Technical Perspective: Reflections on Extending SQL
using Constraints

Surajit Chaudhuri

Microsoft Research
surajitc@microsoft.com

Relational query languages enabled the programmer to express
succinctly what data items to retrieve using a logical model of data
without any knowledge of the underlying physical structures and
helped relational systems gain widespread adoption. To support
applications using a relational database effectively, there has been
much work subsequently along the following three dimensions:

(a) Application developers needed a programmatic way to in-
voke relational query functionality from within their appli-
cations. The most primitive and most prevalent form of such
integration uses ODBC or JDBC APIs. While they provide
connectivity to database objects, the application programmer
still must manage two separate type systems and program-
ming models. LINQ (Language Integrated Query) is an ele-
gant example of integration where query expressions are in-
troduced as first class citizen in the programming languages.
Object-relational mapping tools allow the application pro-
grammer to continue working in their object-oriented pro-
gramming paradigm even though they may be storing and
retrieving relational database objects.

(b) Enriching the relational model to support extensibility so that
programmers could do more within a relational database sys-
tem was another key direction that has been pursued. The
simplest example of such extensibility was introduction of
user-defined selection and user-defined aggregates which are
widely supported in relational databases. Object-relational
databases extended the relational model to support complex
types, inheritance and support for user-defined methods but
their adoption has been relatively modest. The extensibil-
ity mechanisms in relational databases have been especially
useful in adding support for richer data types such as spatial.

(¢) There have been many proposals to extend core SQL by mak-
ing declarative querying in relational languages to do more.
The language has been extended to add recursive queries,
Roll-Up, Grouping Sets, Window function and more. In ad-
dition to the extensions that have been incorporated in the
SQL Standard, over time there has been a steady stream of
research proposals for enriching core SQL. Adoption of any
such extension requires careful consideration as they directly
impact complexity of the language and the query engine.

These directions of work are largely complementary. However,
there is always a healthy tension between how much should be done
in applications and what is best deferred to the database server us-
ing either its extensibility mechanisms or extensions to core SQL,
i.e., (b) and (c) above. Issues that influence such a debate are ease
of specification and efficient execution of desired computation, data
movement, and increased complexity of the database platforms.

SIGMOD Record, March 2017 (Vol. 46, No. 1)

The following paper by Brucato, Abouized, and Meliou belongs
to the line of work in (c) that suggests adding more functional-
ity to core SQL. Their work builds on past research work in the
broad area of endowing the query languages with also the power of
specifying constraints. The motivation for adding constraint speci-
fication to SQL comes from the desire to marry the well-established
paradigms of constrained optimization e.g., Integer Linear Program-
ming (ILP), and traditional SQL querying. Of course, selection
conditions in SQL are simple row level constraints. Past work on
constraint query languages proposed more generalized constraints
over row values. However, the following paper (as well as a few
other recent papers) focuses on aggregate constraints that the set of
answer rows to a query must satisfy collectively, and picks the an-
swer set based on an objective criterion (analogous to the objective
function in ILP). They give a nice motivating example of formulat-
ing a meal plan for which you want to ensure that the total number
of calories of the chosen meal plan is within a range and the total fat
consumption is minimized. The paper lays out specific extensions
to SQL needed to declaratively capture such queries and explains
how such queries can be evaluated by first executing the traditional
relational queries and then mapping the constraint satisfaction and
objective criterion to an ILP instance which in turn can be solved
using any off-the-shelf ILP solver. It is indeed advantageous to use
a well-tuned off-the-shelf ILP solver in the database server using its
extensibility mechanism instead of adding complexity to the core
SQL engine. The rest of the paper addresses the challenges in solv-
ing large ILP problems using offline partitioning and approxima-
tion techniques to break down the global ILP instance into smaller
ILP sub-problems such that the off-the-shelf ILP solvers are able
to handle the scale of each sub-problem. However, proposed tech-
niques such as offline partitioning is subject to debate as partition-
ing criteria for data may depend on other workload on the system
such as production queries.

While the paper is unlikely to end the debate on whether or not
constraints should be added to SQL (since any addition to the SQL
has complex trade-offs), the paper has studied what it takes to add
constraints to SQL in a relatively complete way — language exten-
sion, impact on query execution, and techniques to cope with scale.
If you are interested in the topic of constraint specification and op-
timization over information in databases, you should definitely pay
attention to this paper. It is worth a read also for any researcher who
wants to consider adding extensions to core SQL to ease applica-
tion tasks as it illustrates the key considerations one must address.

23



