Scaling Machine Learning via
Compressed Linear Algebra

Ahmed Elgohary? Matthias Boehm?,

Peter J. Haas!,

Frederick R. Reiss',

Berthold Reinwald*

! IBM Research — Almaden; San Jose, CA, USA
2 University of Maryland; College Park, MD, USA

ABSTRACT

Large-scale machine learning (ML) algorithms are often
iterative, using repeated read-only data access and I/O-
bound matrix-vector multiplications to converge to an opti-
mal model. It is crucial for performance to fit the data into
single-node or distributed main memory and enable very
fast matrix-vector operations on in-memory data. General-
purpose, heavy- and lightweight compression techniques
struggle to achieve both good compression ratios and fast de-
compression speed to enable block-wise uncompressed oper-
ations. Compressed linear algebra (CLA) avoids these prob-
lems by applying lightweight lossless database compression
techniques to matrices and then executing linear algebra
operations such as matrix-vector multiplication directly on
the compressed representations. The key ingredients are ef-
fective column compression schemes, cache-conscious oper-
ations, and an efficient sampling-based compression algo-
rithm. Experiments on an initial implementation in Sys-
temML show in-memory operations performance close to the
uncompressed case and good compression ratios. We thereby
obtain significant end-to-end performance improvements up
to 26x or reduced memory requirements.

1. INTRODUCTION

Large-scale machine learning (ML) leverages large data
collections in order to find interesting patterns and build ro-
bust predictive models [9, 10]. Applications include regres-
sion analysis, classification, and recommendations. Data-
parallel frameworks such as MapReduce [11], Spark [22], and
Flink [2] are often used for cost-effective parallelized model
building on commodity hardware.

Declarative ML: State-of-the-art, large-scale ML sys-
tems support declarative ML algorithms [5], expressed in
high-level languages, that comprise linear algebra opera-
tions, i.e., matrix multiplications, aggregations, element-
wise and statistical computations. Examples—at varying
abstraction levels—are SystemML [6], SciDB [20], Cumu-
lon [15], DMac [21], and TensorFlow [1]. A high level of
abstraction gives data scientists the flexibility to create and
customize ML algorithms without worrying about data and
cluster characteristics, underlying data representations (e.g.,
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Figure 1: Goals of Compressed Linear Algebra.

sparse/dense format) or execution plan generation. We aim
to improve the performance of declarative ML algorithms.

Bandwidth Challenge: Many ML algorithms are itera-
tive, with repeated read-only access to the data. They rely
on matrix-vector multiplications to converge to an optimal
model; such operations require one complete scan of the ma-
trix, with two floating point operations per matrix element.
Hence, matrix-vector multiplications are, even in-memory,
I/0O bound. Disk bandwidth is usually 10x-100x slower than
memory bandwidth, so it it crucial for performance to fit
the matrix into available memory without sacrificing opera-
tions performance. This challenge applies to single-node in-
memory computations [16], data-parallel frameworks with
distributed caching such as Spark [22], and hardware accel-
erators like GPUs, with limited device memory [1, 3, 4].

Compressed Linear Algebra: Declarative ML pro-
vides data independence, which allows for automatic lossless
compression to fit larger datasets into memory. A baseline
solution would employ general-purpose compression tech-
niques and decompress matrices block-wise for each oper-
ation. However, heavyweight techniques like Gzip are in-
applicable because decompression is too slow (slower than
uncompressed I/0), while lightweight methods like Snappy
only achieve moderate compression ratios. Existing special-
purpose compressed matrix formats with good performance
like CSR-VI [18] similarly show only modest compression
ratios. We have therefore initiated the study of compressed
linear algebra (CLA), in which lightweight database com-
pression methods—such as compressing offset lists per dis-
tinct column value—are applied to matrices and then linear
algebra operations are executed directly on the compressed
representations [12]. Figure 1 shows the goals of this ap-
proach: we want to widen the sweet spot for compression by
achieving both (1) performance close to uncompressed in-
memory operations and (2) good compression ratios to fit
larger datasets into memory. The novelty of our approach
is to combine both database compression techniques and
sparse matrix representations, leading towards a generaliza-
tion of traditional sparse matrix formats for sparse and dense
data; see [12] for a full discussion of related work.
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Table 1: Compression Ratios of Real Datasets.

Dataset Size Gzip | Snappy | CLA

Higgs[19] | 11Mx28, 0.92: 25GB | 1.93 | 1.38 | 2.03
Census [19] | 2.56Mx68, 0.43: 1.3GB |17.11 6.04 27.46
Covtype [19] | 600K x54, 0.22: .14GB |10.40| 6.13 |[12.73
ImageNet [8] | 1.2M x 900, 0.31: 4.4 GB| 5.54 3.35 7.38
Mnist8m [7] | 8.1Mx 784, 0.25: 19 GB | 4.12 2.60 6.14

Table 2: Overview ML Algorithm Core Operations
(see http://systemml.apache.org/algorithms for details).

Algorithm M-V | V-M MVChain TSMM
Xv [ vIX [ XT(wo(Xv) | XTX
LinregCG v v v (w/o w®)
LinregDS v v
Logreg / GLM v v v (w/ w)
L2SVM v v
PCA v v

Compression Potential: Our focus is on floating-point
matrices, so the potential for compression may not be ob-
vious. Table 1 shows compression ratios for the general-
purpose, heavyweight Gzip and lightweight Snappy algo-
rithms and for our CLA method on real-world datasets (sizes
given as rows, columns, sparsity, and in-memory size). We
see compression ratios of 2x-27x, due to the presence of a
mix of floating point and integer data, and due to features
with relatively few distinct values. Thus enterprise machine-
learning datasets are indeed amenable to compression. The
decompression bandwidth (including time for matrix deseri-
alization) of Gzip ranges from 88 MB/s to 291 MB/s which
is slower than for uncompressed I/O. Snappy achieves a de-
compression bandwidth between 232MB/s and 638 MB/s
but only moderate compression ratios. In contrast, CLA
achieves good compression ratios and avoids decompression.
In the following sections, we motivate our approach and
describe its key components: column compression schemes,
cache-conscious vector-matrix operations, and an efficient
sampling-based compression algorithm.

2. BACKGROUND AND MOTIVATION

As discussed below, both the features of declarative-ML
systems and the characteristics of typical ML workloads mo-
tivate our approach to compressed linear algebra.

SystemML Setting: We describe CLA in the setting
of SystemML, as it is representative of the declarative ML
platforms that we are targeting. In SystemML, algorithms
are expressed in a high-level R-like scripting language and
compiled to hybrid runtime plans that combine both single-
node, in-memory operations and distributed operations on
MapReduce or Spark. Each statement block of an ML script
is first parsed into a directed cyclic graph (DAG) of high-
level operators. The system then applies various rewrites,
such as common subexpression elimination and optimiza-
tion of matrix-multiplication chains, as well as operator se-
lection, yielding a DAG of low-level operators, which is then
compiled into instructions. Matrices are represented inter-
nally in a binary block matriz format with fixed-size blocks.
Each block is represented either in dense or sparse format.
For single-node, in-memory operations, the entire matrix is
often represented as a single block. CLA can be seamlessly
integrated by adding a new derived block representation and
operations. See [6, 12] for further details on SystemML.

Common Operation Characteristics: Table 2 sum-
marizes the core operations of important ML algorithms.
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Figure 2: Cardinality Ratios and Co-Coding.

These algorithms include linear regression via iterative
conjugate-gradient descent (LinregCG) and via direct so-
lution of the normal equations (LinregDS), as well as logis-
tic regression (Logreg), generalized linear models (GLM),
support-vector machines with Lg-regularization (L2SVM)
and principal component analysis (PCA). LinregDS and
PCA are non-iterative and the other algorithms are iter-
ative. Vector-matrix multiplication is often caused by the
rewrite X'v — (v' X)7 to avoid transposing X. In addi-
tion, many systems also implement physical operators for
matrix-vector chains, with optional element-wise weight-
ing w®, and transpose-self matrix multiplication (TSMM)
XTX. All of these operations are 1/0-bound, except for
TSMM with m > 1 features because its compute workload
grows as O(m?). Beside these operations, append, unary ag-
gregates like colSums, and matrix-scalar operations access
X for intercept computation, scaling and shifting.
Common Data Characteristics: Despite signifi-
cant differences in data sizes—ranging from kilobytes to
terabytes—we and others have observed certain common
characteristics of ML datasets. First, matrices usually have
significantly more rows (observations) than columns (fea-
tures), especially in enterprise machine learning, where data
often originates from data warehouses. Second, feature pre-
processing like dummy coding often yields datasets having
many sparse features (i.e., features with many zero values);
sparsity, however, is rarely uniform, but often varies widely
among features [12]. Third, Many datasets contain features
with low column cardinality, i.e., few distinct values. Exam-
ples include encoded categorical, binned or dummy-coded
(0/1) features. Low column cardinality is a good indicator
of compression potential because it indicates redundancy.
For example, all columns of Census have a ratio of column
cardinality to number of rows below .0008% and the major-
ity of columns of Higgs have a cardinality ratio below 1%.
The column cardinalities can vary widely within a dataset,
however; for example, Higgs contains several columns hav-
ing millions of distinct values. (See [12] for additional dis-
cussion of the datasets.) Finally, many datasets contain col-
umn groups that exhibit significant correlation in that the
concatenated columns have a cardinality ratio much lower
than would be expected if the values in each column were
arranged randomly and independently of the other columns.
Compression Strategy: The foregoing workload char-
acteristics suggest several key features of a good compression
strategy. First, the compression schemes should be column-
based and value-centric, with fallbacks for high cardinality
columns. Moreover, schemes should exploit column correla-
tion by discovering and co-coding highly correlated column
groups. With value-based offset lists, a column ¢ with d; dis-
tinct values requires = 8d; 4+ 4n B, where n is the number
of rows, and each value is encoded with 8 B and a list of
4 B row indexes. Co-coding two columns 7 and j as a single
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Uncompressed Compressed Column Groups

Input Matrix (RLE{Z}\ /OLE{1,3}\ (OLE{4}\ (UC{E}\
79 6 21 09 ) 82 {7} TT)| 213} | 099
39 4 3 073 1 6 1 2 4 1 2 0.73
7 9 6 21 005 4 1. |3 5 6 3 4 0.05
79 5 3 042 3 9 7 5 6 0.42
3 0 4 21 061 3 3 8 9 7 0.61
782 5 3 089 T 10 10 0.89
39 4 3 007 0.07
39 4 0 092 0.92
7 9 6 21 054 0.54
3 0 4 3 016 L L U U 0.16 )

Figure 3: Example Compressed Matrix Block.

group of value-pairs and offsets requires 16d;; + 4n B, where
d;; is the number of distinct value-pairs. The higher the
correlation, the larger the size reduction by co-coding. For
example, Figures 2(a) and 2(b) show the size reductions (in
MB) by co-coding all pairs of columns of Higgs and Census.
Overall, co-coding column groups of Census (not limited to
pairs) improves the compression ratio from 10.1x to 27.4x.
For Higgs, co-coding any of the columns 8, 12, 16, and 20
with one of most of the other columns reduces sizes by at
least 25 MB. Moreover, co-coding any column pair of Census
reduces sizes by at least 9.3 MB.

3. COMPRESSION SCHEMES

We now describe our novel matrix compression frame-
work, including two effective encoding formats for com-
pressed column groups, as well as efficient, cache-conscious
core linear algebra operations over compressed matrices.

3.1 Matrix Compression Framework

A compressed matrix block is represented as a set of com-
pressed columns. Column-wise compression leverages two
key characteristics: few distinct values per column and high
cross-column correlations. Taking advantage of few distinct
values, we encode a column as a list of distinct values to-
gether with a list of offsets per value, i.e., a list of row indexes
in which the value appears. As with sparse matrix formats,
offset lists allow for efficient linear algebra operations.

Column Co-Coding: We exploit column correlation by
partitioning columns into column groups such that columns
within each group are highly correlated. Columns within the
same group are then co-coded as a single unit. Conceptually,
each row of a column group comprising m columns is an m-
tuple t of floating-point values, representing reals or integers.

Column Encoding Formats: Conceptually, the offset
list associated with each distinct tuple is stored as a com-
pressed sequence of bytes. The efficiency of executing lin-
ear algebra operations over compressed matrices strongly
depends on how fast we can iterate over this compressed
representation. We adapt two well-known effective offset-
list encoding formats: Offset-List Encoding (OLE) and
Run-Length Encoding (RLE). We fall back to a simple
uncompressed-column (UC) format if compression is not
beneficial. These decisions on column encoding formats as
well as co-coding are strongly data-dependent and hence
require automatic optimization. We discuss compression
planning—i.e., automatically choosing plans that maximize
the compression ratio—in Section 4.

Example Compressed Matrix: Figure 3 shows our
running example of a compressed matrix block. The 10 x 5
input matrix is represented as four column groups. Columns
2, 4, and 5 are represented as single-column groups and en-
coded with RLE, OLE, and UC, respectively. For column 4,
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we have two distinct non-zero values and hence two offset
lists. Finally, there is a co-coded column group for the cor-
related columns 1 and 3, which encodes offset lists for all
distinct value-pairs.

Notation: For the ith column group, denote by 7; =
{ti1,ti2,. .., tiq, } the set of d; distinct non-zero tuples, by
G; the set of column indexes, and by O;; the set of offsets as-
sociated with t;; (1 < j < d;). We focus on the “sparse” case
in which zero values are not stored (aka “O-suppressing”).
Also, denote by « the size in bytes of each floating point
value; a = 8 for the double-precision IEEE-754 standard.

3.2 Column Encoding Formats

We now describe the compressed data layout of the OLE
and RLE formats and give formulas for the in-memory com-
pressed size SPTF and SEY'E. The total matrix size is then
computed as the sum of group size estimates.

Data Layout: Figure 4 shows—as an extension to our
running example from Figure 3 (with more rows)—the data
layout of OLE/RLE column groups composed of four lin-
earized arrays. Besides a data array D;, both encoding
schemes use a common header of three arrays for column
indexes, fixed-length value tuples, and pointers to the data
per tuple. The physical data length per tuple in D; can be
computed as the difference of adjacent pointers (e.g., for
t;1 = {7,6} as 13 — 1 = 12). The data array is then used in
an encoding-specific manner. Tuples are stored in order of
decreasing physical data length to improve branch predic-
tion and pre-fetching.

Offset-List Encoding (OLE): Our OLE scheme divides
the offset range into segments of fixed length A® = 2*® (two
bytes per offset). Each offset is mapped to its corresponding
segment and encoded as the difference to the beginning of its
segment. For example, the offset 155,762 lies in segment 3
(= 14 (155,762 — 1)/A®]) and is encoded as 24,690 (=
155,762 — 2A%). Each segment then encodes the number of
offsets with two bytes, followed by two bytes for each offset,
resulting in a variable physical length in D;. Empty segments
are represented as two bytes indicating zero length. Iterating
over an OLE group entails scanning the segmented offset list

and reconstructing global offsets as needed. The size SOTF
of column group G; is calculated as
d;
S,QLE :4|gi|+di(4+a|gi|) +22bij + 2z, (1)
j=1

where b;; denotes the number of segments of tuple t;;, |O;j|
denotes the number of offsets for t;;, and z; = Zj;1‘oij|
denotes the total number of offsets in the column group. The
common header has a size of 4|G;| + d; (4 + a|gi|).
Run-Length Encoding (RLE): In RLE, a sorted list of
offsets is encoded as a sequence of runs. Each run represents
a consecutive sequence of offsets, via two bytes for the start-
ing offset and two bytes for the run length. We store starting
offsets as the difference between the offset and the ending
offset of the preceding run. Empty runs are used when a
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Algorithm 1 Cache-Conscious OLE Matrix-Vector

Input: OLE column group G;, vectors v, q, row range [rl, ru)
Output: Modified vector q (in row range [rl, ru))

1: for j in [1,d;] do // distinct tuples
;5 < SKIPSCAN(Gy, 7, rl) // find position of rl in D;
ugj <ty - vg, // pre-aggregate value
: for bk in [rl,ru) by A€ do // cache buckets in [rl,ru)
for j in [1,d;] do // distinct tuples

for k in [bk, min(bk + A°,ru)) by A do // segments
if m;; <bi; +|O;5] then // physical data length
ADDSEGMENT(G;, i, uij, k, q) // update q, m;;

relative starting offset is larger than the maximum length
of 2%, Similarly, runs exceeding the maximum length are
partitioned into smaller runs. Iterating over an RLE group
entails scanning the runs and enumerating offsets per run.
The size SFEE of column group G; is computed as
d;
SiP = 4|Gi| + di (4 4 alGi]) + 4 1y, (2)
j=1
where 7;; is the number of runs for tuple t;;. Again, the
common header has a size of 4|G;| + d; (4 + a\gi|).

3.3 Operations over Compressed Matrices

‘We now show how to execute efficient linear algebra opera-
tions over a set X of column groups; matrix block operations
are then composed of operations over column groups. We
write cv to denote element-wise scalar-vector multiplication
as well as u - v to denote the inner product of vectors.

Matrix-Vector Multiplication: The product q = Xv
of X and a column vector v can be represented with respect
to column groups as q = Z‘é‘l Z;—li:l(tij - vg;)1lo,;, where
vg, is the projection of v onto the indexes G; and lo,; is
the 0/1-indicator vector of offset list O;;. A straightforward
way to implement this computation iterates over t;; tuples
in each group, scanning O;; and adding t;; - vg, at recon-
structed offsets to q. However, pure column-wise processing
would scan the n x 1 output vector q once per tuple, re-
sulting in cache-unfriendly behavior for the typical case of
large n. We therefore use cache-conscious schemes for OLE
and RLE groups based on horizontal, segment-aligned scans
(with benefits of up to 2.1x/5.4x for M-V /V-M in our experi-
ments); see Algorithm 1 and Figure 5(a) for the case of OLE.
Multi-threaded operations parallelize over segment-aligned
partitions of rows [rl,ru), which guarantees disjoint results
and thus avoids partial results per thread. We find m;;, the
starting position of each t;; in D; via a skip scan that aggre-
gates segment lengths until we reach rl (line 2). To minimize
the overhead of finding 7;;, we use static scheduling (task
partitioning). We further pre-compute u;; = t;;-vg, once for
all tuples (line 3). For each cache-bucket of size A° (such that
A° - #£cores - 8 B fits in L3 cache, by default A° = 2A°), we
then iterate over all distinct tuples (lines 5-8) but maintain
the current positions ;; as well. The inner loop (lines 6-8)
then scans segments and adds u;; via scattered writes at re-
constructed offsets to the output q (line 8). RLE is similarly
realized except for sequential writes to q per run, special
handling of partition boundaries, and additional state for
the reconstructed start offsets per tuple.

As a toy example for OLE, consider the column group
G = {1,3} as in Figure 4 and suppose that vg = (1,2).
Also suppose that the OLE encoding uses two segments,
each of length = 5 rows, and that a cache bucket comprises
exactly one segment. Finally, suppose that a single thread
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Figure 5: Cache-Conscious OLE Operations.

updates q. Algorithm 1 first precomputes (1,2) - (7,6) = 19,
(1,2) - (3,4) = 11, and (1,2) - (7,5) = 17. The thread then
handles rows in [rl,ru) = [1,11), i.e., all ten rows. It reads
the first five elements of q into cache, and then adds 19
to q[1] and q[3], 11 to q[2] and q[5], and 17 to q[4]. Next,
the thread reads in the last five elements of q and adds 19
to q[9], 11 to q[7], q[8], q[10], and 17 to q[6]. In contrast,
the naive approach would first add 19 to q[i] for ¢ = 1,3, 9,
then add 11 to q[éi] for ¢ = 2,5,7,8,10, and then add 17
to qi] for ¢ = 4,6. The cost on our toy architecture is six
“cache reads” compared to two reads for Algorithm 1. Also
note that Algorithm 1 requires only 6 multiplications and
13 additions, whereas the uncompressed operation requires
20 multiplications and 20 additions.

Vector-Matrix Multiplication: Column-wise compres-
sion allows for efficient vector-matrix products q = v'X
because individual column groups update disjoint entries of
the output vector q. Each entry ¢; can be expressed over
columns as ¢; = v' X.;. We rewrite this multiplication in
terms of a column group G; as scalar-vector multiplications:
qg, = Zj;l Zleoij vit;;. However, a purely column-wise
processing would again suffer from cache-unfriendly behav-
ior because we scan the input vector v once for each dis-
tinct tuple. Our cache-conscious OLE/RLE group opera-
tions again use horizontal, segment-aligned scans as shown
in Figure 5(b). The OLE/RLE algorithms are similar to
matrix-vector but in the inner loop we sum up input-
vector values according to the given offset list; finally, we
scale the aggregated value once with the values in t;;.
For multi-threaded operations, we parallelize over column
groups, where disjoint results per column allow for simple
dynamic task scheduling. The cache bucket size is equiv-
alent to matrix-vector (by default 2A°) except that RLE
runs are allowed to cross cache bucket boundaries due to
column-wise parallelization.

Other Operations: As discussed in [12], efficient meth-
ods for more complex operations such as matrix-vector mul-
tiplication chains and transpose-self matrix multiplications
are built up from the foregoing matrix-vector and vector-
matrix operations. Common operations such as X2, 2X, and
append can be executed very efficiently over compressed ma-
trices without scanning the offset lists. Finally, unary aggre-
gates like sum (or similarly colSums) are efficiently computed
using offset-list sizes as 3_1¥! Zji=1|02‘j‘tij.

i=1

4. COMPRESSION PLANNING

Given an uncompressed n X m matrix block X, the sys-
tem automatically chooses a compression plan, that is, a
partitioning of compressible columns into column groups
and a compression scheme per group. To keep the planning
costs low, sampling-based techniques are used to estimate
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the compressed size of an OLE/RLE column group G;. The
size estimates are used for finding the initial set of compress-
ible columns and a good column-group partitioning. Exhaus-
tive (O(m™)) and brute-force greedy (O(m?)) partitioning
are infeasible, but a bin-packing-based technique can dras-
tically reduce the number of candidate groups. The overall
compression algorithm corrects for estimation errors.

4.1 Estimating Compressed Size

To calculate the compressed size of a column group G;
via size-estimation formulas (1) and (2), we need to esti-
mate the number of distinct tuples d;, non-zero tuples z;,
segments b;;, and runs 7;;. Our estimators are based on a
small sample of rows S drawn randomly and uniformly from
X with |S| < n. We have found experimentally that being
conservative (overestimating compressed size) and correct-
ing later on yields the most robust co-coding choices, so we
make conservative choices in our estimator design.

Number of Distinct Tuples: To estimate d;, we use the
“hybrid” estimator d; from [14]; the idea is to estimate the
degree of variability in the frequencies of the tuples in 7; as
low, medium, or high, based on the estimated squared coef-
ficient of variation and then apply a “generalized jackknife”
estimator that performs well for that regime. Such an esti-
mator has the general form d = ds + K(NW/|S|), where
ds is the number of distinct tuples in the sample, K is a
data-based constant, and NV is the number of tuples that
appear exactly once in S (“singletons”). The hybrid estima-
tor provides a reasonable balance of cost and accuracy [12].

Number of OLE Segments: In general, not all elements
of 7; will appear in the sample. Denote by 7,° and 7;* the
sets of tuples observed and unobserved in the sample, and
by d and d;* their cardinalities. The latter can be estimated
as dj = d; — dj, where d; is obtained as described above.
We also need to estimate the population frequencies of both
observed and unobserved tuples. Let f;; be the population
frequency of tuple t;; and F;; the sample frequency. A naive
estimate scales up Fi; to obtain fj}*V¢ = (n/|S|)F;;. Note
that Zt JeTo naive — p implies a zero population frequency

for each unobberved tuple. We adopt a standard way of deal-
ing with this issue and scale down the naive frequency esti-
mates by the estimated “coverage” C; of the sample, defined
as C; = ZtijeT;’ fij/n. The usual estimator of coverage,

originally due to Turing (see [13]), is
NV/IS|,181/m). (3)

This estimator assumes a frequency of one for unseen tuples,
computing the coverage as one minus the fraction of single-
tons in the sample. We add the lower sanity bound |S|/n
to handle the case N; ™ = = |S]. For simplicity, we assume
equal frequencies for all unobserved tuples. The resulting
frequency estimation formula for tuple t;; is

A (n/|$\)C’ZFZ] if t;; € T
fij = A Ju . U
n(l — Cl)/dl if tij S 7; .

We can now estimate the number of segments b;; in which
tuple t;; appears at least once (this modified definition of
b;; ignores empty segments for simplicity with negligible er-
ror in our experiments). There are | = n — |S| unobserved
offsets and estimated fﬁ] = fiq — Fiq unobserved instances
of tuple t;, for each tiq € 7;. We adopt a maximum-entropy
(maxEnt) approach and assume that all assignments of un-

éi = max(l —

(4)
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Figure 6: Estimating the Number of RLE Runs #;;.

observed tuple instances to unobserved offsets are equally
likely. Denote by B the set of segment indexes and by B;;
the subset of indexes corresponding to segments with at least
one observation of t;;. Also, for k € B, let I be the num-
ber of unobserved offsets in the kth segment and Njji the
random number of unobserved instances of t;; assigned to
the kth segment (N;;r < li). Then we estimate b;; by its
expected value under our maxEnt model:

bza - E[ 1]] |Bw| + Z P(N. ijk > 0)
keB\B;;
. (5)
=[Byl+ > [1—h(l f,0),
kEB\B;;

where h(a,b,c) = (‘;b)/(i) is a hypergeometric probability.
Note that b;; = b¥ for tij € T;", where b¥ is the value of by;
when f#% = (1 — Ci)n/d and |B,J\ = 0. Thus our estimate
of the sum Zj;l bi]' in (1) is Ztije’rf ZA)ij + (jfi)?

Number of Non-Zero Tuples: We estimate the number
of non-zero tuples as 2; = n— fio, where f;o is an estimate of
the number of zero tuples in X.g,. Denote by Fjo the number
of zero tuples in the sample. If Fjo > 0, we can proceed as
above and set fio = (n/|S|)CiFio, where C; is (3). If Fjo = 0,
then we set fio = 0; this estimate maximizes Z; and hence
SPLE per our conservative estimation strategy.

Number of RLE Runs: The number of RLE runs r;; for
tuple t;; is estimated as the expected value of r;; under the
maxEnt model. This expected value is very hard to compute
exactly and Monte Carlo approaches are too expensive, so we
approximate E[r;;] by considering one interval of consecu-
tive unobserved offsets at a time as shown in Figure 6. Adja-
cent intervals are separated by a “border” comprising one or
more observed offsets. As with the OLE estimates, we ignore
the effects of empty and very long runs. Denote by 7 the
length of the kth interval and set = Y, 7. Under the max-
Ent model, the number f;; . of unobserved t;; instances as-
signed to the kth interval is hypergeometric, and we estimate
fijr by its mean value: f”k = (nk/n)f” Given that f”k in-
stances of t;; are assigned randomly and uniformly among
the 7y possible positions in the interval, the number of runs
rijk within the interval (ignoring the borders) is known to
follow an “Ising-Stevens” distribution [1’77 pp. 422-423] and
we estimate 7,5 by its mean: 7, = fmk(nk f”k +1)/nk.
We show in [12] that a reasonable estimate of the contribu-
tion to 7;; from the border between interior intervals k and
E+1is A =1 — (Qfllg/n) so that the final estimate is

Fig = >, Tijk + 2, Aijk (with appropriate modifications for
the first and last border).

4.2 Partitioning Columns into Groups

A greedy brute-force method for partitioning a set of com-
pressible columns into groups starts with singleton groups
and executes merging iterations. At each iteration, we merge
the two groups having maximum compression ratio (sum of
their compressed sizes divided by the compressed size of the
merged group). We terminate when no further space reduc-
tions are possible, i.e., no compression ratio exceeds 1. Al-

SIGMOD Record, March 2017 (Vol. 46, No. 1)



Algorithm 2 Matrix Block Compression

Input: Matrix block X of size n x m
Output: A set of compressed column groups X
CC 0, CUC 0, G0, X0
// Planning phase — — — — — — — — — — — — — — — — — — —
S + sAMPLEROWSUNIFORM (X, sample_size)
for all column £ in X do

cmp_ratio < Zic/ min(S’ELE, S]?LE)
if cmp_ratio > 1 then

CC«+—CCuk
else

CcVC «+ CcVCuk
10: bins < RUNBINPACKING(CC) // group
11: for all bin b in bins do
12: G + G U GROUPBRUTEFORCE(b)
13: // Compression phase — — — — — = — — — — — — — — — — —
14: for all column group G; in G do // compress

15: do

16: biglist — EXTRACTBIGLIST(X, G;)

17: cmp_ratio < GETEXACTCMPRATIO(biglist)

18: if ecmp_ratio > 1 then

19: X < X U COMPRESSBIGLIST(biglist), break
20: k < REMOVELARGESTCOLUMN(G;)

21: CcVC  cUC Uk

22:  while |G;| >0
23: return X < X U crREATEUCGROUP(CUC)

though compression ratios are estimated from a sample, the
cost of the brute-force scheme is O(m?), which is infeasible.
Bin Packing: We observed empirically that the brute-
force method usually generates groups of no more than five
columns. Further, we noticed that the time needed to esti-
mate a group size increases as the sample size, the number
of distinct tuples, or the matrix density increases. These two
observations motivate a heuristic strategy where we parti-
tion the columns into a set of small bins and then apply
the brute-force method within each bin to form the column
groups. We use a bin-packing algorithm to assign columns
to bins. The weight of each column indicates its estimated
contribution to the overall runtime of the brute-force par-
titioning. The capacity of a bin is chosen to ensure mod-
erate brute-force runtime per bin. Intuitively, bin packing
minimizes the number of bins, which should maximize the
number of columns within each bin and hence grouping po-
tential, while controlling the processing costs.
_Bin Weights: We set the weight of the it column to
di/n, i.e., the ratio of distinct tuples to rows. If d;/n is
larger than a specified threshold v, then we consider col-
umn 5 as ineligible for grouping. We also set each bin capac-
ity to w = B7, where 3 is a tuning parameter. We made the
design choice of a constant bin capacity—independent of the
number of non-zeros—to ensure constant compression ratios
and throughput irrespective of blocking configurations. We
use the first-fit heuristic to solve the bin-packing problem.

4.3 Compression Algorithm

We now describe the overall algorithm for creating com-
pressed matrix blocks (Algorithm 2). Note that we transpose
the input in case of row-major dense or sparse formats to
avoid performance issues due to column-wise processing.

Planning Phase (lines 2-12): Planning starts by draw-
ing a sample of rows from X. For each column ¢, the sample
is first used to estimate the compressed column size S by
S = min(S‘iRLE, g?LE), where SR and SO are obtained
by substituting the estimated cii, 2i, Tij, and l;ij into formulas
(1) and (2). We conservatively estimate the uncompressed
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column size as SY¢ = %, which covers both dense and
sparse with moderate underestimation for common scenar-
ios, and allows column-wise decisions independent of |C'V°]|
(where sparse-row overheads might be amortized in case of
many columns). Columns whose estimated compression ra-
tio Sszc/Swlc exceeds 1 are added to a compressible set C°.
In a last step, we divide the columns in C° into bins and
apply the greedy brute-force algorithm within each bin to
form column groups.

Compression Phase (lines 13-23): The compression
phase first obtains exact information about the parameters
of each column group and uses this information in order to
adjust the groups, correcting for any errors induced by sam-
pling during planning. The exact information is also used to
make the final decision on encoding formats for each group.
In detail, for each column group G;, we extract the “big”
(i-e., uncompressed) list that comprises the set 7; of distinct
tuples together with the uncompressed lists of offsets for the
tuples. The big lists for all of the column groups are ex-
tracted during a single column-wise pass through X using
hashing. During this extraction operation, the parameters
di, zi, rij, and b;; for each group G; are computed exactly,
with negligible additional cost. These parameters are used
in turn to calculate the exact compressed sizes SFVE and
SOLE and exact compression ratio Sy ° / SE for each group.

Corrections: Because the column groups are originally
formed using compression ratios that are estimated from a
sample, there may be false positives, i.e., purportedly com-
pressible groups that are in fact incompressible. Instead of
simply storing false-positive OLE/RLE groups as UC group,
we attempt to correct the group by removing the column
with largest estimated compressed size. The correction pro-
cess is repeated until the remaining group is either com-
pressible or empty. After each group has been corrected, we
choose the optimal encoding scheme for each compressible
group G; using the exact parameter values d;, z;, bij, and 75
together with the formulas (1) and (2). The incompressible
columns are collected into a single UC column group.

5. EXPERIMENTS

We present some highlights from an experimental study
of CLA as implemented in SystemML, emphasizing end-to-
end results; see [12] for details and additional experiments.
Overall, the results show that, for a variety of ML programs
and real-world datasets, CLA indeed achieves in-memory
matrix-vector multiplication performance close to uncom-
pressed while yielding substantially better compression ra-
tios than lightweight general-purpose compression. As a con-
sequence, CLA provides large end-to-end performance im-
provements when uncompressed or lightweight-compressed
matrices do not fit in local or aggregated memory.

Implementation: When CLA is enabled, SystemML au-
tomatically injects—for any multi-column input matrix—a
so-called compress operator via new rewrites. This applies
to both single-node and distributed Spark operations, where
the execution type is chosen based on memory estimates. For
Spark, we compress individual matrix blocks independently.
Making our compressed matrix block a subclass of the un-
compressed matrix block yielded seamless integration of all
operations, serialization, and buffer-pool interactions.

Experimental Setup: We ran all experiments on a clus-
ter of one head node and six additional nodes; see [12] for
details. For our end-to-end experiments, we ran versions of
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