Juggling Functions Inside a Database

Mahmoud Abo Khamis
LogicBlox Inc.
mahmoud.abokhamis@logicblox.com

ABSTRACT

We define and study the Functional Aggregate Query (FAQ)
problem, which captures common computational tasks across
a very wide range of domains including relational databases,
logic, matrix and tensor computation, probabilistic graph-
ical models, constraint satisfaction, and signal processing.
Simply put, an FAQ is a declarative way of defining a new
function from a database of input functions.

We present InsideOut, a dynamic programming algorithm,
to evaluate an FAQ. The algorithm rewrites the input query
into a set of easier-to-compute FAQ sub-queries. Each sub-
query is then evaluated using a worst-case optimal relational
join algorithm. The topic of designing algorithms to opti-
mally evaluate the classic multiway join problem has seen
exciting developments in the past few years. Our frame-
work tightly connects these new ideas in database theory
with a vast number of application areas in a coherent man-
ner, showing potentially that — with the right abstraction,
blurring the distinction between data and computation — a
good database engine can be a general purpose constraint
solver, relational data store, graphical model inference en-
gine, and matrix/tensor computation processor all at once.

The InsideOut algorithm is very simple, as shall be de-
scribed in this paper. Yet, in spite of solving an extremely
general problem, its runtime either is as good as or improves
upon the best known algorithm for the applications that FAQ
specializes to. These corollaries include computational tasks
in graphical model inference, matrix/tensor operations, re-
lational joins, and logic. Better yet, InsideOut can be used
within any database engine, because it is basically a princi-
pled way of rewriting queries. Indeed, it is already part of
the LogicBlox database engine, helping efficiently answer tra-

This work was partly supported by NSF grant CCEF-
1319402 and by DARPA under agreement #FA8750-15-2-
0009. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright thereon.

(© ACM 2017. This is a minor revision of the paper entitled “FAQ:
Questions Asked Frequently”, published in PODS’16, ISBN 978-1-4503-
4191-2/16/06, June 26-July 01, 2016, San Francisco, CA, USA.
DOI: http://dx.doi.org/10.1145/2902251.2902280. Permission
to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Hung Q. Ngo
LogicBlox Inc.
hung.ngo@logicblox.com

Atri Rudra
University at Buffalo, SUNY
atri@buffalo.edu

ditional database queries, graphical model inference queries,
and train a large class of machine learning models inside the
database itself.

1. INTRODUCTION

The following fundamental problems from diverse domains
share a common algebraic structure involving (generalized)
sums of products.

Ezample 1. (Matrix Chain Multiplication (MCM)) Given a
series of matrices A1,..., A, over some field F, where the
dimension of A; is p; X pi+1, i € [n], we wish to compute the
product A = A;---A,. The problem can be reformulated
as follows. There are n + 1 variables Xi,..., X,4+1 with
domains Dom(X;) = [pi], for ¢ € [n+ 1]. For ¢ € [n], matrix
A; can be viewed as a function of two variables

1/)1'7“_1 : Dom(XZ) X Dom(X7;+1) — F,

where ©;,i+1(2,y) = (Ai)zy. The MCM problem is to com-
pute the output function

Z Hwi,m(ﬂci, Tit1).

zy €EDom(X,,) i=1

o, Tn) = Y

z9€Dom(X2)

Ezample 2. (Maximum A Posteriori (MAP) queries in prob-
abilistic graphical models (PGMs)) Consider a discrete graph-
ical model represented by a hypergraph H = (V,). There
are n discrete random variables V = {X1,..., X, } on finite
domains Dom(X;), ¢ € [n], and m = |&| factors

s : [[Dom(X:) = Ry, S€E.
i€s
A typical inference task is to compute the marginal MAP
estimates, written in the form

o(z1,...,x5) = max
zyy1€DomM(X 1)

<o ma Xs)-
anDom)((Xn) 51;[5‘ wS(S)
Ezample 3. (Conjunctive query in RDBMS) Consider a
schema with the following input relations: R(a,b), S(b,c),
T(c,a), where for simplicity let us say all attributes are in-
tegers. Consider the following query:

SELECT R.a
FROM R, S, T
WHERE R.b = S.b AND S.c = T.c AND T.a = R.a;

The above query can be reformulated as follows. Relation
R(a,b) is modeled by a function ¢¥r(a,b) — {true,false},

SIGMOD Record, March 2017 (Vol. 46, No. 1)

where ¥ r(a, b) = true iff (a,b) € R, and relations S(b, ¢) and
T(c,a) are modeled by similar functions ¥s(b,c),¥r(c,a).
Now, computing the above query basically corresponds to
computing the function ¢(a) — {true,false}, defined as:

p(a) = \/ \ ¥r(a,b) A s (b, c) A dr(c,a).
b ¢

Ezample 4. (# Quantified Conjunctive Query (#QCQ)) Let
® be a first-order formula of the form

D(X1,..., Xf)=Qpt1 X541 QnXn

A R

Reatoms(®)

where Q; € {3,V}, for i > f. The #QCQ problem is to
count the number of tuples in relation ¢ on the free vari-
ables Xi,...,Xy. To reformulate #QCQ, construct a hy-
pergraph H = (V, €) as follows: V is the set of all variables
Xi,...,Xn, and for each R € atoms(®P) there is a hyperedge
S = vars(R) consisting of all variables in R. The atom R
can be viewed as a function indicating whether an assign-
ment xg to its variables is satisfied by the atom; namely
Ps(xs) = 1if xg € R and 0 otherwise.

Foreachi € {f+1,...,n} we define an aggregate operator

®(,L) _ max if Qz = 3,
] x if Qi =V.

Then, the #QCQ problem above is to compute the constant
function

Y= Z Z @(f‘Fl) @(n)

@1€Dom(X1) wpeDom(X ;) Tr+1€{0:1} 2n€{0.1} geg

It turns out that these and dozens of other fundamen-
tal problems from constraint satisfaction (CSP), databases,
matrix operations, PGM inference, logic, coding theory, and
complexity theory can be viewed as special instances of a
generic problem we call the Functional Aggregate Query,
or the FAQ problem, which we define next. (See [2, 6] for
many more examples.)

Throughout the paper, we use the following convention.
Uppercase X; denotes a variable, and lowercase x; denotes a
value in the domain Dom(X;) of the variable. Furthermore,
for any subset S C [n], define

xs = (2:)ics € | [Dom(X:).
€S

Xs = (Xi)ies,

In particular, Xgs is a tuple of variables and xs is a tuple
of specific values with support S. The input to FAQ is a set
of functions and the output is a function computed using a
series of aggregates over the variables and input functions.
More specifically, for each i € [n], let X; be a variable on
some discrete domain Dom(X;), where [Dom(X;)| > 2. The
FAQ problem is to compute the following function

@UtY . P Q vs(xs), (1)

zfy1€DomM(X 5 1) zpn E€Dom(X) SEE

P(x(p) =

where
o H = (V,€&) is a multi-hypergraph. V = [n] is the index

set of the variables X, ¢ € [n]. Overloading notation,
V is also referred to as the set of variables.

SIGMOD Record, March 2017 (Vol. 46, No. 1)

[T ¢s(xs).

e The set F = [f] is the set of free variables for some
integer 0 < f < n. Variables in V — F are called
bound variables. (Free and bound are logic terminolo-
gies. Free variables are group-by variables in database
nomenclature.)

e D is a fixed domain, such as {0,1}, R, Z.

e For every hyperedge S € &, ¥s : [[;cg Dom(X;) — D
is an input function (also called a factor).

e For every bound variable i > f, & is a binary (ag-
gregate) operator on the domain D.

e And, for each bound variable i > f either & = ® or
(D, ", ®) forms a commutative semiring (with the
same 0 and 1). Informally, this means that we can do
addition and multiplication over D and still remain in
the same set.

If @ = ®, then & is called a product aggregate;
otherwise, it is a semiring aggregate. (We assume that
there is at least one semiring aggregate.)

Because for ¢ > f every variable X; has its own aggregate
@ over all values x; € Dom(X;), in the rest of the paper
we will write @S) tomean @Y .
' x;€Dom (X ;)
We will refer to ¢ as an FAQ-query. We use FAQ-SS to de-
note the special case when there is a Single Semiring aggre-
gate, i.e. @Y =@,Vi > f, and (D, ®,®) is a semiring [6].

Ezample 5. (Aggregate query in RDBMS) Consider the
following query over relations R(a,b), S(a,c), T'(b,c,d,e),
ud,f), Vie, f), W(e,g), Y(f,h), where all attributes are
integers:

SELECT R.b, U.d, sum(W.e)
FROM R, S, T, U, V, W, Y
WHERE R.a = S.a AND R.b = T.b AND S.c = T.c
AND T.d = U.d AND T.e = V.e AND W.e = V.e
U.f = V.f AND Y.f = V.f GROUP BY R.b, U.d;

We now explain how the above query can be reduced to
an FAQ instance. Relation R(a,b) is modeled with a func-
tion ¢Yr(a,b) — {0,1}, where ¢r(a,b) = 1 iff (a,b) € R.
Similarly, we can think of relations S, T', U, V, and Y as
functions s, ¥r, Yu, Vv, Yy, with {0,1} values. We sin-
gle out one relation W (e, g) where the modeling is different:
Yw(e,g) = eif (e,g) € W and 0 otherwise. The correspond-
ing FAQ-query is

@(b,d) = Z Z Z Z Z Z YrRYsYTYuPvdwdy
a c e f g h

(For readability, we did not write the argument lists of the
functions ¥r, s, etc. They should be obvious from con-
text.) Note that a tuple in the output of the aggregate
query has the schema (b,d, ¢(b,d)). The corresponding hy-
pergraph is shown in Fig. la. The set of free variables is
F = {b,d}. The domain is D = Z, the set of integers. Note

A triple (D, @, ®) is a commutative semiring if and ® are
commutative binary operators over D satisfying the follow-
ing: (1) (D, ®) is a commutative monoid with an additive
identity, denoted by 0. (2) (D, ®) is a commutative monoid
with a multiplicative identity, denoted by 1. (3) ® dis-
tributes over @. (4) For any element e € D, e®0 = 0®e = 0.

also that the above reduction to FAQ still works if we replace
sum by another aggregate, e.g., max.

In order to explain later the connection of InsideOut to
query rewriting, we also write the above query in LogiQL, an
extension of Datalog supported by the LogicBlox engine [7]:

Qlb, d] = s <- agg<<s = total(e)>> R(a,b), S(a,c),
T(b,c,d,e), U(d,f), V(e,f), W(e,g), Y(£f,h).

In the above, agg is short for aggregate, total is equivalent
to sum in SQL, the notation Q[b,d]=s means that the head
predicate is Q(b,d,s) where (b,d) is a key, hence the query
computes Q(b,d,sum(e)).

(a) Query hypergraph

(b) Tree decomposition

Figure 1: Query from Example 5

The above example illustrates several important points.
First, when we defined the FAQ problem we did not spec-
ify how the input and output factors are represented. The
representation choice turns out to make a huge difference
in computational complexity [2]. However, in practical ap-
plications the representation is usually the obvious one: an
input factor ¥s(Xgs) can be thought of as a table of tu-
ples [xs,%s(xs)], with the implicit assumption that if xg
is not in the table then its tg-value is 0. (This is the ad-
ditive identity O of the domain D.) Second, the reduction
to FAQ is only at the syntax level. No real data conversion
is necessary. All the data we need to obtain the functions
YR, Yr etc. are already in the input relations. Third, in
the mathematical definition of ¢ (b, d) above, the domains of
all variables are integers and so we have infinite sums. We
could have restricted all variables to their active domains;
but that is not necessary because summing over all integers
or over the active domains give identical answer: tuples not
present are assumed to have values 0.

Now that we have established the scope of FAQ, in the
remainder of this paper we show a perhaps surprising result
that an FAQ problem can be solved by one simple yet ef-
ficient algorithm. The algorithm can be implemented as a
set of ordinary database queries. The runtime matches or
improves upon the best known runtimes in many applica-
tion areas that the FAQ framework captures. The runtime
depends on the order of variable aggregates in the FAQ ex-
pression, which naturally leads us to the question of how to
re-order those aggregates to obtain the best runtime without
changing the semantic meaning of the expression.

2. THE INSIDEOUT ALGORITHM

Parts of this section will be familiar to readers who have
been exposed to elementary graphical models [24]. There
are, however, a couple of ideas that are taken from new

developments in database theory [29, 28, 3] that are likely
not known in the graphical model literature. For each factor
g, define its size to be the number of non-zero points under
its domain: |Ygs| = Hxs | s(xs) #0}.

Basic variable elimination. To describe the intuition,
we first explain InsideOut as it applies to the special case
of FAQ-SS (or SumProd). The idea behind variable elimina-
tion [17, 37, 36] is to ‘fold’ common factors, exploiting the
distributive law:

@ "'EB®¢S(XS)

Ty z, SE&

Tl Tp—1 SEE—D(n)

Usxs) @ | D Q) vs(xs) |,
)

zn S€d(n

new factor ¢y; _(ny

where the equality follows from the fact that ® distributes
over @, d(n) denotes all edges incident to n in H and U,, =
Usean)S. Assume for now that we can somehow efficiently
compute the intermediate factor ¢y, —n). Then, the result-
ing problem is another instance of FAQ-SS on a modified
multi-hypergraph H', constructed from #H by removing ver-
tex n along with all edges in d(n), and adding back a new
hyperedge U, — {n}. Recursively, we continue this process
until all variables X,,..., X1 are eliminated. Textbook
treewidth-based results for PGM inference are obtained this
way [24]. In the database context (i.e. given an FAQ-query
over the Boolean semiring), the intermediate result ¥y, — (3
is essentially an intermediate relation of a query plan, the
folding technique exploiting distributive law corresponds to
“pushing the aggregate down” the query plan [13].

Introducing the indicator projections. While cor-
rect, basic variable elimination as described above is poten-
tially not very efficient for sparse input factors, i.e. factors
where the number of non-zero entries is much smaller than
the product of the active domain sizes. This is because the
product that was factored out of the scope of X,, might an-
nihilate many entries of the intermediate result ¥y, —(n},
while we have spent so much time computing ¥y, —{»}. For
example, for an S ¢ 9(n) such that S C U, and tuple ys
such that ¥s(ys) = 0, we do not need to compute the en-
tries Yy, —(n}(Xu, —{n}) for which ys = xs: those entries
will be eliminated later anyhow. The idea is then to only
compute those Yy, _(n}(Xu, —{n}) values that will “survive”
the other factors later on. One simple way to achieve this
would be to compute, for each S € £ — d(n), an “indica-
tor factor” that checks if ¥g5(xs) is 0 or not. Formally, for
any two sets 7' C S, and a given factor ¥g, the function
Ys/7 : [;er Dom(X;) — D defined by

1 FIxs_7 s.t. ws(xT,xs_T) #0
0 otherwise

Vs/r(xXT) 1= {

is called the indicator projection of ¥s onto T. Using indi-
cator factors, InsideOut computes the following factor when
marginalizing X,, away:

wUn_{n} (xUn_{n}) =

P Q) vs | ®

Ty S€a(n)

Q) vsysowa || @)

S¢o(n),
SNUp, #0

SIGMOD Record, March 2017 (Vol. 46, No. 1)

Another minor tweak is the observation that, if there is a
hyperedge S € £ — 9(n) for which S C U,, then we do not
use the indicator projection ¥s/snu, : we can use s itself to
compute the intermediate factor 9y, _{,}, and then remove

s from H'.

Ezample 6. We explain how the ideas above are imple-
mented in Example 5. First, the order in which we choose to
eliminate variables might have a huge effect on the runtime.
For now, let us assume that we somehow decided to rewrite
(b, d) using the following variable order, where we trace the
first couple of steps of the InsideOut algorithm without the
indicator projection: (Example 10 later explains how this
order is related to the tree decomposition in Fig. 1b.)

¢(b,d) Z Z Z Z Z Z YRYSYTYUYvPw iy
c a e f g h
Z Z Z Z Z YRYsYTYUYVPw Z Py (f, h)
c a e f g h

—_——
Y1(f)

22020 0 vnvsvrvutviwin
c a e f g

D220 vmusvriuivin Y vwle,9)
c a e f g

S —
2 (e)

SN ST S wnesur vty
c a e f

The first two steps are straightforward, where we eliminated
g and h. In LogiQL, these intermediate factors are computed
with the following two rules

psil[f] = s1 <- agg<<sl = count()>> Y(f,h).
psi2[e] S2 <- agg<<s2 = total(e)>> W(e,g).

The mathematical abstraction corresponds to rewriting a
query into a series of smaller queries. Next, we explain how
the indicator projection works when we eliminate variable
f. Out of the remaining factors ¥r, Vs, Y1, Vv, v, 1,and
1)2,the following factors contain f: vYu(d, f) ¥v(e, f) and
P1(f). If we were to multiply them together and marginalize
away f, we would create a new factor ¥3(e, d) = Zf Yuyv s
over variables {e,d}. However, two other factors have vari-
ables that overlap with {e, d}, namely ¥7 (b, ¢, d, e) and 12 (e).
For 97, we include its indicator projection ¥r /¢ 4} in com-
puting ¢3. (We will see later in Example 7 how includ-
ing 7/{e,qy can actually speed up the computation of 3
asymptotically.) For 12, we can include v itself. (Recall
the minor tweak we mentioned above.) Overall, we end up
with the following definition of 3:

P3(e,d) = ZwU v b1 P2 bryfe,ay-
f

In LogiQL, this sub-result is computed with two rules:

proji(d,e) <- T(b,c,d,e). // projection rule
psi3[e,d] = s3 <- agg<<s3 = total(sl*s2)>> U(d,f),
V(e,f), psil[f] = s1, psi2[e] = s2, proji(d,e).

After eliminating f, we are left with the following

pb,d) = Y D> > Urstrys

SIGMOD Record, March 2017 (Vol. 46, No. 1)

Z Z YRS Z Y3
Z Z YRS Z Y31 VR (03 Vs) (o}

P4 (b,c,d)

leading to the following LogiQL rules

proj2(b) <- R(a,b).

proj3(c) <- S(a,c).

psi4lb,c,d] = s4 <- agg<<s4 = total(s3)>>
psi3[e,d] = s3, T(b,c,d,e), proj2(b), proj3(c).

At this point, we have 3 factors left ¥r(a,b), ¥s(a,c), and
Ya(b, ¢, d). We eliminate a then ¢ straightforwardly:

DD Urtsta =Y 1> Urtstaspey = Y Yatds.

¥5(b,c)

Note that 1)4,(,c} has values in {0, 1} although 14 can have
any value in Z. The final LogiQL rules are

proj4(b,c) <- psi4[b,c,d] = s4. // indicator projection
psiblb,c] = sb <- agg<<sb = count()>>

R(a,b), S(a,c), proj4(b,c).
output[b,d] = t <- agg<<t = total(s4*s5)>>

psi4[b,c,d] = s4, psib5[b,c] = s5.

The general FAQ problem. The above strategy does
not care if the variable aggregates where the same or dif-
ferent: As long as (D,€9<"),®) is a semiring, we can fold
the common factors and eliminate X,. Thus, InsideOut
works almost as is for a general FAQ instance (as opposed to
FAQ-SS). Finally, when @™ = ® we simply swap the two
(identical) operators:

BB @ Ys(xs)

Tn—1 Tn SE&

= ...@(nfl)

Tn—1

= ...@(nfl) ®

Tp—1 SEE x,€Dom(Xy)

= @Y @ (slxs)Pom)
Tp_1 S¢d(n) ———~——r

w(xp) =

R Ps(xs)

zy €Dom(X,,) SEE

Ys(xs)

R Rvs(xs).

f Sed(n) rn
Vs Ys—{n}

We are left with an FAQ-instance whose hypergraph is
exactly H' = H — {n}: the hypergraph obtained form H
by removing vertex n from the vertex set and all incident
hyperedges. The sub-problems are of the form of product
marginalizations of individual factors ¥s for S € d(n), each
of which can be computed in linear time in |¢)g|. The prod-
uct marginalization step is algorithmically much easier be-
cause it does not create the intermediate factor ¥y, —,}. As
for S ¢ 9(n), we replace s by the power factor g(xs) =
(s(x5)) P Xl which can be done in linear time with
a log|Dom(X,)| blowup using the repeated squaring algo-
rithm. Note the key fact that this power is with respect
to the product aggregate ®. In most (if not all) applica-
tions of FAQ, there is one additional property: most of the
time, ® is an idempotent operator over the active domain.
For example, in the #QCQ problem ® is the usual product
operator and the domain that it aggregates over is {0,1}
(before there is a sum outside). In this case, ¥5(xs) =

(1hs(x5)) P Xl = 4g(x5), and we do not need to spend
the linear nor log-blowup time. For more details on product
idempotence, see [2].

FAQ sub-problems as natural joins. In the above
we have explained how InsideOut breaks a big problem into
smaller problems. In the product marginalization case, the
sub-problems are easy to solve: they can be solved in lin-
ear time. The most difficult problems, however, are of the
form (2). This is exactly an FAQ-query where we marginal-
ize out only one variable, with the remaining variables free.
Zooming in, problem (2) is of the form

YU, —{n} (XU —{n}) = @ ® YF,

x, FEE,

where H,, = (Un, &) is the sub-FAQ-query hypergraph. The
problem is solved by computing Yu, (xv,) = Qpcg, ¥r
first. Once the 9y, is computed, marginalizing away X,, to
obtain 9y, _{n} is trivial.

Computing the inner product is a natural join problem in
disguise. Each input factor g is represented using a table
of tuples of the form [xg,1s(xs)]. Essentially, xs is the
(compound) key and ¥gs(xs) is the value in this relation.
Again, recall that entries not in the table have ¥ g-value 0.
Hence, to compute 1y, we can first join the tables 1s using
only the key space. For each tuple xy,, in the result of this
join, we record the value Yu, (x) = [[pce, ¥r(xr). The
runtime is dominated by the natural join’s runtime.

Worst-case optimal join algorithms. Computing the
natural join is a very well-studied problem with exciting new
developments in the past decade or so. There are new worst-
case optimal algorithms [35, 28, 29, 1] that operate quite
differently from traditional query plans, in the sense that
they no longer compute one pairwise join at a time, but in-
stead process the query globally. While the vast majority of
database engines today still rely on traditional query plans,
new, complex data analytics engines are switching to worst-
case optimal algorithms: LogicBlox’s engine [7] is built on
a worst-case optimal algorithm called LeapFrog Triejoin [35]
(LFTJ), and the Myria data analytics platform supports a
variant of LFTJ [12].

We briefly outline these results here. The generic form
of the natural join problem can be posed in our hypergraph
language as Q = Wpeg Rp, where H = (V,E) is the query
hypergraph. The vertices of this hypergraph consist of all
attributes. Each hyperedge F' € £ corresponds to an input
relation Rr whose attributes are F'. The natural join prob-
lem can be thought of as a constraint satisfaction problem:
each input relation Rr imposes a constraint where a tuple
xr satisfies the constraint if xp € Rp. A tuple x on all vari-
ables V is an output of the join if the projection xr satisfies
Rp for all F € £.

LFTJ [35] can be viewed as backtracking-search algorithm,
which was known some 50 years ago in the AI and con-
straint programming world [16, 20]. (In contrast, by sav-
ing intermediate results vy, _¢,) instead of re-computing
them each time, InsideOut can be thought of as dynamic
programming. The duality between backtracking search and
dynamic programming is well-known [33].) LFTJ fixes some
variable ordering X, ..., X, of the query @, then performs
“leap-frogging” to find the first binding =1 that does not yet
violate any constraints Rr; once x; is found, it looks for the
first binding z» such that the partial tuple (x1,x2) does not
violate any constraint. The algorithm proceeds this way un-

10

til either a full binding x is constructed in which case x is an
output, or no good binding is found. For example, if no fea-
sible binding for z3 is found, then the algorithm backtracks
to the next good binding of xs.

The first advantage of backtracking search is that it re-
quires only O(1)-extra space: it does not cache any com-
putation. The second advantage, amazingly, is that a join
algorithm based on back-tracking search such as LFTJ or
others in [28, 29] are worst-case optimal, in the sense that
the algorithm runs in time bounded by the worst-case output
size. To state the output size bound, we need the following
notion. Define the fractional edge cover polytope P(H) as-
sociated with a hypergraph H to be the set of all vectors
A = (Ar)Free satisfying the following linear constraints:

Yo A1, e
FeEweF

A vector X € P(H) is called a fractional edge cover of H. The
join output size is bounded above by []pce |Rp|*, for any
A € P(H). The best bound AGM(H), known as the AGM-
bound [8, 21], is obtained by solving the linear program

min{z Arlog, |[Rr|: A€ P(’H)}. (3)

Fe&

A >0, and

Ezample 7. Consider the query computing 13 in Exam-
ple 6. The join query on the keys has the following shape:
Q =Ud,f) XM V(ef) W I(f) X Je) X K(d,e). Then,
AGM(Q) = |U a5 |V | eid [T} |2 | K |Me | where X is a frac-
tional edge cover of the query’s hypergraph. Suppose all in-
put relations have the same size N, then the optimal bound
is obtained by setting Aa,;y = Age = Ae,y = 1/2, and A\g =
Ae = 0. Worst-case optimal algorithms run in time O(N?3/?)
for this instance. Any traditional join-tree based plan runs
in Q(N?)-time for some input [28]. Moreover, without the
indicator projection of T'(b, ¢, d, €), there would be no K (d, e)
above, the best edge cover would be Ag s = Ae,y = 1, and
the runtime would become Q(N?).

Runtime analysis. Let N denote the input size, |output|
the output size, and K the set of k € [n] for which @ # ®
(note that [f] C K). Also, let AGM(Q%) denote the AGM-
bound on the kth sub-query’s hypergraph Hjy. Then, it is
not hard to show [2] that the runtime of InsideOut is

O(N + 57 AGM(Ha) + |output|). (4)

keEK

The first term is input-preprocessing time, second is the to-
tal subproblem solving time, and third is the unavoidable
output reporting time. From (4), we can write down a pre-
cise expression for the runtime of InsideOut. Minimizing the
resulting (somewhat complicated) expression leads to the
dynamic programming algorithm for the MCM problem and
the FFT algorithm for the DFT (see [2] for details).

In the above discussion, we assumed that variables were
eliminated in order X, , X,_1,...,X1. However, there is no
reason to force InsideOut to follow this particular order. In
particular, there might be a different variable ordering for
which expression (4) is a lot smaller and the algorithm still
works correctly on that ordering (see [2]). This is where the
main technical contributions of our work in [2] begin. We
need to answer the following two fundamental questions:

Question 1. How do we know which variable orderings are
equivalent to the original FAQ-query expression?

SIGMOD Record, March 2017 (Vol. 46, No. 1)

Question 2. How do we find the “best” variable ordering
among all equivalent variable orderings?

In the next two sections, we sketch how we answered the
above two questions and followup questions in theory and
in practice.

3. THEORETICAL CONTRIBUTIONS

To answer the above questions, we start with some defini-
tions. A variable ordering o is @-equivalent iff permuting the
variable aggregates of ¢ using o gives an expression ¢’ that
is semantically-equivalent to ¢, i.e. that always returns the
same output as ¢ no matter what the input is. Let EVO(¢p)
denote the set of all p-equivalent variable orderings.

Example 8. The FAQ query ¢’ below is (p-equivalent.

p = Z Z HlbaX Z ¢1 (a, b)¢2(a7 C)% (C7 d)7
a d c

90/ Z Z Z m?X ’¢'1 (a, b)¢2(a7 C)¢3 (C7 d)
a c d

This is because ¢ can be written as

o= 3| (ST vmontcad) (mpeorian)|.

Now, for any o € EVO(p), let H7 denote the kth sub-
query’s hypergraph when we run InsideOut on o. Ideally, we

would like to find o minimizing the expression), -, AGM(HJ).

However, this expression is data-dependent and thus it is a
bit difficult to handle in a mathematically clean way. We
simplify our objective by approximating the bound (4) a lit-
tle: we upperbound AGM(HY) by the fractional edge cover
number of the subgraph HJ, i.e. AGM(HZ) < N* (),
where p*(H7) := min{} ... Ar : A € P(H7)}. Then, (4) is

upperbounded by O (NmaxkEK PR 4 |output|); InsideOut

on variable ordering o runs in O(N™™(®) 4 |output|)-time,
where faqw(o) := maxkex p*(H5). Thus, to have the best
runtime we would like to select an equivalent ordering o with
the smallest exponent faqw(o), called the FAQ-width of an
FAQ-query:

faqw(p) := min {faqw(o) | o € EVO(p)} (5)

Ezxample 9. In Example 8, the original order in ¢ has an
FAQ-width of 2, because eliminating ¢ first corresponds to
joining w2 and %3 in time Q(N?). In contrast, the order in
¢’ has an faqw of 1, allowing to evaluate ¢ in time O(N).

To solve the optimization problem (5), the first problem we
have to address is to precisely characterize the set EVO(yp).
Our approach, sketched in Fig. 2, is to construct an expres-
sion tree of the FAQ query ¢. The expression tree defines a
partially ordered set on the variables called the precedence
poset. Then, to complete the characterization of EVO, we
show that every ordering in EVO is component-wise equiv-
alent (CWE) to a linear extension of LinEx(P). (See [2] for
details.) Thus, if we do not care about query complexity, we
can take the orange path in Fig 2 and bruteforcedly compute
an optimal variable ordering ¢, run it through InsideOut,
for a total runtime of O(N™™() 4 |output|).

However, in some FAQ-framework’s applications such as
in graphical models, we cannot simply sweep query com-
plexity under the rug. Moreover, computing the faqw is

SIGMOD Record, March 2017 (Vol. 46, No. 1)

NP-hard because faqw is a strict generalization of the frac-
tional hypertree width (fhtw), which is NP-hard [19] to
compute. Hence, we find a good approximation for the
fagw. This is the green path in Fig. 2: from the expres-
sion tree, we construct a tree decomposition for H; then,
from the GYO-elimination order of this tree decomposition
we obtain a variable ordering & for which we can show that
faqw(d) < faqw(o™)+g(fagw(c™)), where g is any known ap-
proximation of fhtw (the best of which is due to Marx [26]).

Ezxample 10. The variable ordering used earlier in Exam-
ple 6 is a GYO-elimination order for the tree decomposition
in Fig. 1b. (In GYO, when we eliminate variable X,,, the
set U,, becomes a bag of the tree decomposition whose chil-
dren are the bags corresponding to d(n).) In particular,
bags {f,h}, {e,g}, and {d,e, f} resulted from eliminating
h,g, and f respectively. The tree decomposition has width
fhtw = 3/2, same as the faqw of the variable ordering.

From these ideas, we obtained many corollaries, some of
which are summarized in Table 1. The results in Table 1
span three areas: (1) CSPs and Logic; (2) PGMs and (3) Ma-
trix operations. Except for joins, problems in area (1) need
the full generality of FAQ formulation, where InsideOut either
improves upon existing results or yields new results. Prob-
lems in area (2) can already be reduced to FAQ-SS. Here,
InsideOut improves upon known results since it takes advan-
tage of Grohe and Marx’s more recent fractional hypertree
width bounds. Finally, problems in area (3) of Table 1 are
classic. InsideOut does not yield anything new here, but it is
intriguing to be able to explain the textbook dynamic pro-
gramming algorithm for Matrix-Chain Multiplication [15] as
an algorithm to find a good variable ordering for the corre-
sponding FAQ-instance. The DFT result is a re-writing of
Aji and McEliece’s observation [6].

4. PRACTICAL IMPLICATIONS

In this section we address two questions the readers might
have regarding InsideOut: (1) hurdles one might face in a
practical implementation of InsideOut, and (2) whether prac-
tical implications are as good as what the theory says.

Additional hurdles and how to solve them. There are a
couple of problems we have to solve to implement InsideOut
effectively.

The first problem is, in real-world queries, we do not just
have materialized predicates as inputs, we also have predi-
cates such as a < b, a + b = ¢, negations and so on. These
predicates do not have a “size.” To solve this problem, one
solution is to set the “size” of those predicates to be co while
computing the AGM-bound. For instance, if we have a sub-
query of the form @ < R(a,b),S(b,c),a +b = ¢, where R
and S are input materialized predicates of size N, then by
setting the size of a + b = ¢ to be infinite, AGM(Q) = N2,
This solution does not work for two reasons. (1) If we knew
a+ b = ¢, then it is easy to infer that |Q| < N and also to
compute @ in time O(N): scan over tuples in R, use a+b = c
to compute ¢, and see if (b,c) € S. In other words, the
AGM-bound is no longer tight. (2) This solution may give
an oco-bound when the output size is clearly bounded. Con-
sider, for example, the query @ < R(a),S(b),a +b = ¢; in
this case, {a, b, ¢} is the only hyperedge covering vertex c in
the fractional edge cover. Our implementation at LogicBlox

11

FAQ-expr. o
for ¢, hypergraph H

EVO(p) = CWE(LinEx(P))
poly(|H[)
LinEx(P) C EVO(y)

Expression Tree
Precedence Poset P

FAQ-expr. o*
for ¢
o = argmin_

min;einex(py faqw(7) = min, cevo(y) fagqw(r)

Tree Decomposition of H

O(Nr:1>1+y(<>m) + Joutput|)

cevo(y) faaw(7) O(N™(™) 4 |output])

FAQ-expr. &
poly(fH)) ~ fore
faqw(a) < OPT + g(OPT)

g = approx. factor
for fractional
hypertree width of H

Figure 2: Sketch of main technical contributions

> 11 #sxs)

(Tfy15mr%n) SEE

Marginal Distribution

MAP query max H Ys(xs)
(@f415-5%n) g
n
Matrix Chain Mult. Z H Vi 541 (€5, Tig1)
T2,..., Ty 1=1
i2
DFT S by [€
(Y0, Ym—1)ELT 0=j+k<m

Problem FAQ formulation Previous Algo. Our Algo.
#QCQ Z @g:]::_i) T @;ﬁ H Ps(xs) No non-trivial algo O(Nfaaw(®) 4 7)
(z1,..2) Seg
where @ € {max, x}
QcQ @) @) [vws(xs) ONPWIH) 1 7) [11] | O(NRa(9) + 7)
Se&
where @) € {max, x}
#CQ > max---max [] ¢s(xs) O(NPM(H) 1 7) 18] | O(NRaw(#) 4 7)
Tf41 Zn
(1,02 f) See
Joins Ux Ngee ¥s(xs) o) (Nfw () 4 7) [21]

DP bound [15] DP bound
@z"y.k
pm—i=k O(N log,, N) [14] O(N log,, N)

(thtw(’H) +Z)
(

o}
O(Nfaaw(e) Z)

O(Nhw(®) + 7) [23]

O(Nhtw(np) + Z) [23] é(Nfan(W) + Z)

Table 1: Runtimes of algorithms assuming optimal variable ordering is given. Problems shaded red are in CSPs and logic
(D = {0,1} for CSP and D = N for #CSP), problems shaded green fall under PGMs (D = R.), and problems shaded
blue fall under matrix operations (D = C). N denotes the size of the largest factor (assuming they are represented with the
listing format). htw(y) is the notion of integral cover width for PGM. PW(#H) is the optimal width of a prefiz graph of H and
DM(#H) = poly(F-ss(H), fhtw(?)), where F-ss(#) is the [f]-quantified star size. Z is the output size in listing representation.
Our width fagw(y) is never worse than any of the three and there are classes of queries where ours is unboundedly better
than all three. In DFT, N = p™ is the length of the input vector. O hides a factor of poly(|#|) - log N.

makes use of generalizations of AGM to queries with func-
tional dependencies and immaterialized predicates (such as
a+b = c). These new bounds are based on a linear program
whose variables are marginal entropies [4, 5].

The second problem is to select a good variable ordering
to run InsideOut on. In principle, one does not have to use
the AGM-bound or the bounds from [4, 5] to estimate the
cost of an FAQ subquery. If one were to implement InsideOut
inside any RDBMS, one could poll that RDBMS’s optimizer
to figure out the cost of a given variable ordering. However,

12

there are n! variable orderings, and optimizer’s cost estima-
tion is time-consuming. Furthermore, some subqueries have
inputs which are intermediate results. Hence, it is much
faster to compute a variable ordering minimizing the faqw
of the query, defined on the bounds in [4, 5]. As the prob-
lem is NP-hard, either an approximation algorithm [3] or a
greedy heuristic suffices in our experience.

InsideOut is bottom-up dynamic programming. We can
also solve FAQ queries with top-down (memoized) dynamic
programming. In hindsight, this was the approach that Bak-

SIGMOD Record, March 2017 (Vol. 46, No. 1)

ibayev et al. [9] and Olteanu and Zévodny [32] took to solve
FAQ over a single semiring. We can also limit the amount of
memoization in a top-down strategy to attain performance
gain in some cases [22].

Practical Impact. 1t is trivial to construct classes of queries
on real datasets for which InsideOut-style of algorithms gives
arbitrarily large speedups over traditional RDBMSs. In fact,
even when dynamic programming does not take effect, the
speedup of backtracking search (and thus worst-case optimal
algorithms) over traditional query plans is already huge [30].
The impact of the FAQ-framework and the InsideOut algo-
rithm, however, go much beyond these toy queries (even
when run on real datasets).

InsideOut is a component of LogicBlox’s effort to extend
LogiQL to be a probabilistic programming language [10], as
part of DARPA’s PPAML and MUSE programs. The com-
ponent the algorithm handles is inference in discrete graph-
ical models.

Learning from the beautiful work of Olteanu and Schle-
ich [31, 34], we realized [27] that InsideOut can be used to
train a large class of machine learning models inside the
database. Our implementation showed orders of magnitude
speedup over the traditional data modeler route of exporting
the data and running it through R or Python. These mod-
els are trained with different variations of gradient descents,
whose (pre-)computation steps are FAQ queries. What is
much more interesting than the vanilla FAQ framework we
presented above is that, in these applications, we want to
compute many (in the 100K-range) FAQ queries all at once,
making dynamic programming much more crucial to the per-
formance. Another related approach was considered in [25].

5. CONCLUDING REMARKS

The FAQ framework showed that many common compu-
tational tasks over a very wide range of domains such as
CSPs, machine learning, relational database, logic, and ma-
trix computations can be performed inside a database us-
ing the same abstraction. The main idea is to blur the
line between data and computation, as we use the database
to store, compute, and process functions. The glue of the
framework is a simple dynamic programming algorithm called
InsideOut, which can be cast as a query-rewriting method
and thus it is readily implementable within any RDBMS.
These ideas are implemented, tested, and validated within
the LogicBlox database system. Our theory predicts practice
very well, which is a beautiful thing to see.

6. REFERENCES

[1] M. Abo Khamis, H. Q. Ngo, C. Ré, and A. Rudra. Joins via
geometric resolutions: Worst-case and beyond. In PODS, pages
213-228. ACM, 2015.

[2] M. Abo Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions
asked frequently. CoRR, abs/1504.04044, 2015.

[3] M. Abo Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions
asked frequently. In PODS, 2016.

[4] M. Abo Khamis, H. Q. Ngo, and D. Suciu. Computing join
queries with functional dependencies. In PODS, pages 327-342,
2016.

[5] M. Abo Khamis, H. Q. Ngo, and D. Suciu. What do
shannon-type inequalities, submodular width, and disjunctive
datalog have to do with one another? In PODS, 2017.

[6] S. M. Aji and R. J. McEliece. The generalized distributive law.
IEEE Transactions on Information Theory, 46(2):325-343,
2000.

SIGMOD Record, March 2017 (Vol. 46, No. 1)

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

18]

[16]

(17]
(18]

(19]

[20]
(21]
(22]

(23]

(24]

(28]

26]
[27]
28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
[36]

(37]

M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu,
E. Pasalic, T. L. Veldhuizen, and G. Washburn. Design and
implementation of the LogicBlox system. In SIGMOD, 2015.
A. Atserias, M. Grohe, and D. Marx. Size bounds and query
plans for relational joins. In FOCS, pages 739-748. IEEE
Computer Society, 2008.

N. Bakibayev, T. Kocisky, D. Olteanu, and J. Zavodny.
Aggregation and ordering in factorised databases. PVLDB,
6(14):1990-2001, 2013.

V. Barédny, B. ten Cate, B. Kimelfeld, D. Olteanu, and

Z. Vagena. Declarative probabilistic programming with datalog.
In ICDT, pages 7:1-7:19, 2016.

H. Chen and V. Dalmau. Decomposing quantified conjunctive
(or disjunctive) formulas. In LICS, 2012.

S. Chu, M. Balazinska, and D. Suciu. From theory to practice:
Efficient join query evaluation in a parallel database system. In
SIGMOD, pages 63-78, 2015.

S. Cohen. User-defined aggregate functions: Bridging theory
and practice. In SIGMOD ’06, pages 49—60.

J. W. Cooley and J. W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Mathematics of
Computation, 19:297-301, 1965.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. MIT Press, 2nd edition, 2001.

M. Davis, G. Logemann, and D. W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394-397,
1962.

R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artif. Intell., 113(1-2):41-85, 1999.

A. Durand and S. Mengel. Structural tractability of counting of
solutions to conjunctive queries. In ICDT, pages 81-92, 2013.
W. Fischl, G. Gottlob, and R. Pichler. General and Fractional
Hypertree Decompositions: Hard and Easy Cases. ArXiv
e-prints, Nov. 2016.

S. W. Golomb and L. D. Baumert. Backtrack programming. J.
ACM, 12(4):516-524, 1965.

M. Grohe and D. Marx. Constraint solving via fractional edge
covers. In SODA, pages 289-298, 2006.

O. Kalinsky, Y. Etsion, and B. Kimelfeld. Flexible caching in
trie joins, 2017. To appear in EDBT.

K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying tree
decompositions for reasoning in graphical models. Artif. Intell.,
166(1-2), 2005.

D. Koller and N. Friedman. Probabilistic graphical models.
Adaptive Computation and Machine Learning. MIT Press,
2009. Principles and techniques.

A. Kumar, J. Naughton, and J. M. Patel. Learning generalized
linear models over normalized data. In SIGMOD, pages
1969-1984. ACM, 2015.

D. Marx. Approximating fractional hypertree width. ACM
Trans. Algorithms, 6(2):29:1-29:17, Apr. 2010.

H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich.
In-database learning with sparse tensors, 2017. Manuscript.

H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal

join algorithms. In PODS, pages 37-48, 2012.

H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New
developments in the theory of join algorithms. In SIGMOD
RECORD, pages 5—16, 2013.

D. T. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo,
C. Ré, and A. Rudra. Join processing for graph patterns: An
old dog with new tricks. In GRADES, pages 2:1-2:8, 2015.

D. Olteanu and M. Schleich. F: regression models over
factorized views. PVLDB, 9(13):1573-1576, 2016.

D. Olteanu and J. Zavodny. Size bounds for factorised
representations of query results. ACM Trans. Datab. Syst.,
40(1), 2015.

F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier
Science Inc., 2006.

M. Schleich, D. Olteanu, and R. Ciucanu. Learning linear
regression models over factorized joins. In SIGMOD, pages
3-18, 2016.

T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join
algorithm. In ICDT, pages 96-106, 2014.

N. Zhang and D. Poole. A simple approach to Bayesian network
computations. In Canadian Al, pages 171-178, 1994.

N. L. Zhang and D. Poole. Exploiting causal independence in
Bayesian network inference. J. Artificial Intelligence Res.,
5:301-328, 1996.

13

