clus-
ter. A data partitioning strategy is also not applicable for
maintaining continuity of trajectories.

The main problems are management of frequent updates to
a trajectory data due to mobility of objects, data partition-
ing of skewed data and online query processing. The first
problem is solved by maintaining new updated data in main
memory at each node and writing to disk in batches when a
particular size of the data is accumulated. The second prob-
lem of data partitioning is solved with a hybrid partitioning
method. Some static and dynamic spatio-temporal space
partitioning strategies are suitable for uniformly distributed
and skewed data respectively, generated by a small number
of moving objects. However, for massive moving objects,
a highly skewed trajectory data consists of historic- static
data and the new updated data. A hybrid method provides
a solution by using individual static partitioning strategy for
each time period. The key-value store in MapReduce is re-
arranged over partitioned dataset on cluster nodes to opti-
mize query processing of range queries and trajectory based
queries through Partition based Multilevel Index (PMI) and
Object Inverted Index (OII). A good load balance, scalabil-
ity of data importing, an index creation and query process-
ing are achieved with a partitioning strategy with increasing
number of computing nodes. However, the hierarchical tree
structures avoid the exhaustive search over a provided input
dataset for point query, range query and nearest-neighbor
query.

4. SUMMARY
After comparing the surveyed approaches by means of clas-
sification criteria, some peculiar issues have been revealed
which are thought to be relevant with respect to efficient
spatial query processing. In the paper, these issues have
been discussed with an intention to reflect its potential for
further research. Many R-Tree variant spatial indexes for
efficient spatial data handling exist, but not all have been
used in the MapReduce framework. Basic R-Tree and its
variant spatial indexes have been implemented extensively
in MapReduce, as can be seen from the Table 2. However,
many other existing spatial indexing techniques in a sequen-
tial programming environment, surveyed in Section 2 and
summarized in Table 1 which perform better than the basic
R-Tree variants, have not been implemented in MapReduce.
It is learnt from Section 2 that approaches such as improved
R-Tree variants, data clustering, sorting MBRs, top-down
and cache-conscious approaches are superior to basic R-Tree
variants. However, a lot of research work in implementing
spatial indexes in MapReduce, presented in Section 3, has
implemented basic R-Tree variants. Spatial indexes from
other approaches have been rarely implemented. Present-
ing all spatial indexing approaches in detail in Section 2,
motivates for their implementation in MapReduce.

The improved R-Tree variants are better than basic R-Tree
variants [12, 14, 41]. The storage utilization, insertion cost
and window query time of Revised R*-Tree is better than
R*-Tree [12]. The applicability of Revised R*-Tree in high
dimensions is more than the basic R-Tree variants [12]. Sim-
ilarly, the storage utilization, insertion cost, performance

of spatial queries such as window query, point query and
nearest-neighbor query, of WeR-Tree is better than R*-Tree
[14]. The applicability in high dimensions and spatial query
performance for skewed data is also better than R*-Tree [14].
In a similar way, the X-Tree has proven better than R*-Tree
for storage utilization, spatial queries such as window query
and point query, and applicability in high dimensions [41].

The data clustering approach are better than basic R-Tree
variants [15, 26]. The storage utilization, insertion cost,
spatial query performance of queries, such as window query,
point query and nearest-neighbor query of the cR-Tree, and
performance of spatial queries for skewed data are better
than R*-Tree [15]. However, the applicability of the index
is low and comparable to the basic R-Tree variants [15].
The insertion cost and window query efficiency of another
clustering approach, R-Tree using iterative optimization, is
higher than R*-Tree [26]. However, the performance of
the R-Tree using iterative optimization for window query
is low and comparable to basic R-Tree variants when spatial
dataset is skewed or is in high dimensions [26].

The sorting MBRs approach is better than basic R-Tree
variants [39, 40, 44, 46, 59, 67]. The insertion cost, point
query efficiency and applicability of expressing Hilbert-curve
and their sequence numbers in a tree structure is better as
compared to the R-Tree [44]. The storage utilization and,
efficiency of the window and point query of uniformly dis-
tributed and skewed data, of Hilbert R-Tree is significantly
higher as compared to R*-Tree. However, the insertion cost
is comparable to R*-Tree and the applicability in high di-
mensions is low as compared to R*-Tree [39, 40]. The stor-
age utilization, query efficiency and applicability in high di-
mensions, of Lowx R-Tree is better than R*-Tree but low
as compared to Hilbert R-Tree [59]. The storage utilization
and, performance of window and point query, of STR R-Tree
is even better than Hilbert R-Tree. However, the query per-
formance of skewed data and high dimensional data is com-
parable and lower than Hilbert R-Tree, respectively [46].
The storage utilization and insertion cost of MR-Tree is bet-
ter than Hilbert R-Tree, but lower than STR R-Tree. The
window and point query efficiency of MR R-Tree is better
than STR R-Tree, however, the query performance of MR
R-Tree for skewed data remains comparable to Hilbert R-
Tree and the applicability in high dimensions is even lower
than Hilbert R-Tree [67].

The performance of top-down approach, TGS R-Tree and
Priority R-Tree, is better than all other approaches for all
parameters [10, 25]. The insertion cost of the TGS R-Tree
is even better than Priority R-Tree, however, the query per-
formance of Priority R-Tree becomes better for skewed data.
Both approaches have very good applicability in high dimen-
sions and best worst-case performance. The cache-conscious
approach shows better performance for all parameters as
compared to basic R-Tree variants, comparable performance
as compared to improved R-Tree variants, data clustering
approach and sorting MBRs approach, and lower perfor-
mance than top-down approaches [34, 42].

A significantly better bulk-loading and query execution time
for all MapReduce-based spatial indexing approaches than
traditional serial programming environment is strongly ev-

26 SIGMOD Record, June 2017 (Vol. 46, No. 2)

ident from the survey work carried out in Section 3. A
comparison of the existing hierarchical indexed and packed
key-value storage spatial index implementations in MapRe-
duce, as presented in Table 2, for parameters, spatial prox-
imity of distributed data on cluster nodes, index-build time,
efficiency of query execution, load balancing, data trans-
mission overhead through the network, and applicability
in high dimensions, latency for random and sequential ac-
cess for a large number of concurrent reads, effect of cluster
scaling on query execution, effect of index-node size, effect
of packet-data size and performance for non-uniformly dis-
tributed spatial dataset have been done. The former ap-
proach is better for random access spatial queries, such as
search queries, while the latter approach is better for se-
quential access spatial queries, such as spatial-join queries.
The spatio-temporal, spatial index is useful for queries, such
as tracking mobile objects with respect to time. Among the
hierarchical indexed dataset, the uniform data partitioning
based grid index shows poor performance on all parameters,
however, it is quite strong towards applicability in high di-
mensions.

In-depth analysis of spatial indexes in MapReduce, pre-
sented in Section 3, is not available as compared to the
traditional serial programming environment, presented in
Section 2. The comparison of spatial index implemented in
MapReduce has been done with parallel spatial databases
only, however, comparison with other spatial indexes imple-
mented in MapReduce is rarely available. The performance
of disjoint decomposition based indexes, Quadtree-based in-
dexes, for index building and query processing is well es-
tablished [13, 33, 36, 48]. The Quadtree-based approaches
provide better spatial proximity and data distribution, effi-
ciency for search queries and low network transfer overhead
as compared to other data partitioning approaches, however,
their storage requirement is more which is evident from their
high index building time [7, 8, 72]. It has been analyzed from
the survey that not much work has been done on implement-
ing Quadtree indexes and Quadtree-based data partitioning
in MapReduce. The quadtree partitioning based spatial in-
dexes are the best, but these are very poor for the index
building time and applicability in high dimensions [7, 8, 72].

In the survey, it has been seen that query processing is highly
dependent on the size and nature of the dataset, and indexes
show varying performance with different type of dataset. Be-
sides it, the explored indexes in MapReduce have not been
deeply analyzed for uniformly distributed, non-uniformly
distributed and skewed data of varying sizes [6, 7, 8, 17,
18, 47, 49, 54, 66, 68, 72]. It has been observed that some of
the existing implementations on MapReduce have not con-
sidered the effect of index-node size [7, 8, 17, 18, 22, 23, 24,
47, 49, 54, 66, 68, 72] and communication overhead [6, 17,
18, 22, 23, 24, 49, 54, 66, 68, 72]. The high communication
overhead in MapReduce is due to its run-time scheduling
scheme and the pull model that interfere the efficiency for
queries [37, 57]. One method to reduce the communication
overhead for the intermediate data generated during query
processing in the Hadoop system is implemented in [51]. The
authors used an independent distributed file system Parallel
Secondo File System (PSFS) that avoids the transform and
transfer of intermediate data through HDFS, and transfers
data among database engines directly.

5. REFERENCES
[1] Hadoop. In http://hadoop.apache.org.

[2] HBase. In http://hbase.apache.org.

[3] OGC. In http://www.opengis.orgltechno.

[4] Performance Measurement of a Hadoop Cluster. In
http://www.acma.com/acma/pdfs /AMAX Emulex
Hadoop Whitepaper.pdf.

[5] R-Tree. In http://en.wikipedia.org/wiki/R-tree.

[6] D. Achakeev, M. Seidemann, M. Schmidt, and
B. Seeger. Sort-Based Parallel Loading of R-Trees. In
Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Analytics for Big
Geospatial Data, pages 62–70, 2012.

[7] A. Aji and F. Wang. High Performance Spatial Query
Processing for Large Scale Scientific Data. In
Proceedings of the SIGMODPODS PhD Symposium,
pages 9–14, 2012.

[8] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and
J. Saltz. Hadoop-GIS: A High Performance Spatial
Data Warehousing System over MapReduce.
Proceedings of the VLDB Endowment,
6(11):1009–1020, 2013.

[9] R. M. Arasanal and D. U. Rumani. Improving
MapReduce Performance through Complexity and
Performance Based Data Placement in Heterogeneous
Hadoop Clusters. In Proceedings of the International
Conference Distributed Computing and Internet
Technology, pages 115–125, 2013.

[10] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The
Priority R-Tree: A Practically Efficient and
Worst-Case Optimal R-Tree. ACM Transactions on
Algorithms, 4(1), 2008.

[11] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: An Efficient and Robust
Access Method for Points and Rectangles. ACM
SIGMOD Record, 19(2):322–331, 1990.

[12] N. Beckmann and B. Seegar. A Revised R*-Tree in
Comparison with Related Index Structures. In
Proceedings of the ACM SIGMOD international
conference on Management of data, pages 799–812,
2009.

[13] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J.
Shekita, and Y. Tian. A Comparison of Join
Algorithms for Log Processing in MapReduce. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 975–986,
2010.

[14] P. Bozanis and P. Foteinos. WeR-Trees. Data and
Knowledge Engineering, 63(2):397–413, 2007.

[15] S. Brakatsoulas, D. Pfoser, and Y. Theodoridis.
Revisiting R-Tree Construction Principles. In
Proceedings of the 6th Springer East European
Conference on Advances in Databases and
Information System, pages 149–162, 2002.

SIGMOD Record, June 2017 (Vol. 46, No. 2) 27

[16] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
Processing of Spatial Joins Using R-Trees. ACM
SIGMOD Record, 22(2):237–246, 1993.

[17] A. Cary, Y. Yesha, M. Adjouadi, and N. Rishe.
Leveraging Cloud Computing in Geodatabase
Management. In Proceedings of the IEEE
International Conference on Granular Computing,
pages 73–78, 2010.

[18] A. Cary, Zhengguo, V. Hristidis, and N. Rishe.
Experiences on Processing Spatial Data with
MapReduce. In Proceedings of the 21st International
Conference on Scientific and Statistical Database
Management, pages 302–319, 2009.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable-A Distributed Storage System
for Structured Data. ACM Transactions on Computer
Systems (TOCS), 26(2):1–26, 2008.

[20] C. Doulkeridis and K. Norvag. A Survey of
Large-Scale Analytical Query Processing in
MapReduce. VLDB Journal, 23(3):355–380, 2013.

[21] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan.
CG Hadoop: Computational Geometry in
MapReduce. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 294–303,
2013.

[22] A. Eldawy and M. F. Mokbel. SpatialHadoop. In
http://spatialhadoop.cs.umn.edu/.

[23] A. Eldawy and M. F. Mokbel. A Demonstration of
SpatialHadoop: An Efficient MapReduce Framework
for Spatial Data. VLDB Journal, 6(12):1230–1233,
2013.

[24] A. Eldawy and M. F. Mokbel. The Ecosystem of
SpatialHadoop. SIGSPATIAL Special, 6(3):3–10, 2014.

[25] Y. J. Garcia, M. A. Lopez, and S. T. Leutenegger. A
Greedy Algorithm for Bulk Loading R-Trees. In
Proceddings of the 6th ACM international symposium
on Advances in geographic information system, pages
163–164, 1998.

[26] D. Gavrila. R-Tree Index Optimization. In Proceedings
of the 6th International Symposium on Spatial Data
Handling, pages 771–791, 1994.

[27] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, and
L. Subramanium. Processing Multi-Way Spatial Joins
on MapReduce. In Proceedings of the 16th
International Conference on Extending Database
Technology, pages 113–124, 2013.

[28] R. H. Guting. An Introduction to Spatial Database
Systems. VLDB Journal, 3(4):357–399, 1994.

[29] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. ACM SIGMOD Record,
14(2):47–57, 1984.

[30] B. Hedlund. Understanding Hadoop Clusters and the
Network. In http://bradhedlund.com/2011/09/10/
understanding-hadoop-clusters-and-the-network/.

[31] D. A. Heger. Hadoop Design, Architecture and
MapReduce Performance. In
http://www.datanubes.com/mediac/
HadoopArchPerfDHT.pdf.

[32] E. Hoel and H. Samet. A Qualitative Comparison
Study of Data Structures for Large Line Segment
Databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 205–214, 1992.

[33] E. G. Hoel and H. Samet. Performance of
Data-Parallel Spatial Operations. In Proceedings of
the 20th International Conference on very Large Data
Bases, pages 156–167, 1994.

[34] S. Hwang, K. Kwon, S. K. Cha, and B. S. Lee.
Performance Evaluation of Main-Memory R-Tree
Variants. In Proceedings of the International
Symposium on Advances in Spatial and Temporal
Databases, pages 10–27, 2003.

[35] C. F. Ibrahim Kamel. Parallel R-Trees. ACM
SIGMOD Record, 21(2):195–204, 1992.

[36] Jens, Dittrich, Jorge-Arnulfo, Quiane-Ruiz, A. Jindal,
Y. Kargin, V. Setty, and J. Schad. Hadoop++:
Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing). Proceedings of the VLDB
Endowment, 3(1-2):515–529, 2010.

[37] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The
Performance of MapReduce: An In-depth Study.
Proceedings of the VLDB Endowment, 3(1-2):472–483,
2010.

[38] F. Jun, T. Zhixian, W. Mian, and X. Liming.
HQ-Tree: A Distributed Spatial Index Based on
Hadoop. China communications, 11(7):128–141, 2014.

[39] I. Kamel and C. Faloutsos. On packing R-trees. In
Proceedings of the 2nd International Conference on
Information and Knowledge Management, pages
490–499, 1993.

[40] I. Kamel and C. Faloutsos. Hilbert R-Tree: An
Improved R-tree Using Fractals. In Proceedings of the
20th International Conference on Very Large Data
Bases, pages 500–509, 1994.

[41] D. Keim, B. Bustos, S. Berchtold, and H.-P. Kreigel.
Indexing, X-tree. 2008.

[42] K. Kim, S. K. Cha, and K. Kwon. Optimizing
Multidimensional Index Trees for Main Memory
Access. ACM SIGMOD Record, 30(2):139–150, 2001.

[43] A. Lakshman and P. Malik. Cassandra-A
Decentralized Structured Storage System. In ACM
SIGOPS Operating Systems Review, pages 35–40,
2010.

[44] J. Lawder and P. King. Using Space-Filling Curves for
Multi-Dimensional Indexing. In Proceedings of the
17th British National Conference on Databases:
Advances in Databases, pages 20–35, 2000.

28 SIGMOD Record, June 2017 (Vol. 46, No. 2)

[45] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and
B. Moon. Parallel Data Processing with MapReduce:
A Survey. ACM SIGMOD Record, 40(4):11–20, 2011.

[46] S. Leutenegger, M. Lopez, and J.Edgington. STR: A
Simple and Efficient Algorithm for R-Tree Packing. In
Proceedings of the 13th IEEE International
Conference on Data Engineering, pages 497–506, 1997.

[47] H. Liao, J. Han, and J. Fang. Multi-Dimensional Index
on Hadoop Distributed File System. In Proceedings of
the 5th IEEE International Conference on Networking,
Architecture, and Storage, pages 240–249, 2010.

[48] X. Liu, J. Han, Y. Zhong, C. Han, and X. He.
Implementing WebGIS on Hadoop: A Case Study of
Improving Small File I/O Performance on HDFS. In
Proceedings of the IEEE International Conference on
Cluster Computing and Workshops, pages 1–8, 2009.

[49] Y. Liu, N. Jing, L. Chen, and H. Chen. Parallel
Bulk-Loading of Spatial Data with MapReduce: An
R-Tree Case. Wuhan University Journal of Natural
Sciences, 16(6):513–519, 2011.

[50] M.-L. Lo and C. V. Ravishankar. Spatial Joins Using
Seeded Trees. ACM SIGMOD Record, 23(2):209–220,
1994.

[51] J. Lu and R. H. Guting. Parallel Secondo-Boosting
Database Engines with Hadoop. In Proceedings of the
18th IEEE International Conference on Parallel and
Distributed Systems, pages 738–743, 2012.

[52] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query
Processing of Massive Trajectory Data Based on
MapReduce. In Proceedings of the 1st International
Workshop on Cloud Data Management, pages 9–16,
2009.

[53] Y. Manolopoulos, A. Nanopoulos, A. N.
Papadopoulos, and Y. Theodoridis. R-Trees: Theory
and Applications. 2006.

[54] S. Nishimura, S. Das, D. Agarwal, and A. E. Abbadi.
MD-HBase, Design and Implementation of An Elastic
Data Infrastructure for Cloud-Based Location
Services. Distributed Parallel Databases, 31:289–319,
2013.

[55] A. Papadopoulos and Y. Manolopoulos. Parallel
Bulk-Loading of Satial Data. Parallel Computing,
29(10):1419–1444, 2013.

[56] J. M. Patel and D. J. DeWitt. Partition Based
SpatialMerge Join. ACM SIGMOD Record,
25(2):259–270, 1996.

[57] A. Pavlo, E. Paulson, A.Rasin, D. abadi, D. DeWitt,
S. Madden, , and M. S. braker. A Comparison of
Approaches to Large-Scale Data Analysis. In
Proceedings of the 35th ACM SIGMOD International
Conference on Management of Data, pages 165–178,
2009.

[58] J. Rao and K. A. Ross. Making B+- Trees Cache
Conscious in Main Memory. ACM SIGMOD Record,
29(2):475–486, 2000.

[59] N. Roussopoulos and D. Leifker. Direct Spatial Search
on Pictorial Databases Using Packed R-Trees. ACM
SIGMOD Record, 14(4):17–31, 1985.

[60] H. Samet. The Design and Analysis of Spatial Data
Structures. 1990.

[61] B. Schnitzer and S. T. Leutenegger. Master-Client
R-Trees: A New parallel R-Tree Architecture. In
Proceedings of the 11th IEEE International
Conference on Scientific and Statistical Database
Management, pages 68–77, 1999.

[62] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. In Proceedings of the 13th International
Conference on Very Large Data Bases, pages 507–518,
1987.

[63] S. Shekhar and S. Chawla. Spatial Databases-A Tour.
2003.

[64] K.-L. Tan, B. C. Ooi, and D. J. Abel. Exploiting
Spatial Indexes for Semijoin-Based Join Processing in
Distributed Spatial Database. IEEE Transactions on
Knowledge and Data Engineering, 12(6):920–937,
2000.

[65] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and
X. Song. Accelerating Spatial Data Processing with
MapReduce. In Proceedings of the 16th IEEE
International Conference on Parallel and Distributed
Systems, pages 229 – 236, 2010.

[66] Y. Wang and S. Weng. Research and Implementation
on Spatial Data Storage and Operation Based on
Hadoop Platform. In Proceedings of the 2nd IITA
International Conference on Geoscience and Remote
Sensing, pages 275 – 278, 2010.

[67] X. Wu and C. Zang. A New Spatial Index Structure
for GIS Data. In Proceedings of the 3rd IEEE
International Conference on Multimedia and
Ubiquitous Engineering, pages 471–476, 2009.

[68] L. Xun and Z. Wenfeng. Parallel Spatial Index
Algorithm based on Hilbert Partition. In Proceedings
of the IEEE International Conference on
Computational and Information Sciences, pages
876–879, 2013.

[69] C. Zhang, F. Li, and J. Jestes. Efficient Parallel kNN
Joins for Large Data in MapReduce. In Proceedings of
the 15th International Conference on Extending
Database Technology, pages 38–49, 2012.

[70] S. Zhang, J. Han, Z. Liu, K. Hwang, and Z. Xu.
SJMR: Parallelizing Spatial Join with MapReduce on
Clusters. In Proceedings of the IEEE International
Conference on Cluster Computing and Workshops,
pages 1–8, 2009.

[71] K. Zheng and Y. Fu. Research on Vector Spatial Data
Storage Schema Based on Hadoop Platform.
International Journal of Database Theory and
Application, 6(5):85–94, 2013.

[72] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and
G. Chen. Towards Parallel Spatial Query Processing
for Big Spatial Data. In Proceedings of the IEEE 26th
International Conference on Parallel and Distributed
Processing, pages 2085 – 2094, 2012.

SIGMOD Record, June 2017 (Vol. 46, No. 2) 29

Archimedes: Efficient Query Processing over
Probabilistic Knowledge Bases

Yang Chen∗, Xiaofeng Zhou∗, Kun Li†, Daisy Zhe Wang∗
*Department of Computer and Information Science and Engineering, University of Florida

†Google, Inc.

ABSTRACT
We present the ARCHIMEDES system for efficient query
processing over probabilistic knowledge bases. We de-
sign ARCHIMEDES for knowledge bases containing in-
complete and uncertain information due to limitations
of information sources and human knowledge. Answer-
ing queries over these knowledge bases requires effi-
cient probabilistic inference. In this paper, we describe
ARCHIMEDES’s efficient knowledge expansion and query-
driven inference over UDA-GIST, an in-database uni-
fied data- and graph-parallel computation framework.
With an efficient inference engine, ARCHIMEDES pro-
duces reasonable results for queries over large uncertain
knowledge bases. We use the Reverb-Sherlock and Wik-
ilinks knowledge bases to show ARCHIMEDES achieves
satisfactory quality with real-time performance.

1 Introduction
Recent years have seen a drastic rise in the construction
of web knowledge bases (KBs), e.g., DBPedia, Free-
base, NELL, Probase, and YAGO. Meanwhile, due to
the uncertainty of information extraction algorithms and
the limitations of human knowledge, current knowledge
bases are still incomplete and uncertain, resulting in sub-
optimal query results [5, 34]. The objective of this pa-
per is to extend our previous research on knowledge ex-
pansion [5], query-driven inference [35], and the UDA-
GIST computation framework [17] to build a prototype
knowledge base system, ARCHIMEDES, to support effi-
cient knowledge expansion with uncertain Horn clauses
and query-driven probabilistic inference.
Knowledge Expansion. ARCHIMEDES applies large sets
of Horn clauses to derive implicit knowledge from exist-
ing knowledge bases. The rules are constructed by state-
of-the-art first-order mining algorithms [6, 4, 9, 25]. It
employs a novel relational model [5] to apply batches of
inference rules using relational operations and performs
probabilistic inference by query-driven MCMC [18].
Query-Driven Inference. Observing that queries are of-
ten relevant to small parts of the knowledge graphs [26,
30], ARCHIMEDES applies MCMC only to the K-hop

networks to achieve real-time performance. Specialized
MLN inference algorithms [10, 14, 23] can improve in-
ference quality over the K-hop network, but MCMC is
more widely supported by existent big data frameworks,
e.g., UDA-GIST [17] and GraphLab [19].
UDA-GIST. UDA-GIST [17] is an in-database analyt-
ics framework unifying data-parallel and graph-parallel
computation. State-of-the-art big data frameworks sup-
port either data-parallel or graph-parallel computation.
GraphLab [19], for example, supports only graph-parallel
computation; Spark [32, 33] and MapReduce [7], on
the other hand, support only data-parallel computation.
UDA-GIST unifies these two types of parallel computa-
tion in a cohesive scalable system.

We evaluate ARCHIMEDES on Sherlock-Reverb [25,
8] and Wikilink [29]. These datasets contain large-scale,
incomplete, and uncertain knowledge. We compare with
Tuffy [22], the probabilistic inference engine of Deep-
Dive, and GraphLab. We show that ARCHIMEDES pro-
duces competent result with efficient first-order reason-
ing and query-driven inference supported by the UDA-
GIST in-database framework. We demonstrate the sys-
tem with ARCHIMEDESONE [35], an interactive query
interface. All our code and data are available online1.

To summarize, we solve the problem of efficient query
processing in probabilistic knowledge bases with three
novel contributions:
• Knowledge expansion: Derive implicit knowledge
from knowledge bases using large rule sets;
• Query-driven inference: Improve inference perfor-
mance by focusing MCMC on the query variables;
• Efficient computation: Leverage the UDA-GIST uni-
fied data- and graph-parallel computation framework.

We organize the remainder of this paper as follows.
Section 2 describes the overview of ARCHIMEDES sys-
tem design. Sections 3 to 5 describe the system compo-
nents in detail. Section 6 presents experimental evalua-
tion with public knowledge bases. Section 7 discusses
related work, and Section 8 concludes the paper.
1http://dsr.cise.ufl.edu/projects/probkb-web-scale-
probabilistic-knowledge-base.

30 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Entities E Classes C RelationsR Relationships Π

Ruth Gruber,
New York City,
Brooklyn

W (Writer) = {Ruth Gruber},
C (City) = {New York City},
P (Place) = {Brooklyn}

BornIn(W , P), BornIn(W , C),
LiveIn(W , P), LiveIn(W , C),
LocateIn(P , C)

0.96 BornIn(Ruth Gruber, New York City)
0.93 BornIn(Ruth Gruber, Brooklyn)

Rules L
1.40 ∀w ∈W ∀p ∈ P (LiveIn(w, p)← BornIn(w, p))
1.53 ∀w ∈W ∀c ∈ C (LiveIn(w, c)← BornIn(w, c))

0.32 ∀p ∈ P ∀c ∈ C ∀w ∈W (LocateIn(p, c)← LiveIn(w, p) ∧ LiveIn(w, c))
0.52 ∀p ∈ P ∀c ∈ C ∀w ∈W (LocateIn(p, c)← BornIn(w, p) ∧ BornIn(w, c))
∞ ∀c1 ∈ C ∀c2 ∈ C ∀w ∈W (BornIn(w, c1) ∧ BornIn(w, c2)→ c1 = c2)

Table 1: Example probabilistic knowledge base constructed from Reverb-Sherlock extractions.

2 Probabilistic Knowledge Bases
A probabilistic knowledge base extends first-order knowl-
edge bases to support uncertain facts and rules. The pri-
mary goal of modeling uncertainty is to represent knowl-
edge mined by probabilistic information extraction al-
gorithms that contain uncertain facts and rules, as illus-
trated by the Reverb-Sherlock KB in Table 1. We for-
mally define a probabilistic knowledge base below [5].

Definition 1. We define a probabilistic knowledge base
to be a 5-tuple Γ=(E ,C,R,Π,L), where

1. E = {e1, . . . , e|E|} is a set of entities. Each entity
e ∈ E refers to a real-world object.
2. C = {C1, . . . , C|C|} is a set of classes (or types).
Each class C ∈ C is a subset of E : C ⊆ E .
3. R = {R1, . . . , R|R|} is a set of relations. Each R ∈
R defines a binary relation onCi, Cj ∈ C: R ⊆ Ci×Cj .
We call Ci, Cj the domain and range and useR(Ci, Cj)
to denote the relation with its domain and range.
4. Π = {(r1, w1), . . . , (r|Π|, w|Π|)} is a set of weighted
facts (or relationships). For each (r, w) ∈ Π, r is a tuple
(R, x, y), where R(Ci, Cj) ∈ R, x ∈ Ci, y ∈ Cj , and
(x, y) ∈ R; w ∈ R is a weight indicating how likely r is
true. We also use R(x, y) to denote the tuple (R, x, y).
5. L = {(F1,W1), . . . , (F|L|,W|L|)} is a set of weighted
clauses (or rules). It defines a Markov logic network.
For each (F,W) ∈ L, F is a first-order logic clause,
and W ∈ R is a weight indicating how likely F holds.

As in [5], we confine L to Horn clauses with binary
predicates. Horn clauses prove useful in various knowl-
edge base inference tasks [21, 5, 25]. Their similar
structures facilitate efficient inference engines leverag-
ing the KB relational model in Section 3.

Example 1. Table 1 shows an example probabilistic KB
constructed from Reverb [8] extractions and Sherlock [25]
rules. The knowledge base describes the birth place and
city of a writer Ruth Gruber with relations “BornIn,”
“LiveIn,” and “LocateIn.” The extracted facts state that
Ruth Gruber was born in New York City and Brooklyn

with weights 0.96 and 0.93, respectively, assigned by IE
algorithms. The weighted rules infer Ruth Gruber’s liv-
ing place based on his birth place, and a hard rule with
an infinite positive weight states that a person was born
in only one city. �

Br

RG

NY

BornIn BornIn

LiveIn LiveIn

LocatedIn

(a) Knowledge graph.

1

2

3

4

5

(b) Factor graph.

ID Fact
1 BornIn(Ruth Gruber, New York City)
2 BornIn(Ruth Gruber, Brooklyn)
3 LiveIn(Ruth Gruber, New York City)
4 LiveIn(Ruth Gruber, Brooklyn)
5 LocatedIn(Brooklyn, New York City)

(c) Variables 1-5 in the factor graph (b).

Figure 1: Factor graph representation of the Reverb-
Sherlock knowledge base.

We view a probabilistic knowledge base as a tem-
plate for constructing ground factor graphs [24]. A fac-
tor graph is a set of factors Φ = {φ1, . . . , φN}, where
each factor φi is a function φi(Xi) over a random vec-
tor Xi indicating the probabilistic correlations among
the random variables in Xi. These factors together de-
termine a joint probability distribution over the random
vector X consisting of all the random variables in the
factors [16]. Factor graphs are visually represented as
graphs. In the graph representation, each node is a fact
Xi (circle) or factor φi(Xi) (square) with variables Xi

as its neighbors. Figure 1(b) shows an example fac-
tor graph representation of the knowledge graph Fig-
ure 1(a). Each factor in Figure 1(b) is defined by a
ground fact, e.g., BornIn(Ruth Gruber, New York City)
with weight 0.96, or a ground rule, e.g., LiveIn(Ruth

SIGMOD Record, June 2017 (Vol. 46, No. 2) 31

Gruber, New York City) ← BornIn(Ruth Gruber, New
York City) with weight 1.40. We use factor graphs to
describe these correlations among the facts.

In a factor graph Φ = {φ1, . . . , φN}, the factors to-
gether determine a joint probability distribution over the
random vector X consisting of all the random variables
in the factor graph:

P (X = x) =
1

Z

∏

i

φi(Xi) =
1

Z
exp

(∑

i

Wini(x)

)
,

(1)
where ni(x) is the number of true groundings of rule
Fi in x, Wi is its weight, and Z is the partition function,
i.e., normalization constant. ARCHIMEDES answers user
queries by computing the marginal probability P (X =
x), the probability distribution of a query node X de-
fined by (1). The computation of marginal probabilities
is called marginal inference in probabilistic graphical
models literature. Exact inference is tractable for only
limited families of graphical models [16], and state-of-
the-art MLN inference engines use sampling algorithms
including Markov chain Monte Carlo (MCMC) and MC-
SAT [24, 23, 22]. Observing the ground factor graphs
of real knowledge bases are large [5] while user queries
often focus on small parts of the knowledge graph [35],
ARCHIMEDES employs a query-driven approach to fo-
cus MCMC on the query nodes to avoid computation
over the entire factor graph.

2.1 System Architecture

To efficiently process queries, we design three key com-
ponents of ARCHIMEDES: an inference engine for ef-
ficient knowledge expansion to derive implicit knowl-
edge from existing KBs [5], query-driven inference to
compute probabilities of the query facts [35], and the
UDA-GIST framework for in-database data-parallel and
graph-parallel analytics [17]. We provide a user inter-
face for load, search, and update queries, as described
in [35]. The system architecture is shown in Figure 2.

UDA-GIST (Section 5)

Knowledge Expansion
(Section 3)

Query-Driven Inference
(Section 4)

Query Processing

Load Search Update
Query Interface

KB Design

Computing Platform
PostgreSQL

Relational KB Model

Facts Rules

Factor Graph

Figure 2: ARCHIMEDES System Components.

ARCHIMEDES models facts, rules, and the factor graph
in relational tables. The relational model enables it to
efficiently perform knowledge expansion by joining the
facts and rules tables. The knowledge expansion and
query-driven inference using MCMC exemplify appli-

cations requiring both data-parallel and graph-parallel
computation. They are efficiently supported by the UDA-
GIST in-database analytics framework by unifying the
UDAs from relational databases and GIST from graph
analytics with a shared in-memory state. We describe
the details of each component in Sections 3 to 5.

3 Knowledge Expansion

To efficiently apply the inference rules, we represent
a knowledge base as relational tables. This relational
model is first introduced by ProbKB [5] and proves ef-
ficient in rule mining [4] by applying rules in batches
using join queries. The main challenge with inference
rules is that they have flexible structures. To adapt for
different structures, we define structural equivalence to
divide rules into equivalent classes so that each equiva-
lent class has a fixed table format. In particular, we call
two first-order clauses structurally equivalent if they dif-
fer only in entities, types, and predicates.

Example 2. Consider the following inference rules:

1. isMarriedTo(x, y)← isMarriedTo(y, x);
2. isInterestedIn(x, y)← influences(y, x) ;
3. influences(x, y)← directed(x, z), actedIn(y, z);
4. influences(x, y)← worksAt(x, z), worksAt(y, z).

Rules 1 and 2 are structurally equivalent since their only
differences are the predicates (isMarriedTo, influences,
isInterestedIn). Similarly, Rules 3 and 4 are structurally
equivalent. Therefore, we store Rules 1 and 2 in one
table with the columns specifying the predicates of the
head and body, as shown in Table 2 (left). We store
Rules 3 and 4 in Table 2 (right), its columns storing the
head and first, second predicates of the rule body. �

Head Body
isMarriedTo isMarriedTo

isInterestedIn influences

Head Body1 Body2
influences directed actedIn
influences worksAt worksAt

Table 2: (Left) Relational table for rules 1 and 2.
(Right) Relational table for rules 3 and 4.

Based on the relational model, we express the knowl-
edge expansion algorithm as join queries between the
facts and rules tables, one join for each rules table. The
details of the join queries are described in [5]. Our ex-
periments show that applying rules in batches results
in a 200-300 times of speedup over the state-of-the-art
approaches. The result of knowledge expansion is a
ground factor graph Φ = {φ1, . . . , φN}, where each
factor φi(Xi) represents a ground rule. The factor graph
is modeled by a relational table, the columns storing
predicate IDs of variables X ∈ X and weights of the
factors. Performing probabilistic inference on this factor
graph yields marginal probabilities of the query facts.

32 SIGMOD Record, June 2017 (Vol. 46, No. 2)

4 Query-Driven Inference
ARCHIMEDES uses query-driven inference to speed up
MLN inference algorithms by focusing computation on
the query facts. The query-driven inference algorithm is
designed with the UDA-GIST analytics framework [17]
to achieve efficient inference in a relational database sys-
tem. Furthermore, we use K-hop approximation to fo-
cus computation on the query facts.
K-hop approximation. To achieve real-time response,
we approximate the inference by extracting K-hop sub-
networks of the ground factor graph, consisting of nodes
within K hops from the query nodes. The K-hop ap-
proximation is based on the observation that neighbors
of the query nodes have more influence than distant nodes.
In Figure 3(a), for example, to compute the probability
of the central node, we use the 2-hop sub-network in
Figure 3(b) for approximation. To achieve real-time re-
sponse, we use an additional network limit parameter
to control the expansion of K-hop sub-networks as K
increases. In our evaluation, we achieve an 18 times
of speedup compared to inference over the entire factor
graph by choosing K = 2, with an acceptable error of
0.04 in the computed probabilities.

(a) (b)

Figure 3: (a) The original factor graph. (b) 2-hop
network.

UDA-GIST. We use the MCMC algorithms to compute
the probabilities defined by the K-hop network. We op-
timize MCMC on the UDA-GIST in-database analytics
framework [17]: we build the factor graph by relational
operations with User Defined Aggregates (UDAs) and
compute probabilities of query facts by MCMC with
General Iterative State Transition (GIST). The combined
UDA-GIST framework extends relational database sys-
tems to support algorithms requiring both data- and graph-
parallel computation, including MCMC and MC-SAT.
We describe the design of UDA-GIST in Section 5.

5 UDA-GIST
Most major DBMSes support User-Defined Aggregates
(UDAs) for parallel data analytics. UDAs are suitable
for data-parallel analytics where data are naively parti-
tioned and computation is performed on the partitions
in parallel. In the context of query processing over large
probabilistic KB graphs, such data-parallel operators im-
plement efficient propositional KB graph materializa-
tion, subgraph matching, and result generation.

However, UDAs do not support efficient statistical in-
ference algorithms that perform iterative transitions over
a large state, where the state is a graph-like data struc-
ture. The computation is not naively partitioned due to
data dependency within the state (e.g., dependencies be-
tween nodes and edges in a graph) as DBMSes are fun-
damentally data driven and computation is tied to the
processing of tuples. We refer to these iterative process-
ing algorithms as graph parallel algorithms. MCMC and
random walk over large probabilistic graphical graph are
examples of such algorithms. The fundamental ques-
tion is: Can graph-parallel inference algorithms be effi-
ciently implemented in DBMSes?
The General Iterative State Transition (GIST) Oper-
ator. To answer the demand of supporting in-database
graph-parallel analytics, we propose the GIST abstrac-
tion to generalize the GraphLab API [17]. GIST de-
fines four abstract data types to describe state-transition
algorithms: an in-memory state representing the state
space, a task encoding the state transition task for each
iteration, a scheduler responsible for the generation and
scheduling of tasks, and a convergence UDA (cUDA)
imposing the stopping condition of the GIST operations.
An efficient GIST implementation also supports opti-
mizations including (1) asynchronous parallelization of
state transitions, (2) efficient and flexible state imple-
mentation, and (3) code generation.
The UDA-GIST Data Processing Framework. We in-
tegrate the GIST operator into DBMSes with UDAs and
User-Defined Functions [2]. From the relational repre-
sentation of a probabilistic KB graph, SQL queries and
UDAs generate a large in-memory state representing the
propositional KB graph. The GIST operator then runs
parallel inference algorithms on the in-memory state.
The query results are extracted from the converged state
using an independent UDA function. UDA-GIST uni-
fies data-parallel (e.g., graph materialization) and graph-
parallel computation (e.g., inference) into an integrated
in-database analytics framework.

6 Experiments
We evaluate ARCHIMEDES using Reverb-Sherlock [8,
25] Wikipedia KB with 407,247 facts and 30,912 first-
order inference rules, a synthetic knowledge base with
varying numbers of facts and rules ranging from 10K
to 10M, and Wikilinks for cross-document coreference
on UDA-GIST. We run the experiments on a 32-core
machine with 64GB of RAM running Red Hat Linux 4.

6.1 Result of Knowledge Expansion
To evaluate knowledge expansion, we use Tuffy [22]
as the baseline. Figures 4(a)(b) compare performance
of ARCHIMEDES with Tuffy on the synthetic knowl-
edge base with varying numbers of facts and rules. We
see that ARCHIMEDES achieves more than 200 times of

SIGMOD Record, June 2017 (Vol. 46, No. 2) 33

0.0 0.2 0.4 0.6 0.8 1.0
Rules/106

0

5

10

15

Ex
ec

ut
io

n
tim

e/
1
0
3
 s

(a) Inference Performance
Tuffy-T
ProbKB
Inferred

0.0

0.5

1.0

1.5

2.0

In

fe
rr

ed
 fa

ct
s/
1
0
6

0 2 4 6 8 10
Facts/106

0

2

4

6

8

10

12

Ex
ec

ut
io

n
tim

e/
1
0
3
 s

(b) Inference Performance
Tuffy-T
ProbKB
Inferred

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In

fe
rr

ed
 fa

ct
s/
1
0
6

5000 10000 15000 20000
Estimated # of Correct Facts

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ec

is
io

n
of

 In
fe

rr
ed

 F
ac

ts
/1
0
3
 s (c) Inference Quality

No SC RC
RC Top 20%
RC Top 10%
SC Only
SC RC Top 50%
SC RC Top 20%

Figure 4: Knowledge expansion results. (a)(b) Performance comparison with Tuffy. (c) Quality improvement
on Reverb-Sherlock.

speedup over Tuffy for 107 facts. The speedup benefits
from the batch application of rules with join operations
supported by the relational knowledge base model.

The precision of the inferred facts is shown in Fig-
ure 4(c). We use semantic constraints and rule clean-
ing to improve precision of the inferred facts [5]. As
shown in the figure, both semantic constraints and rule
cleaning improve precision. The raw Reverb-Sherlock
dataset infers 4800 new correct facts at a precision of
0.14. The precision drops quickly when we generate
new facts since unsound rules and ambiguous entities
result in many erroneous facts. On the contrary, the
precision significantly improves with our quality con-
trol methods: with top 10% rules we infer 9962 facts
at a precision of 0.72; with semantic constraints, we
infer 23,164 new facts at precision 0.55. Combining
these two methods, we are able to infer 22,654 new facts
at precision 0.65 using top 50% rules, and 16,394 new
facts at precision 0.75 using top 20% rules.

6.2 Result of Query-Driven Inference

Figures 5(a)-(c) report the runtime results for query-driven
inference by K-hop approximation with different num-
bers of hops from large, medium, and small clusters. We
see that in all the networks, as the number of hops and
size of the retrieved networks grow, it takes longer for
inference. As a result, query-driven inference achieves a
speedup of more than one order of magnitude compared
to using the entire factor graph for computation. Mean-
while, we observe that the error rate in the computed
probabilities drops to 0.04 with only 3000 neighboring
nodes in the MCMC computation. Thus, query-driven
inference efficiently answers user queries by focusing
computation on the relevant neighbors with acceptable
error rates in the computed probabilities.

6.3 Result of UDA-GIST

We evaluate the performance and scalability of UDA-
GIST by cross-document coreference using the Wikilinks
datasets [29]. The dataset contains about 40 millions
mentions over 3 millions entities. We extract two datasets:
Wikilink 1.5 (first 565 1.5M mentions from the 40M
dataset) and Wikilink 40 (all 40M mentions in the dataset)
from this Wikilink dataset. The Wikilink 40 dataset is 27

times larger than used in the current state-of-the-art [28].
The result is reported in Figures 5(d)(e). For the entire
dataset, the state building takes approximately 10 min-
utes. We run 20 iterations each with 1011 pairwise men-
tion comparisons. Each iteration takes approximately
1 hour and we see the graph converges at iteration 10
with precision 0.79, recall 0.83 and F1 0.81. Using
our solution, within a manageable 10-hour computation
in a single system the coreference analysis can be per-
formed on the entire Wikilink dataset, 27 times larger
than achieved by the current state-of-the-art [28].

7 Related Work
Knowledge Base Construction. Knowledge bases are
receiving increasing research and industrial interest, e.g.:
DBpedia [1], Freebase [3], NELL [21], ProBase [31],
and YAGO [20]. However, they are often incomplete
and uncertain due to limitations of information sources
and human knowledge. To model the correlations among
uncertain facts, NELL [21] and DeepDive [34] use in-
ference rules. We extend this approach to large rule sets
with similar structures [6, 4, 9, 25] by modeling the rules
as relational tables, enabling the applications of batches
of inference rules with relational operators [5]. Our ap-
proach is scalable; it has been applied to large knowl-
edge bases including Freebase [6, 4].
Probabilistic Inference. To compute the probabilities,
general probabilistic inference algorithms–MCMC [27],
Gibbs sampling [11], belief propagation [12]–or spe-
cialized MLN inference algorithms [10, 14, 23] are vi-
able options. All the inference algorithms benefit from
query-driven inference by avoiding computation on the
entire graph [35, 26, 30]. In ARCHIMEDES, we use
MCMC because of its wide use and existing support in
UDA-GIST [18] and other state-of-the-art big data ana-
lytics frameworks we describe below.
Parallel computing. In recent years, various analytics
frameworks have been developed to facilitate large-scale
data analytics: MADlib [15], Spark [33, 32], MapRe-
duce [7], GraphLab [19], and GraphX [13]. These frame-
works support either data-parallel or graph-parallel com-
putation. For example, the data-driven UDA operations
in MADlib, Spark, and MapReduce provide data-parallel

34 SIGMOD Record, June 2017 (Vol. 46, No. 2)

0 5 10 15
of hops

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

R
un

tim
e/

s

1e3 (a) Large

0 5 10 15
of hops

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e/

s

1e1 (b) Medium

0 5 10 15
of hops

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

R
un

tim
e/

s

(c) Small

1 3 5 7 9 11 13 15 17 19 21
Time/min

0.6

0.7

0.8

0.9

(d) Wikilink 1.5

1 3 5 7 9 11 13 15 17 19 21
Time/hour

0.4

0.5

0.6

0.7

0.8

0.9 (e) Wikilink 40
Precision Recall F11000 2000 3000

Figure 5: (a)-(c) Performance of query-driven inference. (d)(e) Performance improvement of UDA-GIST com-
pared to GraphLab.

computation, but are inefficient for asynchronous graph-
parallel computation like MCMC. GraphX, built on Spark,
is based on a synchronous computation engine, making
MCMC less efficient than GraphLab [17]. GraphLab,
however, requires sequential graph construction and re-
sult extraction. The UDA-GIST framework improves on
these works by integrating UDA and GIST with a shared
in-memory state, thus unifying data- and graph-parallel
computation frameworks in a DBMS.

8 Conclusion
In this paper, we present ARCHIMEDES for query pro-
cessing over probabilistic knowledge bases. We extend
the state-of-the-art query processing and optimization
techniques to knowledge base systems by knowledge
expansion and query-driven inference, supported by the
UDA-GIST framework. UDA-GIST is an in-database
analytics framework that unifies data-parallel and graph-
parallel computation. We evaluate ARCHIMEDES with
public knowledge bases including Reverb-Sherlock and
Wikilink. We show ARCHIMEDES achieves real-time
performance with satisfactory quality. In future work,
we plan to improve the query processing algorithm and
supporting framework with performance optimizations.
Acknowledgments. We acknowledge the support of NSF
under IIS Award # 1526753, DARPA under FA8750-12-
2-0348-2 (DEFT/CUBISM), and a gift from Google.

9 References
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives.

Dbpedia: A nucleus for a web of open data. In The semantic web.
Springer, 2007.

[2] T. Bain, L. Davidson, R. Dewson, and C. Hawkins. User defined
functions. In SQL Server 2000 Stored Procedures Handbook, pages
178–195. Springer, 2003.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge.
In SIGMOD. ACM, 2008.

[4] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. Ontological
pathfinding. In SIGMOD. ACM, 2016.

[5] Y. Chen and D. Z. Wang. Knowledge expansion over probabilistic
knowledge bases. In SIGMOD. ACM, 2014.

[6] Y. Chen, D. Z. Wang, and S. Goldberg. Scalekb: Scalable learning and
inference in large knowledge bases. The VLDB Journal, 2016.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 2008.

[8] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open
information extraction. In EMNLP, 2011.

[9] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining
in ontological knowledge bases with amie+. The VLDB Journal, 2015.

[10] W. Gatterbauer and D. Suciu. Dissociation and propagation for
approximate lifted inference with standard relational database
management systems. The VLDB Journal, 2016.

[11] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel gibbs
sampling: From colored fields to thin junction trees. In AISTATS, 2011.

[12] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for optimally
parallelizing belief propagation. In AISTATS, 2009.

[13] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow framework.
In OSDI, 2014.

[14] E. Gribkoff and D. Suciu. Slimshot: in-database probabilistic inference
for knowledge bases. Proceedings of the VLDB Endowment, 2016.

[15] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, et al. The madlib
analytics library: or mad skills, the sql. VLDB, 2012.

[16] D. Koller and N. Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[17] K. Li, D. Z. Wang, A. Dobra, and C. Dudley. Uda-gist: An in-database
framework to unify data-parallel and state-parallel analytics. VLDB, 2015.

[18] K. Li, X. Zhou, D. Z. Wang, C. Grant, A. Dobra, and C. Dudley.
In-database batch and query-time inference over probabilistic graphical
models using uda-gist. The VLDB Journal, 2016.

[19] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: a framework for machine learning and
data mining in the cloud. VLDB, 2012.

[20] F. Mahdisoltani, J. Biega, and F. Suchanek. Yago3: A knowledge base
from multilingual wikipedias. In CIDR, 2014.

[21] T. Mitchell and et. al. Never-ending learning. In AAAI, 2015.
[22] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up statistical

inference in markov logic networks using an rdbms. VLDB, 2011.
[23] H. Poon and P. Domingos. Sound and efficient inference with

probabilistic and deterministic dependencies. In AAAI, 2006.
[24] M. Richardson and P. Domingos. Markov logic networks. Machine

learning, 2006.
[25] S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis. Learning

first-order horn clauses from web text. In EMNLP, 2010.
[26] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré. Incremental

knowledge base construction using deepdive. VLDB, 2015.
[27] S. Singh. Scaling MCMC Inference and Belief Propagation to Large,

Dense Graphical Models. PhD thesis, University of Massachusetts
Amherst, 2014.

[28] S. Singh, A. Subramanya, F. Pereira, and A. McCallum. Large-scale
cross-document coreference using distributed inference and hierarchical
models. In Proceedings of ACL-HLT, 2011.

[29] S. Singh, A. Subramanya, F. Pereira, and A. McCallum. Wikilinks: A
large-scale cross-document coreference corpus labeled via links to
wikipedia. University of Massachusetts, Amherst, Tech. Rep., 2012.

[30] M. L. Wick and A. McCallum. Query-aware mcmc. In NIPS, 2011.
[31] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic

taxonomy for text understanding. In SIGMOD, 2012.
[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In NSDI,
2012.

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010.

[34] C. Zhang. DeepDive: A Data Management System for Automatic
Knowledge Base Construction. PhD thesis, UW-Madison, 2015.

[35] X. Zhou, Y. Chen, and D. Z. Wang. Archimedesone: Query processing
over probabilistic knowledge bases. VLDB, 2016.

SIGMOD Record, June 2017 (Vol. 46, No. 2) 35

Beng	Chin	Ooi	Speaks	Out	on		
Building	a	Strong	Database	Group		

	
Marianne	Winslett	and	Vanessa	Braganholo	

Beng Chin Ooi

http://www.comp.nus.edu.sg/~ooibc/

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community.
I’m Marianne Winslett, and today we are at my office at the Advanced Digital Sciences Center in Singapore, an
outpost of the University of Illinois. I have here with me today Beng Chin Ooi who is the dean of the school of
computing at the National University of Singapore where he’s been a professor of computer science for many years.
Beng Chin is editor-in-chief for IEEE Transactions on Knowledge and Data Engineering. He is the recipient of the
2009 SIGMOD Contributions Award, and he is an IEEE and ACM Fellow and Fellow of Singapore National
Academy of Science. He is the co-founder of two startups and his Ph.D. is from Monash University. So Beng Chin,
welcome! (Please note that this interview took place in 2011)

36 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Okay, so, what’s it like to be the dean?

That’s an easy job. It’s great! As a dean, I attend two
morning meetings with the bosses and do lunch
meetings with heads, vice deans, and assistant deans.
So that means I have four meetings to attend a month,
and the job is easy.

I don’t believe you, but we’re going to come back to
that topic later. Don’t believe him, readers!

OK, so let’s switch to something technical. Cloud
computing is hot. What will be the next big research
issue in cloud computing?

For cloud computing, since it’s a distributed cluster
computing environment, issues such as data and
system security, transaction management, efficiency,
and query processing strategies are not yet fully
resolved. They will be solved eventually, and of
course, there are many other challenges that will come
along as we make advancements in the hardware. For
example, suppose the network bandwidth increases...
then we will have different problems to solve. Also,
with the introduction of the PCM (Phase Change
Memory) chip and all other things, we will have to
redesign architectures...

So why is transaction processing performance lower in
the cloud than in a non-cloud environment?

In the cloud environment, because it’s a distributed
environment, suppose you want to enforce ACID
properties. Then the locking overhead is going to take
much longer, and therefore people go for less
consistency for the sake of performance.

So what’s the new hardware that you mentioned that
you see coming in the future?

We expect the launch of PCM (Phase Change
Memory) in big scale, and that will provide us much
bigger memory storage. This will change the way we
design the algorithms because now everything can be
online rather than have to handle data from disk. Of
course, PCM has its own problems such as read
durability, and therefore we have to reduce the reads
and the writes on the PCM.

Coming back to the performance issue, the relational
databases in the cloud are facing a lot of competition
from NoSQL and big data approaches. Do you think

that relational databases can compete with those two
when high throughput is important?

We have to be clear that these two types of systems
have been designed to meet different requirements and
even different budget constraints. So they serve
different market segments and therefore, there is no
real competition. Of course, you can always extend
relational database systems to handle what we have
seen in a Web 2.0 application, but by that it’s likely we
end up with two engines running in parallel with some
data sharing between the two engines.

I hear that you love B-trees compared to, for example,
R-trees. What’s wrong with R-trees?

That is not quite true. I love R-trees as well, but the
problem with R-trees is the speed to process. Multiple
traverses will take up much longer time during the
locking process, so it incurs in a higher locking
overhead.

That’s true, but KD-trees, do you like them any better?

A KD-tree is fine, but the way it partitions the space
does not lead to a balanced B+ tree.

So what trees do you like for spatial-temporal type…?

I like the B+ tree because it’s very efficient, dynamic,
and it’s self-adaptive to load and data distribution.

But it doesn’t work for multidimensional search, does
it?!

Once you can linearize the data properly, then we can
use the B+ tree.

You mean like a Z-ordering or something?

Or the Z-curve or we make use of distance just like the
way we do it in iDistance, where we try to argue that
even in high-dimensional space, I can measure one
object against a reference point. If I can do that, that
means that I divide the space into the Voronoi cells
efficiently and that makes it very efficient. Then I can
measure the distance to the reference point. Once I use
that reference point plus the distance, I can index the
data points using the typical B+ tree without changing
the structures of the B+ tree.

SIGMOD Record, June 2017 (Vol. 46, No. 2) 37

I see. Okay, great. In the last five years, you’ve turned
your attention from just writing papers to having
startups. How do you make a database startup
successful?

I set up my first startup in 1999 when we tried to
provide photo-sharing systems to the public. That
system works like Flickr except that we use keywords
rather than tagging as well as comments for users to
provide keywords to describe the photos, for users to
share photos with a friend, and so on. But somehow it
did not take off. So, to some extent, I did a startup 11
years ago, not five years ago.

Okay, okay, and more recently?

More recently, I had a startup on peer-to-peer systems
based on my work on Bestpeer1, and recently it has
started to draw attention from venture capitalists, so I
started to draw some business, but that is in China.

So do startups in China need to be entirely Chinese to
be successful?

Not necessarily. But it’s much harder to get the license
to operate the business.

So, what can you say about the startup culture in
China?

I think it’s good because Chinese always like money.
Just like me. I love money.

Okay, and is your startup in the Beijing area or …?

In Hangzhou.

Are there many startups there now?

Hangzhou is a good place for startups. In fact, Alibaba
has its headquarter and campus in Hangzhou, and one
of the biggest web and game companies called
NetEase is also housed in Hangzhou.

1 http://www.bestpeer.com/

Okay, so I see now that you haven’t gone back to the
question of how do we make a database startup
successful. So, is it like any other startup? Or
different?

It’s much harder to have a startup on trying to sell
database systems because the market seems to be
cornered by a few big players and in reality, it is very
hard to do database migrations. So nobody is going to
buy a new database system just because the new
system has a few more functionalities or because it is
cheaper since the data migration process is very
expensive and time-consuming.

Does that mean your company aiming at customers
that don’t already have an existing DBMS?

The company that we have (Bestpeer, a P2P company)
aims at customers who want to integrate details from
different sources of databases and of course you can
use Bestpeer like a middleware to link up different
systems to share the data.

OK, great!

So, some of our readers told me: “Ten years ago we
could seldom find papers from National University of
Singapore (NUS) in tier 1 venues of the database
community. Now, Beng Chin’s database group is such
an important part of the community pushing the
frontiers of everyone else’s research.” Another reader
said that you “built up NUS into a strong database
research university starting from very little. I think this
is an exceptional accomplishment, he hired everyone
in the database group there, he aggressively recruited
good students, particularly from China. He established
a culture of publishing in the top places. He also
actively mentored Ph.D. graduates, and all this was
done well before he was dean. He was just a faculty
member taking initiative and making things happen.
Over time, he got institutional recognition and support
including eventually his current deanship.” So, long
story but first question: what inspired you to do all
this?

First of all, I just want to prove myself. Prove to
myself that I could be just as good as any other
database researchers. So in order to prove myself on
that front, I had to publish where the top people
published. And therefore even when I was doing my
Ph.D., I started to focus on publishing at the top places.
It’s a fact that for any department to be good in
research, we need a huge number of good graduate
students. Therefore, we have to go out to look for good
students. We are not MIT or Stanford, which can

[…]	for	any	department	to	be	
good	in	research,	we	need	a	

huge	number	of	good	
graduate	students	

	

38 SIGMOD Record, June 2017 (Vol. 46, No. 2)

attract good students without doing extensive outreach
to these students. So for us, we have to go around and
look for good students. We’ve convinced our
colleagues in China, in Eastern Europe, and a few
other countries to recommend good students to us.

So, for our readers who want to build up their own
research group or department, how are you able to
change the culture of your environment?

That is easy because no one wants to be a loser. So, the
first step is to recruit good people and once they are in,
provide them the environment, the freedom to do the
research that they want to do, and support them in what
they want to do. Set the goals and tell them what they
are expected to do and explain how they will be
rewarded. Once all this is made transparent, people
tend to accept. Transparency reduces conflicts and
workload for the administrators.

So then what were the most difficult challenges that
you had to overcome to do this? Did they maybe
oppose you on a rewards angle? Or what was the
hardest part?

All were equally easy. [laughs]

OK, so let’s see. What kind of rewards did you offer
people when you talk of reward?

In our systems, we have a performance-based
increment as well as performance-based bonus. That
forms the rewards for those people who have done well
for the last year and for the last three years. That really
pushes people to work hard because everyone can be
motivated to do well. Also, people are motivated when
they are recognized.

I see. Did you have to base that off of that Clarivate
SCI index or were you able to use other indicators of
research quality and quantity?

We look at more than just the papers or the SCI index.
We look at the impact a person makes to the research
he’s working on, his community, and his contributions.

So in the long run, I see how you can measure that
impact, for example, it will show up in the H-index and
everything, but you said last one year and last three
years. So how can you measure the impact over that
kind of time?

For the last one year, we look at how they perform in
terms of the way they teach, the way they do their

research, what papers they have got and what kinds of
awards they’ve gotten for the last one year. For the
three years window periods, we look at a much longer
period where they could have made slightly longer
impact for certain years, but they may not have the
papers. We also look at their whole career since they
joined the school.

OK. Database research in Asia. How is it different
from database research in the rest of the world?

There’s not much difference in the way we do
research, but for Asians, it tends to be more
algorithmic than system-oriented. So they build fewer
systems because system development takes much
longer time to materialize than just to focus on new
problems and come out with solutions and show that
they work.

Is that okay or is it a bad thing? That there’s less
systems research?

If we do not build systems, eventually we are driven to
locate problems, and at times we end up creating
artificial problems that could be new, novel, but on the
other hand not applicable to the real world.

So system building is a reality check you would say.

Yes, that’s true. There are problems and subproblems
that evolve from the system. As we develop the
system, we’ll definitely encounter problems that
cannot be managed or cannot be handled by the system
that we tried to build.

OK. So I hear that you have played a role in raising
the standard of database research in China. What have
you done in that area and how do you see your role
now?

I did not do as much as what has been said, but I do
know most researchers in China very well and have
talked with them often. I often advise them on what
topics to move into and what not to do, how to protect
the faculty’s time, so that the faculty members can
focus more on research.

Set	the	goals	and	tell	them	
what	they	are	expected	to	
do	and	explain	how	they	

will	be	rewarded.		
	

SIGMOD Record, June 2017 (Vol. 46, No. 2) 39

Afternote: Beng Chin is an adjunct Chang Jiang
professor at Zheajiang University.

So what should people not move into now?

They should move into user-driven research and try to
build systems and address problems from the systems
that they tried to develop for certain applications or for
any other things that they have in mind to support.

And how can we protect faculty’s time? What advice
do you have for that?

For example, in China, they tend to organize more
conferences. In order to organize conferences, you
need faculty members to spend time organizing them
and that will drain away a lot of a faculty member’s
time. Therefore, it’s best to avoid organizing small
conferences, those that have no consequences to the
research quality. For NUS, we do not organize that
many conferences. The last one we organized was
VLDB, and we have not organized any for a long time.

OK. Would you recommend that new Computer
Science Ph.D. graduates in the US and Europe
consider a job in Asia?

Why not? Especially in Singapore. It’s a very lovely
and livable city. That’s why you are here. [laughing].

To some degree, that’s true. Your Ph.D. is from
Australia, which follows the British system and the
British offer this three-year Ph.D. with no coursework
requirements. I’ve seen the kids coming out of these
really short Ph.D. programs, and their resumes and
abilities are about the same as that of a third-year
graduate student in the U.S. On the other hand, U.S.
Universities are very concerned because their Ph.D.
students in CS can take five or six years to finish even
though when they do finish they’re ready to do
research on their own. So at NUS, the CS degree’s
Ph.D. program is in between the US and the British
system. You have personally worked to introduce
courses and a written qualifying exam.

My question for you is: What is the right balance
between the British system, which seems to me to be
too short to teach people to do research, and then the
American one, which takes a long time?

The graduate courses are necessary to provide a good
foundation required for research. And of course, the
qualifying exam (QE) is required since we take in
students from different countries, with different

standards, so we need the QE to weed out students who
are not qualified enough to do Ph.D. With more
courses to do, the students tend to take longer to
graduate because they have to spend one year just to
pass the courses and the QE, and have to do some
courses in the second and third year. On the whole, it
can take about four and a half years on average to
graduate, but if a student works hard enough and
works fast enough, he or she can still graduate within
three years. It’s not a problem. The real problem is
those students who get very comfortable to stay on
campus – after a while, they just do not want to leave
and look for a job. If they can get an RA-ship, they
hang on and just lead a student’s life.

Is that bad? I mean you get to use them when they’re
really good at what they know: how to do research.

Yeah, that is good for faculty members. It may not be
so good for the university because as a university, we
want the students to leave as soon as they graduate
because the resources are limited and we can use the
resources to take in more students and educate more
students.

OK. I’ve been told you’re good at mining the strength
of grad students even when the students are not very
good. So how can you do good research with students
who aren’t very good? What’s the secret? All of us
have some students who are not so good. So how do we
get good research out of students who are not so
good?

That requires some time to understand the student's’
strengths, to know what they can do, and from there
we just ask them to do what they are good at. Of
course, as a supervisor, I tend to guide them for the
first few problems by telling them the likely solutions
to solve certain problems. And after a while, they do
learn the tricks, and as a requirement, they have to read
ten papers a week in their first year and second year.
And they have to write reports on the papers they read
to me every Monday, and that builds up their
foundation.

How long are the reports?

Just a few lines. It could be a couple of sentences, or it
could be two or three paragraphs; but I told the
students if they write the summaries based on the
abstracts, I may call them up to get them to explain the
papers to me.

40 SIGMOD Record, June 2017 (Vol. 46, No. 2)

So are these papers from all across the field? Or are
these papers in the student’s specific area?

They can read any papers they like, and sometimes I
do point them to some papers that they have to read.

And so how long do you make them do this?

For the first two years.

That's a new tip for our readers.

So you have said that you run your students like an
army. Another person told me “Beng Chin is a hard
master to his students, very tough with them, he will
scold them and may even check their code. However,
he also rewards them, drinks and feasts with them, and
plays with them. Basketball.” And I believe it because
apparently, that’s a new basketball injury [pointing to
his injured finger]. So even at the cost of your personal
health, you play with them. My question is, how do you
strike a balance between these two roles, which are
quite different?

When it comes to working, it’s about work. And we
have to be serious about it; so we are very clear about
our objectives, why we are here, and what are our
goals. So we just want to just achieve that. The
students know their role, and the students know my
role, and therefore we work quite well when it comes
to work. Once we start playing, there’s no
differentiation between supervisor and student. That’s
how I injured my two fingers.

So can you give an example goal that you would give a
student?

Now, since I develop systems, all my students have to
take part in developing the systems that I develop,
even if they are not related to their thesis. I see it as
part of their training. So we meet regularly to discuss
the systems that are we building and of course they
have to deliver what they are responsible for.
Afternote: since the interview, Beng Chin and his
group have released Apache SINGA (a distributed
machine learning engine), completed in-memory big
data system, epiC, and a new storage engine, UStore,
that supports blockchains and collaborative analytics.

I see. So a goal might be to write this module that
satisfies this spec. So what kind of goals do you have
that are not related to system building, that are more
things that would maybe show up on their resume? Do
you also have goals in that area?

We do. For their thesis, I tend to assign them a topic,
and they focus on that topic and look for problems to
solve. Quite often I show them the problems, but most
of the topics revolve around the systems we’re trying
to build.

OK, got it.

Someone told me “Beng Chin drinks Chinese wine like
a fish. Ask him which one is his favorite and whether
he turns Chinese wine into good papers.” Is there a
conversion function?

I learned to drink Chinese wine only 10+ years ago
when I started to go to China to recruit students.
Initially, I disliked the taste, but after a while, I got
used to it. Honestly, I don’t like the taste of any
alcohol. I just like the after effect.
Afternote: Beng Chin has stopped drinking for the Nth
time.

[laughing] How does Chinese wine differ from other
wine?

Chinese wine is very strong, and it’s strong in smell
too. It’s very strong in the content of alcohol. Usually,
the alcohol content is about 53-60%.

Wow. So we won’t talk anymore about that. We’ll have
to go downstairs to that wine store in the basement
after we do the interview.

So I hear that you are a skilled painter. What do you
paint?

I did watercolor when I was young. I like painting
since young. So when I had free time and when I felt
inspired, I started to paint (when I was young). But
when I came to Singapore, I took up Chinese painting.
I attended night classes for three years. And I did draw
some Chinese paintings, and one of the friends who
got my painting is Raghu.

[my	students]	have	to	read	
ten	papers	a	week	in	their	
first	year	and	second	year,	
write	reports	about	those	
papers	and	send	me	every	

Monday	[…]	
	

SIGMOD Record, June 2017 (Vol. 46, No. 2) 41

OK, congratulations Raghu! What did he have to do to
get one?

He came at the right time.

One of Beng Chin Ooi’s paintings

Do you have any words of advice for fledgling or mid-
career database researchers or practitioners?

I will say take their work seriously, work hard, and
once they put their heart into it, then they will do well.
Work hard today and let tomorrow take care of itself.

OK, very good. Among all your past research, do you
have a favorite piece of work?

That could be my Ph.D. work when I built a GIS
system on top of an existing database system. So what
I did was to extend an existing database system by
developing a cartridge to handle GIS operations on top
of it. That was my first system.

If you magically had enough extra time to do one
additional thing at work that you’re not doing now,
what would it be?

I would say charity work because it’s a good way to
contribute back to society.

So it would be charity work within IT aspect or
charity…

Just for the general public because there are many
people out there who need our help and our time.

Excellent. So, what charities in Singapore – or
anywhere – are you involved with?

Embarrassingly, none. Therefore, I feel quite bad.

All right! If you can change one thing about yourself
as a computer science researcher, what would it be?

I should not have stopped programming. I should have
continued with my programming, and after stopping
for so many years, now I’m not good at it.

Well if you had continued programming, you would
have had less time to do all this other stuff. The
startup, the department building, all that …

That is true. Because of my other roles, that’s why I
gave up programming. I used to program until 10 or so
years ago.

Do you miss it?

Yep.

Maybe when you retire?

When I retire, I will open a restaurant. I will open a
bar, be a bar attendant…

Oh, a restaurant and bar. What kind of food will you
offer? Because I did hear you are a good cook. So
what kind of food will be at your restaurant?

Chinese food. Because I know how to cook many
dishes and I tend to do reverse engineering when I go
to a restaurant, trying to figure out what are the
ingredients, how do they cook, and I try to experiment
with the food that I ate.

OK. Great.

And why I’d like to be a bar attendant? Because I like
to drink and therefore I can serve as I listen to stories.
[laughing]

Well great, thank you for telling me stories today.

42 SIGMOD Record, June 2017 (Vol. 46, No. 2)

Report from the third workshop on Algorithms and
Systems for MapReduce and Beyond (BeyondMR’16)

Foto N. Afrati
National Technical University of Athens, Greece

afrati@softlab.ntua.gr

Jan Hidders
Vrije Universiteit Brussel, Belgium

jan.hidders@vub.ac.be

Christopher Ré
Stanford University, USA
chrismre@cs.stanford.edu

Jacek Sroka
University of Warsaw, Poland

j.sroka@mimuw.edu.pl

Jeffrey Ullman
Stanford University, USA
ullman@cs.stanford.edu

ABSTRACT
This report summarizes the presentations and discus-
sions of the third workshop on Algorithms and Systems
for MapReduce and Beyond (BeyondMR’16). The Be-
yondMR workshop was held in conjunction with the
2016 SIGMOD conference in San Francisco, Califor-
nia, USA on July 1, 2016. The goal of the workshop
was to bring together researchers and practitioners to ex-
plore algorithms, computational models, architectures,
languages and interfaces for systems that need large-
scale parallelization and systems designed to support
efficient parallelization and fault tolerance. These in-
clude specialized programming and data-management
systems based on MapReduce and extensions, graph pro-
cessing systems, data-intensive workflow and dataflow
systems. The program featured two very well attended
invited talks by Ion Stoica from AMPLab, University of
California Berkeley and Carlos Guestrin from the Uni-
versity of Washington.

1. INTRODUCTION
The third BeyondMR workshop explored algo-

rithms, computational models, architectures, lan-
guages and interfaces for systems that need large-
scale parallelization and systems designed to sup-
port efficient parallelization and fault tolerance. The
list of covered topics includes specialized program-
ming and data-management systems based on MapRe-
duce and extensions, graph processing systems, data-
intensive workflow and dataflow systems.

After moving from EDBT to SIGMOD, the work-
shop successfully attracted 19 submission from which
the program committee led by Christopher Ré from
University of Stanford accepted 5 regular and 5
short papers.

2. REVIEW OF PRESENTED WORK
The proceedings of the workshop were published

in the ACM Digital Library [1]. Below we present a
short overview of the results followed, in Section 3,
by a summary of two highly attended keynotes.

(Short Paper) Bridging the gap: Towards optimiza-
tion across linear and relational algebra
Andreas Kunft from TU Berlin, Germany pre-
sented this paper [9] on behalf of co-authors Alexan-
der Alexandrov, Asterios Katsifodimos and Volker
Markl. Data cleaning and preprocessing is typically
an initial step of advanced data analysis pipelines.
As a theoretical foundation for the first step a re-
lational algebra is used and for the second step a
linear algebra. The authors propose to unify those
two algebras into a common theoretical foundation.
They explore and reason about optimizations across
the two algebras in a suitable intermediate language
representation. They propose Lara DSL, which is
embedded in Scala and offers abstract data types
for both algebras, i.e., bags and matrices. They
also show-case the added benefits of unification and
the optimizations that come thereof. A number of
holistic optimizations are derived from the unified
formal model and implemented under the assump-
tion of a full view of the algorithm code including
matrix blocking through joins and row-wise aggre-
gation pushdown.

(Short Paper) Faucet: a user-level, modular tech-
nique for flow control in dataflow engines
Andrea Lattuada from the Systems Group, ETH
Zürich, Switzerland presented this paper [10] on
behalf of co-authors Frank McSherry and Zaheer

SIGMOD Record, June 2017 (Vol. 46, No. 2) 43

Chothia. This short paper introduces Faucet, which
is a modular control flow approach for organiz-
ing distributed dataflow processing with arbitrary
topologies including cyclicity. The advantages of
Faucet over backpressure techniques are: (i) the im-
plementation only relies on existing progress infor-
mation exposed by the system and does not require
changes to the underlying dataflow system, (ii) it
can be applied selectively to certain parts of the
dataflow graph, and (iii) it is designed to support a
wide variety of use cases, topologies and workloads.
The authors have tested their implementation on an
example where variability in rates of produced and
consumed tuples challenges the flow control tech-
niques employed by systems like Storm, Heron, and
Spark. They were able to keep the computation sta-
ble and resource bound while introducing at most
20% runtime overhead over an unconstrained im-
plementation.

(Short Paper) Model-Centric Computation Ab-
stractions in Machine Learning Applications
Judy Qiu from Indiana University, Bloomington,
USA presented this paper [22] on behalf of co-
authors Bingjing Zhang and Peng Bo. This paper
considers parallel machine learning as a combina-
tion of training data-centric and model parameter-
centric processing. It first presents four types
of data-centric computation models for distributed
machine learning, where they types are character-
ized by (1) whether the access of the parallel work-
ers to the parameter models is synchronized or not,
and if it is how the order of access is determined
and (2) whether the workers get access to only the
latest model parameters or also to stale model pa-
rameters. Several existing systems for distributed
machine learning are analyzed and classified accord-
ing to the presented types of computation mod-
els. Subsequently new model-centric abstractions
are introduced to improve model update rate and
increase model convergence speed. The effective-
ness of these abstractions is demonstrated by using
Latent Dirichlet Allocation (LDA) as an example,
and experimental results show that an efficient par-
allel model update pipeline can achieve similar or
higher model convergence speed compared to exist-
ing work.

(Regular Paper) DFA Minimization in Map-Reduce
Gösta Grahne from Concordia University, Mon-
treal, Canada presented this paper [6] on behalf
of co-authors Shahab Harrafi, Iraj Hedayati and
Ali Moallemi. It features MapReduce implementa-
tions of two of the most prominent DFA minimiza-

tion methods, namely Moore’s and Hopcroft’s algo-
rithms. Extensive experiments, on various types
of DFA’s, with up to 217 states, validate that
the MapReduce implementation of Hopcroft’s al-
gorithm is more efficient, both in terms of running
time and communication cost. It was also confirmed
that both algorithms are sensitive to skewed input,
the Hopcroft’s algorithm being intrinsically so.

(Regular Paper) Cross-System NoSQL Data Trans-
formations with NotaQL
Johannes Schildgen from the University of Kaiser-
slautern presented this paper [16] on behalf of co-
authors Thomas Lottermann and Stefan Deßloch.
This full paper presents the language NotaQL which
allows to concisely express transformations between
different NoSQL data formats as are found in wide-
column stores, document stores, key-value stores
and even CSV files. The language supports a range
of input and output formats, as well as different
transformation engines for these formats. The lan-
guage is output-oriented in the sense that the out-
put format determines the structure of the transfor-
mation expressions. Finally, the paper presents an
implementation of this language based on Apache
Spark.

(Regular Paper) On Exploring Efficient Shuffle De-
sign for In-Memory MapReduce
Haronubo Daikoku from University of Tsukuba,
Japan presented this paper [4] co-authored with
Hideyuki Kawashima and Osamu Tatebe. The au-
thors have studied the efficiency of shuffle phase
in MapReduce type systems that run on super-
computer hardware with shared-memory multipro-
cessor like InfiniBand. There are several design
decisions which need to be made in such imple-
mentations to adapt MapReduce from commodity
hardware communicating over Ethernet to special-
ized hardware relaying on MPI-based communica-
tion. The authors have implemented their own in-
memory MapReduce system in C/C++ and used
it to compare the efficiency of the data exchange
algorithms in the shuffle phase. Specifically they
have tested a fully-connected algorithm that mim-
ics standard MapReduce solutions where each re-
duce process maintains a link to all map processes
and a pairwise algorithm where in subsequent steps
the processes communicate in pairs. They also have
analyzed the effect on shuffle phase of the Remote
Direct Memory Access (RDMA) mechanism which
enables one machine to read and write data on the
local memory of another.

44 SIGMOD Record, June 2017 (Vol. 46, No. 2)

(Short Paper) Toward Elastic Memory Manage-
ment for Cloud Data Analytics
Jingjing Wang from University of Washington, USA
presented this paper [19] co-authored with Mag-
dalena Balazinska. The short paper discusses elas-
tic memory management in modern Big data sys-
tems. It starts with demonstrating the negative im-
pact of GC on the execution time of data analytics
queries in a modern, Java-based system and shows
how changing the heap size directly impacts the ex-
ecution time. Then, it describes how to modify the
JVM to enable dynamic modifications of the appli-
cation heap layout and thus allow elastic manage-
ment of its memory utilization. Next, it presents
a machine-learning based technique for predicting
the GC overhead for an application and whether
that application is expected to run out of memory.
Finally, an algorithm for dynamic memory manage-
ment in a Big data analytics system is discussed.

(Regular Paper) Some-Pairs Problems
Jeffrey Ullman from Stanford University, USA pre-
sented this paper [17] co-authored with Jonathan
Ullman. The paper considers the “some pairs”
problem, where we are given two sets X and Y , and
wish to detect the presence of pairs (x, y), one from
each set, that meet some criterion, e.g., x and y are
sufficiently close according to some distance mea-
sure. This paper looks at MapReduce algorithms
for solving such a problem, in particular looking at
the reducer-size vs. replication-rate tradeoff from
Sarma et al, VLDB, 2013 [15]. There are two obvi-
ous approaches: (1) assume you care about all pairs
and don’t worry about taking advantage of the fact
that you only care about some pairs (2) use one
reducer for each of the pairs you care about, and
nothing else. The principal result of the paper is a
proof that for any X and Y and subset of the pairs
that you care about, there is no MapReduce algo-
rithm that has a significantly better replication rate
than the better of the two obvious approaches.

(Regular Paper) Tight Bounds on One- and Two-
Pass MapReduce Algorithms for Matrix Multipli-
cation
Prakash Ramanan from Wichita State University,
Wichita, USA presented this paper [13] co-authored
with Ashita Nagar. This paper studies one- and
two-pass MapReduce algorithms for multiplying
two matrices, and in particular the trade-off be-
tween communication cost and replication rate. For
multiplying sparse matrices in one pass, it shows
tight bounds on qr and wr2 where q is the reducer
size, r the replication rate and w the reducer work-

load. In fact, the work shows that the bound for qr
follows from the bound for wr2, which means that
the latter is the stronger lower bound. Next, the pa-
per considers two-pass algorithms, which have been
shown to have less communication cost than one-
pass algorithms, given a certain reducer size. For
multiplying dense matrices it presents tight bounds
on qfrfrs and wfr

2
frs, where the subscripts f and

s correspond to the first and second pass, respec-
tively. Using this bound on qfrfrs, the paper
presents a tight bound on the total communication
cost as a function of gf . The presented lower bounds
hold for the two-pass algorithms that perform all
the real-number multiplications in the first pass.

(Short Paper) Deterministic Load Balancing for
Parallel Joins
Nivetha Singara Vadivelu from University of
Wisconsin-Madison, USA presented this short pa-
per [8] co-authored with Paraschos Koutris. This
short paper discusses parallel joins and multiway
joins where the input data is first distributed over
r-dimensional hypercube and then blocks in this
cube can be processed independently in parallel.
There was already a lot of attention to this prob-
lem and efficient solutions were proposed that dis-
tribute the tuples by applying a random hash func-
tion to achieve with high probability the optimal
load within polylogarithmic factor. In the paper
the authors explore if it is possible to construct an
efficient deterministic algorithm that distributes the
tuples such that the load is always as close to the
optimal value as possible. They also seek to obtain
optimality guarantees under any skew conditions,
and not only for the case of no data skew. A gen-
eral lower bound is proposed for the load, which is
based on maximum degrees of each value (or com-
bination of values) in the relation. Then, two fast
deterministic algorithms are presented: one that is
optimal within a constant factor of the lower bound
for one dimensional case and another one that is op-
timal within a polylogarithmic factor of the lower
bound for two dimensional case. The second one
extends the first with application of algorithm for
vector load balancing problem.

3. SUMMARY OF KEYNOTES
Now we give a summary of the two keynotes,

which contributed to the visibility of the workshop.

(Keynote) Spark: Past, Present, and Future
In his keynote, Ion Stoica from AMPLab, Univer-
sity of California Berkeley gave an overview of the
decisions that, apart of timing and luck, lead to the

SIGMOD Record, June 2017 (Vol. 46, No. 2) 45

success of the Spark project [21]. Besides an ex-
pressive API that allows to reduce by several times
the length of code needed for typical tasks as com-
pared to Hadoop, the main advantage of Spark is
its effectiveness. It comes from leveraging hardware
and workload trends like the rapid increase in mem-
ory capacity, so that working sets in Big Data clus-
ters fit in memory. Further efficiency gains come
from using threads rather than JVM processes and
dealing with fault recovery with lineage rather than
persistent storage. Those ideas lead to significant
speed-up in many use cases, especially in interac-
tive processing which is often needed in machine
learning applications.

Then prof. Stoica gave an overview of the Spark
subprojects: Spark SQL [2], Spark Streaming [20],
MLlib [12], GraphX [5] and SparkR [18] and high-
lighted recent developments including structured
APIs (Datasets and DataFrames), project Tungsten
and structured streaming. The first phase of project
Tungsten was enabled by DataFrames and results in
5-20× speed up. It exploits cache locality and em-
ploys off-heap memory management. The second
phase of project Tungsten introduces whole-stage
code generation, which removes expensive iterator
calls and allows fusing across multiple operators.

The future of Spark brings improvements in per-
formance due to fine grain updates with Indexe-
dRDDs, reducing latency with batch scheduling,
generality with fine grain task computations, and
finally easy of use.

(Keynote) Big Data, Small Cluster: Choosing ’big
memory’ (RAM, disks, SSDs) over big clusters
Carlos Guestrin from the University of Washington
was the second keynote speaker. Although initially
he was interested in constructing killer robots, his
presentation was about the ideas from the database
community that have surfaced in the machine learn-
ing community and influence its progress. The first
of those ideas is columnar storage and compression
of stored data, which allowed for huge speed im-
provements in projects that Carlos worked on in
the past like GraphLab [11]. The second idea is the
quantile sketch technique [7, 23] that was adapted
to weighted datasets to allow for the development
of the scalable end-to-end tree boosting system [3].

Next, he presented an analogy between the cur-
rent aim in machine learning community to cre-
ate composites systems and Database Managements
System (DBMS) that freed database users from
technical decisions like optimizing queries, planing
indexes and their usage or using materialized views.
Building a machine learning solution nowadays also

requires many technical decisions and skills like
model selection, parameter selection or implement-
ing distributed execution on a cluster. It would be
convenient if a composite solution would be created
with build in machine learning algorithms, so that
the user could only declare what he needs and the
system would analyze the data and make appropri-
ate technical decisions for him.

Finally, the last idea presented by the speaker is
related to provenance. As machine learning adop-
tion is sometimes slowed down, by lack of trust in
the results [14], it would be helpful to understand
the predictions and get their explanations. This
would also allow to avoid the situations where the
accuracy percentage is high but the features that
are used to achieve this accuracy are only proper-
ties of the training set, and in practical scenarios
this would not generalize and could lead to incor-
rect behavior. Furthermore, also in situations where
the results are correct, the users would profit from
understanding how they were achieved, e.g., that
the user could like this new movie because he liked
some other or that a patient should be diagnosed
with a disease because this is suggested by a given
subset of his medical examination results.

4. CONCLUSION
The presentations and keynotes at BeyondMR’16

provided an overview of current developments and
emerging issues in the domain of algorithms,
computational models, architectures, languages
and interfaces for systems that need large-scale
parallelization and systems designed to support
efficient parallelization and fault tolerance. These
proceedings suggest that while MapReduce was
replaced by new models, there is an active area
of research centered around data-management
systems based on MapReduce and extensions,
graph processing systems, data-intensive workflow
and dataflow systems.

Acknowledgements: We would like to thank
the PC members, keynote speakers, authors, local
workshop organizers and attendees for making
BeyondMR’16 a successful workshop. We also
express our great appreciation for the support from
Google Inc.

5. REFERENCES
[1] Foto N. Afrati, Jacek Sroka, and Jan Hidders,

editors. Proceedings of the 3rd ACM SIGMOD
Workshop on Algorithms and Systems for
MapReduce and Beyond,
BeyondMR@SIGMOD 2016, San Francisco,

46 SIGMOD Record, June 2017 (Vol. 46, No. 2)

CA, USA, July 1, 2016. ACM, 2016.
http://doi.acm.org/10.1145/2926534.

[2] Michael Armbrust, Reynold S. Xin, Cheng
Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. Spark SQL: relational data
processing in spark. In Timos K. Sellis,
Susan B. Davidson, and Zachary G. Ives,
editors, Proceedings of the 2015 ACM
SIGMOD International Conference on
Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages
1383–1394. ACM, 2015.

[3] Tianqi Chen and Carlos Guestrin. Xgboost:
A scalable tree boosting system. In
Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages
785–794, New York, NY, USA, 2016. ACM.

[4] Harunobu Daikoku, Hideyuki Kawashima,
and Osamu Tatebe. On exploring efficient
shuffle design for in-memory mapreduce. In
Afrati et al. [1], page 6. http:
//doi.acm.org/10.1145/2926534.2926538.

[5] Joseph E. Gonzalez, Reynold S. Xin, Ankur
Dave, Daniel Crankshaw, Michael J. Franklin,
and Ion Stoica. Graphx: Graph processing in
a distributed dataflow framework. In Jason
Flinn and Hank Levy, editors, 11th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014., pages 599–613.
USENIX Association, 2014.

[6] Gösta Grahne, Shahab Harrafi, Iraj Hedayati,
and Ali Moallemi. DFA minimization in
map-reduce. In Afrati et al. [1], page 4. http:
//doi.acm.org/10.1145/2926534.2926537.

[7] Michael Greenwald and Sanjeev Khanna.
Space-efficient online computation of quantile
summaries. In Proceedings of the 2001 ACM
SIGMOD International Conference on
Management of Data, SIGMOD ’01, pages
58–66, New York, NY, USA, 2001. ACM.

[8] Paraschos Koutris and Nivetha Singara
Vadivelu. Deterministic load balancing for
parallel joins. In Afrati et al. [1], page 10.
http:

//doi.acm.org/10.1145/2926534.2926536.
[9] Andreas Kunft, Alexander Alexandrov,

Asterios Katsifodimos, and Volker Markl.
Bridging the gap: towards optimization across
linear and relational algebra. In Afrati et al.
[1], page 1. http:

//doi.acm.org/10.1145/2926534.2926540.
[10] Andrea Lattuada, Frank McSherry, and

Zaheer Chothia. Faucet: a user-level, modular
technique for flow control in dataflow engines.
In Afrati et al. [1], page 2. http:
//doi.acm.org/10.1145/2926534.2926544.

[11] Yucheng Low, Joseph Gonzalez, Aapo Kyrola,
Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Graphlab: A new
framework for parallel machine learning. In
Peter Grünwald and Peter Spirtes, editors,
UAI 2010, Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial
Intelligence, Catalina Island, CA, USA, July
8-11, 2010, pages 340–349. AUAI Press, 2010.

[12] Xiangrui Meng, Joseph K. Bradley, Burak
Yavuz, Evan R. Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman,
D. B. Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza
Zadeh, Matei Zaharia, and Ameet Talwalkar.
Mllib: Machine learning in apache spark.
CoRR, abs/1505.06807, 2015.

[13] Prakash Ramanan and Ashita Nagar. Tight
bounds on one- and two-pass mapreduce
algorithms for matrix multiplication. In Afrati
et al. [1], page 9. http:
//doi.acm.org/10.1145/2926534.2926542.

[14] Marco Tulio Ribeiro, Sameer Singh, and
Carlos Guestrin. ”why should i trust you?”:
Explaining the predictions of any classifier. In
Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages
1135–1144, New York, NY, USA, 2016. ACM.

[15] Anish Das Sarma, Foto N. Afrati, Semih
Salihoglu, and Jeffrey D. Ullman. Upper and
lower bounds on the cost of a map-reduce
computation. In Proceedings of the 39th
international conference on Very Large Data
Bases, PVLDB’13, pages 277–288. VLDB
Endowment, 2013.

[16] Johannes Schildgen, Thomas Lottermann, and
Stefan Deßloch. Cross-system NoSQL data
transformations with NotaQL. In Afrati et al.
[1], page 5. http:
//doi.acm.org/10.1145/2926534.2926535.

[17] Jeffrey D. Ullman and Jonathan R. Ullman.
Some pairs problems. In Afrati et al. [1],
page 8. http:
//doi.acm.org/10.1145/2926534.2926543.

[18] Shivaram Venkataraman, Zongheng Yang,
Davies Liu, Eric Liang, Hossein Falaki,
Xiangrui Meng, Reynold Xin, Ali Ghodsi,

SIGMOD Record, June 2017 (Vol. 46, No. 2) 47

Michael J. Franklin, Ion Stoica, and Matei
Zaharia. Sparkr: Scaling R programs with
spark. In Fatma Özcan, Georgia Koutrika,
and Sam Madden, editors, Proceedings of the
2016 International Conference on
Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 1099–1104. ACM, 2016.

[19] Jingjing Wang and Magdalena Balazinska.
Toward elastic memory management for cloud
data analytics. In Afrati et al. [1], page 7.
http:

//doi.acm.org/10.1145/2926534.2926541.
[20] Matei Zaharia, Tathagata Das, Haoyuan Li,

Timothy Hunter, Scott Shenker, and Ion
Stoica. Discretized streams: fault-tolerant
streaming computation at scale. In Michael
Kaminsky and Mike Dahlin, editors, ACM
SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013, pages
423–438. ACM, 2013.

[21] Matei Zaharia, Reynold S. Xin, Patrick
Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen,
Shivaram Venkataraman, Michael J. Franklin,
Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache spark: a unified
engine for big data processing. Commun.
ACM, 59(11):56–65, 2016.

[22] Bingjing Zhang, Bo Peng, and Judy Qiu.
Model-centric computation abstractions in
machine learning applications. In Afrati et al.
[1], page 3. http:
//doi.acm.org/10.1145/2926534.2926539.

[23] Qi Zhang and Wei Wang. A fast algorithm for
approximate quantiles in high speed data
streams. In Proceedings of the 19th
International Conference on Scientific and
Statistical Database Management, SSDBM
’07, pages 29–29, Washington, DC, USA,
2007. IEEE Computer Society.

48 SIGMOD Record, June 2017 (Vol. 46, No. 2)

