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Editor’s Notes

Welcome to the March 2017 issue of the ACM SIGMOD Record!

The new year of 2017 begins with a special issue on the 2016 ACM SIGMOD Research Highlight
Award. This is an award for the database community to showcase a set of research projects that
exemplify core database research. In particular, these projects address an important problem, rep-
resent a definitive milestone in solving the problem, and have the potential of significant impact.
This award also aims to make the selected works widely known in the database community, to our
industry partners, and potentially to the broader ACM community.

The award committee and editorial board included Zack Ives, Jeff Naughton, Wang-Chiew Tan, and
Yanlei Diao. We solicited articles from PODS 2016, SIGMOD 2016, VLDB 2016, ICDE 2016, EDBT
2016, and ICDT 2016, as well as from community nominations. Through a detailed review process
five articles were finally selected as 2016 Research Highlights. The authors of each article worked
closely with an associate editor to rewrite the article into a compact 8-page format, and improved it
to appeal to the broad data management community. In addition, each research highlight is accom-
panied by a one-page technical perspective written by our associate editor or an external expert on
a given research topic. The technical perspective provides the reader with an overview of the back-
ground, the motivation, and the key innovation of the featured research highlight, as well as its sci-
entific and practical significance.

The 2016 research highlights cover a broad set of topics, including (a) a new theoretical framework
that unifies multiple computation problems in Computer Science and solves them using database
technology (“Juggling Functions Inside a Database); (b) a theoretical milestone that closes the gap
in our understanding of minimizing tree patterns in querying graph and tree structured data (“Op-
timizing Tree Patters for Querying Graph- and Tree-Structured Data”); (c) a new query engine that
provides efficient, scalable support of aggregate constraints on query answers (“A Scalable Execu-
tion Engineer for Package Queries); (d) a new efficient approach to online aggregation by using
indexes and making a random walk in the data join graph (“Wander Join and XDB: Online Aggrega-
tion via Random Walks); (e) a new implementation that expedites linear algebra operations preva-
lent in machine learning by adapting database techniques such as column-based compression and
sampling-based cost estimation (“Scaling Machine learning via Compressed Linear Algebra”).

Finally, this special issue closes with a message from the Editor-in-Chief of ACM TODS.

On behalf of the SIGMOD Record Editorial Board, I hope that you enjoy reading the March 2017
issue of the SIGMOD Record!

Your submissions to the SIGMOD Record are welcome via the submission site:
http://sigmod.hosting.acm.org/record

Prior to submission, please read the Editorial Policy on the website of the SIGMOD Record:
http://sigmod.org/sigmodrecord/authors/

Yanlei Diao

March 2017
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Technical Perspective:
Juggling Functions Inside a Database

Dan Olteanu
University of Oxford

dan.olteanu@cs.ox.ac.uk

The paper entitled ”Juggling Functions Inside a
Database” gives a brief overview of FAQ, a frame-
work for computational problems expressed as Func-
tional Aggregate Queries. This work falls into my
bucket of select database research contributions that
go significantly beyond the state of the art along
several dimensions. First, it provides an elegant
and declarative formalism for a host of ubiquituous
computational problems across Computer Science
and at the right level of abstraction that exposes
structural properties of the problem instances and
allows for fine-grained complexity analysis. Second,
it is technically deep, proposing an algorithmic so-
lution that achieves lower than or the same com-
plexity as specialized approaches in their respective
domain. Third, it is implemented in a commercial
database system with scores of real-world applica-
tions. Fourth, it is currently applied to in-database
analytics and I expect more applications will man-
ifest themselves in the near future.

By unifying many problems under the same for-
malism, FAQ bears the promise of accelerating re-
search: Scalable data management solutions devel-
oped by our community for aggregates over joins,
e.g., incremental view maintenance, index data struc-
tures, or distributed processing, may become general-
purpose solutions for problems outside databases.

I will next expand on some of its contributions.

Unified approach to a host of computational
problems. FAQ captures problems in relational
databases, logic, matrix and tensor computation,
probabilistic graphical models, constraint satisfac-
tion, and signal processing. For instance, FAQ ex-
pressions represent queries with joins and aggre-
gates in relational databases, matrix chain compu-
tation, maximum a posteriori and marginal distri-
bution queries in probabilistic graphical models.

Technical contribution beyond state of the
art. FAQ exploits recent groundbreaking develop-
ments on worst-case optimal join algorithms, started
by researchers including the FAQ authors, and asymp-
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totically tight bounds on join processing time and
result size. This leads to lower complexities for
long-standing problems, including counting quan-
tified conjunctive queries in logic and inference in
probabilistic graphical models.

FAQ also recovers database techniques, such as
pushing aggregates past joins and computing ag-
gregates over factorized joins.

Commercial deployment. FAQ can be easily
plugged into existing relational database systems as
a standalone library, since it mainly performs query
rewriting; however, to attain its low complexity for
queries with cycles, an optimal multi-way join al-
gorithm would be also needed. It is in fact already
deployed in the LogicBlox engine. FAQ expressions
are translated into optimized programs consisting
of strata of Datalog-like rules expressing joins over
extensional and intensional predicates closed by ag-
gregates with free variables. Although the paper
does not report on performance of the FAQ imple-
mentation within LogicBlox, it is conceivable that
its relative performance over existing solutions fol-
lows the reported complexity gap.

Bright future ahead. In-database analytics are a
new application of FAQ, where optimization prob-
lems are pushed inside the database. The motiva-
tion for this application is twofold. First, since data
usually resides inside the database, bringing the an-
alytics closer to the data saves export/import time
at the interface between database systems and sta-
tistical packages. Second, large chunks of machine
learning code can be phrased as FAQ expressions!

In conclusion, this paper reports on a well-roun-
ded work of both theoretical and practical relevance.
It represents a significant improvement over the state
of the art. While a database problem at its core, it
can effectively accelerate research across Computer
Science. It is an excellent lesson of elegance and
technical mastery and I hope you will enjoy learn-
ing from it as much as I did.



Juggling Functions Inside a Database

Mahmoud Abo Khamis
LogicBlox Inc.
mahmoud.abokhamis@logicblox.com

ABSTRACT

We define and study the Functional Aggregate Query (FAQ)
problem, which captures common computational tasks across
a very wide range of domains including relational databases,
logic, matrix and tensor computation, probabilistic graph-
ical models, constraint satisfaction, and signal processing.
Simply put, an FAQ is a declarative way of defining a new
function from a database of input functions.

We present InsideOut, a dynamic programming algorithm,
to evaluate an FAQ. The algorithm rewrites the input query
into a set of easier-to-compute FAQ sub-queries. Each sub-
query is then evaluated using a worst-case optimal relational
join algorithm. The topic of designing algorithms to opti-
mally evaluate the classic multiway join problem has seen
exciting developments in the past few years. Our frame-
work tightly connects these new ideas in database theory
with a vast number of application areas in a coherent man-
ner, showing potentially that — with the right abstraction,
blurring the distinction between data and computation — a
good database engine can be a general purpose constraint
solver, relational data store, graphical model inference en-
gine, and matrix/tensor computation processor all at once.

The InsideOut algorithm is very simple, as shall be de-
scribed in this paper. Yet, in spite of solving an extremely
general problem, its runtime either is as good as or improves
upon the best known algorithm for the applications that FAQ
specializes to. These corollaries include computational tasks
in graphical model inference, matrix/tensor operations, re-
lational joins, and logic. Better yet, InsideOut can be used
within any database engine, because it is basically a princi-
pled way of rewriting queries. Indeed, it is already part of
the LogicBlox database engine, helping efficiently answer tra-

This work was partly supported by NSF grant CCEF-
1319402 and by DARPA under agreement #FA8750-15-2-
0009. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright thereon.

(© ACM 2017. This is a minor revision of the paper entitled “FAQ:
Questions Asked Frequently”, published in PODS’16, ISBN 978-1-4503-
4191-2/16/06, June 26-July 01, 2016, San Francisco, CA, USA.
DOI: http://dx.doi.org/10.1145/2902251.2902280. Permission
to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and /or a
fee. Request permissions from permissions@acm.org.

Hung Q. Ngo
LogicBlox Inc.
hung.ngo@logicblox.com

Atri Rudra
University at Buffalo, SUNY
atri@buffalo.edu

ditional database queries, graphical model inference queries,
and train a large class of machine learning models inside the
database itself.

1. INTRODUCTION

The following fundamental problems from diverse domains
share a common algebraic structure involving (generalized)
sums of products.

Ezample 1. (Matrix Chain Multiplication (MCM)) Given a
series of matrices A1,..., A, over some field F, where the
dimension of A; is p; X pi+1, ¢ € [n], we wish to compute the
product A = A;---A,. The problem can be reformulated
as follows. There are n + 1 variables Xi,...,X,411 with
domains Dom(X;) = [pi], for ¢ € [n+ 1]. For ¢ € [n], matrix
A; can be viewed as a function of two variables

d)¢72‘+1 : Dom(Xi) X Dom(XH_l) — F,

where ¥; ;+1(x,y) = (A;)zy. The MCM problem is to com-
pute the output function

> I vuisa(@izi).

zp €Dom(X,,) i=1

(21, Tp41) = Z

xoEDom(X2)

Ezample 2. (Maximum A Posteriori (MAP) queries in prob-
abilistic graphical models (PGMs)) Consider a discrete graph-
ical model represented by a hypergraph H = (V,£). There
are n discrete random variables V = {X1,..., X,,} on finite
domains Dom(Xj;), ¢ € [n], and m = |&| factors

s : [ [ Dom(X:) = Ry, S€E.
=
A typical inference task is to compute the marginal MAP
estimates, written in the form

o(z1,...,x5) = max --+ max Hz/)s(xs).
zfy1€DomM(X 5 1) xp €Dom(X4,) Sée

Ezample 3. (Conjunctive query in RDBMS) Consider a
schema with the following input relations: R(a,b), S(b,c),
T(c,a), where for simplicity let us say all attributes are in-
tegers. Consider the following query:

SELECT R.a
FROM R, S, T
WHERE R.b = S.b AND S.c = T.c AND T.a = R.a;

The above query can be reformulated as follows. Relation
R(a,b) is modeled by a function r(a,b) — {true, false},
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where ¥r(a,b) = true iff (a,b) € R, and relations S(b, ¢) and
T(c,a) are modeled by similar functions ¥s(b, ¢), ¥r(c, a).
Now, computing the above query basically corresponds to
computing the function ¢(a) — {true, false}, defined as:

p(a) = \/ \/ ¥r(a,b) Avs(b,0) A vr(ca).

Ezample 4. (# Quantified Conjunctive Query (#QCQ)) Let
® be a first-order formula of the form

@(Xl,...,Xf):Qf+1Xf+1"'Q71Xn /\ R )

Reatoms(®)

where @; € {3,V}, for i > f. The #QCQ problem is to
count the number of tuples in relation ® on the free vari-
ables Xi,...,X¢. To reformulate #QCQ, construct a hy-
pergraph H = (V, £) as follows: V is the set of all variables
Xi,...,Xn, and for each R € atoms(®) there is a hyperedge
S = vars(R) consisting of all variables in R. The atom R
can be viewed as a function indicating whether an assign-
ment Xg to its variables is satisfied by the atom; namely
Ys(xs) =1if xg € R and 0 otherwise.

Foreachi € {f+1,...,n} we define an aggregate operator

@(z) _ max if Qz = El,
] x if Q; =V.

Then, the #QCQ problem above is to compute the constant
function

b= ¥ T

@1€Dom(X1) @ p€Dom(X ;) Tf+1€10:1}

@(f-H)

B [ vsxs)-

zn€{0,1} gcge

It turns out that these and dozens of other fundamen-
tal problems from constraint satisfaction (CSP), databases,
matrix operations, PGM inference, logic, coding theory, and
complexity theory can be viewed as special instances of a
generic problem we call the Functional Aggregate Query,
or the FAQ problem, which we define next. (See [2, 6] for
many more examples.)

Throughout the paper, we use the following convention.
Uppercase X; denotes a variable, and lowercase z; denotes a
value in the domain Dom(X;) of the variable. Furthermore,
for any subset S C [n], define

Xs = (Xi)ies, x5 = (Ti)ies € H Dom(X;).
ies
In particular, Xg is a tuple of variables and xgs is a tuple
of specific values with support S. The input to FAQ is a set
of functions and the output is a function computed using a
series of aggregates over the variables and input functions.
More specifically, for each i € [n], let X; be a variable on
some discrete domain Dom(X;), where |Dom(X;)| > 2. The
FAQ problem is to compute the following function

eV D" @ vslxs), (1)

zyp1€DoM(X sy q) zpn €Dom(X ) SEE

p(xpy) =

where
o H = (V,&) is a multi-hypergraph. V = [n] is the index

set of the variables X;, ¢ € [n]. Overloading notation,
V is also referred to as the set of variables.
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e The set F = [f] is the set of free variables for some
integer 0 < f < n. Variables in V — F are called
bound variables. (Free and bound are logic terminolo-
gies. Free variables are group-by variables in database
nomenclature.)

e D is a fixed domain, such as {0,1}, R, Z.

e For every hyperedge S € &, ¥s : [[;cg Dom(X;) — D
is an input function (also called a factor).

e For every bound variable i > f, ® is a binary (ag-
gregate) operator on the domain D.

e And, for each bound variable i > f either &% = ® or
(D,3,®) forms a commutative semiring (with the
same O and 1). Informally, this means that we can do
addition and multiplication over D and still remain in
the same set.

If = @, then & is called a product aggregate;
otherwise, it is a semiring aggregate. (We assume that
there is at least one semiring aggregate.)

Because for ¢ > f every variable X; has its own aggregate
@ over all values z; € Dom(X;), in the rest of the paper
@(i) )
z;EDom(X;)
We will refer to ¢ as an FAQ-query. We use FAQ-SS to de-
note the special case when there is a Single Semiring aggre-
gate, i.e. @ =@, Vi > f, and (D, ®, ®) is a semiring [6].

we will write @S} to mean

Ezample 5. (Aggregate query in RDBMS) Consider the
following query over relations R(a,b), S(a,c), T'(b,c,d,e),
U, f), Vie, f), W(e,g), Y(f,h), where all attributes are
integers:

SELECT R.b, U.d, sum(W.e)
FROM R, S, T, U, V, W, Y

WHERE R.a = S.a AND R.b = T.b AND S.c = T.c
AND T.d = U.d AND T.e = V.e AND W.e = V.e
AND U.f = V.f AND Y.f = V.f GROUP BY R.b, U.d;

We now explain how the above query can be reduced to
an FAQ instance. Relation R(a,b) is modeled with a func-
tion ¢gr(a,b) — {0,1}, where ¢¥r(a,b) = 1 iff (a,b) € R.
Similarly, we can think of relations S, T', U, V, and Y as
functions s, ¥r, Yu, Yv, Yy, with {0,1} values. We sin-
gle out one relation W (e, g) where the modeling is different:
Yw (e, g) = eif (e,g) € W and 0 otherwise. The correspond-
ing FAQ-query is

o(b,d) = Z Z Z Z Z Z YrRYsYTYUYV Yw Py
a c e f g h

(For readability, we did not write the argument lists of the
functions ¥g, s, etc. They should be obvious from con-
text.) Note that a tuple in the output of the aggregate
query has the schema (b, d, p(b,d)). The corresponding hy-
pergraph is shown in Fig. la. The set of free variables is
F = {b,d}. The domain is D = Z, the set of integers. Note

A triple (D, ®, ®) is a commutative semiring if ® and ® are
commutative binary operators over D satisfying the follow-
ing: (1) (D,®) is a commutative monoid with an additive
identity, denoted by 0. (2) (D, ®) is a commutative monoid
with a multiplicative identity, denoted by 1. (3) ® dis-
tributes over @. (4) For any element e € D, e®0 = 0®e = 0.



also that the above reduction to FAQ still works if we replace
sum by another aggregate, e.g., max.

In order to explain later the connection of InsideOut to
query rewriting, we also write the above query in LogiQL, an
extension of Datalog supported by the LogicBlox engine [7]:

Qlb, d] = s <- agg<<s = total(e)>> R(a,b), S(a,c),
T(b,c,d,e), U(d,£), V(e,f), W(e,g), Y(£f,h).

In the above, agg is short for aggregate, total is equivalent
to sum in SQL, the notation Q[b,d]=s means that the head
predicate is Q(b,d,s) where (b,d) is a key, hence the query
computes Q(b,d,sum(e)).

- <

(a) Query hypergraph

(b) Tree decomposition

Figure 1: Query from Example 5

The above example illustrates several important points.
First, when we defined the FAQ problem we did not spec-
ify how the input and output factors are represented. The
representation choice turns out to make a huge difference
in computational complexity [2]. However, in practical ap-
plications the representation is usually the obvious one: an
input factor ¥s(Xs) can be thought of as a table of tu-
ples [xs,%s(xs)], with the implicit assumption that if xg
is not in the table then its ¢g-value is 0. (This is the ad-
ditive identity O of the domain D.) Second, the reduction
to FAQ is only at the syntax level. No real data conversion
is necessary. All the data we need to obtain the functions
YR, Pr etc. are already in the input relations. Third, in
the mathematical definition of ¢ (b, d) above, the domains of
all variables are integers and so we have infinite sums. We
could have restricted all variables to their active domains;
but that is not necessary because summing over all integers
or over the active domains give identical answer: tuples not
present are assumed to have values 0.

Now that we have established the scope of FAQ, in the
remainder of this paper we show a perhaps surprising result
that an FAQ problem can be solved by one simple yet ef-
ficient algorithm. The algorithm can be implemented as a
set of ordinary database queries. The runtime matches or
improves upon the best known runtimes in many applica-
tion areas that the FAQ framework captures. The runtime
depends on the order of variable aggregates in the FAQ ex-
pression, which naturally leads us to the question of how to
re-order those aggregates to obtain the best runtime without
changing the semantic meaning of the expression.

2. THE INSIDEOUT ALGORITHM

Parts of this section will be familiar to readers who have
been exposed to elementary graphical models [24]. There
are, however, a couple of ideas that are taken from new

developments in database theory [29, 28, 3] that are likely
not known in the graphical model literature. For each factor
s, define its size to be the number of non-zero points under
its domain: |¢g| = Hxs | Ys(xs) # 0}‘

Basic variable elimination. To describe the intuition,
we first explain InsideOut as it applies to the special case
of FAQ-SS (or SumProd). The idea behind variable elimina-
tion [17, 37, 36] is to ‘fold’ common factors, exploiting the
distributive law:

EB ...@@ws(,{s)

T T, SEE&

= PP R vsxs)o P R vsxs) |,

Tp41 Tp—1 SEE-D(n) zn SEO(n)

new factor YU, —{n}

where the equality follows from the fact that ® distributes
over @, d(n) denotes all edges incident to n in H and U,, =
Usea(n)S. Assume for now that we can somehow efficiently
compute the intermediate factor ¥y, —(»}. Then, the result-
ing problem is another instance of FAQ-SS on a modified
multi-hypergraph H', constructed from H by removing ver-
tex n along with all edges in 9(n), and adding back a new
hyperedge U, — {n}. Recursively, we continue this process
until all variables Xy,..., X 41 are eliminated. Textbook
treewidth-based results for PGM inference are obtained this
way [24]. In the database context (i.e. given an FAQ-query
over the Boolean semiring), the intermediate result 1y, (.}
is essentially an intermediate relation of a query plan, the
folding technique exploiting distributive law corresponds to
“pushing the aggregate down” the query plan [13].

Introducing the indicator projections. While cor-
rect, basic variable elimination as described above is poten-
tially not very efficient for sparse input factors, i.e. factors
where the number of non-zero entries is much smaller than
the product of the active domain sizes. This is because the
product that was factored out of the scope of X,, might an-
nihilate many entries of the intermediate result vy, _(n},
while we have spent so much time computing ¥y, (). For
example, for an S ¢ 9(n) such that S C U, and tuple ys
such that 1¥s(ys) = 0, we do not need to compute the en-
tries Yy, —{n} (Xv,,—{n}) for which ys = xs: those entries
will be eliminated later anyhow. The idea is then to only
compute those Yy, _(n} (Xu, —{n}) values that will “survive”
the other factors later on. One simple way to achieve this
would be to compute, for each S € & — 9(n), an “indica-
tor factor” that checks if ¥g(xs) is O or not. Formally, for
any two sets T' C S, and a given factor ¥g, the function
Ysy7 : [I;er Dom(X;) — D defined by

1 dxs_7 s.t. lps(XT,Xs_T) #0
0 otherwise

Ysr(xXr) 1= {

is called the indicator projection of ¢¥s onto T'. Using indi-
cator factors, InsideOut computes the following factor when
marginalizing X,, away:

YU, —{n} (XU, —{n}) =

@ ®¢s®

Tn Sed(n)

Q) vsisewn || @)

S¢o(n),
SNUR#D
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Another minor tweak is the observation that, if there is a
hyperedge S € £ — 9(n) for which S C U,, then we do not
use the indicator projection ¥s/snu,,: we can use s itself to
compute the intermediate factor ¥y, _{n}, and then remove
s from H'.

Ezample 6. We explain how the ideas above are imple-
mented in Example 5. First, the order in which we choose to
eliminate variables might have a huge effect on the runtime.
For now, let us assume that we somehow decided to rewrite
(b, d) using the following variable order, where we trace the
first couple of steps of the InsideOut algorithm without the
indicator projection: (Example 10 later explains how this
order is related to the tree decomposition in Fig. 1b.)

elbd) = D> D D > 0 > rysvrduiviwyy
c a e f g h
SYSS S drtstrvuvviw > vy (fih)
c a e f g h

S —
¥1(f)

D000 0 drvsurtubyiw iy
c a e f g

D022 D drbsurtutvin Y dw(e o)
c a e f g

[ —
P2 (e)

D00 00D enysvrutbvinvs
c a e f

The first two steps are straightforward, where we eliminated
g and h. In LogiQL, these intermediate factors are computed
with the following two rules

psi1l[f]
psi2[e]

sl <- agg<<sl = count()>> Y(£f,h).
52 <- agg<<s2 = total(e)>> W(e,g).

The mathematical abstraction corresponds to rewriting a
query into a series of smaller queries. Next, we explain how
the indicator projection works when we eliminate variable
f- Out of the remaining factors ¥r, s, Y1, Y,y 1 ,and
g, the following factors contain f: vuy(d, f) v (e, f) and
¥1(f). If we were to multiply them together and marginalize
away f, we would create a new factor ¢3(e, d) = Zf Yuvihr
over variables {e,d}. However, two other factors have vari-
ables that overlap with {e, d}, namely ¥ (b, ¢, d, e) and 12 (e).
For 17, we include its indicator projection ¥r/(c, 4} in com-
puting ¥3. (We will see later in Example 7 how includ-
ing 97,4y can actually speed up the computation of v
asymptotically.) For 12, we can include v, itself. (Recall
the minor tweak we mentioned above.) Overall, we end up
with the following definition of 3:

p3(e, d) = ZwU Py b1 Y2 by fe,dy-
f

In LogiQL, this sub-result is computed with two rules:

proji(d,e) <- T(b,c,d,e). // projection rule
psi3le,d] = s3 <- agg<<s3 = total(sl*s2)>> U(4,f),
V(e,f), psill[f] = s1, psi2[e] = s2, proji(d,e).

After eliminating f, we are left with the following

(b, d) = Z Z Z YRYsYTVY3
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DD vrts > vstpr

DD Wrts Y vsbrtr s/

4 (b,c,d)
leading to the following LogiQL rules

proj2(b) <- R(a,b).

proj3(c) <- S(a,c).

psi4lb,c,d] = s4 <- agg<<s4d = total(s3)>>
psi3[e,d] = s3, T(b,c,d,e), proj2(b), proj3(c).

At this point, we have 3 factors left ¢r(a,b), ¥s(a,c), and
1a(b, ¢, d). We eliminate a then c straightforwardly:

Z Z YRYsYs = Z Pa Z VRYSYa/(bey = Z Yaths.

¥5(b,c)

Note that 14,5} has values in {0, 1} although 14 can have
any value in Z. The final LogiQL rules are

proj4(b,c) <- psi4[b,c,d] = s4. // indicator projection
psi5[b,c] = sb <- agg<<s5 = count()>>

R(a,b), S(a,c), proj4(b,c).
output[b,d] = t <- agg<<t = total(s4*s5)>>

psi4lb,c,d] = s4, psib[b,c] = sb.

The general FAQ problem. The above strategy does
not care if the variable aggregates where the same or dif-
ferent: As long as (D,@(")7®) is a semiring, we can fold
the common factors and eliminate X,. Thus, InsideOut
works almost as is for a general FAQ instance (as opposed to
FAQ-SS). Finally, when 6™ = ® we simply swap the two
(identical) operators:

exp) = BV O™ ® vs(xs)
Tp—1 zn SEE
= Y & ¥s(xs)
Tp—1 xpE€Dom(X,) SEE
= "R Ys(xs)
Tp—1 SEE zyE€Dom(Xy)
= @®"Y ® (¥sxs)"F R Rus(xs).
Tp_1 Sg(n) = —r SE€B(n) Tn
¥
Ys—{n}

We are left with an FAQ-instance whose hypergraph is
exactly H' = H — {n}: the hypergraph obtained form H
by removing vertex n from the vertex set and all incident
hyperedges. The sub-problems are of the form of product
marginalizations of individual factors ¥s for S € d(n), each
of which can be computed in linear time in |¢g|. The prod-
uct marginalization step is algorithmically much easier be-
cause it does not create the intermediate factor ¢y, —{n1. As
for S ¢ O(n), we replace 1)s by the power factor ¥5(xs) =
(s (x5)) "™ X! " which can be done in linear time with
a log|Dom(X,,)| blowup using the repeated squaring algo-
rithm. Note the key fact that this power is with respect
to the product aggregate ®. In most (if not all) applica-
tions of FAQ, there is one additional property: most of the
time, ® is an idempotent operator over the active domain.
For example, in the #QCQ problem ® is the usual product
operator and the domain that it aggregates over is {0,1}
(before there is a sum outside). In this case, ¥5(xs) =



(s (xs))IPmEn)l = g(xs), and we do not need to spend
the linear nor log-blowup time. For more details on product
idempotence, see [2].

FAQ sub-problems as natural joins. In the above
we have explained how InsideOut breaks a big problem into
smaller problems. In the product marginalization case, the
sub-problems are easy to solve: they can be solved in lin-
ear time. The most difficult problems, however, are of the
form (2). This is exactly an FAQ-query where we marginal-
ize out only one variable, with the remaining variables free.
Zooming in, problem (2) is of the form

YU, —{n} (XU, —fn}) = @ ® Yr,

Ty Fe&n

where H,, = (Un, &) is the sub-FAQ-query hypergraph. The
problem is solved by computing Yu, (xv,) = Qpce, ¥r
first. Once the ¥y, is computed, marginalizing away X, to
obtain %y, _(ny is trivial.

Computing the inner product is a natural join problem in
disguise. Each input factor g is represented using a table
of tuples of the form [xs,9s(xs)]. Essentially, xs is the
(compound) key and 1s(xs) is the value in this relation.
Again, recall that entries not in the table have ¥ g-value 0.
Hence, to compute 9y, we can first join the tables ¥ g using
only the key space. For each tuple xy,, in the result of this
join, we record the value Yu, (x) = [[pce, ¥r(xp). The
runtime is dominated by the natural join’s runtime.

Worst-case optimal join algorithms. Computing the
natural join is a very well-studied problem with exciting new
developments in the past decade or so. There are new worst-
case optimal algorithms [35, 28, 29, 1] that operate quite
differently from traditional query plans, in the sense that
they no longer compute one pairwise join at a time, but in-
stead process the query globally. While the vast majority of
database engines today still rely on traditional query plans,
new, complex data analytics engines are switching to worst-
case optimal algorithms: LogicBlox’s engine [7] is built on
a worst-case optimal algorithm called LeapFrog Triejoin [35]
(LFTJ), and the Myria data analytics platform supports a
variant of LFTJ [12].

We briefly outline these results here. The generic form
of the natural join problem can be posed in our hypergraph
language as Q = Xpeg Rp, where H = (V, ) is the query
hypergraph. The vertices of this hypergraph consist of all
attributes. Each hyperedge F' € £ corresponds to an input
relation Rr whose attributes are F'. The natural join prob-
lem can be thought of as a constraint satisfaction problem:
each input relation Rr imposes a constraint where a tuple
X satisfies the constraint if xp € Rr. A tuple x on all vari-
ables V is an output of the join if the projection xr satisfies
Rp for all F € £.

LFTJ [35] can be viewed as backtracking-search algorithm,
which was known some 50 years ago in the AI and con-
straint programming world [16, 20]. (In contrast, by sav-
ing intermediate results ¥y, _;,) instead of re-computing
them each time, InsideOut can be thought of as dynamic
programming. The duality between backtracking search and
dynamic programming is well-known [33].) LFTJ fixes some
variable ordering X1, ..., X, of the query @, then performs
“leap-frogging” to find the first binding x; that does not yet
violate any constraints Rp; once x; is found, it looks for the
first binding z2 such that the partial tuple (z1,z2) does not
violate any constraint. The algorithm proceeds this way un-
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til either a full binding x is constructed in which case x is an
output, or no good binding is found. For example, if no fea-
sible binding for z3 is found, then the algorithm backtracks
to the next good binding of xs.

The first advantage of backtracking search is that it re-
quires only O(1)-extra space: it does not cache any com-
putation. The second advantage, amazingly, is that a join
algorithm based on back-tracking search such as LFTJ or
others in [28, 29] are worst-case optimal, in the sense that
the algorithm runs in time bounded by the worst-case output
size. To state the output size bound, we need the following
notion. Define the fractional edge cover polytope P(H) as-
sociated with a hypergraph #H to be the set of all vectors
A = (Ar)ree satisfying the following linear constraints:

S oAr=1, Wwev

FeEweF

A vector X € P(H) is called a fractional edge cover of H. The
join output size is bounded above by [];ce |Rr| M, for any
A € P(H). The best bound AGM(H), known as the AGM-
bound [8, 21], is obtained by solving the linear program

min{z Arlog, |[Rp|: X € P(H)}. (3)

Fe&

A >0, and

Ezample 7. Consider the query computing 3 in Exam-
ple 6. The join query on the keys has the following shape:
Q =Ud,f) MW V(e f) X I(f) X J(e) X K(d,e). Then,
AGM(Q) = |U 7 |V e [T} | TP | K |*de where A is a frac-
tional edge cover of the query’s hypergraph. Suppose all in-
put relations have the same size NV, then the optimal bound
is obtained by setting Ag,f = Age = Ae,y = 1/2, and A\g =
Ae = 0. Worst-case optimal algorithms run in time O(N®/?)
for this instance. Any traditional join-tree based plan runs
in Q(N?)-time for some input [28]. Moreover, without the
indicator projection of T'(b, ¢, d, €), there would be no K (d, e)
above, the best edge cover would be A\g s = Ae;y = 1, and
the runtime would become Q(N?).

Runtime analysis. Let N denote the input size, |output]
the output size, and K the set of k € [n] for which ®® # ®
(note that [f] C K). Also, let AGM(Qs) denote the AGM-
bound on the kth sub-query’s hypergraph Hy. Then, it is
not hard to show [2] that the runtime of InsideOut is

O(N+ 3" AGM(Hy) + \output\). (4)

keK

The first term is input-preprocessing time, second is the to-
tal subproblem solving time, and third is the unavoidable
output reporting time. From (4), we can write down a pre-
cise expression for the runtime of InsideOut. Minimizing the
resulting (somewhat complicated) expression leads to the
dynamic programming algorithm for the MCM problem and
the FFT algorithm for the DFT (see [2] for details).

In the above discussion, we assumed that variables were
eliminated in order X,,, X,,—1,..., X1. However, there is no
reason to force InsideOut to follow this particular order. In
particular, there might be a different variable ordering for
which expression (4) is a lot smaller and the algorithm still
works correctly on that ordering (see [2]). This is where the
main technical contributions of our work in [2] begin. We
need to answer the following two fundamental questions:

Question 1. How do we know which variable orderings are
equivalent to the original FAQ-query expression?
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Question 2. How do we find the “best” variable ordering
among all equivalent variable orderings?

In the next two sections, we sketch how we answered the
above two questions and followup questions in theory and
in practice.

3. THEORETICAL CONTRIBUTIONS

To answer the above questions, we start with some defini-
tions. A variable ordering o is -equivalent iff permuting the
variable aggregates of ¢ using o gives an expression ¢’ that
is semantically-equivalent to ¢, i.e. that always returns the
same output as ¢ no matter what the input is. Let EVO(y)
denote the set of all p-equivalent variable orderings.

Ezample 8. The FAQ query ¢’ below is (-equivalent.

szaxzzm a, b)ya(a, c)ps(c, d),
¢ ZZZmaxwl a,b)¢2(a, c)vs(c, d).
This is because ¢ can be written as
> [(ZZM se, d)) (maxer(a, b))} .

Now, for any o € EVO(y), let Hj denote the kth sub-
query’s hypergraph when we run InsideOut on o. Ideally, we

(p:

would like to find o minimizing the expression }_, - .- AGM(H}).

However, this expression is data-dependent and thus it is a
bit difficult to handle in a mathematically clean way. We
simplify our objective by approximating the bound (4) a lit-
tle: we upperbound AGM(HY) by the fractional edge cover
number of the subgraph H{, ie. AGM(HE) < NP (0,
where p*(H7) := min{} p . Ar: A € P(HE)}. Then, (4) is

upperbounded by O (Nmax’fEK PIE) 4 \output\)7 InsideOut

on variable ordering ¢ runs in O(N®™™(@)  |output|)-time,
where faqw(o) := maxgex p*(H5). Thus, to have the best
runtime we would like to select an equivalent ordering o with
the smallest exponent faqw(o), called the FAQ-width of an
FAQ-query:

faqw(p) := min {faqw(o) | ¢ € EVO(p)} (5)

Ezample 9. In Example 8, the original order in ¢ has an
FAQ-width of 2, because eliminating ¢ first corresponds to
joining w2 and 13 in time Q(N?). In contrast, the order in
¢ has an faqw of 1, allowing to evaluate ¢ in time O(N).

To solve the optimization problem (5), the first problem we
have to address is to precisely characterize the set EVO(yp).
Our approach, sketched in Fig. 2, is to construct an expres-
sion tree of the FAQ query ¢. The expression tree defines a
partially ordered set on the variables called the precedence
poset. Then, to complete the characterization of EVO, we
show that every ordering in EVO is component-wise equiv-
alent (CWE) to a linear extension of LinEx(P). (See [2] for
details.) Thus, if we do not care about query complexity, we
can take the orange path in Fig 2 and bruteforcedly compute
an optimal variable ordering ¢*, run it through InsideOut,
for a total runtime of O(N®™"(¥) 4 |output|).

However, in some FAQ-framework’s applications such as
in graphical models, we cannot simply sweep query com-
plexity under the rug. Moreover, computing the faqw is
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NP-hard because faqw is a strict generalization of the frac-
tional hypertree width (fhtw), which is NP-hard [19] to
compute. Hence, we find a good approximation for the
fagw. This is the green path in Fig. 2: from the expres-
sion tree, we construct a tree decomposition for H; then,
from the GYO-elimination order of this tree decomposition
we obtain a variable ordering & for which we can show that
faqw(d) < faqw(c™)+g(fagw(c™)), where g is any known ap-
proximation of fhtw (the best of which is due to Marx [26]).

Ezample 10. The variable ordering used earlier in Exam-
ple 6 is a GYO-elimination order for the tree decomposition
in Fig. 1b. (In GYO, when we eliminate variable X,,, the
set U, becomes a bag of the tree decomposition whose chil-
dren are the bags corresponding to d(n).) In particular,
bags {f,h}, {e,g}, and {d,e, f} resulted from eliminating
h,g, and f respectively. The tree decomposition has width
fhtw = 3/2, same as the faqw of the variable ordering.

From these ideas, we obtained many corollaries, some of
which are summarized in Table 1. The results in Table 1
span three areas: (1) CSPs and Logic; (2) PGMs and (3) Ma-
trix operations. Except for joins, problems in area (1) need
the full generality of FAQ formulation, where InsideOut either
improves upon existing results or yields new results. Prob-
lems in area (2) can already be reduced to FAQ-SS. Here,
InsideOut improves upon known results since it takes advan-
tage of Grohe and Marx’s more recent fractional hypertree
width bounds. Finally, problems in area (3) of Table 1 are
classic. InsideOut does not yield anything new here, but it is
intriguing to be able to explain the textbook dynamic pro-
gramming algorithm for Matrix-Chain Multiplication [15] as
an algorithm to find a good variable ordering for the corre-
sponding FAQ-instance. The DFT result is a re-writing of
Aji and McEliece’s observation [6].

4. PRACTICAL IMPLICATIONS

In this section we address two questions the readers might
have regarding InsideOut: (1) hurdles one might face in a
practical implementation of InsideOut, and (2) whether prac-
tical implications are as good as what the theory says.

Additional hurdles and how to solve them. There are a
couple of problems we have to solve to implement InsideOut
effectively.

The first problem is, in real-world queries, we do not just
have materialized predicates as inputs, we also have predi-
cates such as a < b, a + b = ¢, negations and so on. These
predicates do not have a “size.” To solve this problem, one
solution is to set the “size” of those predicates to be co while
computing the AGM-bound. For instance, if we have a sub-
query of the form @ + R(a,b),S(b,c),a +b = ¢, where R
and S are input materialized predicates of size N, then by
setting the size of a + b = c to be infinite, AGM(Q) = N?.
This solution does not work for two reasons. (1) If we knew
a+b = ¢, then it is easy to infer that |Q| < N and also to
compute @ in time O(N): scan over tuples in R, use a+b = ¢
to compute ¢, and see if (b,c) € S. In other words, the
AGM-bound is no longer tight. (2) This solution may give
an oo-bound when the output size is clearly bounded. Con-
sider, for example, the query @ < R(a),S(b),a+ b = ¢; in
this case, {a,b, c} is the only hyperedge covering vertex c in
the fractional edge cover. Our implementation at LogicBlox
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Figure 2: Sketch of main technical contributions
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DP bound [15]

O(Nlog, N) [14]
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#QCQ Z @;J;jj) S @;Z) H Ps(xs) No non-trivial algo O(NRaw(e) 1 7)
(T1,smg) Seg
where @) € {max, x}
QCQ @YY@V [ vs(xs) O(NPW() 4 7) [11] | O(NFaw(®) 4 7)
Se&
where @) € {max, x}
c.. ( NDM(H) (¢ Nfaaw(e)
S >0 maxemax [ vsixs) O(NOMP) 4+ 7) [18] | OB + 2)
(z1,---9%5) Se&
Joins Ux Nseg ¥s(xs) O (N + 7) [21]

10 (thtw(’H) + Z)
O(Nfaqvv(w) +2)

@(Nfaqu) 4 7)
DP bound

O(Nlog, N)

> by

(Y0, Ym—1) ELY"

127
[ <

0<j+k<m

Table 1: Runtimes of algorithms assuming optimal variable ordering is given. Problems shaded red are in CSPs and logic
(D = {0,1} for CSP and D = N for #CSP), problems shaded green fall under PGMs (D = R.), and problems shaded
blue fall under matrix operations (D = C). N denotes the size of the largest factor (assuming they are represented with the
listing format). htw(¢) is the notion of integral cover width for PGM. PW(H) is the optimal width of a prefiz graph of H and
DM(#H) = poly(F-ss(H), fhtw(H)), where F-ss(H) is the [f]-quantified star size. Z is the output size in listing representation.
Our width fagw(y) is never worse than any of the three and there are classes of queries where ours is unboundedly better
than all three. In DFT, N = p™ is the length of the input vector. O hides a factor of poly(|#]) - log N.

makes use of generalizations of AGM to queries with func-
tional dependencies and immaterialized predicates (such as
a+b = c). These new bounds are based on a linear program
whose variables are marginal entropies [4, 5.

The second problem is to select a good variable ordering
to run InsideOut on. In principle, one does not have to use
the AGM-bound or the bounds from [4, 5] to estimate the
cost of an FAQ subquery. If one were to implement InsideOut
inside any RDBMS, one could poll that RDBMS’s optimizer
to figure out the cost of a given variable ordering. However,
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there are n! variable orderings, and optimizer’s cost estima-
tion is time-consuming. Furthermore, some subqueries have
inputs which are intermediate results. Hence, it is much
faster to compute a variable ordering minimizing the faqw
of the query, defined on the bounds in [4, 5]. As the prob-
lem is NP-hard, either an approximation algorithm [3] or a
greedy heuristic suffices in our experience.

InsideOut is bottom-up dynamic programming. We can
also solve FAQ queries with top-down (memoized) dynamic
programming. In hindsight, this was the approach that Bak-
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ibayev et al. [9] and Olteanu and Zévodny [32] took to solve
FAQ over a single semiring. We can also limit the amount of
memoization in a top-down strategy to attain performance
gain in some cases [22].

Practical Impact. 1t is trivial to construct classes of queries
on real datasets for which InsideOut-style of algorithms gives
arbitrarily large speedups over traditional RDBMSs. In fact,
even when dynamic programming does not take effect, the
speedup of backtracking search (and thus worst-case optimal
algorithms) over traditional query plans is already huge [30].
The impact of the FAQ-framework and the InsideOut algo-
rithm, however, go much beyond these toy queries (even
when run on real datasets).

InsideOut is a component of LogicBlox’s effort to extend
LogiQL to be a probabilistic programming language [10], as
part of DARPA’s PPAML and MUSE programs. The com-
ponent the algorithm handles is inference in discrete graph-
ical models.

Learning from the beautiful work of Olteanu and Schle-
ich [31, 34], we realized [27] that InsideOut can be used to
train a large class of machine learning models inside the
database. Our implementation showed orders of magnitude
speedup over the traditional data modeler route of exporting
the data and running it through R or Python. These mod-
els are trained with different variations of gradient descents,
whose (pre-)computation steps are FAQ queries. What is
much more interesting than the vanilla FAQ framework we
presented above is that, in these applications, we want to
compute many (in the 100K-range) FAQ queries all at once,
making dynamic programming much more crucial to the per-
formance. Another related approach was considered in [25].

S. CONCLUDING REMARKS

The FAQ framework showed that many common compu-
tational tasks over a very wide range of domains such as
CSPs, machine learning, relational database, logic, and ma-
trix computations can be performed inside a database us-
ing the same abstraction. The main idea is to blur the
line between data and computation, as we use the database
to store, compute, and process functions. The glue of the
framework is a simple dynamic programming algorithm called
InsideOut, which can be cast as a query-rewriting method
and thus it is readily implementable within any RDBMS.
These ideas are implemented, tested, and validated within
the LogicBlox database system. Our theory predicts practice
very well, which is a beautiful thing to see.
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Technical Perspective: Optimizing Tree Patterns for
Querying Graph- and Tree-Structured Data
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From the early days of databases, practitioners
and researchers have pursued techniques for rewrit-
ing queries into equivalent ones that are easier to
evaluate. The following paper closes a fundamental
gap that we have had in our understanding of this
challenge in the context of tree patterns. Such pat-
terns are common and basic components of query
languages for graph and tree data such as SPARQL,
Cypher and XQuery. The authors study the ques-
tion of whether the given tree pattern can be re-
placed with a smaller one, the question of whether
it involves redundant conditions, and most impor-
tantly, the relationship between these two questions.

Formally, a tree pattern p is matched in a labeled
graph G if the nodes of p can be mapped to the
nodes of G in a way that all the constraints of p
are satisfied. A node constraint is either a label
match (e.g., the label is “person”) or wildcard (no
constraint), and an edge constraint is either child
(the edge is mapped to an edge) or descendant (the
edge is mapped to a path). Two patterns are equiv-
alent if one is matched in a given graph precisely
when the other does. The properties in focus are
minimality—does p have the minimal size among
all equivalent patterns? and redundancy—does the
removal of any node of p (along with the subtree
underneath) result in an equivalent pattern?

Tree-pattern minimization was studied by Flesca
et al. [2] in 2003, where it was claimed that mini-
mization can be achieved through containment tests
among sub-patterns. Moreover, their results imply
that determining whether a tree pattern is minimal
is an NP-complete problem. It was not before 2008
that Kimelfeld and Sagiv [4] established that Flesca
et al. [2] had a gap in their arguments, as their re-
sults apply to nonredundancy and not minimality,
and in fact, the case of minimality was still open.

Nevertheless, Kimelfeld and Sagiv believed that
the results of Flesca et al. [2] were valid, and formu-
lated a conjecture that the following paper refers to
as the M-NR conjecture: minimality (M) and nonre-

dundancy (NR) are the same, that is, a tree pattern
is minimal if and only if it is nonredundant [4]. The
conjecture was supported by various classes of tree
patterns where it was proved to hold true [3,4]. Yet,
correctness of the conjecture in general remained
open. Verifying the conjecture required showing
that every nonredundant pattern is minimal (as the
other direction is clearly true). Refuting the conjec-
ture required finding a single counterexample. To
our surprise, one was indeed found.

The following paper highlights a publication in
2016 ACM PODS, where Czerwinski et al. [1] re-
futed the M-NR conjecture. Notwithstanding the
time it took to find it, their counterexample is fairly
simple and small (enough to fit in T-shirts worn by
the authors of [1] during the conference); it is a
nonredundant tree pattern of 32 nodes, and they
show an equivalent one with only 31 nodes. As
they further show, not only are the two properties
different, the corresponding computational decision
problems are fundamentally different (under con-
ventional complexity assumptions), again in con-
trast to past beliefs [3,4]: while nonredundancy is
NP-complete, minimality is IT5-complete (hence, re-
sides higher in the polynomial hierarchy). In partic-
ular, it follows that one needs tools beyond contain-
ment tests if minimization of general tree patterns
is desired. That and more in what follows.
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ABSTRACT

Many of today’s graph query languages are based on graph
pattern matching. We investigate optimization for tree-
shaped patterns with transitive closure. Such patterns are
quite expressive, yet can be evaluated efficiently. The min-
imization problem aims at reducing the number of nodes
in patterns and goes back to the early 2000’s. We provide
an example showing that, in contrast to earlier claims, tree
patterns cannot be minimized by deleting nodes only. The

example resolves the M Z NR problem, which asks if a tree
pattern is minimal if and only if it is nonredundant. The
example can be adapted to also understand the complexity
of minimization, which was another question that was open
since the early research on the problem. Interestingly, the
latter result also shows that, unless standard complexity as-
sumptions are false, more general approaches for minimizing
tree patterns are also bound to fail in some cases.

1. INTRODUCTION

Tree patterns are a very natural and user-friendly means
to query graph- and tree-structured data. This is why they
can be found in the conceptual core of widely used query
languages for graphs and trees.

1.1 Motivation from Graph Query Languages

*The original version of this article was published in PODS
2016, titled “Minimization of tree pattern queries” [12].
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Graph pattern matching is a fundamental concept in mod-
ern declarative graph query languages. Indeed, graph query
languages usually take one of two main perspectives: graph
traversal or graph pattern matching, the former being the
imperative and the latter being the declarative variant [31].
Today’s most prominent declarative graph query languages
are SPARQL 1.1 [33] and Neo4J Cypher [25]. Both lan-
guages make it very clear in their specifications that they
have graph pattern matching at their core. SPARQL 1.1
explicitly writes “SPARQL is based around graph pattern
matching” [33, Section 5], and the introduction of Neo4J’s
documentation on Cypher [25, Section 3.1.1] is essentially
an introduction to the principles of graph pattern matching.
Gremlin [19], another popular graph query language, leans
more towards the graph traversal side of the spectrum, but
also supports pattern matching style querying. It performs
graph pattern matching similar to SPARQL [31].

The reason why graph pattern matching is so popular is
not surprising. Graph patterns are expressive, reasonably
simple and intuitive to understand, and often efficient to
evaluate. Consider the graph in Figure 1. It contains infor-
mation on artists, their occupation, and their place of birth.
The graph structure is inspired on property graphs, a popular
model for graph databases in practice [30, 3]. In this model,
each node and edge carry a label and, in addition, nodes can
have a set of attributes. For instance, the node related to
Jimi Hendrix has the label Person, its “name” attribute is
Jimi Hendrix, and its “aka” attribute is James Marshall Hen-
drix.

Assume that we would like to find the artists who were
born in the United States. This corresponds to finding
names of Person nodes that have (1) an occupation edge to
“a subclass of artist” and (2) a place of birth edge to a city
that is located in the United States. For expressing these
conditions, we need to reason about paths in the graph. The
occupation in (1) should be connected to artist by a path of
subclassof-edges and the city in (2) to United States by a
path of locatedin-edges.

These conditions are expressed in the pattern in Figure 2.
It has two types of edges and two types of nodes. Single

I The pattern is closely related to graph patterns, which were
identified by Angles et al. [3] as a part of the conceptual core
of many of today’s graph query languages.
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Figure 1: A graph database (as a property graph), inspired on a fragment of WikiData
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subclassof

Profession
_____ N

yname: artist
Figure 2: A tree pattern finding the artists who were born
in the United States. The query returns the person names
and the cities where they were born. (Fully circled nodes
are return nodes.)

edges in the pattern can be matched to single edges in the
graph with the same label. The double edges can be matched
to paths in the graph on which every edge has the label given
in the query. (For instance, the locatedin edge in the query
can be matched on the path from the Los Angeles to United
States nodes.) The solid nodes in the query are output nodes
and the dashed nodes are ordinary nodes. The symbol * is
a wildcard symbol that can be matched to any label. The
query has two variables: x1 and x2. Intuitively, computing
the answers to the pattern corresponds to finding matches
of the pattern in the graph and, for each such match, return
the nodes (or values) matched by the variables in output
nodes of the pattern. When evaluated on the graph in Fig-
ure 1, this pattern would return (Jimi Hendrix, Seattle) and
(Marilyn Monroe, Los Angeles).

Our example query is structured as a tree. In general,
the underlying structure of queries in SPARQL or Cypher
can be an arbitrary graph and can therefore contain cycles.
The acyclic queries form, however, an important subclass.
Graph patterns closely correspond to comjunctive queries,
which are known to be NP-complete to evaluate [10]. The
tree-shaped patterns closely correspond to acyclic conjunc-
tive queries, which can be evaluated in polynomial time. In

16

fact, the quest for subclasses of conjunctive queries with a
polynomial time evaluation problem is rich of beautiful re-
sults (see, e.g., [17]). In this paper, however, we focus on
queries whose underlying structure is a tree and, for this rea-
son, have a tractable (polynomial time) evaluation problem.
(We note that the transitive closure operators we use make
no difference in this respect.)

From a graph query language perspective, the tree pat-
terns from this paper correspond to tree-shaped conjunc-
tive queries (or tree-shaped graph patterns) with transi-
tive closure. Transitive closure seems to be becoming in-
creasingly popular in graph query languages, even though
there have been challenges in the early version of the oper-
ator in SPARQL 1.1 [5, 23]. In WikiData’s list of ezample
queries [34], which help users getting started with the data
set, 72 out of 272 queries use transitive closure of a label,
which means that the feature is important.

1.2 Motivation from Tree Query Languages

Tree-structured data is among us in many forms, JSON
and XML being two examples. The tree pattern queries that
we consider were originally introduced to investigate query
languages for tree-structured data [24]. They are an abstrac-
tion of a fragment of XPath [28] and therefore also appear in
XQuery [29], XSLT [21], and languages for querying JSON,
see, e.g., [20]. Indeed, patterns such as the one in Figure 2
can equally well be used for querying tree-structured data.
(This is easy to see, since a tree is a special case of a graph.)

Tree pattern queries are also important for many topics in
fundamental research on tree-structured data. For instance,
they form a basis for conjunctive queries over trees [18, 8],
for models of XML with incomplete information [6], and the
closely related pattern-based XML queries [16]. They are
used for specifying guards in Active XML systems [1] and
for specifying schema mappings in XML data exchange [4].

1.3 The Core Problem

We report in this paper on recent progress on the min-
imization problem for tree patterns [12]. Optimization of
queries has been a main topic of database research ever since
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the beginning and therefore is very natural to consider for
tree patterns. Tree pattern query optimization already at-
tracted significant attention in the form of query contain-
ment [24, 26, 13|, satisfiability [7], and minimization [2, 11,
15, 22, 27, 35].

Almost all this former work on containment, satisfiability,
and minimization exclusively considered tree patterns as a
language for querying tree-structured data. However, as ar-
gued by Miklau and Suciu [24, Section 5.3], many of these
results hold just the same if we use tree patterns to query
graph-structured data, i.e., if we use tree patterns as in Sec-
tion 1.1. The same argument holds for the minimization
problem. For this reason, one can often obtain results for
tree patterns on graph-structured data while only consider-
ing tree-structured data in proofs.

We note that the tree patterns that were considered in
this former work (and the ones we consider in the proofs
of [12]) cannot express the query in Figure 2, for the sim-
ple reason that they cannot express the transitive closure of
subclassof. We will argue that our results extend to these
more expressive queries as well.

Another difference is that we consider Boolean queries,
whereas the query in Figure 2 returns tuples of answers.
Again, we will argue that our results also apply for higher-
arity queries. We consider the following problem.

TREE PATTERN MINIMIZATION
A tree pattern p and k£ € N
Is there a tree pattern ¢, equivalent to
p, such that its size is at most k7

Given:
Question:

The main difficulties for this problem are already present
in a very restricted set of tree patterns that

e only query graphs that are node-labeled and are tree-
shaped; and

e over these graphs, only use labeled node tests, wildcard
node tests, the child relation, and the descendant rela-
tion.

These are precisely the patterns introduced by Miklau and
Suciu [24].

1.4 History of the Problem

Although the patterns we consider here have been widely
studied [14, 24, 36, 15, 22, 1, 9, 4, 32|, their minimization
problem remained elusive for a long time. The most im-
portant previous work for their minimization was done by
Kimelfeld and Sagiv [22] and by Flesca, Furfaro, and Mas-
ciari [14, 15].

The key challenge was understanding the relationship be-
tween minimality (M) and nonredundancy (NR). Here, a
tree pattern is minimal if it has the smallest number of
nodes among all equivalent tree patterns. It is nonredun-
dant if none of its leaves (or branches?) can be deleted while
remaining equivalent. The question was if minimality and
nonredundancy are the same ([22, Section 7] and [15, p. 35]):

M = NR PROBLEM:

Is a tree pattern minimal
if and only if it is nonredundant?

?Kimelfeld and Sagiv proved that a tree pattern has a re-
dundant branch if and only if it has a redundant leaf [22,
Proposition 3.3].
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Figure 3: Minimizing a tree pattern by removing redundant
nodes

Notice that a part of the M < NR problem is easy to see:
a minimal pattern is trivially also nonredundant (that is, M
C NR). The opposite direction is much less clear.

If the problem would have a positive answer, it would
mean that the simple algorithmic idea summarised in Algo-
rithm 1 correctly minimizes tree patterns. Therefore, the

M = NR problem is a natural question about the design of
minimization algorithms for tree patterns.

Algorithm 1 Computing a nonredundant subpattern

Input: A tree pattern p
Output: A nonredundant tree pattern g, equivalent to p

while a leaf of p can be removed
(remaining equivalent to p) do
Remove the leaf
end while
return the resulting pattern

EXAMPLE 1.1. It is easy to see that Algorithm 1 can be
used for minimizing some patterns. Consider the left pat-
tern in Figure 3. Its root (labeled with a wildcard *) can
be matched on nodes n in a graph such that (1) n has an
a-labeled successor, (2) a b-labeled successor with a c-labeled
successor, and (3) a c-labeled node is reachable from n. (In
this example, edge labels do not matter.) In the semantics
of such patterns, it is allowed that the different c-nodes are
matched on the same node in the data. Therefore, condition
(8) is redundant and the pattern to the right is equivalent
and smaller.

The M = NR problem is also a question about complexity.
The main source of complexity of the nonredundancy algo-
rithm lies in testing equivalence between a pattern p and a

pattern p’, which is generally coNP-complete [24]. If M z
NR has a positive answer, then TREE PATTERN MINIMIZA-
TION would also be coNP-complete.

In fact, the problem was claimed to be coNP-complete in
2003 [14, Theorem 2], but the status of the minimization-

and the M = NR problems were re-opened by Kimelfeld and
Sagiv [22], who found errors in the proofs. Flesca et al.’s
journal paper then proved that M = NR for a limited class
of tree patterns, namely those where every wildcard node has
at most one child [15]. Nevertheless, for tree patterns,

(a) the status of the M Z NR problem and

(b) the complexity of the minimization problem

remained open.
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1.5 Our Contributions
We proved the following [12]:

(a) There exists a tree pattern that is nonredundant but not
minimal. Therefore, M # NR.

(b) TREE PATTERN MINIMIZATION is 3% -complete. This
implies that even the main idea in Algorithm 1 cannot
work unless coNP = ©F.

Interestingly, our counterexample for (a) uses only two wild-
card nodes with two children and only one transitive edge.
This is only barely beyond the fragment for which it is known
that minimality and nonredundancy coincide.

Outline.

In Section 2 we formally define tree patterns, their se-
mantics, and discuss their relationship to the queries in the
Introduction. We show why M # NR in Section 3. In Sec-
tion 4 we briefly discuss the complexity result and its con-
sequences.

2. PRELIMINARIES

We formally define our data model and queries, recall im-
portant results about the static analysis of queries, and dis-
cuss the relationship between other data models and ours.

Data Model: Node- and Edge-Labeled Graphs.

Our data model is very simple: we use finite, node- and
edge-labeled directed graphs, where the labels come from
an infinite set. In the graph database world, this model is
closely related to property graphs, the data model for Neo4J
[30] (see, e.g., [3] for a formal definition of property graphs).®

More formally, a (node- and edge-) labeled graph is a triple
(V, E,lab), where V is a finite nonempty set of nodes, E is
a set of directed edges (u,v) € V xV andlab: VUE — A
is a labeling function assigning to every node and edge its
label coming from an infinite set of labels A. We assume
that graphs are connected. A path from node vi to v, is
a sequence of nodes ™ = vy - - - vn, where (vs,viq1) € E for
everyt=1,...,n— 1.

A graph is a tree if,

(i) for every node v, there is at most one node u (called
parent of v) with (u,v) € E and

(ii) there is exactly one node v (called root) without a par-
ent.

We assume familiarity with standard terminology on trees
such as child and descendant.

The Queries: Tree Patterns.

Our formal model of graph patterns allows node- and edge
label tests, wildcard tests, and transitive closures. The wild-
card test (denoted by “¥” in patterns) matches any node- or

edge label in a graph. To avoid confusion, we assume that
* & A

3Property graphs are more refined, however, since they as-
sociate properties to nodes in addition to labels. From a
formal perspective, we want that nodes in the graph are not
uniquely determined by their label. We do not want that
different occurrences of a label in a query must always be
mapped to the same node in the graph. This behaviour
would introduce unwanted cycles in tree pattern queries.
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Figure 4: Example of a match from a tree pattern (left) to
a labeled graph (right)

Formally, a graph pattern is a tuple p = (Vj, Ep,laby)
where lab, : V, UE, — AW {x} and V}, is partitioned in two
sets: simple edges and transitive closure edges. In figures,
we draw transitive closure edges using double lines. Further-
more, if we do not write a label on an edge, we implicitly
assume that the edge label is the wildcard “x”.

A tree pattern is a graph pattern that satisfies the condi-
tions (i) and (ii) we required for trees. From now on in this
paper, we will only consider tree patterns (although many
definitions also apply for graph patterns). The size of a
pattern p, denoted size(p), is the number of its nodes.

For simplicity, we will define our queries to be Boolean,
that is, we will only consider whether they can be matched in
a graph or not. Tree patterns with output nodes have been
considered as well [24, 22] and our main results also apply
to those queries. We discuss this later in the Preliminaries
(see Boolean vs. k-ary queries).

Semantics of Queries.

We use a homomorphism-based semantics for tree pat-
terns. For a tree pattern p = (V,, Ep,lab,) and a graph
G = (V, E,lab), a function m: V,, — V is a match of p in g
if it fulfills all the following conditions:

(1) If laby(v) # * for v € V}, then lab,(v) = lab(m(v)).

(2) If (u,v) € E, is a simple edge then (m(u), m(v)) is
an edge in G. Furthermore, if lab,((u,v)) # * then
laby ((u, v)) = lab((m(u), m(v))).

(3) If (u,v) € E, is a transitive closure edge then there is
a path from m(u) to m(v) in G that satisfies the label
constraint of the edge. That is, there exists a path m =
U1+ up in G (with n > 1)) such that m(u) = u1 and
m(v) = un. Furthermore, if lab,((u,v)) # *, then all
edges (ui, ui+1) in 7 are labeled lab,((u,v)).

We say that p can be matched in G if there exists a match
from p to G. Figure 4 shows an example of a match. Notice
that we do not require matches to be injective.

DEFINITION 2.1  (SEMANTICS OF TREE PATTERNS).
The set of models of a tree pattern p, denoted by M (p), is
the set of graphs in which p can be matched.

Containment, Equivalence, and Minimality.

A tree pattern p; is contained in a tree pattern po if
M(p1) € M(p2), which we denote by p1 C p2. If p1 C p2
and p; O p2 then we say that the patterns p; and p2 are
equivalent and we write p1 = pa.

Figure 3 contains two patterns that are equivalent. (For
the left pattern, the c-labeled node on the right branch can
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Figure 5: Example for containment of patterns. (Non-
labeled edges are implicitly assumed to have wildcard tests.)

always be matched to wherever the c-labeled node in the
middle branch is matched. Therefore it is equivalent to the
pattern on the right.) In Figure 5, we give an example for
pattern containment. The right pattern matches a-nodes
which have ci1- and cz2-nodes on distance two, such that there
are b-nodes between the a and the ¢;. The pattern on the
left additionally requires the two b-nodes to be the same.
Since the latter is more restrictive, if the left pattern can
be matched in a graph, then the right one can be matched
there as well.

The following problem is important in many query opti-
mization procedures:

TREE PATTERN EQUIVALENCE
Two tree patterns p; and p2
Is p1 = p2?

Given:
Question:

We call a tree pattern p redundant if one of its nodes can
be removed without changing its set of models. For a node
v of p, we denote by p \ v the pattern obtained from p by
removing v and all its descendants and incident edges.

DEFINITION 2.2 (MINIMALITY, NONREDUNDANCY).

e A tree pattern p is redundant if it is equivalent to p\ v
for a node v of p. In this case, v is a redundant node.
If p is not redundant we say that it is nonredundant.

e A pattern p is said to be minimal if there exists no tree
pattern that is equivalent to p but has strictly smaller
size.

It is known that tree patterns are redundant if and only if
they have a redundant leaf [22, Proposition 3.3].

Complexity.

One can obtain an almost trivial % upper bound for
TREE PATTERN MINIMIZATION (as defined in the Introduc-
tion) by using the following result.

THEOREM 2.3. TREE PATTERN EQUIVALENCE is coNP-
complete.

PROOF SKETCH. Miklau and Suciu [24] prove this theo-
rem for tree patterns without edge labels, but these can
easily be added. Furthermore, their patterns only have tree
models, whereas we consider graph models. However, they
explain [24, Section 5.3] that these two variants of the prob-
lem are the same. []

From this result, a % upper bound for TREE PATTERN
MINIMIZATION is immediate.

THEOREM 2.4. TREE PATTERN MINIMIZATION is in 3% .

PROOF. Given a tree pattern p and k € N, the £ algo-
rithm first guesses (existential quantification) a tree pattern
p’ of size at most k and then checks (universal quantifica-
tion) if p’ and p are equivalent. []
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name: *

@name occupation
occupation %
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\ 1
subclassof Profession
..... e
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name: artist! .
1 name: artist) artist

(a) Property Graph Query (b) Translated Query
Figure 6: Translating a subquery of Figure 2 to our simpli-
fied model

Notice that, if M = NR, then p’ can be found among the sub-
patterns of p, which would drop the upper bound to coNP.

Boolean vs. k-ary queries.

One can easily extend tree patterns to k-ary tree patterns
that return k-tuples of answers (see, e.g., [24, 22]). We ar-
gue that our results also hold for such queries. It is trivial
for our M # NR example, because a Boolean query is just
a special case of a k-ary query. The other main result is
the ©¥'-completeness result in Theorem 4.1. The 3£ upper
bound can be seen to hold for k-ary queries by using the
same naive algorithm as in Theorem 2.4 and using the ar-
gument of Kimelfeld and Sagiv [22, Section 5.2] for showing
that TREE PATTERN EQUIVALENCE for k-ary queries poly-
nomially reduces to the same problem for Boolean queries.
The ©F lower bound follows immediately.

Relationship to the Queries in the Introduction.

The tree patterns we defined here are much simpler than
the pattern we discussed in the Introduction (Figure 2).
However, the two types of patterns are closely related when
it comes to minimization. Again, since the patterns we have
here are simpler, it is easy to see that our M # NR example
equally applies to the kind of patterns in the Introduction.

Moreover, the simplified patterns capture much of the ex-
pressivity of the more complex patterns modulo a simple
encoding. In Figure 6, we demonstrate this translation by
example, using a subquery of Figure 2. Essentially, each
node of the pattern on the left becomes a node on the right
labeled with the property (the label in the rectangular box)
if present, and the “name”-attributes of nodes become chil-
dren with incoming edges that identify the type of attribute.
(We can make sure that the labels of these incoming edges
do not appear elsewhere in the query.)

We do not claim that this translation gives a 100% corre-
spondence between the world of tree patterns and the world
of “property graph tree patterns”, but we do believe that it
shows a very close connection. For instance, the translation
can be used for testing equivalence between certain types
of property graph patterns (translate to tree patterns and
test equivalence between those). Likewise, for a large class
of property graph tree patterns, minimization would work
very similarly to minimization of the translated tree pattern
query.
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Figure 7: A non-redundant tree pattern p (right) and an equivalent tree pattern ¢ that is smaller (left)

3. THEM < NR PROBLEM

We show that M # NR by presenting a tree pattern that
is nonredundant but also not minimal.

Indeed, we will argue that the right pattern p in Figure 7
is nonredundant and not minimal. (For readability, we omit-
ted arrows. All arrows are assumed to point downwards.)
Consider the pattern g on the left of Figure 7. To convince
the reader, we need to make three points: (1) p is nonre-
dundant, (2) p is equivalent to ¢, and (3) ¢ is smaller than
.

Point (3) is trivial: ¢ can be obtained from p by merging
two b-nodes on depth six. Therefore, ¢ has one fewer node
than p. Points (1) and (2) are non-trivial. Here we will
only show (2) because it is the most interesting argument of
the two. (Point (1) can be shown by proving that p is not
equivalent to any of its subpatterns, see [12].)

We want to convince the reader of point (2) by a sequence
of pictures. First of all, observe that ¢ C p. The reason is the
same as the one we already discussed in Figure 5. Therefore
it only remains to argue why p C q.

In Figure 8, we depicted ¢ (always on the left) and three
patterns pi1, p2 and ps3 on the right. If p is matched in a
graph, there are three possibilities for matching the double
edge connecting the x-node with the a-node. This double
edge is matched to a path that either consists of

(a) one edge,
(b) two edges, or
(c) at least three edges.

These three possibilities are depicted on the right of Fig-
ure 8. If we have case (a), then we can also match the left
pattern in Figure 8(a) (similar for (b) and (c)). (Some parts
of these patterns are grey. We will get to that soon.)

The dotted edges have the following meaning. Whenever
the pattern pi, p2, or ps on the right can be matched on a
graph, then pattern ¢ (on the left) can also be matched, by
matching the nodes on the left to wherever the connected
node on the right is matched. For instance, in case (a), the
root of ¢ can always be matched to wherever the root of p;
was matched. The grey part of p; is in fact irrelevant for ¢
in this case. All nodes of ¢ can be matched to places where
black nodes of p; are matched. The grey parts in (b) and
(c) have the same meaning.
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The dotted edges show completely how ¢ can be matched
in cases (a) and (b). In case (c), we also have a dashed edge.
The dashed edge shows how the matching of ¢ works if we
have ezactly three edges in (c), but if there are more, then
the target of the edge needs to go downward accordingly.
The reason for this is easy to see: the two a-nodes on the
right side of ¢ are connected to the root by paths of fixed
length. So, if the target of the a-nodes move further away,
the root of ¢ needs to follow as well. Since all nodes on the
path to the root are wildcards, this is possible. Therefore, ¢
can always be matched in case (c) as well.

This gives us the following Theorem:

THEOREM 3.1 (M # NR).
MINIMALITY # NONREDUNDANCY

4. COMPLEXITY AND CONSEQUENCES

Leveraging the behavior of the patterns in Figure 7, we
could prove the following;:

THEOREM 4.1
> complete.

([12]). TREE PATTERN MINIMIZATION is

This result is even more drastic than the example in Fig-
ure 7. Observe that the query ¢ can be obtained from p by
just merging two nodes together. So, the reader may won-
der if the following is true. Say that a query is in NR' if
none of its nodes can be deleted or merged while remaining

equivalent. Then, M Z NR’ would be the question: Can tree
patterns always be minimized by deleting or merging nodes?

Although Figure 7 does not show that M # NR’, Theo-
rem 4.1 shows that, if M = NR/, then coNP = %I, Indeed,
if it would be possible to always minimize tree patterns by
deleting or merging nodes, then Algorithm 1 (from the In-
troduction) can be adapted to be a coNP test for minimiza-
tion. (Instead of deleting nodes, it would also merge nodes
together.) For this reason, also the search for candidate
minimal patterns is a difficult problem.
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using Constraints

Surajit Chaudhuri
Microsoft Research
surajitc@microsoft.com

Relational query languages enabled the programmer to express
succinctly what data items to retrieve using a logical model of data
without any knowledge of the underlying physical structures and
helped relational systems gain widespread adoption. To support
applications using a relational database effectively, there has been
much work subsequently along the following three dimensions:

(a) Application developers needed a programmatic way to in-
voke relational query functionality from within their appli-
cations. The most primitive and most prevalent form of such
integration uses ODBC or JDBC APIs. While they provide
connectivity to database objects, the application programmer
still must manage two separate type systems and program-
ming models. LINQ (Language Integrated Query) is an ele-
gant example of integration where query expressions are in-
troduced as first class citizen in the programming languages.
Object-relational mapping tools allow the application pro-
grammer to continue working in their object-oriented pro-
gramming paradigm even though they may be storing and
retrieving relational database objects.

(b) Enriching the relational model to support extensibility so that
programmers could do more within a relational database sys-
tem was another key direction that has been pursued. The
simplest example of such extensibility was introduction of
user-defined selection and user-defined aggregates which are
widely supported in relational databases. Object-relational
databases extended the relational model to support complex
types, inheritance and support for user-defined methods but
their adoption has been relatively modest. The extensibil-
ity mechanisms in relational databases have been especially
useful in adding support for richer data types such as spatial.

(c) There have been many proposals to extend core SQL by mak-
ing declarative querying in relational languages to do more.
The language has been extended to add recursive queries,
Roll-Up, Grouping Sets, Window function and more. In ad-
dition to the extensions that have been incorporated in the
SQL Standard, over time there has been a steady stream of
research proposals for enriching core SQL. Adoption of any
such extension requires careful consideration as they directly
impact complexity of the language and the query engine.

These directions of work are largely complementary. However,
there is always a healthy tension between how much should be done
in applications and what is best deferred to the database server us-
ing either its extensibility mechanisms or extensions to core SQL,
i.e., (b) and (c) above. Issues that influence such a debate are ease
of specification and efficient execution of desired computation, data
movement, and increased complexity of the database platforms.

SIGMOD Record, March 2017 (Vol. 46, No. 1)

The following paper by Brucato, Abouized, and Meliou belongs
to the line of work in (c) that suggests adding more functional-
ity to core SQL. Their work builds on past research work in the
broad area of endowing the query languages with also the power of
specitying constraints. The motivation for adding constraint speci-
fication to SQL comes from the desire to marry the well-established
paradigms of constrained optimization e.g., Integer Linear Program-
ming (ILP), and traditional SQL querying. Of course, selection
conditions in SQL are simple row level constraints. Past work on
constraint query languages proposed more generalized constraints
over row values. However, the following paper (as well as a few
other recent papers) focuses on aggregate constraints that the set of
answer rows to a query must satisfy collectively, and picks the an-
swer set based on an objective criterion (analogous to the objective
function in ILP). They give a nice motivating example of formulat-
ing a meal plan for which you want to ensure that the total number
of calories of the chosen meal plan is within a range and the total fat
consumption is minimized. The paper lays out specific extensions
to SQL needed to declaratively capture such queries and explains
how such queries can be evaluated by first executing the traditional
relational queries and then mapping the constraint satisfaction and
objective criterion to an ILP instance which in turn can be solved
using any off-the-shelf ILP solver. It is indeed advantageous to use
a well-tuned off-the-shelf ILP solver in the database server using its
extensibility mechanism instead of adding complexity to the core
SQL engine. The rest of the paper addresses the challenges in solv-
ing large ILP problems using offline partitioning and approxima-
tion techniques to break down the global ILP instance into smaller
ILP sub-problems such that the off-the-shelf ILP solvers are able
to handle the scale of each sub-problem. However, proposed tech-
niques such as offline partitioning is subject to debate as partition-
ing criteria for data may depend on other workload on the system
such as production queries.

While the paper is unlikely to end the debate on whether or not
constraints should be added to SQL (since any addition to the SQL
has complex trade-offs), the paper has studied what it takes to add
constraints to SQL in a relatively complete way — language exten-
sion, impact on query execution, and techniques to cope with scale.
If you are interested in the topic of constraint specification and op-
timization over information in databases, you should definitely pay
attention to this paper. It is worth a read also for any researcher who
wants to consider adding extensions to core SQL to ease applica-
tion tasks as it illustrates the key considerations one must address.
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ABSTRACT

Many modern applications and real-world problems involve the
design of item collections, or packages: from planning your daily
meals all the way to mapping the universe. Despite the pervasive
need for packages, traditional data management does not offer sup-
port for their definition and computation. This is because traditional
database queries follow a powerful, but very simple model: a query
defines constraints that each tuple in the result must satisfy. How-
ever, a system tasked with the design of packages cannot consider
items independently; rather, the system needs to determine if a set
of items collectively satisfy given criteria.

In this paper, we present package queries, a new query model
that extends traditional database queries to handle complex con-
straints and preferences over answer sets. We develop a full-fledged
package query system, implemented on top of a traditional database
engine. Our work makes several contributions. First, we design
PaQL, a SQL-based query language that supports the declarative
specification of package queries. Second, we present a fundamental
strategy for evaluating package queries that combines the capabili-
ties of databases and constraint optimization solvers. The core of
our approach is a set of translation rules that transform a package
query to an integer linear program. Third, we introduce an offline
data partitioning strategy allowing query evaluation to scale to large
data sizes. Fourth, we introduce SKETCHREFINE, an efficient and
scalable algorithm for package evaluation, which offers strong ap-
proximation guarantees. Finally, we present extensive experiments
over real-world data. Our results demonstrate that SKETCHREFINE
is effective at deriving high-quality package results, and achieves
runtime performance that is an order of magnitude faster than di-
rectly using ILP solvers over large datasets.

1. INTRODUCTION

Traditional database queries follow a simple model: they define
constraints, in the form of selection predicates, that each tuple in the
result must satisfy. This model is computationally efficient, as the
database system can evaluate each tuple individually to determine
whether it satisfies the query conditions. However, many practical,
real-world problems require a collection of result tuples to satisfy
constraints collectively, rather than individually.

EXAMPLE 1 (MEAL PLANNER). A dietitian needs to design
a daily meal plan for a patient. She wants a set of three gluten-free
meals, between 2,000 and 2,500 calories in total, and with a low
total intake of saturated fats.

© VLDB Endowment 2016. This is a minor revision of the paper entitled
“Scalable Package Queries in Relational Database Systems”, published in
the Proceedings of the VLDB Endowment, Vol. 9, No. 7, 2150-8097/16/03.
DOI: https://doi.org/10.14778/2904483.2904489
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EXAMPLE 2 (NIGHT SKY). An astrophysicist is looking for
rectangular regions of the night sky that may potentially contain
previously unseen quasars. Regions are explored if their overall
redshift is within some specified parameters, and ranked according
to their likelihood of containing a quasar [13].

In these examples, some conditions can be verified on individual
items (e.g., gluten content in a meal), while others need to be evalu-
ated on a collection of items (e.g., total calories). Similar scenarios
arise in a variety of application domains, such as investment plan-
ning, product bundles, course selection [20], team formation [2, 16],
vacation and travel planning [7], and computational creativity [21].
Despite the clear application need, database systems do not currently
offer support for these problems, and existing work has focused on
application- and domain-specific approaches [2, 7, 16, 20, 23].

In this paper, we present a domain-independent, database-centric
approach to address these challenges: We introduce a full-fledged
system that supports package queries, a new query model that ex-
tends traditional database queries to handle complex constraints
and preferences over answer sets. Package queries are defined over
traditional relations, but return packages. A package is a collection
of tuples that (a) individually satisfy base predicates (traditional
selection predicates), and (b) collectively satisfy global predicates
(package-specific predicates). Package queries are combinatorial in
nature: the result of a package query is a (potentially infinite) set of
packages, and an objective criterion can define a preference ranking
among them.

Extending traditional database functionality to provide support
for packages, rather than supporting packages at the application
level, is justified by two reasons: First, the features of packages
and the algorithms for constructing them are not unique to each
application; therefore, the burden of package support should be lifted
off application developers, and database systems should support
package queries like traditional queries. Second, the data used
to construct packages typically reside in a database system, and
packages themselves are structured data objects that should naturally
be stored in and manipulated by a database system.

Our work addresses three important challenges. The first
challenge is to support declarative specification of packages. SQL
enables the declarative specification of properties that result tuples
should satisfy. In Example 1, it is easy to specify the exclusion
of meals with gluten using a regular selection predicate in SQL.
However, it is difficult to specify global constraints (e.g., total calo-
ries of a set of meals should be between 2,000 and 2,500 calories).
Expressing such a query in SQL requires either complex self-joins
that explode the size of the query, or recursion, which results in ex-
tremely complex queries that are hard to specify and optimize. Our
goal is to maintain the declarative power of SQL, while extending
its expressiveness to allow for the easy specification of packages.
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Figure 1: Traditional database technology is ineffective at pack-
age evaluation, and the runtime of a SQL formulation of a pack-
age query grows exponentially. In contrast, tools such as ILP
solvers are more effective.

The second challenge relates to the evaluation of package queries.
Due to their combinatorial complexity, package queries are harder
to evaluate than traditional database queries [8]. Package queries
are in fact as hard as integer linear programs [4]. Existing database
technology is ineffective at evaluating package queries, even if one
were to express them in SQL. Figure 1 shows the performance of
evaluating a package query expressed as a multi-way self-join query
in traditional SQL. As the cardinality of the package increases,
so does the number of joins, and the runtime quickly becomes
prohibitive: In a small set of 100 tuples from the Sloan Digital
Sky Survey dataset [22], SQL evaluation takes almost 24 hours to
construct a package of 7 tuples. Our goal is to extend the database
evaluation engine to take advantage of external tools, such as ILP
solvers, which are more effective for combinatorial problems.

The third challenge pertains to query evaluation performance and
scaling to large datasets. Integer programming solvers have two
major limitations: they require the entire problem to fit in main
memory, and they fail when the problem is too complex (e.g., too
many variables and/or too many constraints). Our goal is to over-
come these limitations through sophisticated evaluation methods
that allow solvers to scale to large data sizes.

Our work addresses these challenges through the design of lan-
guage and algorithmic support for the specification and evaluation
of package queries. We present PaQL (Package Query Language),
a declarative language that provides simple extensions to standard
SQL to support constraints at the package level. PaQL is at least
as expressive as integer linear programming, which implies that
evaluation of package queries is NP-hard [4]. We present a funda-
mental evaluation strategy, DIRECT, that combines the capabilities
of databases and constraint optimization solvers to derive solutions
to package queries. The core of our approach is a set of translation
rules that transform a package query to an integer linear program.
This translation allows for the use of highly-optimized external
solvers for the evaluation of package queries. We introduce an of-
fline data partitioning strategy that allows package query evaluation
to scale to large data sizes. The core of our evaluation strategy,
SKETCHREFINE, lies on separating the package computation into
multiple stages, each with small subproblems, which the solver can
evaluate efficiently. In the first stage, the algorithm ““sketches” an
initial sample package from a set of representative tuples, while the
subsequent stages “refine” the current package by solving an ILP
within each partition. SKETCHREFINE offers strong approximation
guarantees for the package results compared to DIRECT. We present
an extensive experimental evaluation on real-world data that shows
that our query evaluation method SKETCHREFINE: (1) is able to
produce packages an order of magnitude faster than the ILP solver
used directly on the entire problem; (2) scales up to sizes that the
solver cannot manage directly; (3) produces packages of very good
quality in terms of objective value.

SIGMOD Record, March 2017 (Vol. 46, No. 1)

2. LANGUAGE SUPPORT FOR PACKAGES

Data management systems do not natively support package
queries. While there are ways to express package queries in SQL,
these are cumbersome and inefficient.

Specifying packages with self-joins. When packages have strict
cardinality (number of tuples), and only in this case, it is possible to
express package queries using traditional self-joins. For instance,
self-joins can express the query of Example 1 as follows:

SELECT * FROM Recipes R1, Recipes R2, Recipes R3
WHERE R1.pk < R2.pk AND R2.pk < R3.pk AND
R1.gluten = ‘free’ AND R2.gluten = ‘free’ AND R3.gluten = ‘free’
AND R1.kcal + R2.kcal + R3.kcal BETWEEN 2.0 AND 2.5
ORDER BY R1l.saturated_fat + R2.saturated_fat + R3.saturated_fat

This query is efficient only for constructing packages with very
small cardinality: larger cardinality requires a larger number of
self-joins, quickly rendering evaluation time prohibitive (Figure 1).
The benefit of this specification is that the optimizer can use the
traditional relational algebra operators, and augment its decisions
with package-specific strategies. However, this method does not
apply for packages of unbounded cardinality.

Using recursion in SQL. More generally, SQL can express package
queries by generating and testing each possible subset of the input
relation. This requires recursion to build a powerset table; checking
each set in the powerset table for the query conditions will yield the
result packages. This approach has three major drawbacks. First,
it is not declarative, and the specification is tedious and complex.
Second, it is not amenable to optimization in existing systems. Third,
it is extremely inefficient to evaluate, because the powerset table
generates an exponential number of candidates.

2.1 PaQL: The Package Query Language

Our goal is to support package specification in a declarative and
intuitive way. In this section, we describe PaQL, a declarative query
language that introduces simple extensions to SQL to define package
semantics and package-level constraints. We first show how PaQL
can express the query of Example 1, as our running example, to
demonstrate the new language features:

Q: SELECT PACKAGE(R) AS P
FROM Recipes R REPEAT 0

WHERE R.gluten = ‘free’
SUCH THAT COUNT(P.x) =3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.saturated_fat)

Basic semantics. The new keyword PACKAGE differentiates PaQL
from traditional SQL queries.

Qp: SELECT * Q,: SELECT PACKAGE(R)ASP
FROM Recipes R FROM Recipes R

The semantics of Q and Q, are fundamentally different: Q; is
a traditional SQL query, with a unique, finite result set (the entire
Recipes table), whereas there are infinitely many packages that
satisfy the package query Q: all possible multisets of tuples from
the input relation. The result of a package query like Q is a set of
packages. Each package resembles a relational table containing a
collection of tuples (with possible repetitions) from relation Recipes,
and therefore a package result of Q, follows the schema of Recipes.

The specification of Q; allows for arbitrary repetitions of tu-
ples, thus, there are infinitely many packages that satisfy the query.
Although semantically valid, a query like Q> would not occur in
practice, as most application scenarios expect few, or even exactly
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one result. We proceed to describe the additional constraints in the
example query Q that restrict the number of package results.

Repetition constraint. The REPEAT 0 statement in query Q spec-
ifies that no tuple from the input relation can appear multiple times
in a package result. If this restriction is absent (as in query Q,),
tuples can be repeated an unlimited number of times. By allowing
no repetitions, Q restricts the package space from infinite to 2",
where 7 is the size of the input relation. Generalizing, the specifica-
tion REPEAT X allows a package to repeat tuples up to X times,
resulting in (24 X)" candidate packages.

Base and global predicates. A package query defines two types
of predicates. A base predicate, defined in the WHERE clause,
is equivalent to a selection predicate and can be evaluated with
standard SQL: any tuple in the package needs to individually satisfy
the base predicate. For example, query Q specifies the base predicate:
R.gluten = ‘free’. Since base predicates directly filter input tuples,
they are specified over the input relation R. Global predicates are the
core of package queries, and they appear in the new SUCH THAT
clause. Global predicates are higher-order than base predicates: they
cannot be evaluated on individual tuples, but on tuple collections.
Since they describe package-level constraints, they are specified
over the package result P, e.g., COUNT(P.x) = 3, which limits the
query results to packages of exactly 3 tuples.

The global predicates shown in query Q abbreviate aggregates
that are in reality subqueries. For example, COUNT(P.x) = 3, is
an abbreviation for (SELECT COUNT (%) FROM P) = 3. Using
subqueries, PaQL can express arbitrarily complex global constraints
among aggregates over a package.

Objective clause. The objective clause specifies a ranking among
candidate package results, and appears with either the MINIMIZE
or MAXIMIZE keyword. It is a condition on the package-level,
and hence it is specified over the package result P, e.g., MINIMIZE
SUM(P.saturated_fat). Similarly to global predicates, this form
is a shorthand for MINIMIZE (SELECT SUM(saturated_fat)
FROM P). A PaQL query with an objective clause returns a single
result: the package that optimizes the value of the objective. The
evaluation methods that we present in this work focus on such
queries. In prior work [5], we described preliminary techniques for
returning multiple packages in the absence of optimization objec-
tives, but a thorough study of such methods is left to future work.

Expressiveness and complexity. PaQL can express general integer
linear programs, which means that evaluation of package queries is
NP-complete [4]. As a first step in package evaluation, we proceed
to show how a PaQL query can be transformed into a linear program
and solved using general ILP solvers.

3. ILP FORMULATION

In this section, we present an ILP formulation for package
queries, which is at the core of our evaluation methods DIRECT and
SKETCHREFINE. The results in this section are inspired by the trans-
lation rules employed by Tiresias [17] to answer how-to queries.

3.1 PaQL to ILP Translation

Let R indicate the input relation, n = |R| the number of tuples
in R, R.attr an attribute of R, P a package, f a linear aggregate
function (such as COUNT and SUM), ® € {<,>} a constraint
inequality, and v € R a constant. For each tuple #; from R, 1 <i<n,
the ILP problem includes a nonnegative integer variable x; (x; > 0),
indicating the number of times ¢#; is included in an answer package.
We also use ¥ = (x1,x2,...,%,) to denote the vector of all integer
variables. A PaQL query is formulated as an ILP problem using the
following translation rules:
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Repetition constraint. The REPEAT keyword, expressible in the
FROM clause, restricts the domain that the variables can take on.
Specifically, REPEAT X implies 0 < x; < KX+ 1.

Base predicate. Let B be a base predicate, e.g., R.gluten = “free’,
and Rg the base relation containing tuples from R satisfying . We
encode P by setting x; = 0 for every tuple #; ¢ Rg.

Global predicate. Each global predicate in the SUCH THAT
clause takes the form f(P) ® v. For each such predicate, we derive
a linear function f’(x) over the integer variables. A cardinality con-
straint f(P) = COUNT (P.x) is linearly translated into f'(%) = ¥, x;.
A summation constraint f(P) = SUM(P.attr) is linearly translated
into f’(x) = Y, (#;.attr)x;. Other non-trivial constraints and general
Boolean expressions over the global predicates can be encoded into
a linear program with the help of Boolean variables and linear trans-
formation tricks found in the literature [3]. We refer to the original
version of this paper for further details [4].

Objective clause. We encode MAXIMIZE f(P) as max f'(%),
where f’() is the encoding of f(P). Similarly MINIMIZE £(P) is
encoded as min f’(x). If the query does not include an objective
clause, we add the vacuous objective maxy ;0 - x;.

3.2 Query Evaluation with DIRECT

Using the ILP formulation, we develop our basic evaluation
method for package queries, called DIRECT. We later extend this
technique to our main algorithm, SKETCHREFINE, which supports
efficient package evaluation in large data sets.

Package evaluation with DIRECT employs three simple steps:

—

. ILP formulation. We transforms a PaQL query to an ILP prob-
lem using the rules described in Section 3.1.

2. Base relation. We compute the base relation Rg with a tradi-
tional SQL query that selects tuples from R that satisfy the base
predicate. After this phase, all variables x; such that x; = 0 can be
eliminated from the ILP problem.

3. ILP execution. We employ an oft-the-shelf ILP solver, as a black
box, to get a solution x} for all the integer variables x; of the
problem. Each x;-k informs the number of times tuple #; should be
included in the answer package.

The DIRECT algorithm has two crucial drawbacks. First, it is only
applicable if the input relation is small enough to fit entirely in main
memory: ILP solvers, such as IBM’s CPLEX, require the entire prob-
lem to be loaded in memory before execution. Second, even for prob-
lems that fit in main memory, this approach may fail due to the com-
plexity of the integer problem. In fact, integer linear programming is
a notoriously hard problem, and modern ILP solvers use algorithms,
such as branch-and-cut [19], that often perform well in practice, but
can “choke” even on small problem sizes due to their exponential
worst-case complexity [6]. This may result in unreasonable per-
formance due to solvers using too many resources (main memory,
virtual memory, CPU time), eventually thrashing the entire system.

4. SCALABLE PACKAGE EVALUATION

In this section, we present SKETCHREFINE, an approximate
divide-and-conquer technique for efficiently answering package
queries on large datasets. SKETCHREFINE smartly decomposes a
query into smaller queries, formulates them as ILP problems, and
employs an ILP solver as a black-box component to answer each in-
dividual query. By breaking down the problem into smaller subprob-
lems, the algorithm avoids the drawbacks of the DIRECT approach.

The algorithm is based on an important observation: similar tu-
ples are likely to be interchangeable within packages. A group of
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Multiplicity of representative
tuples in the initial package

Representative and original tuples selected during previous steps, shown by
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representative tuples query for group G, query for group G;  query for group Gy package

PARTITION SKETCH

REFINE

Figure 2: The original tuples (a) are partitioned into four groups and a representative is constructed for each group (b). The initial
sketch package (c) contains only representative tuples, with possible repetitions up the size of each group. The refine query for group
G (d) involves the original tuples from G; and the aggregated solutions to all other groups (G,, G3, and G4). Group G; can be
skipped (e) because no representatives could be picked from it. Any solution to previously refined groups are used while refining the
solution for the remaining groups (f and g). The final approximate package (h) contains only original tuples.

similar tuples can therefore be “compressed” to a single representa-
tive tuple for the entire group. SKETCHREFINE sketches an initial
answer package using only the set of representative tuples, which is
substantially smaller than the original dataset. This initial solution is
then refined by evaluating a subproblem for each group, iteratively
replacing the representative tuples in the current package solution
with original tuples from the dataset. Figure 2 provides a high-level
illustration of the three main steps of SKETCHREFINE:

1. Offline partitioning (Section 4.1). The algorithm assumes a
partitioning of the data into groups of similar tuples. This
partitioning is performed offline (not at query time). In our
implementation, we partition data using k-dimensional quad
trees [9], but other partitioning schemes are possible.

2. Sketch (Section 4.2.1). SKETCHREFINE sketches an initial
package by evaluating the package query only over the set of
representative tuples.

3. Refine (Section 4.2.2). Finally, SKETCHREFINE transforms
the initial package into a complete package by replacing each
representative tuple with some of the original tuples from the
same group, one group at a time.

SKETCHREFINE always constructs feasible packages, i.e., pack-
ages that satisfy all the query constraints, but with a possibly sub-
optimal objective value. However, SKETCHREFINE offers strong
approximation guarantees compared to the solution generated by
DIRECT for the same query. SKETCHREFINE may suffer from false
infeasibility, which happens when the algorithm reports a feasible
query to be infeasible. The probability of false infeasibility is, how-
ever, low and bounded. We formalize these properties in Section 4.3.

In the subsequent discussion, we use R to denote the input rela-
tion of n tuples, t; € R, 1 <i < n. Ris partitioned into m groups
Gy,...,Gp. Each group G;, 1 < j < m, has a representative tuple
f;, which may not always appear in R. We denote the partitioned
space with P = {(G;,7;) | 1 < j <m}. We refer to packages that
contain some representative tuples as sketch packages and packages
with only original tuples as complete packages (or simply packages).
We denote a complete package with p and a sketch package with
ps. where 8 C P is the set of groups that are yet to be refined to
transform pg into a complete answer package p.

4.1 Offline Partitioning

SKETCHREFINE relies on an offline partitioning of the input
relation R into groups of similar tuples. Partitioning is based on a
set of k numerical partitioning attributes, A, from the input relation
R, and uses two parameters: a size threshold and (optionally) a
radius limit. The size threshold T, 1 <t < n, restricts the size of
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each partitioning group G;, 1 < j < m, to a maximum of T original
tuples, i.e., |G| < t. The radius r; > 0 of a group G; is the greatest
absolute distance between the representative tuple of Gj, 7}, and
every original tuple of the group, across all partitioning attributes.
The radius limit @, ® > 0, requires that for every partitioning group
Gj,lﬁjﬁm,rjf(.l).

Setting the partitioning parameters. The size threshold, T, affects
the number of clusters, m, as smaller clusters (lower T) imply more
of them (larger m), especially on skewed datasets. For best response
time of SKETCHREFINE, 7 should be set so that both m and 7 are
small. Our experiments show that a proper setting can yield an order
of magnitude improvement in query response time.

The optional radius limit, ®, helps ensure that a result produced
by SKETCHREFINE is within a guaranteed approximation bound
from the package that DIRECT would generate. Enforcing a radius
limit requires more partitioning iterations, which increases the cost
of offline partitioning. However, our experiments show that even
without enforcing an approximation guarantee, SKETCHREFINE
produces satisfactory answers.

Partitioning method. Our partitioning procedure is based on k-
dimensional quad-tree indexing [9]. The method recursively par-
titions a relation into groups until all the groups satisfy the size
threshold and meet the radius limit. The procedure initially creates a
single group G that includes all the original tuples from relation R.
Our method recursively computes the sizes and radii of the current
groups, as well as the centroid of each group. It then partitions the
groups that violate either the size or the radius limits, using the cen-
troids as partitioning boundaries. In the last iteration, the centroids
for each group become the representative tuples, 7;, 1 < j < m, and

get stored in a new representative relation Ii(gid7 attry,...,attrg).

One-time cost. Partitioning is an expensive procedure. To avoid
paying its cost at query time, the dataset is partitioned in advance
and used to answer a workload of package queries. In order to ensure
the approximation guarantees, the partitioning attributes, A, must be
a superset of the query attributes. For a known workload, our exper-
iments show that partitioning the dataset on the union of all query
attributes provides the best performance in terms of query evaluation
time and approximation error for the computed answer package. We
also demonstrate that our query evaluation approach is robust to a
wide range of partition sizes, and to imperfect partitions that cover
more or fewer attributes than those used in a particular query [4].
This means that, even without a known workload, a partitioning per-
formed on all of the data attributes still provides good performance.
Note that the same partitioning can be used to support a multitude of
queries over the same dataset. In our experiments, we show that a sin-
gle partitioning performs consistently well across different queries.
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4.2 Query Evaluation with SKETCHREFINE

During query evaluation, SKETCHREFINE first sketches a package
solution using the representative tuples (SKETCH), and then it refines
it by replacing representative tuples with original tuples (REFINE).
We describe these steps using the example query Q from Section 2.1.

4.2.1 SKETCH

Using the representative relation R produced by the partitioning,
the SKETCH procedure constructs and evaluates a sketch query, Q[R].
The result is an initial sketch package, pg, containing representative
tuples that satisfy the same constraints as the original query Q:

Q[R]: SELECT PACKAGE(R) AS ps
FROM R
WHERE R.gluten = “free’
SUCH THAT

COUNT (ps.*) =3 AND

SUM(ps.kcal) BETWEEN 2.0 AND 2.5 AND

(SELECT COUNT (%) FROM ps WHERE gid = 1) < |G|

AND ...

(SELECT COUNT (%) FROM ps WHERE gid = m) < |Gp|
MINIMIZE ~ SUM(pg.saturated_fat)

The new global constraints (in bold) ensure that every representa-
tive tuple does not appear in pg more times than the size of its group,
G;. This accounts for the repetition constraint REPEAT 0 in the
original query. Generalizing, with REPEAT X, each 7; can be re-
peated up to |G|(1+XK) times. These constraints are omitted from

Q[R] if the original query does not contain a repetition constraint.

Since the representative relation R contains exactly m representa-
tive tuples, the ILP problem corresponding to this query has only
m variables. This is typically small enough for the black box ILP
solver to manage directly, and thus we can solve this package query
using the DIRECT method. If m is too large, we can solve this query
recursively with SKETCHREFINE: the set of m representatives is
further partitioned into smaller groups until the subproblems reach
a size that can be efficiently solved directly. B

The SKETCH procedure fails if the sketch query Q[R] is infeasi-
ble, in which case SKETCHREFINE reports the original query Q as
infeasible. This may constitute false infeasibility, if Q is actually
feasible. However, we show that the probability of false infeasibility
is low and bounded (Section 4.3).

4.2.2 REFINE

Using the sketched solution over the representative tuples, the
REFINE procedure iteratively replaces the representative tuples with
tuples from the original relation R, until no more representatives are
present in the package. The algorithm refines the sketch package psg,
one group at a time: For a group G; with representative 7; € pg, the
algorithm derives package p; from pg by eliminating all instances
of 7;; it then seeks to replace the eliminated representatives with
actual tuples, by issuing a refine query, Q[G ], on group G;:

Q[G,]: SELECT PACKAGE(G/) AS p;
FROM G; REPEAT 0
WHERE G;.gluten = ‘free’
SUCH THAT

COUNT(p;.#) + COUNT(j;.+) = 3 AND
SUM(p;.kcal) + SUM(p;.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(p;.saturated_fat)

The query derives a set of tuples p;, as a replacement for the oc-
currences of the representatives of G; in pg. The global constraints
in Q[G ] ensure that the combination of tuples in p; and j; satisfy
the original query Q. Thus, this step produces the new refined sketch
package ps, = p;Up;, where 8’ = 8\ {(G},i;)}.
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Since G| has at most 7T tuples, the ILP problem corresponding to
Q[G/] has at most T variables. This is typically small enough for
the black box ILP solver to solve directly, and thus we can solve
this package query using the DIRECT method. Similarly to the
sketch query, if T is too large, we can solve this query recursively
with SKETCHREFINE: the tuples in group G; are further partitioned
into smaller groups until the subproblems reach a size that can be
efficiently solved directly.

Ideally, the REFINE step will only process each group with rep-
resentatives in the initial sketch package once. However, the order
of refinement matters, as each refinement step is greedy: it selects
tuples to replace the representatives of a single group, without con-
sidering the effects of this choice on other groups. As a result, a
particular refinement step may render the query infeasible (no tu-
ples from the remaining groups can satisfy the constraints). When
this occurs, REFINE employs a greedy backtracking strategy that
reconsiders groups in a different order.

Greedy backtracking. REFINE activates backtracking when it en-
counters an infeasible refine query, Q[G;]. Backtracking greedily
prioritizes the infeasible groups. This choice is motivated by a sim-
ple heuristic: if the refinement on G fails, it is likely due to choices
made by previous refinements; therefore, by prioritizing G;, we
reduce the impact of other groups on the feasibility of Q[G;]. This
heuristic does not affect the approximation guarantees.

The algorithm logically traverses a search tree (which is only
constructed as new branches are created and new nodes visited),
where each node corresponds to a unique sketch package pg. The
traversal starts from the root, corresponding to the initial sketch
package, where no groups have been refined (8 = P), and finishes
at the first encountered leaf, corresponding to a complete package
(8 = 0). The algorithm terminates as soon as it encounters a com-
plete package, which it returns. The algorithm assumes a (initially
random) refinement order for all groups in S, and places them in a
priority queue. During refinement, this group order can change by
prioritizing groups with infeasible refinements.

Run time complexity. In the best case, all refine queries are feasible
and the algorithm never backtracks. In this case, the algorithm
makes up to m calls to the ILP solver to solve problems of size up to
T, one for each refining group. In the worst case, SKETCHREFINE
tries every group ordering leading to an exponential number of calls
to the ILP solver. Our experiments show that the best case is the
most common and backtracking occurs infrequently.

4.3 Theoretical Guarantees

We present two important results on the theoretical guarantees
of SKETCHREFINE: (1) it produces packages that closely approx-
imate the objective value of the packages produced by DIRECT,
and (2) the probability of false negatives (i.e., queries incorrectly
deemed infeasible) is low and bounded.

We prove that for a desired approximation parameter €, we can
derive a radius limit ® for the offline partitioning that guarantees
that SKETCHREFINE will produce a package with objective value
(1+¢)5-factor close to the objective value of the solution generated
by DIRECT for the same query.

THEOREM 1 (APPROXIMATION BOUNDS). For any feasible
package query with a maximization (minimization, resp.) objec-
tive and approximation parameter €, 0 < € < 1 (¢ > 0, resp.), any
database instance, any set of partitioning attributes A, superset
of the numerical query attributes, any size threshold T, and radius
limit:

€

o= lr<nji£1my|t~j.attr\7 wherey=¢ (Y= 135, resp.) (1)

attre A
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The package produced by SKETCHREFINE (if any) is guaranteed to
have objective value > (1 —€)°OPT (< (14¢€)°OPT, resp.), where
OPT is the objective value of the DIRECT solution.

For a feasible query Q, false infeasibility may happen in two
cases: (1) when the sketch query Q[R] is infeasible; (2) when greedy
backtracking fails (possibly due to suboptimal partitioning). In both
cases, SKETCHREFINE would (incorrectly) report a feasible package
query as infeasible. False negatives are, however, extremely rare, as
the following theorem establishes.

THEOREM 2 (FALSE INFEASIBILITY). For any feasible pack-
age query, any database instance, any set of partitioning attributes
A that is a superset of the query attributes, any size threshold T, and
any radius limit ®, SKETCHREFINE finds a feasible package with
high probability that inversely depends on query selectivity.

S. EXPERIMENTAL EVALUATION

We present an extensive experimental evaluation of our tech-
niques for package queries on real-world data. Our results show
the following properties of our methods: (1) SKETCHREFINE eval-
uates package queries an order of magnitude faster than DIRECT;
(2) SKETCHREFINE scales up to sizes that DIRECT cannot handle
directly; (3) SKETCHREFINE produces packages of high quality
(similar objective value as the packages returned by DIRECT). We
have also performed extensive experiments on benchmark data and
have investigated the effects of imperfect partitioning over different
sets of attributes, demonstrating the robustness of SKETCHREFINE
under these variations [4].

5.1 Experimental Setup

We implemented our package evaluation system as a layer on top
of PostgreSQL. The system interacts with the DBMS via SQL. A
package is materialized into the DBMS, as a relation, only when
necessary (for example, to compute its objective value). We employ
IBM’s CPLEX [12] as our black-box ILP solver. We compare
DIRECT with SKETCHREFINE. Both methods use the PaQL to ILP
translation presented in Section 3.1: DIRECT translates and solves
the original query; SKETCHREFINE translates and solves the sub-
queries. We demonstrate the performance of our query evaluation
methods using a real-world dataset consisting of approximately 5.5
million tuples extracted from the Galaxy view of the Sloan Digital
Sky Survey (SDSS) [22]. We constructed a set of seven package
queries, by adapting some of the real-world sample SQL queries
available directly from the SDSS website.

We evaluate methods on their efficiency (response time) and ef-
fectiveness (approximation ratio):

Response time: The wall-clock time to generate an answer package.
This only includes the time to translate the PaQL query into one or
several ILP problems, the time to load the problems into the solver,
and the time taken by the solver to produce a solution.

Approximation ratio: We compare the objective value of a package
returned by SKETCHREFINE with the objective value of the package
returned by DIRECT on the same query. Using Objg and Objp
to denote the objective values of SKETCHREFINE and DIRECT,
respectively, we compute the empirical approximation ratio g%.‘;

for maximization queries, and gzlg for minimization queries. An

approximation ratio of one indicates that SKETCHREFINE produces
a solution with same objective value as the solution produced by the
solver on the entire problem. The higher the approximation ratio,
the lower the quality of the result package.
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5.2 Results and Discussion

We evaluate two fundamental aspects of our algorithms: (1) their
query response time and approximation ratio with increasing dataset
sizes; (2) the impact of varying partitioning size thresholds (T) on
SKETCHREFINE’s performance. Further, our analysis has shown
that SKETCHREFINE is robust to imperfect partitioning [4].

5.2.1 Query performance as data set size increases

In our first set of experiments, we evaluate the scalability of our
methods on input relations of increasing size. First, we partition
each dataset using the union of all package query attributes in the
workload: we refer to these partitioning attributes as the workload
attributes. We do not enforce a radius condition (®) during parti-
tioning for two reasons: (1) to show that an offline partitioning can
be used to answer efficiently and effectively both maximization and
minimization queries, even though they would normally require dif-
ferent radii; (2) to demonstrate the effectiveness of SKETCHREFINE
in practice, even without having theoretical guarantees in place.

We perform offline partitioning with partition size threshold T set
to 10% of the dataset size and without a radius limit. We derive
the partitionings for the smaller data sizes (less than 100% of the
dataset), by randomly removing tuples from the original partitions.
This operation is guaranteed to maintain the size condition.

Figure 3 reports our scalability results on the Galaxy workload.
The figure displays the query runtimes in seconds on a logarithmic
scale, averaged across 10 runs for each datapoint. At the bottom
of each figure, we also report the mean and median approximation
ratios across all dataset sizes. The graph for Q2 does not report
approximation ratios because DIRECT evaluation fails to produce
a solution for this query across all data sizes. We observe that
DIRECT can scale up to millions of tuples in three of the seven
queries. Its run-time performance degrades, as expected, when data
size increases, but even for very large datasets DIRECT is usually
able to answer the package queries in less than a few minutes.
However, DIRECT has high failure rate for some of the queries,
indicated by the missing data points in some graphs (queries Q2, Q3,
Q6 and Q7). This happens when CPLEX uses the entire available
main memory while solving the corresponding ILP problems. For
some queries, such as Q3 and Q7, this occurs with bigger dataset
sizes. However, for queries Q2 and Q6, DIRECT even fails on small
data. This is a clear demonstration of one of the major limitations
of ILP solvers: they can fail even when the dataset can fit in main
memory, due to the complexity of the integer problem. In contrast,
our scalable SKETCHREFINE algorithm is able to perform well on
all dataset sizes and across all queries. SKETCHREFINE consistently
performs about an order of magnitude faster than DIRECT across all
queries. Its running time is consistently below one or two minutes,
even when constructing packages from millions of tuples.

Both the mean and median approximation ratios are very low,
usually all close to one or two. This shows that the substantial gain
in running time of SKETCHREFINE over DIRECT does not com-
promise the quality of the resulting packages. Our results indicate
that the overhead of partitioning with a radius condition is often
unnecessary in practice. Since the approximation ratio is not en-
forced, SKETCHREFINE can potentially produce bad solutions, but
this happens rarely.

5.2.2  Effect of varying partition size threshold

In our second set of experiments, we vary T, which is used during
partitioning to limit the size of each partition, to study its effects on
the query response time and the approximation ratio of SKETCHRE-
FINE. In all cases, along the lines of the previous experiments, we
do not enforce a radius condition. Figure 4 show the results obtained
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Figure 3: Scalability on the Galaxy workload. SKETCHREFINE uses an offline partitioning computed on the full dataset, using the
workload attributes, T = 10% of the dataset size, and no radius condition. DIRECT scales up to millions of tuples in about half of the
queries, but it fails on the other half. SKETCHREFINE scales up nicely in all cases, and runs about an order of magnitude faster than
DIRECT. Its approximation ratio is always low, even though the partitioning is constructed without radius condition.
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Figure 4: Impact of partition size threshold T on the Galaxy workload, using 30% of the original dataset. Partitioning is performed
at each value of 7t using all the workload attributes, and with no radius condition. The baseline DIRECT and the approximation ratios
are only shown when DIRECT is successful. The results show that T has a major impact on the running time of SKETCHREFINE, but
almost no impact on the approximation ratio. DIRECT can be an order of magnitude faster than DIRECT with proper tuning of 1.

on the Galaxy workload, using 30% of the original data. We vary 6. RELATED WORK

T from higher values corresponding to fewer but larger partitions, We discuss related work from the following areas: package rec-
on the left-hand size of the x-axis, to lower valu_es, corresponding ommendation systems, semantic window queries, how-to queries,
to more but smaller partitions. Whpn DIRECT 18 able to.produce constraint query languages, and approximation techniques for ILP
a solution, we also report its running time (horizontal line) as a formulations and subclasses of package queries.

baseline for comparison.

Our results show that the partition size threshold has a major
impact on the execution time of SKETCHREFINE, with extreme St > : 3 !
values of T (either too low or too high) often resulting in slower users with interesting sets of items that satisfy some global condi-
running times than DIRECT. With bigger partitions, on the left-hand tlons. Spemﬁ.c application scenarios usually drlve. these systems.
side of the x-axis, SKETCHREFINE takes about the same time as For instance, in the CourseRank [20] system, the items to be rec-
DIRECT because both algorithms solve problems of comparable size. ommended are university courses, and the types of constraints are
When the size of each partition starts to decrease, moving from left to course-specific (e.g., prerequisites, incompatibilities, etc.). Satel-
right on the x-axis, the response time of SKETCHREFINE decreases lite packages [11 are sets of items, such as smartphone accessories,
rapidly, reaching about an order of magnitude improvement with that are compatible Wlth. a “central” item, such as a smartphpne.
respect to DIRECT. Most of the queries show that there is a “sweet Other related prloblems in the area of package recommen.datlons
spot” at which the response time is the lowest: when all partitions are team formation [16, 2], and recommendation of vacation and
are small, and there are not too many of them. The point is consistent travel packages [7]. Queries expressible in these frameworks are
across different queries, showing that it only depends on the input also expressible in PaQL, but the opposite does not hold. The com-
data size. After that point, although the partitions become smaller, plexity of set-based package recommendation problems is studied
the number of partitions starts to increase significantly. This increase in [8], where the authors show that computing top-k packages with
has two negative effects: it increases the number of representative a conjunctive query language is harder than NP-complete.
tuples, and thus the size and complexity of the initial sketch query, _ Packages are also related to the semantic windows [13] express-
and it increases the number of groups that REFINE may need to ible in Searchlight [14]. A semantic window defines a contiguous
refine to construct the final package. This causes the running time subset of a grid-partitioned space with certain global properties.
of SKETCHREFINE, on the right-hand side of the x-axis, to increase The§e queries can be egpr;sssed n PaQL by adding global con-
again and reach or surpass the running time of DIRECT. The mean straints that ensure contlgultx in the grid. Packages, howev.er, are
and median approximation ratios are in all cases very close to one, more general than semantic windows because they allow regions to

indicating that SKETCHREFINE retains very good quality regardless be non-contiguous or contain gaps. Searchlight has several other ma-
of the partition size threshold. jor differences with our work: (1) it computes optimal solutions by

enumerating the feasible ones and retaining the optimal, whereas our
methods do not require enumeration; (2) it assumes that the solver

Package or set-based recommendation systems are closely related
to package queries. A package recommendation system presents
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implements redundant and arbitrary data access paths while solving
the problems, whereas our approach decouples data access from the
solving procedure; (3) it does not provide a declarative query lan-
guage such as PaQL; (4) unlike SKETCHREFINE, Searchlight does
not allow solvers to scale up to a very large number of variables.

Package queries are related to how-to queries [17], as they both
use an ILP formulation to translate the original queries. However,
there are several major differences between package queries and
how-to queries: package queries specify tuple collections, whereas
how-to queries specify updates to underlying datasets; package
queries allow a tuple to appear multiple times in a package result,
while how-to queries do not model repetitions; PaQL is SQL-based
whereas how-to queries use a variant of Datalog; PaQL supports
arbitrary Boolean formulas in the SUCH THAT clause, whereas
how-to queries can only express conjunctive conditions.

The principal idea of constraint query languages (CQL) [15]
is that a tuple can be generalized as a conjunction of constraints
over variables. This general principle creates connections between
declarative database languages and constraint programming. How-
ever, prior work focused on expressing constraints over tuple values,
rather than over sets of tuples. PaQL follows a similar approach to
CQL by embedding higher-order constraints in a declarative query
language. However, our package query engine design allows for the
direct use of ILP solvers as black box components, automatically
transforming problems and solutions from one domain to the other.
In contrast, CQL needs to appropriately adapt the algorithms them-
selves between the two domains, and existing literature does not
provide this adaptation for the constraint types in PaQL.

There exists a large body of research in approximation algorithms
for problems that can be modeled as integer linear programs. A
typical approach is linear programming relaxation [24] in which
the integrality constraints are dropped and variables are free to take
on real values. These methods are usually coupled with rounding
techniques that transform the real solutions to integer solutions with
provable approximation bounds. None of these methods, however,
can solve package queries on a large scale because they all assume
that the LP solver is used on the entire problem. Another common
approach to approximate a solution to an ILP problem is the primal-
dual method [10]. All primal-dual algorithms, however, need to
keep track of all primal and dual variables and the coefficient ma-
trix, which means that none of these methods can be employed on
large datasets. On the other hand, rounding techniques and primal-
dual algorithms could potentially benefit from the SKETCHREFINE
algorithm to break down their complexity on very large datasets.

Like package queries, optimization under parametric aggrega-
tion constraints (OPAC) queries [11] can construct sets of tuples
that collectively satisfy summation constraints. However, existing
solutions to OPAC queries have several shortcomings: (1) they do
not handle tuple repetitions; (2) they only address multi-attribute
knapsack queries — a subclass of package queries in which all global
constraints are of the form SUM() < ¢, with objective MAXIMIZE
SUMY(); (3) they may return infeasible packages; (4) they require
pre-computation of packages, which are then retrieved at query
time using a multi-dimensional index. Package queries also encom-
pass submodular optimization queries, whose recent approximate
solutions use greedy distributed algorithms [18].

7. CONCLUSIONS

In this paper, we introduced a complete system that supports
the declarative specification and efficient evaluation of package
queries. We presented PaQL, a declarative extension to SQL, and
we developed a flexible approximation method, with strong theoret-
ical guarantees, for the evaluation of PaQL queries on large-scale
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datasets. Our experiments on real-world data demonstrate that our
scalable evaluation strategy is effective and efficient over varied data
sizes and queries.
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There is a rich history in the DBMS research literature
involving sampling to estimate the results of queries faster
than they can be computed exactly. A particularly inter-
esting example of this is “Online Aggregation” proposed by
Hellerstein et al. in 1997 [2]. There the idea is to combine
sampling with a creative and intuitive user interface. Briefly,
when a query starts to run, Online Aggregation will quickly
present an estimate of the result of the query (based on data
sampled up to that point) and will also present a confidence
interval around the estimate. As query execution continues,
the estimate is refined, and the confidence interval shrinks.

Hidden in this attractive idea, however, are some difficult
challenges. As an example, for queries that involve joins, the
sampling process is in general slow, especially if most of the
tuples from one relation participating in the join “match”
with only a few tuples in the other relation. For 20 years
the state of the art approach to this problem has been the
“Ripple Join” [1]. The following paper by Li, Wu, Yi, and
Zhao presents a highly effective alternative.

The main idea behind the wander join is to use the pres-
ence of indexes to speed the sampling, effectively making
a random walk through the data join graph. The details

32

of doing this efficiently (both computationally and statisti-
cally) are not obvious. The authors of this paper use a clever
combination of sampling strategies from the statistical liter-
ature and an on-line optimization process to order the paths
chosen for the random walk, in the process achieving much
better computational and statistical properties than the pre-
viously state of the art algorithm. The authors convincingly
prove this through experimentation with an open-source im-
plementation in the Postgres database management system.
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ABSTRACT

Joins are expensive, and online aggregation is an effective ap-
proach to explore the tradeoff between query efficiency and
accuracy in a continuous, online fashion. However, the state-
of-the-art approach, in both internal and external memory,
is based on ripple join, which is still very expensive and needs
strong assumptions (e.g., the tuples in a table are stored in
random order). This paper proposes a new approach, the
wander join algorithm, to the online aggregation problem
by performing random walks over the underlying join graph.
We also design an optimizer that chooses the optimal plan
for conducting the random walks without having to collect
any statistics a priori. Selection predicates and group-by
clauses can be handled as well. We have developed an on-
line engine called XDB by integrating wander join in the lat-
est version of PostgreSQL. Extensive experiments using the
TPC-H benchmark have shown the superior performance of
wander join. The XDB implementation has demonstrated
its practicality in a full-fledged database system.

1. INTRODUCTION

Joins are often considered to be the most central opera-
tion in relational databases, as well as the most costly one.
For many of today’s data-driven analytical tasks, users often
need to pose ad hoc complex join queries involving multiple
relational tables over gigabytes or even terabytes of data.
The TPC-H benchmark, which is the industrial standard
for decision-support data analytics, specifies 22 queries, 17
of which are joins, the most complex one involving 8 tables.
For such complex join queries, even a leading commercial
database system could take hours to process. This, unfor-
tunately, is at odds with the low-latency requirement that
users demand for interactive data analytics.

The research community has long realized the need for in-
teractive data analysis and exploration, and in 1997, began
a line of work known as “online aggregation” [7]. The ob-
servation is that such analytical queries do not really need
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Join: Online Aggregation via Random Walks, published in SIGMOD’ 16,
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a 100% accurate answer. It would be more desirable if the
database could first quickly return an approximate answer
with some form of quality guarantee (usually in the form of
confidence intervals), while improving the accuracy as more
time is spent. Then the user can stop the query processing
as soon as the quality is acceptable.

Unfortunately, despite of many nice research results and
well cited papers on this topic, online aggregation has had
limited practical impact — we are not aware of any full-
fledged, publicly available database system that supports it.
Central to this line of work is the ripple join algorithm [5].
Its basic idea is to repeatedly take samples from each ta-
ble, and only perform the join on the sampled tuples. The
result is then scaled up to serve as an estimation of the
whole join. However, the ripple join algorithm (including
its many variants) has two critical weaknesses: (1) Its per-
formance crucially depends on the fraction of the randomly
selected tuples that actually join. However, we observe that
this fraction is often exceedingly low, especially for equality
joins (a.k.a. natural joins) involving multiple tables, while
all queries in the TPC-H benchmark (thus arguably most
joins used in practice) are natural joins. (2) It demands
that the tuples in each table be stored in a random order.

This paper proposes a different approach, which we call
wander join, to the online aggregation problem. Our basic
idea is to not blindly take samples from each table and just
hope that they join, but to make the process much more fo-
cused by leveraging indexes. Specifically, wander join takes
a randomly sampled tuple only from one of the tables. Af-
ter that, it conducts a random walk using indexes on the
underlying join graph starting from that tuple. In every
step of the random walk, only the “neighbors” of the already
sampled tuples are considered, i.e., tuples in the unexplored
tables that can actually join with them. Compared with the
“blind search” of ripple join, this is more like a guided explo-
ration, where we only look at portions of the data that can
potentially lead to an actual join result. To summarize:

e We introduce wander join to achieve online aggrega-
tion for joins. The key idea is to model a join over k
tables as a join graph, and then perform random walks
in this graph. We show how the random walks lead to
unbiased estimators for various aggregation functions,
and give corresponding confidence interval formulas.

e It turns out that for the same join, there can be dif-
ferent ways to perform the random walks, which we
call walk plans. We design an optimizer that chooses
the optimal walk plan, without the need to collect any
statistics of the data a priori.
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e We have conducted extensive experiments to compare
wander join with ripple join [5] and its system imple-
mentation DBO [2,10]. The results show that wander
join has outperformed ripple join and DBO by orders
of magnitude in speed for achieving the same accuracy
for in-memory data.

e We have implemented XDB by integrating wander join
in PostgreSQL. On the TPC-H benchmark with tens of
GBs of data, XDB is able to achieve 1% error with 95%
confidence for most queries in a few seconds, whereas
PostgreSQL may take minutes to return the exact re-
sults for the same queries.

2. BACKGROUND

Online aggregation. The concept of online aggregation
was first proposed in the classic work by Hellerstein et al. [7].
The idea is to provide approximate answers with error guar-
antees (in the form of confidence intervals) continuously dur-
ing the query execution process, where the approximation
quality improves gradually over time. Rather than having
a user wait for the exact answer, which may take an un-
known amount of time, this allows the user to explore the
efficiency-accuracy tradeoff, and to terminate the query ex-
ecution whenever a good approximation quality is met.

For queries over one table, e.g., SELECT SUM(quantity) FROM

R WHERE discount > 0.1, online aggregation is quite easy.
The idea is to simply take samples from table R repeatedly,
and compute the average of the sampled tuples (more pre-
cisely, on the value of the attribute on which the aggregation
function is applied), which is then appropriately scaled up
to get an unbiased estimator for the SUM. Standard statisti-
cal formulas can be used to estimate the confidence interval,
which shrinks as more samples are taken [4].
Online aggregation for joins. For join queries, the prob-
lem becomes much harder. When we sample tuples from
each table and join the sampled tuples, we get a sample of
the join results. The sample mean can still serve as an un-
biased estimator of the full join (after appropriate scaling),
but these samples are not independently chosen from the full
join results, even though the joining tuples are sampled from
each table independently. Haas et al. [4,6] studied this prob-
lem in depth, and derived new formulas for computing the
confidence intervals for such estimators, and later proposed
the ripple join algorithm [5]. Ripple join repeatedly takes
random samples from each table in a round-robin fashion,
and keep all the sampled tuples in memory. Every time a
new tuple is taken from one table, it is joined with all the
tuples taken from other tables so far.

There have been many variants and extensions to the basic
ripple join algorithm. First, if an index is available on one
of the tables, say Ra, then for a randomly sampled tuple
from R;, we can find all the tuples in Ro that join with it.
Note that no random sampling is done on Ry. This variant
is also known as index ripple join, which was actually noted
before ripple join itself was invented [12,13]. In general,
for a multi-table join Ry 4 --- < Ry, the index ripple join
algorithm only does random sampling on one of the tables,
say R1. Then for each tuple ¢ sampled from R;, it computes
t <1 Ro -+ - b4 Ry, and all the joined results are returned
as samples from the full join.

Problem formulation. The type of queries we aim to
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support is a SQL query of the form
SELECT g, AGG(expression) FROM R1, R», ..., Rk

WHERE join conditions AND selection predicates GROUP BY g

where AGG can be any of the standard aggregation functions
such as SUM, AVE, COUNT, VARIANCE, and expression can in-
volve any attributes of the tables. The join conditions
consist of equality or inequality conditions between pairs of
the tables, and selection predicates can also be applied
to any number of the tables. For example, in the follow-
ing query, the first three terms in the WHERE clause are join
conditions while the others are selection predicates:
SELECT SUM(1_extended price * (1 — 1_discount))
FROM nation, customer, orders, lineitem
WHERE n nationkey = c_nationkey AND c_custkey = o_custkey
AND o_orderkey = 1_orderkey AND n name =’ US’ AND 1_flag =’ R’
At any point in time during query processing, the algo-
rithm should output an estimator Y for AGG(expression)
together with a confidence interval, i.e.,

Pr[|Y — AGG(expression)| < ] > o

Here, ¢ is called the half-width of the confidence interval
and « the confidence level. The user should specify one of
them and the algorithm will continuously update the other
as time goes on. The user can terminate the query when it
reaches the desired level. Alternatively, the user may also
specify a time limit on the query processing, and the algo-
rithm should return the best estimate obtainable within the
limit, together with a confidence interval.

3. WANDER JOIN

3.1 Wander join on a simple example

For concreteness, we first illustrate how wander join works
on the natural join between 3 tables R1, R2, R3:

R1(A,B)NR2(B,C)[><]R3(C,D), (1)

where R1(A, B) means that R; has two attributes A and B,
etc. The natural join returns all combinations of tuples from
the 3 tables that have matching values on their common
attributes. We assume that R> has an index on attribute
B, Rs has an index on attribute C, and the aggregation
function is SUM(D).

Ry Ry R3
Figure 1: The 3-table join data graph: there is an
edge between two tuples if they can join. Note that
this represents a join query with general join condi-
tions that are not necessiarly natural/equi-join.

We model the join relationships among the tuples as a
graph. More precisely, each tuple is modeled as a vertex
and there is an edge between two tuples if they can join.
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For this natural join, it means that the two tuples have the
same value on their common attribute. We call the resulting
graph the join data graph (this is to be contrasted with the
join query graph introduced later). For example, the join
data graph for the 3-table natural join (1) may look like the
one in Figure 1. This way, each join result becomes a path
from some vertex in R; to some vertex in R3, and sampling
from the join boils down to sampling a path. Note that this
graph is completely conceptual: we do not need to actually
construct the graph to do path sampling.

A path can be randomly sampled by first picking a vertex
in R; uniformly at random, and then “randomly walking”
towards Rs. Specifically, in every step of the random walk,
if the current vertex has d neighbors in the next table (which
can be found efficiently by the index), we pick one uniformly
at random to walk to.

One problem an acute reader would immediately notice
is that, different paths may have different probabilities. In
the example above, the path ai — b1 — c¢1 has probability
%%%, while ag — bs — c7 has probability %~1~1. If the value
of the D attribute on c¢7 is very large, then obviously this
would tilt the balance, leading to an overestimate. Ideally,
each path should be sampled with equal probability so as to
ensure unbiasedness. However, it is well known that random
walks in general do not yield a uniform distribution.

Fortunately, a technique known in the statistics literature
as the Horvitz- Thompson estimator [8] can be used to re-
move the bias easily. Suppose path « is sampled with prob-
ability p(v), and the expression on v to be aggregated is
v(7), then v(v)/p(v) is an unbiased estimator of 3 v(v),
which is exactly the SUM aggregate we aim to estimate. This
can be easily proved by the definition of expectation, and is
also very intuitive: We just penalize the paths that are sam-
pled with higher probability proportionally. Also note that
p(7y) can be computed easily on-the-fly as the path is sam-
pled. Suppose v = (t1,t2,t3), where ¢; is the tuple sampled
from R;, then we have

1 1 1

p(7) = Rl B )’ where (2)

di+1(t;) is the number of tuples in R;41 that join with ¢;.

Finally, we independently perform multiple random walks,
and take the average of the estimators v(vy;)/p;. Since each
v(7:)/p: is an unbiased estimator of the SUM, their average
is still unbiased, and the variance of the estimator reduces
as more paths are collected.

A subtle question is what to do when the random walk
gets stuck, for example, when we reach vertex b3 in Figure 1.
In this case, we should not reject the sample, but return 0
as the estimate, which will be averaged together with all
the successful random walks. This is because even though
this is a failed random walk, it is still in the probability
space. It should be treated as a value of 0 for the Horvitz-
Thompson estimator to remain unbiased. Too many failed
random walks will slow down the convergence of estimation,
and we will deal with the issue in Section 4.

3.2 Wander join for acyclic queries

Although the algorithm above is described on a simple 3-
table chain join, it can be extended to arbitrary joins easily.
In general, we consider the join query graph (or query graph
in short), where each table is modeled as a vertex, and there
is an edge between two tables if there is a join condition
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between the two; see Figure 2 for examples.

’ (B —()—®)
(B —®) ol

(E)—() ©

(b)
Figure 2: The join query graph for a (a) chain join;
(b) acyclic join; (c) cyclic join.
hen the join query graph is acyclic, wander join can
be extended in a straightforward way. First, we need to
fix a walk order such that each table in the walk order
must be adjacent (in the query graph) to another one ear-
lier in the order. For example, for the query graph in Fig-
ure Z(b), R1, Rz, R3, R47 R5 and Rg, R3, R4, Rs, R, are both
valid walk orders, but Ri, Rs, R4, Rs, R2 is not since Rj
(resp. R4) is not adjacent to Ri (resp. Ri or Rs) in the
query graph. (Different walk orders may lead to very differ-
ent performance, and we will discuss how to choose the best
one in Section 4.)

Next, we simply perform the random walks as before, fol-
lowing the given order. The only difference is that a random
walk may now consist of both “walks” and “jumps”. For ex-
ample, using the order Ri, R, R3, R4, Rs on Figure 2(b),
after we have reached a tuple in Rg3, the next table to walk
to is R4, which is connected to the part already walked via
R2. So we need to jump back to the tuple we picked in Ra,
and continue the random walk from there.

Finally, we need to generalize Equation (2). Let d;(t) be
the number of tuples in R; that can join with ¢, where ¢ is
a tuple from another table that has a join condition with
R;. Suppose the walk order is Rx1), Bx2), .-, Raw), and
let R, ; be the table adjacent to Ry(;) in the query graph
but appearing earlier in the order. Note that for an acyclic
query graph and a valid walk order, R, ;) is uniquely defined.
Then for the path v = (tx(1), ..., tak)), Where tyu) € Raqy,
the sampling probability of the path ~ is

R 1

TRl 1 dag (o))

p(7) (3)

3.3 Wander join for cyclic queries

The algorithm for acyclic queries can also be extended to
handle query graphs with cycles. Given a cyclic query graph,
e.g., the one in Figure 2(c), we first find any spanning tree,
such as the one in Figure 2(b). Then we just perform the
random walks on this spanning tree as before. After we
have sampled a path v on the spanning tree, we need to
put back the non-spanning tree edges, e.g., (Rs3, Rs), and
check that « satisfies the join conditions on these edges. For
example, after we have sampled a path v = (t1,t2, t3, ta, t5)
on Figure 2(b) (assuming the walk order R1, Rz, R3, R4, R5),
then we need to verify that ~ satisfies the non-spanning tree
edge (Rs, Rs), i.e., t3 should join with ¢5. If they do not
join, we consider v as a failed random walk and return an
estimator with value 0.

3.4 Estimators and confidence intervals
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To derive estimators and confidence interval formulas for
various aggregation functions, we establish an equivalence
between wander join and sampling from a single table with
selection predicates, which has been studied by Haas [4].
Imagine that we have a single table that stores all the paths
in the join data graph, including the full paths, as well as
the partial paths (like a1 — b3). Wander join essentially
samples from this imaginary table, though non-uniformly.

Suppose we have performed a total of n random walks
Y1y ... ,Yn. Foreach v;, let v(i) be the value of the expression
on 7; to be aggregated, and set u(i) = 1/p(v;) if 7; is a suc-
cessful walk, and 0 otherwise. With this definition of v and
v, we can rewrite the estimator for SUM as £ 3" wu(i)v(i).
We observe that this has exactly the same form as the one
in [4] for estimating the SUM for a single table with a selec-
tion predicate, except for two differences: (1) in [4], u(i) is
set to 1 if ~y; satisfies the selection predicate and 0 otherwise;
and (2) [4] does uniform sampling over the table, while our
sampling is non-uniform. However, by going through the
analysis in [4], we realize that it holds for any definition of
u and v, and for any sampling distribution. Thus, all the
results in [4] carry over to our case, but with u and v defined
in our way. The detailed formulas can be found in [11]; all
of them can be computed easily in O(n) time.

3.5 Selection predicates and Group By Clause

Wander join can deal with arbitrary selection predicates
in the query easily: in the random walk process, whenever
we reach a tuple ¢ for which there is a selection predicate, we
check if it satisfies the predicate, and fail the random walk
immediately if not.

If the starting table of the random walk has an index on
the attribute with a selection predicate, and the predicate
is an equality or range condition, then we can directly sam-
ple a tuple that satisfies the condition from the index, using
Olken’s method [14]. Correspondingly, we replace |Ry(1)| in
(3) by the number of tuples in Ry(;) that satisfy the con-
dition, which can also be computed from the index. This
removes the impact of the predicate on the performance of
the random walk, thus it is preferable to start from such a
table. More discussion will be devoted on this topic under
walk plan optimization in Section 4.

Wander join supports a Group By clause by maintain-
ing multiple estimators simultaneously during the random
walk process, one per group with respect to the grouping
attribute(s). Each random walk is pushed to the group it
belongs to and used to update the corresponding estimator.

4. WALK PLAN OPTIMIZER

Different orders in which to perform the random walk may
lead to very different performance. This is akin to choosing
the best physical plan for executing a query. So we term
different ways to perform the random walks as walk plans.
A relational database optimizer usually needs statistics to be
collected from the tables a priori, so as to estimate various
intermediate result sizes for multi-table join optimization. In
this section we present a walk plan optimizer that chooses
the best walk plan without the need to collect statistics.

4.1 Walk plan generation

We first generate all possible walk plans. Recall that the
constraint we have for a valid walk order is that for each
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table R; (except the first one), there must exist a table R;
earlier in the order such that there is a join condition be-
tween R; and R;. In addition, R; should have an index on
the attribute that appears in the join condition. Note that
the join condition does not have to be equality. It can be
for instance an inequality or even a range condition, such as
R;.A < R;.B < R;.A+ 100, as long as R; has an index on
B that supports range queries (e.g., a B-tree).

Ri,R2, R3, R4, Rs
R1, Rz, R4, R3, Rs

Ri, R2, Ra, Rs5, R3
R2, R1, Rs, R4, Rs
Rz, R1, R4, R3, Rs
R>, R1, R4, Rs, R3
Rz, R3, R1, R4, Rs
R2, R3, R4, R1, Rs
Ry, R3, R4, Rs5, Ry
R27R4,R1,R3,R5
Rz, R4, R1, Rs5, R3
R2, R4, R3, R1, Rs
R2, R4, R3, R5, R1
R>, R4, R5, R1, R3
R27R4,R5,R3,R1

Figure 3: A directed join query graph and all its
walk plans.

To generate all possible walk orders, we first add direc-
tions to each edge in the join query graph. Specifically, for
an edge between R; and Rj, if R; has an index on its at-
tribute in the join condition, we have a directed edge from
R; to R;; similarly if R; has an index on its attribute in
the join condition, we have a directed edge from R; to R;.
For example, after adding directions, the query graph in
Figure 2(b) might look like the one in Figure 3, and all pos-
sible walk plans are listed on the side. These plans can be
enumerated by a simple backtracking algorithm. Note that
there can be exponentially (in the number of tables) many
walk plans. However, this is not a real concern because (1)
there cannot be too many tables, and (2) more importantly,
having many walk plans does not have a major impact on
the plan optimizer, which we shall see later.

We can similarly generate all possible walk plans for cyclic
queries, just that some edges will not be walked, and they
will have to be checked after the random walk, as described
in Section 3.3. We call them non-tree edges, since the part
of the graph that is covered by the random walk form a tree.
An example is given in Figure 4.

4.2 Walk plan optimization

The performance of a walk order depends on many factors.
However, we observe that ultimately, the performance of
the random walk is measured by the variance of the final
estimator after a given amount of time, say ¢t. Let X; be
the estimator from the i-th random walk (e.g., u(é)v(7) for
SUM if the walk is successful and 0 otherwise), and let T’
be the running time of one random walk, successful or not.
Suppose a total of W random walks have been performed
within time t. Then the final estimator is % Ezl X;. We
show that

w

1
w2 X

=1

Var = Var[ X1 |E[T]/t.

Thus, for a given amount of time ¢, the variance of the
final estimator is proportional to Var[X1]E[T]. The next ob-
servation is that both Var[X:] and E[T] can also be estimated
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Ry, Ry, R3, Ry. non-tree edge: (Rz, Ry)
Ry, Ry, Ry, R3. non-tree edge: (Ra, R3)
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%

Figure 4: Walk plan for a cyclic query graph.

by the random walks themselves! In particular, Var[X;] is
just estimated as another aggregation function; for E[T], we
simply count the number of index entries looked up, or the
number of I/Os in external memory, in each random walk,
and take the average.

Now, for each walk order, we perform a certain number of
“trial” random walks and estimate Var[X1] and E[T]. Then
we compute the product Var[X1]E[T] and pick the order with
the minimum Var[X:]E[T]. How to choose the number of
trials is the classical sample size determination problem [1],
which again depends on many factors such as the actual data
distribution, the level of precision required, etc. We adopt
the following strategy: We conduct random walks following
each plan in a round-robin fashion, and stop until at least
one plan has accumulated at least 7 successful walks. Then
we pick the plan with the minimum Var[X:]E[T] that has
at least 7/2 successful walks. This is actually motivated by
association rule mining, where a rule must both be good and
have a minimum support level. In our implementation, we
use a default threshold of 7 = 100.

Finally, we observe that all the trial runs are not wasted.
Since each random walk, no matter which plan it follows,
returns an unbiased estimator. So we can include all the
random walks, before and after the optimal one has been
picked, in computing the final estimator. The confidence
interval is also computed with all these random walks. This
is unlike traditional query optimization, where the cost in-
curred by the optimizer itself is pure “overhead”.

S. XDB:INTEGRATING WANDER JOIN IN-
SIDE A DBMS ENGINE

Wander Join can be easily integrated into existing data-
base engines. To demonstrate this point, we have devel-
oped XDB (approXimate DB) by integrating wander join in
the latest version of PostgreSQL (version 9.4; in particular,
9.4.2). Our implementation covers the entire pipeline from
SQL parsing to plan optimization to physical execution. We
build secondary B-tree indexes on all the join attributes and
the attributes used in the selection predicates. XDB is now
open-sourced at https://github.com/initialDLab/xdb.

XDB extends PostgreSQL’s parser, query optimizer, and
query executor to support keywords like CONFIDENCE, ONLINE,
WITHINTIME, and REPORTINTERVAL. We also integrated the
plan optimizer of wander join into the query optimizer of
PostgreSQL. For example, an example based on Q3 of TPC-
H benchmark is:

SELECT ONLINE

SUM(1_extendedprice * (1 - 1l_discount)), COUNT(*)
FROM customer, orders, lineitem

WHERE c_mktsegment=‘BUILDING’ AND c_custkey=o_custkey
AND 1_orderkey=o_orderkey

WITHINTIME 20000 CONFIDENCE 95 REPORTINTERVAL 1000

This tells the engine that it is an online aggregation query,
such that the engine should report the estimations and their
associated confidence intervals, calculated with respect to
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95% confidence level, for both SUM and COUNT every 1000
milliseconds for up to 20000 milliseconds.

Online aggregation queries are passed to an optimizer spe-
cific to wander join. The optimizer builds the join query
graph and generates valid walk paths from the join query
graph. The optimizer also replaces aggregation operators
with online aggregation estimators and relative confidence
interval operators. If the query contains an INITSAMPLE
clause, which allows the engine to execute a number of trial
runs using multiple paths to find the best walk order, all the
valid walk paths are retained in the query plan. The query
executor later iterates through all the walk paths, performs
a number of trial runs as specified by the query and com-
putes a rejection rate estimation and a variance estimation.
It then orders the walk plans by the rejection rate and breaks
tie (rejection rates differed within 5%) by the variance esti-
mation.

The executor extracts samples from primary or secondary
B-tree indexes one by one given a walk path. The B-tree in-
dexes are augmented with counts of subtrees in their internal
nodes. The executor uses the counts to find the degrees of
the tuples in the join data graph and extract samples. Se-
lection predicates are immediately applied when the related
tuples are sampled, instead of waiting until the walk is com-
plete. Once a walk completes, the executor maintains a few
aggregations of the samples and probabilities for the esti-
mators. The executor returns the current estimators and
relative confidence intervals periodically. Finally, it returns
an empty tuple when the time budget is used up, which
informs PostgreSQL that no more tuples are available.

A Zeppelin frontend was also developed as part of the
XDB system, where its visualization module was modified
so that an online visualization of the (continuously updated)
query results as well as the confidence intervals is enabled.

The only system implementation available for ripple join
is the DBO system [2,9,10]. In fact, the algorithm imple-
mented in DBO is much more complex than the basic rip-
ple join in order to deal with limited memory, as described
in these papers. We compared XDB with Turbo DBO,
using the code at http://faculty.ucmerced.edu/frusu/
Projects/DB0/dbo.html, as a system-to-system comparison.
Note that due to the random order storage requirement,
DBO was built from ground up. Currently it is still a proto-
type that supports online aggregation only (i.e., no support
for other major features in a RDBMS engine, such as trans-
actions, locking, etc.). On the other hand, XDB retains the
full functionality of a RDBMS, with online aggregation as
an added feature. Thus, this comparison can only be to our
disadvantage due to the system overhead inside a full-fledged
DBMS for supporting other features and functionality.

Note that the original DBO papers [9] compared the DBO
engine against the PostgreSQL database by running the
same queries in both systems. We did exactly the same
in our experiments, but using XDB (which is a PostgreSQL
with wander join implemented inside its kernel).

6. EXPERIMENTS

6.1 Experimental setup

We have evaluated the performance of wander join in com-
parison with ripple join and its variants, the DBO engine,
under two settings: using a standalone implementation and
a system implementation (XDB) respectively. In the stan-
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TPC-H data sets of different sizes.

dalone setting, we implemented both wander join and ripple
join in C++. We ensure that the index structures fit in
memory; in fact, all the indexes together take space that is
a very small fraction of the total amount of data, because
they are all secondary indexes, storing only pointers to the
actual data records, which have many other attributes that
are not indexed. Building these indexes is very efficient; in
fact, they can be built with minimal overhead while loading
data from the file system to the memory (which one has to
do anyway). Similarly, for ripple join, we gave it enough
memory so that all samples taken can be kept in memory.
The standalone implementation gives an ideal environ-
ment to both algorithms without any system overhead.

Data and queries. We used the TPC-H benchmark data
and queries for the experiments, which were also used by the
DBO work [2,9,10]. We used 5 tables, nation, supplier,
customer, orders, and lineitem. We used the TPC-H data
generator with the appropriate scaling factor to generate
data sets of various sizes. We picked queries Q3 (3 tables),
Q7 (6 tables; the nation table appears twice in the query)
and Q10 (5 tables) in the TPC-H specification for testing.

Effect of data skewness. There are two types of skewness.
Degree skewness refers to the skewness in the distribution
of the number of tuples in one table that join another, while
value skewness is the skewness of the distribution of the val-
ues being aggregated. The degree skewness will negatively
impact the random walk process of wander join if a good
walk order is not selected. This issue is addressed by our
walk order optimization. Depending on how the cardinality
of the join changes, it usually has no impact or even pos-
itive impact on the efficiency of wander join. In contrast,
degree skewness often leads to worse performance for ripple
join due to the increasing join sparsity for most tuples. On
the other hand, value skewness has a negative impact on all
online aggregation methods because the higher variance of
aggregated values leads to a larger variance of the estimator.
Unless prior knowledge of the value distribution is available,
the effectiveness of (any) sampling methods will be affected.

38

6.2 Results on standalone implementation

We first run wander join (WJ) and ripple join (RJ) on a
2GB data set, i.e., the entire TPC-H database is 2GB, using
the “barebone” joins of Q3, Q7, and Q10, where we drop all
the selection predicates. Figure 5 plots how the confidence
interval (CI) shrinks over time, with the confidence level set
at 95%, as well as the estimates returned by the algorithms.
They are shown as a percentage error compared with the
true answer (obtained offline by running the exact joins to
full completion). We can see that WJ converges much faster
than RJ, due to the much more focused exploration strat-
egy. Meanwhile, the estimates returned are indeed within
the confidence interval almost all the time. For example,
wander join converges to 1% confidence interval in less than
0.1 second whereas ripple join takes more than 4 seconds
to reach 1% confidence interval. The full exact join on Q3,
Q7, and Q10 in this case is 18 seconds, 28 seconds, and 19
seconds, respectively, using hash join.

Next, we ran the same queries on data sets of varying sizes.
Now we include both the random order ripple join (RRJ)
and the index-assisted ripple join (IRJ). For wander join,
we also considered two other versions to see how the plan
optimizer worked. WJ(B) is the version where the optimal
plan is used (i.e., we run the algorithm with every plan and
report the best result); WJ(M) is the version where we use
the median plan (i.e., we run all plans and report the median
result). WJ(O) is the version where we use the optimizer to
automatically choose the plan, and the time spent by the
optimizer is included. In Figure 6 we report the time spent
by each algorithm to reach +1% confidence interval with
95% confidence level on data sets of sizes 1GB, 2GB, and
3GB. We also report the time costs of the optimizer in Table
1. From the results, we can draw the following observations:
(1) Wander join is in general faster than ripple join by two
orders of magnitude to reach the same confidence interval.
(2) The running time of ripple join increases with N, the
data size, though mildly. (3) The running time of wander
join is not affected by N. This also agrees with our analysis:
When hash tables are used, its efficiency is independent of N
altogether. (4) The optimizer has very low overhead, and is
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Figure 8: XDB: system implementation experimen-
tal results with sufficient memory — 32GB memory.

very effective. In fact, from the figures, we see that WJ(B)
and WJ(O) have almost the same running time, meaning
that the optimizer spends almost no time and indeed has
found either the best plan or a very good plan that is almost
as good as the best plan. Recall that all the trial runs used in
the optimizer for selecting a good plan are not wasted; they
also contribute to building the estimators. For barebone
queries, many plans actually have similar performance, as
seen by the running time of WJ(M), so even the trial runs
are of good quality.

Finally, we put back the selection predicates to the queries.
Figure 7 shows the time to reach £1% confidence interval
with 95% confidence level for the algorithms on the 2GB
data set with all the predicates are put back. Here, we mea-
sure the overall selectivity of all the predicates as:

1 — (join size with predicates)/(barebone join size), (4)
so higher means more selective.

From the results, we see that one selection predicate has
little impact on the performance of wander join, because
most likely its optimizer will elect to start the walk from
that table. Multiple highly selective predicates do affect
the performance of wander join, but even in the worst case,
wander join maintains a gap with ripple join of more than
an order of magnitude.

These experiments also demonstrate the importance of the
plan optimizer: With multiple highly selective predicates, a
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mediocre plan can be much worse than the optimal one,
and the plan optimizer almost always picks the optimal or a
close-to-optimal plan with nearly no overhead. Note that in
this case we do have poor plans, so some trial random walks
may contribute little to the estimation. However, the good
plans can accumulate 7 = 100 successful random walks very
quickly, so we do not waste too much time anyway.

6.3 Results on system implementation

For the experimental evaluation on XDB, which is our
PostgreSQL integration and implementation of wander join,
we first tested how it performs when there is sufficient mem-
ory, and then tested the case when memory is severely lim-
ited. We compared against Turbo DBO in the latter case.
Turbo DBO [2] is an improvement to the original DBO en-
gine, that extends ripple join to data on external memory
with many optimizations.

When there is sufficient memory. Due to the low-
latency requirement for data analytical tasks and thanks
to growing memory sizes, database systems are moving to-
wards the “in-memory” computing paradigm. So we first
would like to see how our system performs when there is suf-
ficient memory. For this purpose, we used a machine with
32GB memory and data sets of sizes up to 20GB. We ran
both online version of XDB and the built-in PostgreSQL full
join in XDB on the same queries, both through the standard
PostgreSQL SQL query interface.

Note that since we have built indexes on all the join at-
tributes and there is sufficient memory, the PostgreSQL op-
timizer chose index join for all the join operators. We used
Q3, Q7, and Q10 with all the selection predicates.

The results in Figure 8 clearly indicate a linear growth
of the full join, which is as expected because the index join
algorithm has running time linear in the table size. Also
because all joins are primary key-foreign key joins, the in-
termediate results have roughly linear size. On the other
hand, the data size has a mild impact on the performance of
wander join. For example, the time to reach +1% confidence
interval for Q7 merely increases from 3 seconds to 4 seconds,
when the data size increases from 5GB to 20GB in Figure
8(b). By our analysis and the internal memory experimen-
tal results, the total number of random walk steps should
be independent of the data size. However, because we use
B-tree indexes, whose access cost grows logarithmically as
data gets larger, the cost per random walk step might grow
slightly. Nevertheless, PostgreSQL with wander join reach-
ing 1% CI has outperformed the PostgreSQL with full join
by more than one order of magnitude when data size grows.

We have also run Turbo DBO in this case. However, it
turned out that Turbo DBO spends even more time than
PostgreSQL’s full join, so we do not show its results. This
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Figure 9: XDB: system implementation experimental results with limited memory — 4GB memory.

seems to contradict with the results in [10]. In fact, this
is because DBO is intentionally designed for large data and
small memory. In the experiments of [10], the machine used
had only 2GB of memory. With such a small memory, Post-
greSQL had to resort to sort-merge join or nested-loop join
for each join operator, which is much less efficient than in-
dex join (for in-memory data). Meanwhile, DBO follows the
framework of sort-merge join, so it is actually not surprising
that it is not as good as index joins for in-memory data. In
our next set of experiments where we limit the memory size,
we do see that DBO performs better than the full join.

When memory is limited. In our last set of experiments,
we used a machine with only 4GB memory, and ran the same
set of experiments as above on data sets of sizes starting from
10GB and increasing to 40GB. The time for wander join
inside PostgreSQL and Turbo DBO to reach +£5% confidence
interval with 95% confidence level, as well as the time of the
full join in PostgreSQL, are shown in Figure 9.

From the results, we see that a small memory has a sig-
nificant impact on the performance of wander join. The
running time increases from a few seconds in Figure 8 to
more than 100 seconds in Figure 9, and that’s after we have
relaxed the target confidence interval from +1% to +5%.
The reason is obviously due to the random access nature of
the random walks, which now has a high cost due to exces-
sive page swapping. Nevertheless, this is a “one-time” cost,
in the sense that each random walk step is now much more
expensive, but the number of steps is still not affected. After
the one-time, sudden increase when data size exceeds main
memory, the total cost remains almost flat afterward. In
other words, the cost of wander join in this case is still in-
dependent of the data size, albeit to a small increase in the
index accessing cost (which grows logarithmically with the
data size if B-tree is used). Hence, wander join still enjoys
excellent scalability as data size continues to grow.

On the other hand, both the full join and DBO clearly
have a linear dependency on the data size, though at differ-
ent rates. On the 10GB and 20GB data sets, wander join
and DBO have similar performance, but eventually wander
join would stand out on very large data sets.

Anyway, spending 100 seconds just to get a £5% estimate
does not really meet the requirement of interactive data an-
alytics, so strictly speaking both wander join and DBO have
failed in this case (when data has significantly exceeded the
memory size). Fundamentally, online aggregation requires
some form of randomness so as to have a statistically mean-
ingful estimation, which is at odds with the sequential access
nature of hard disks. This appears to be an inherent barrier
for this line of work. However, as memory sizes grow larger
and memory clouds get more popular (for example, using
systems like RAMCloud [15] and FaRM [3]), with the SSDs
as an additional storage layer, in the end we may not have
to deal with this barrier at all.
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7. CONCLUSION

We have open sourced the XDB engine at https://github.
com/InitialDLab/XDB. In addition to the integration with
the PostgreSQL kernel, we have also designed and imple-
mented a front-end interface using Apache Zeppelin, which
is able to show the query results in the form of table, line
plot and other visualization representation in a continuous
online fashion. For future work, an important open problem
is to extend online aggregations to nested queries.
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Demand for more powerful “big data analytics” solutions
has spurred a great deal of interest in the core programming
models, abstractions, and platforms for next-generation sys-
tems. For these problems, a complete solution would address
data wrangling and processing, and support analytics over
data of any modality or scale. It would support a wide array
of machine learning algorithms, but also provide primitives
for building new ones. It should be customizable, scale to
vast volumes of data, and map to modern multicore, GPU,
co-processor, and compute cluster hardware.

In pursuit of these goals, novel techniques and solutions
are being developed by machine learning researchers (e.g.,
high-performance libraries like Theano [6], runtime systems
like GraphLab [5]), in the database and distributed systems
research communities (e.g., distributed data analytics en-
gines like Spark [7] and Flink [3]), and in industry by ma-
jor technology players (e.g., Google’s TensorFlow [1] and
IBM/Apache’s SystemML [4]). These libraries and plat-
forms support multiple development languages, provide ab-
stract datatypes for machine learning over data, and include
compilers and runtime systems optimized for distributed ex-
ecution on modern hardware.

The database community excels in developing techniques
for cost-estimating and optimizing declarative programs, and
in exploiting data independence to optimize data placement
and layout for performance. Elgohary et al’s work on “Scal-
ing Machine Learning via Compressed Linear Algebra,” which
appeared in the Proceedings of the VLDB Endowment [2],
was conducted within IBM and Apache’s SystemML declar-
ative machine learning project. It shows just how effective
such database techniques can be in a machine learning set-
ting. The authors observe that the core data objects in
machine learning — feature matrices, weight vectors — tend
to have repeated values as well as regular structure, and may
be quite large. Machine learning tasks over such data are
composed from lower-level linear algebra operations. Such
operations generally involve repeated floating-point compu-
tation that today are bandwidth-limited, by the ability of the
CPU to traverse large matrices in RAM.

The authors’ solution is to develop a compressed represen-
tation for matrices, as well as compressed linear algebra op-
erations that work directly over the compressed matrix data.
Together, these reduce the bandwidth required to perform
the same computations, thus speeding performance dramat-
ically. The paper cleverly adapts ideas first developed in re-
lational database systems — column-oriented compression,
sampling-based cost estimation, trading between compres-

sion speed and compression rate — to build an elegant im-
plementation.

SIGMOD Record, March 2017 (Vol. 46, No. 1)

The paper makes a number of key contributions. First,
the authors identify a set of linear algebra primitives shared
by multiple distributed machine learning platforms and al-
gorithms. Second, they develop compression techniques not
only for single columns in a matrix, but also “column group-
ing” techniques that capitalize on correlations between co-
lumns. They show that offset lists and run-length encoding
offer a good set of trade-offs between efficiency and per-
formance. Third, the paper develops cache-conscious algo-
rithms for matrix multiplication and other operations. Fi-
nally, the paper shows how to estimate the sizes of com-
pressed matrices and to choose an effective compression strat-
egy. Together, these techniques illustrate how database sys-
tems concepts can be adapted to great benefit in the machine
learning space.
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ABSTRACT

Large-scale machine learning (ML) algorithms are often
iterative, using repeated read-only data access and I/O-
bound matrix-vector multiplications to converge to an opti-
mal model. It is crucial for performance to fit the data into
single-node or distributed main memory and enable very
fast matrix-vector operations on in-memory data. General-
purpose, heavy- and lightweight compression techniques
struggle to achieve both good compression ratios and fast de-
compression speed to enable block-wise uncompressed oper-
ations. Compressed linear algebra (CLA) avoids these prob-
lems by applying lightweight lossless database compression
techniques to matrices and then executing linear algebra
operations such as matrix-vector multiplication directly on
the compressed representations. The key ingredients are ef-
fective column compression schemes, cache-conscious oper-
ations, and an efficient sampling-based compression algo-
rithm. Experiments on an initial implementation in Sys-
temML show in-memory operations performance close to the
uncompressed case and good compression ratios. We thereby
obtain significant end-to-end performance improvements up
to 26x or reduced memory requirements.

1. INTRODUCTION

Large-scale machine learning (ML) leverages large data
collections in order to find interesting patterns and build ro-
bust predictive models [9, 10]. Applications include regres-
sion analysis, classification, and recommendations. Data-
parallel frameworks such as MapReduce [11], Spark [22], and
Flink [2] are often used for cost-effective parallelized model
building on commodity hardware.

Declarative ML: State-of-the-art, large-scale ML sys-
tems support declarative ML algorithms [5], expressed in
high-level languages, that comprise linear algebra opera-
tions, i.e., matrix multiplications, aggregations, element-
wise and statistical computations. Examples—at varying
abstraction levels—are SystemML [6], SciDB [20], Cumu-
lon [15], DMac [21], and TensorFlow [1]. A high level of
abstraction gives data scientists the flexibility to create and
customize ML algorithms without worrying about data and
cluster characteristics, underlying data representations (e.g.,

(© VLDB Endowment 2016. This is a minor revision of the paper enti-
tled Compressed Linear Algebra for Large-Scale Machine Learning, pub-
lished in the Proceedings of the VLDB Endowment, Vol. 9, No. 12, 2150-
8097/16/08. DOI: https://doi.org/10.14778/2994509.2994515.
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Figure 1: Goals of Compressed Linear Algebra.

sparse/dense format) or execution plan generation. We aim
to improve the performance of declarative ML algorithms.

Bandwidth Challenge: Many ML algorithms are itera-
tive, with repeated read-only access to the data. They rely
on matrix-vector multiplications to converge to an optimal
model; such operations require one complete scan of the ma-
trix, with two floating point operations per matrix element.
Hence, matrix-vector multiplications are, even in-memory,
I/0 bound. Disk bandwidth is usually 10x-100x slower than
memory bandwidth, so it it crucial for performance to fit
the matrix into available memory without sacrificing opera-
tions performance. This challenge applies to single-node in-
memory computations [16], data-parallel frameworks with
distributed caching such as Spark [22], and hardware accel-
erators like GPUs, with limited device memory [1, 3, 4].

Compressed Linear Algebra: Declarative ML pro-
vides data independence, which allows for automatic lossless
compression to fit larger datasets into memory. A baseline
solution would employ general-purpose compression tech-
niques and decompress matrices block-wise for each oper-
ation. However, heavyweight techniques like Gzip are in-
applicable because decompression is too slow (slower than
uncompressed I/0), while lightweight methods like Snappy
only achieve moderate compression ratios. Existing special-
purpose compressed matrix formats with good performance
like CSR-VI [18] similarly show only modest compression
ratios. We have therefore initiated the study of compressed
linear algebra (CLA), in which lightweight database com-
pression methods—such as compressing offset lists per dis-
tinct column value—are applied to matrices and then linear
algebra operations are executed directly on the compressed
representations [12]. Figure 1 shows the goals of this ap-
proach: we want to widen the sweet spot for compression by
achieving both (1) performance close to uncompressed in-
memory operations and (2) good compression ratios to fit
larger datasets into memory. The novelty of our approach
is to combine both database compression techniques and
sparse matrix representations, leading towards a generaliza-
tion of traditional sparse matrix formats for sparse and dense
data; see [12] for a full discussion of related work.
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Table 1: Compression Ratios of Real Datasets.

Dataset Size Gzip | Snappy | CLA

Higgs[19] | 1IMx28, 0.02: 2.5GB | 1.93 | 1.38 | 2.03
Census [19] | 2.56Mx68, 0.43: 1.3GB |17.11 6.04 27.46
Covtype [19] | 600Kx54, 0.22: .14GB |10.40| 6.13 |12.73
ImageNet [8] | 1.2M x 900, 0.31: 4.4GB| 5.54 3.35 7.38
Mnist8m [7] | 8.1Mx 784, 0.25: 19GB | 4.12 2.60 6.14

Table 2: Overview ML Algorithm Core Operations
(see http://systemml.apache.org/algorithms for details).

Algorithm M-V | V-M MV Chain TSMM
Xv [vIX [ XTwoXv) | XX
LinregCG v v v (w/o wQ®)
LinregDS v v
Logreg / GLM v v v (w/ wQ)
L2SVM v v
PCA v v

Compression Potential: Our focus is on floating-point
matrices, so the potential for compression may not be ob-
vious. Table 1 shows compression ratios for the general-
purpose, heavyweight Gzip and lightweight Snappy algo-
rithms and for our CLA method on real-world datasets (sizes
given as rows, columns, sparsity, and in-memory size). We
see compression ratios of 2x-27x, due to the presence of a
mix of floating point and integer data, and due to features
with relatively few distinct values. Thus enterprise machine-
learning datasets are indeed amenable to compression. The
decompression bandwidth (including time for matrix deseri-
alization) of Gzip ranges from 88 MB/s to 291 MB/s which
is slower than for uncompressed I/O. Snappy achieves a de-
compression bandwidth between 232MB/s and 638 MB/s
but only moderate compression ratios. In contrast, CLA
achieves good compression ratios and avoids decompression.
In the following sections, we motivate our approach and
describe its key components: column compression schemes,
cache-conscious vector-matrix operations, and an efficient
sampling-based compression algorithm.

2. BACKGROUND AND MOTIVATION

As discussed below, both the features of declarative-ML
systems and the characteristics of typical ML workloads mo-
tivate our approach to compressed linear algebra.

SystemML Setting: We describe CLA in the setting
of SystemML, as it is representative of the declarative ML
platforms that we are targeting. In SystemML, algorithms
are expressed in a high-level R-like scripting language and
compiled to hybrid runtime plans that combine both single-
node, in-memory operations and distributed operations on
MapReduce or Spark. Each statement block of an ML script
is first parsed into a directed cyclic graph (DAG) of high-
level operators. The system then applies various rewrites,
such as common subexpression elimination and optimiza-
tion of matrix-multiplication chains, as well as operator se-
lection, yielding a DAG of low-level operators, which is then
compiled into instructions. Matrices are represented inter-
nally in a binary block matriz format with fixed-size blocks.
Each block is represented either in dense or sparse format.
For single-node, in-memory operations, the entire matrix is
often represented as a single block. CLA can be seamlessly
integrated by adding a new derived block representation and
operations. See [6, 12] for further details on SystemML.

Common Operation Characteristics: Table 2 sum-
marizes the core operations of important ML algorithms.
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These algorithms include linear regression via iterative
conjugate-gradient descent (LinregCG) and via direct so-
lution of the normal equations (LinregDS), as well as logis-
tic regression (Logreg), generalized linear models (GLM),
support-vector machines with Ls-regularization (L2SVM)
and principal component analysis (PCA). LinregDS and
PCA are non-iterative and the other algorithms are iter-
ative. Vector-matrix multiplication is often caused by the
rewrite X'v — (v'X)" to avoid transposing X. In addi-
tion, many systems also implement physical operators for
matrix-vector chains, with optional element-wise weight-
ing w®, and transpose-self matrix multiplication (TSMM)
X "X. All of these operations are I/O-bound, except for
TSMM with m > 1 features because its compute workload
grows as O(m?). Beside these operations, append, unary ag-
gregates like colSums, and matrix-scalar operations access
X for intercept computation, scaling and shifting.
Common Data Characteristics: Despite signifi-
cant differences in data sizes—ranging from kilobytes to
terabytes—we and others have observed certain common
characteristics of ML datasets. First, matrices usually have
significantly more rows (observations) than columns (fea-
tures), especially in enterprise machine learning, where data
often originates from data warehouses. Second, feature pre-
processing like dummy coding often yields datasets having
many sparse features (i.e., features with many zero values);
sparsity, however, is rarely uniform, but often varies widely
among features [12]. Third, Many datasets contain features
with low column cardinality, i.e., few distinct values. Exam-
ples include encoded categorical, binned or dummy-coded
(0/1) features. Low column cardinality is a good indicator
of compression potential because it indicates redundancy.
For example, all columns of Census have a ratio of column
cardinality to number of rows below .0008% and the major-
ity of columns of Higgs have a cardinality ratio below 1%.
The column cardinalities can vary widely within a dataset,
however; for example, Higgs contains several columns hav-
ing millions of distinct values. (See [12] for additional dis-
cussion of the datasets.) Finally, many datasets contain col-
umn groups that exhibit significant correlation in that the
concatenated columns have a cardinality ratio much lower
than would be expected if the values in each column were
arranged randomly and independently of the other columns.
Compression Strategy: The foregoing workload char-
acteristics suggest several key features of a good compression
strategy. First, the compression schemes should be column-
based and value-centric, with fallbacks for high cardinality
columns. Moreover, schemes should exploit column correla-
tion by discovering and co-coding highly correlated column
groups. With value-based offset lists, a column ¢ with d; dis-
tinct values requires ~ 8d; + 4n B, where n is the number
of rows, and each value is encoded with 8 B and a list of
4B row indexes. Co-coding two columns ¢ and j as a single
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Figure 3: Example Compressed Matrix Block.

group of value-pairs and offsets requires 16d;; +4n B, where
d;i; is the number of distinct value-pairs. The higher the
correlation, the larger the size reduction by co-coding. For
example, Figures 2(a) and 2(b) show the size reductions (in
MB) by co-coding all pairs of columns of Higgs and Census.
Overall, co-coding column groups of Census (not limited to
pairs) improves the compression ratio from 10.1x to 27.4x.
For Higgs, co-coding any of the columns 8, 12, 16, and 20
with one of most of the other columns reduces sizes by at
least 25 MB. Moreover, co-coding any column pair of Census
reduces sizes by at least 9.3 MB.

3. COMPRESSION SCHEMES

We now describe our novel matrix compression frame-
work, including two effective encoding formats for com-
pressed column groups, as well as efficient, cache-conscious
core linear algebra operations over compressed matrices.

3.1 Matrix Compression Framework

A compressed matrix block is represented as a set of com-
pressed columns. Column-wise compression leverages two
key characteristics: few distinct values per column and high
cross-column correlations. Taking advantage of few distinct
values, we encode a column as a list of distinct values to-
gether with a list of offsets per value, i.e., a list of row indexes
in which the value appears. As with sparse matrix formats,
offset lists allow for efficient linear algebra operations.

Column Co-Coding: We exploit column correlation by
partitioning columns into column groups such that columns
within each group are highly correlated. Columns within the
same group are then co-coded as a single unit. Conceptually,
each row of a column group comprising m columns is an m-
tuple t of floating-point values, representing reals or integers.

Column Encoding Formats: Conceptually, the offset
list associated with each distinct tuple is stored as a com-
pressed sequence of bytes. The efficiency of executing lin-
ear algebra operations over compressed matrices strongly
depends on how fast we can iterate over this compressed
representation. We adapt two well-known effective offset-
list encoding formats: Offset-List Encoding (OLE) and
Run-Length Encoding (RLE). We fall back to a simple
uncompressed-column (UC) format if compression is not
beneficial. These decisions on column encoding formats as
well as co-coding are strongly data-dependent and hence
require automatic optimization. We discuss compression
planning—i.e., automatically choosing plans that maximize
the compression ratio—in Section 4.

Example Compressed Matrix: Figure 3 shows our
running example of a compressed matrix block. The 10 x 5
input matrix is represented as four column groups. Columns
2, 4, and 5 are represented as single-column groups and en-
coded with RLE, OLE, and UC, respectively. For column 4,
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Figure 4: Data Layout OLE/RLE Column Groups.

we have two distinct non-zero values and hence two offset
lists. Finally, there is a co-coded column group for the cor-
related columns 1 and 3, which encodes offset lists for all
distinct value-pairs.

Notation: For the ith column group, denote by 7, =
{ti1,ti2,...,tiq; } the set of d; distinct non-zero tuples, by
G; the set of column indexes, and by O;; the set of offsets as-
sociated with t;; (1 < j < d;). We focus on the “sparse” case
in which zero values are not stored (aka “O-suppressing”).
Also, denote by « the size in bytes of each floating point
value; o = 8 for the double-precision IEEE-754 standard.

3.2 Column Encoding Formats

We now describe the compressed data layout of the OLE
and RLE formats and give formulas for the in-memory com-
pressed size SCTE and SFYE. The total matrix size is then
computed as the sum of group size estimates.

Data Layout: Figure 4 shows—as an extension to our
running example from Figure 3 (with more rows)—the data
layout of OLE/RLE column groups composed of four lin-
earized arrays. Besides a data array D;, both encoding
schemes use a common header of three arrays for column
indexes, fixed-length value tuples, and pointers to the data
per tuple. The physical data length per tuple in D; can be
computed as the difference of adjacent pointers (e.g., for
ti1 = {7,6} as 13 — 1 = 12). The data array is then used in
an encoding-specific manner. Tuples are stored in order of
decreasing physical data length to improve branch predic-
tion and pre-fetching.

Offset-List Encoding (OLE): Our OLE scheme divides
the offset range into segments of fixed length A% = 2'¢ (two
bytes per offset). Each offset is mapped to its corresponding
segment and encoded as the difference to the beginning of its
segment. For example, the offset 155,762 lies in segment 3
(= 14 (155,762 — 1)/A®]) and is encoded as 24,690 (=
155,762 — 2A%). Each segment then encodes the number of
offsets with two bytes, followed by two bytes for each offset,
resulting in a variable physical length in D;. Empty segments
are represented as two bytes indicating zero length. Iterating
over an OLE group entails scanning the segmented offset list
and reconstructing global offsets as needed. The size SOVE
of column group G; is calculated as

d;
S?LE:4‘gi|+di(4+a‘gi|)+2Zbij+2zi7 (1)
j=1
where b;; denotes the number of segments of tuple t;;, |O;;]|
denotes the number of offsets for t;;, and z; = Z?;JOM\
denotes the total number of offsets in the column group. The
common header has a size of 4|G;| + d; (4 + a\gi|).

Run-Length Encoding (RLE): In RLE, a sorted list of
offsets is encoded as a sequence of runs. Each run represents
a consecutive sequence of offsets, via two bytes for the start-
ing offset and two bytes for the run length. We store starting
offsets as the difference between the offset and the ending
offset of the preceding run. Empty runs are used when a
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Algorithm 1 Cache-Conscious OLE Matrix-Vector

Input: OLE column group G;, vectors v, q, row range [rl, ru)
Output: Modified vector q (in row range [rl, ru))

1: for j in [1,d;] do // distinct tuples
5 <= SKIPSCAN(G;, 7, 71) // find position of vl in D;
u;; <ty - vg, // pre-aggregate value
: for bk in [rl,ru) by A€ do // cache buckets in [rl,ru)
for j in [1,d;] do // distinct tuples

for k in [bk, min(bk + A¢,ru)) by A®* do // segments
if m;; < bi; +|0;5| then // physical data length
ADDSEGMENT(G;, 45, Uij, k, q) // update q, m;;

relative starting offset is larger than the maximum length
of 26, Similarly, runs exceeding the maximum length are
partitioned into smaller runs. Iterating over an RLE group
entails scanning the runs and enumerating offsets per run.
The size SFYE of column group G; is computed as
d;
SFEE = 4|Gi| + di (4 + alGil) +4 1, (2)
j=1
where r;; is the number of runs for tuple t;;. Again, the
common header has a size of 4|G;| + d; (4 + a|gi|).

3.3 Operations over Compressed Matrices

We now show how to execute efficient linear algebra opera-
tions over a set X of column groups; matrix block operations
are then composed of operations over column groups. We
write cv to denote element-wise scalar-vector multiplication
as well as u - v to denote the inner product of vectors.

Matrix-Vector Multiplication: The product q = Xv
of X and a column vector v can be represented with respect
to column groups as q = Z‘Zfll Z?i:l(tij -vg;)1lo,;, where
vg, is the projection of v onto the indexes G; and lo,; is
the 0/1-indicator vector of offset list O;;. A straightforward
way to implement this computation iterates over t;; tuples
in each group, scanning O;; and adding t;; - vg, at recon-
structed offsets to q. However, pure column-wise processing
would scan the n x 1 output vector q once per tuple, re-
sulting in cache-unfriendly behavior for the typical case of
large n. We therefore use cache-conscious schemes for OLE
and RLE groups based on horizontal, segment-aligned scans
(with benefits of up to 2.1x/5.4x for M-V /V-M in our experi-
ments); see Algorithm 1 and Figure 5(a) for the case of OLE.
Multi-threaded operations parallelize over segment-aligned
partitions of rows [rl,ru), which guarantees disjoint results
and thus avoids partial results per thread. We find m;;, the
starting position of each t;; in D; via a skip scan that aggre-
gates segment lengths until we reach rl (line 2). To minimize
the overhead of finding m;;, we use static scheduling (task
partitioning). We further pre-compute u;; = t;;-vg, once for
all tuples (line 3). For each cache-bucket of size A° (such that
A - #tcores - 8 B fits in L3 cache, by default A® = 2A%), we
then iterate over all distinct tuples (lines 5-8) but maintain
the current positions 7;; as well. The inner loop (lines 6-8)
then scans segments and adds u;; via scattered writes at re-
constructed offsets to the output q (line 8). RLE is similarly
realized except for sequential writes to q per run, special
handling of partition boundaries, and additional state for
the reconstructed start offsets per tuple.

As a toy example for OLE, consider the column group
G = {1,3} as in Figure 4 and suppose that vg = (1,2).
Also suppose that the OLE encoding uses two segments,
each of length = 5 rows, and that a cache bucket comprises
exactly one segment. Finally, suppose that a single thread
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Figure 5: Cache-Conscious OLE Operations.

updates g. Algorithm 1 first precomputes (1,2) - (7,6) = 19,
(1,2) - (3,4) = 11, and (1,2) - (7,5) = 17. The thread then
handles rows in [rl,ru) = [1,11), i.e., all ten rows. It reads
the first five elements of q into cache, and then adds 19
to q[1] and q[3], 11 to q[2] and q[5], and 17 to q[4]. Next,
the thread reads in the last five elements of q and adds 19
to q[9], 11 to q[7], q[8], q[10], and 17 to q[6]. In contrast,
the naive approach would first add 19 to q[¢] for ¢ = 1,3, 9,
then add 11 to q[é] for ¢ = 2,5,7,8,10, and then add 17
to q[i] for ¢ = 4,6. The cost on our toy architecture is six
“cache reads” compared to two reads for Algorithm 1. Also
note that Algorithm 1 requires only 6 multiplications and
13 additions, whereas the uncompressed operation requires
20 multiplications and 20 additions.

Vector-Matrix Multiplication: Column-wise compres-
sion allows for efficient vector-matrix products q = v'X
because individual column groups update disjoint entries of
the output vector q. Each entry ¢; can be expressed over
columns as ¢; = v'X.;. We rewrite this multiplication in
terms of a column group G, as scalar-vector multiplications:
qg, = Zji:l Zleou uity;. However, a purely column-wise
processing would again suffer from cache-unfriendly behav-
ior because we scan the input vector v once for each dis-
tinct tuple. Our cache-conscious OLE/RLE group opera-
tions again use horizontal, segment-aligned scans as shown
in Figure 5(b). The OLE/RLE algorithms are similar to
matrix-vector but in the inner loop we sum up input-
vector values according to the given offset list; finally, we
scale the aggregated value once with the values in t;;.
For multi-threaded operations, we parallelize over column
groups, where disjoint results per column allow for simple
dynamic task scheduling. The cache bucket size is equiv-
alent to matrix-vector (by default 2A°®) except that RLE
runs are allowed to cross cache bucket boundaries due to
column-wise parallelization.

Other Operations: As discussed in [12], efficient meth-
ods for more complex operations such as matrix-vector mul-
tiplication chains and transpose-self matrix multiplications
are built up from the foregoing matrix-vector and vector-
matrix operations. Common operations such as X2, 2X, and
append can be executed very efficiently over compressed ma-
trices without scanning the offset lists. Finally, unary aggre-

gates like sum (or similarly colSums) are efficiently computed
using offset-list sizes as Zli‘l Zji:1|0i]'|t7jj.

4. COMPRESSION PLANNING

Given an uncompressed n X m matrix block X, the sys-
tem automatically chooses a compression plan, that is, a
partitioning of compressible columns into column groups
and a compression scheme per group. To keep the planning
costs low, sampling-based techniques are used to estimate
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the compressed size of an OLE/RLE column group G;. The
size estimates are used for finding the initial set of compress-
ible columns and a good column-group partitioning. Exhaus-
tive (O(m™)) and brute-force greedy (O(m®)) partitioning
are infeasible, but a bin-packing-based technique can dras-
tically reduce the number of candidate groups. The overall
compression algorithm corrects for estimation errors.

4.1 Estimating Compressed Size

To calculate the compressed size of a column group G;
via size-estimation formulas (1) and (2), we need to esti-
mate the number of distinct tuples d;, non-zero tuples z;,
segments b;;, and runs r;;. Our estimators are based on a
small sample of rows S drawn randomly and uniformly from
X with |S| < n. We have found experimentally that being
conservative (overestimating compressed size) and correct-
ing later on yields the most robust co-coding choices, so we
make conservative choices in our estimator design.

Number of Distinct Tuples: To estimate d;, we use the
“hybrid” estimator d; from [14]; the idea is to estimate the
degree of variability in the frequencies of the tuples in 7; as
low, medium, or high, based on the estimated squared coef-
ficient of variation and then apply a “generalized jackknife”
estimator that performs well for that regime. Such an esti-
mator has the general form d = ds + K(NY/|S]), where
ds is the number of distinct tuples in the sample, K is a
data-based constant, and NV is the number of tuples that
appear exactly once in S (“singletons”). The hybrid estima-
tor provides a reasonable balance of cost and accuracy [12].

Number of OLE Segments: In general, not all elements
of 7; will appear in the sample. Denote by 7;° and 7;* the
sets of tuples observed and unobserved in the sample, and
by df and d;* their cardinalities. The latter can be estimated
as di' = d; — dj, where d; is obtained as described above.
We also need to estimate the population frequencies of both
observed and unobserved tuples. Let f;; be the population
frequency of tuple t;; and F;; the sample frequency. A naive
estimate scales up Fj; to obtain f™° = (n/|S|)Fi;. Note
that Zt JeTo naive — 4 implies a zero population frequency

for each unobserved tuple. We adopt a standard way of deal-
ing with this issue and scale down the naive frequency esti-
mates by the estimated “coverage” C; of the sample, defined
as C; = ZtijeT;’ fij/m. The usual estimator of coverage,

originally due to Turing (see [13]), is
NV /18] 181/m). (3)

This estimator assumes a frequency of one for unseen tuples,

computing the coverage as one minus the fraction of single-
tons in the sample. We add the lower sanity bound |S|/n

é' = max(

to handle the case Ni(l) = |S]. For simplicity, we assume
equal frequencies for all unobserved tuples. The resulting
frequency estimation formula for tuple t;; is

2 (n/|8|)CA'1F” ifti; € T
fij = { A Ju s u (4)

n(l—C’Z)/dl if t4; e T

We can now estimate the number of segments b;; in which
tuple t;; appears at least once (this modified definition of
b;; ignores empty segments for simplicity with negligible er-
ror in our experiments) There are | = n — |S| unobserved
offsets and estimated fzq = flq F;q unobserved instances
of tuple t;q for each tiq € 7;. We adopt a maximum-entropy
(maxEnt) approach and assume that all assignments of un-
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observed tuple instances to unobserved offsets are equally
likely. Denote by B the set of segment indexes and by B;;
the subset of indexes corresponding to segments with at least
one observation of t;;. Also, for k € B, let I, be the num-
ber of unobserved offsets in the kth segment and N;ji the
random number of unobserved instances of t;; assigned to
the kth segment (N,jr < li). Then we estimate b;; by its
expected value under our maxEnt model:

bij = Elbiy] = By + > P

kEB\B;j

=[Byl+ > [1-

kEB\B;j

N;ji > 0)

. (5)
h‘(lky fZ’UJ‘7 l)]7

where h(a,b,c) = (C;b) /() is a hypergeometric probability.
Note that I;ij = b¥ for ti; € T;*, where b¥ is the value of I;ij
when ffj = (1 — Ci)n/d¥ and |Bi;| = 0. Thus our estimate
of the sum Z;i;l bi; in (1) is ZtijeT;’ bij + db.

Number of Non-Zero Tuples: We estimate the number
of non-zero tuples as 2; = n— fio, where fio is an estimate of
the number of zero tuples in X.g,. Denote by Fjo the number
of zero tuples i in the sample If Fio > 0, we can proceed as
above and set fio = (n/|S|)C; Fio, where Ci is (3). If Fjo = 0,
then we set flo = 0; this estimate maximizes Z; and hence
S GOL per our conservative estimation strategy.

Number of RLE Runs: The number of RLE runs r;; for
tuple t;; is estimated as the expected value of 7;; under the
maxEnt model. This expected value is very hard to compute
exactly and Monte Carlo approaches are too expensive, so we
approximate E[r;;] by considering one interval of consecu-
tive unobserved offsets at a time as shown in Figure 6. Adja-
cent intervals are separated by a “border” comprising one or
more observed offsets. As with the OLE estimates, we ignore
the effects of empty and very long runs. Denote by 7, the
length of the kth interval and set n = >, nx. Under the max-
Ent model, the number f;}; of unobserved t;; instances as-
signed to the kth interval is hypergeometric, and we estimate
fisi by its mean value: fi5, = (nx/n)fi;. Given that f, in-
stances of t;; are assigned randomly and uniformly among
the 7 possible positions in the interval, the number of runs
ri;k within the interval (ignoring the borders) is known to
follow an “Ising-Stevens” distribution [17, pp. 422-423] and
we estimate r;;; by its mean: 75, = ﬁ;k(nk — f;;k +1)/nk.
We show in [12] that a reasonable estimate of the contribu-
tion to r;; from the border between interior intervals k and
E+1is Ajjp =1 — (2]% /m), so that the final estimate is
Fig = D1 Tijk + 2 Aijr (with appropriate modifications for
the first and last border).

4.2 Partitioning Columns into Groups

A greedy brute-force method for partitioning a set of com-
pressible columns into groups starts with singleton groups
and executes merging iterations. At each iteration, we merge
the two groups having maximum compression ratio (sum of
their compressed sizes divided by the compressed size of the
merged group). We terminate when no further space reduc-
tions are possible, i.e., no compression ratio exceeds 1. Al-
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Algorithm 2 Matrix Block Compression

Input: Matrix block X of size n x m

Output: A set of compressed column groups X

CC 0, CUC 0, G0, X0

: // Planning phase — — = — — — — — — — — — — — — — — — —
¢ § + sAMPLEROWSUNIFORM(X, sample_size)
: for all column £ in X do

S}l;{LE7 SI?LE)

DN =

3

4

51 cmp_ratio < Z;a/ min(
6:  if cmp_ratio > 1 then
7 CC «—CcCuk

8 else

9: CVC « cVC Uk
10: bins < RUNBINPACKING(CC)

11: for all bin b in bins do

12: G + G U GROUPBRUTEFORCE(b)
13: // Compression phase — — — — — — — — — — — — — — — — —
14: for all column group G; in G do // compress

15:  do

16: biglist <+ EXTRACTBIGLIST(X, G;)

17: cmp_ratio < GETEXACTCMPRATIO(biglist)

18: if cmp_ratio > 1 then

19: X < X U COMPRESSBIGLIST(biglist), break
20: k < REMOVELARGESTCOLUMN(G;)

21: CUC « CcUC Uk

22:  while |G;| >0
23: return X < X U CREATEUCGROUP(CUC)

though compression ratios are estimated from a sample, the
cost of the brute-force scheme is O(m?), which is infeasible.
Bin Packing: We observed empirically that the brute-
force method usually generates groups of no more than five
columns. Further, we noticed that the time needed to esti-
mate a group size increases as the sample size, the number
of distinct tuples, or the matrix density increases. These two
observations motivate a heuristic strategy where we parti-
tion the columns into a set of small bins and then apply
the brute-force method within each bin to form the column
groups. We use a bin-packing algorithm to assign columns
to bins. The weight of each column indicates its estimated
contribution to the overall runtime of the brute-force par-
titioning. The capacity of a bin is chosen to ensure mod-
erate brute-force runtime per bin. Intuitively, bin packing
minimizes the number of bins, which should maximize the
number of columns within each bin and hence grouping po-
tential, while controlling the processing costs.
_Bin Weights: We set the weight of the ith column to
di/n, i.e., the ratio of distinct tuples to rows. If d;/n is
larger than a specified threshold v, then we consider col-
umn 7 as ineligible for grouping. We also set each bin capac-
ity to w = B~, where ( is a tuning parameter. We made the
design choice of a constant bin capacity—independent of the
number of non-zeros—+to ensure constant compression ratios
and throughput irrespective of blocking configurations. We
use the first-fit heuristic to solve the bin-packing problem.

4.3 Compression Algorithm

We now describe the overall algorithm for creating com-
pressed matrix blocks (Algorithm 2). Note that we transpose
the input in case of row-major dense or sparse formats to
avoid performance issues due to column-wise processing.

Planning Phase (lines 2-12): Planning starts by draw-
ing a sample of rows from X. For each column i, the sample
is first used to estimate the compressed column size S¢ by
S = lﬂnin(S‘f‘LE7 S’l-OLEL where SFYF and SOMF are obtained
by substituting the estimated (L, 23, 745, and l;z‘j into formulas
(1) and (2). We conservatively estimate the uncompressed
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column size as Sle © = %, which covers both dense and
sparse with moderate underestimation for common scenar-
ios, and allows column-wise decisions independent of |C"V°|
(where sparse-row overheads might be amortized in case of
many columns). Columns whose estimated compression ra-
tio Sle c / Slc exceeds 1 are added to a compressible set C°.
In a last step, we divide the columns in C° into bins and
apply the greedy brute-force algorithm within each bin to
form column groups.

Compression Phase (lines 13-23): The compression
phase first obtains exact information about the parameters
of each column group and uses this information in order to
adjust the groups, correcting for any errors induced by sam-
pling during planning. The exact information is also used to
make the final decision on encoding formats for each group.
In detail, for each column group G;, we extract the “big”
(i.e., uncompressed) list that comprises the set 7; of distinct
tuples together with the uncompressed lists of offsets for the
tuples. The big lists for all of the column groups are ex-
tracted during a single column-wise pass through X using
hashing. During this extraction operation, the parameters
di, zi, Tij, and b;; for each group G; are computed exactly,
with negligible additional cost. These parameters are used
in turn to calculate the exact compressed sizes SKME and
SOLE and exact compression ratio Sp° / SE for each group.

Corrections: Because the column groups are originally
formed using compression ratios that are estimated from a
sample, there may be false positives, i.e., purportedly com-
pressible groups that are in fact incompressible. Instead of
simply storing false-positive OLE/RLE groups as UC group,
we attempt to correct the group by removing the column
with largest estimated compressed size. The correction pro-
cess is repeated until the remaining group is either com-
pressible or empty. After each group has been corrected, we
choose the optimal encoding scheme for each compressible
group G; using the exact parameter values d;, z;, bi;, and 75
together with the formulas (1) and (2). The incompressible
columns are collected into a single UC column group.

5. EXPERIMENTS

We present some highlights from an experimental study
of CLA as implemented in SystemML, emphasizing end-to-
end results; see [12] for details and additional experiments.
Overall, the results show that, for a variety of ML programs
and real-world datasets, CLA indeed achieves in-memory
matrix-vector multiplication performance close to uncom-
pressed while yielding substantially better compression ra-
tios than lightweight general-purpose compression. As a con-
sequence, CLA provides large end-to-end performance im-
provements when uncompressed or lightweight-compressed
matrices do not fit in local or aggregated memory.

Implementation: When CLA is enabled, SystemML au-
tomatically injects—for any multi-column input matrix—a
so-called compress operator via new rewrites. This applies
to both single-node and distributed Spark operations, where
the execution type is chosen based on memory estimates. For
Spark, we compress individual matrix blocks independently.
Making our compressed matrix block a subclass of the un-
compressed matrix block yielded seamless integration of all
operations, serialization, and buffer-pool interactions.

Experimental Setup: We ran all experiments on a clus-
ter of one head node and six additional nodes; see [12] for
details. For our end-to-end experiments, we ran versions of
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Figure 7: Matrix-Vector Multiplication Time.

various ML algorithms from Table 2 over scaled-up versions
of the real-world Mnist and ImageNet datasets introduced
in Table 1. Specifically, we used the InfiMNIST data gener-
ator [7] to create an Mnist480m dataset of 480 million obser-
vations with 784 features and binomial class labels (1.1 TB
in binary format), and also scaled up the ImageNet dataset
via replication. We used the ML algorithms in Table 2,
with the multinomial variant of logistic regression and the
Poisson-regression instantiation of GLM. To isolate the ef-
fects of compression, we compare against Apache SystemML
0.9 (Feb 2016) with uncompressed linear algebra (ULA),
heavyweight compression (Gzip), and lightweight compres-
sion (Snappy); for the latter, we use native compression li-
braries and ULA. We report end-to-end runtime (average
of 3 rumns), including read from HDFS, Spark context cre-
ation, and compression. The baselines are ULA and Spark’s
RDD compression with Snappy. In [12], we also compare
with CSR-VI [18] and D-VI, a sparse (resp., dense) format
with dictionary encoding; our experiments show that CLA
has similar operations performance to these algorithms and
significantly better compression ratios.

Before describing end-to-end results, we briefly discuss the
empirical performance of the compression algorithm and of
matrix-vector operations over compressed data.

Compression Speed: Over all datasets, CLA shows rea-
sonably good compression times with a bandwidth ranging
from 75.2MB/s to 121.4 MB/s, single-threaded. Our use of
sampling (with the default sampling fraction of 0.01) yielded
speedups of up to two orders of magnitude, especially for
datasets like Census and Covtype, where a substantial frac-
tion of time is spent on column grouping. In comparison, the
single-threaded compression bandwidth of Gzip and Snappy
ranged from 6.9 MB/s to 35.6 MB/s and from 156.8 MB/s to
353 MB/s, respectively.

Operations Speed: Figures 7(a) and 7(b) show the
single- and multi-threaded matrix-vector multiplication
time. Despite row-wise updates of the target vector (which
favors uncompressed row-major layout), CLA shows per-
formance close to ULA, with the exceptions of Higgs and
Mnist8m, where CLA performs significantly worse. This lat-
ter behavior is mostly caused by (1) a large number of val-
ues which require multiple passes over the output vector,
and (2) the size of the output vector. For Higgs (11M rows)
and Mnist8m (8M rows), the target vector does not entirely
fit into the L3 cache (15 MB). Accordingly, we see substan-
tial improvements by cache-conscious CLA operations, es-
pecially for multi-threaded due to cache thrashing effects.
Multi-threaded operations show a speedup similar to ULA
due to parallelization over logical row partitions, in some
cases even better. Results for vector-matrix multiplication
are similar. Overall, we obtain empirical confirmation of our
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Table 3: Mnist8m Deserialized RDD Storage Size.

Block Size | 1,024 | 2,048 | 4,006 | 8,192 | 16,384
ULA ISCB | I8GB | I8GB | 18GB | 18GB
Snappy 74GB | 74GB | 74GB | 7.4GB | 7.4GB
CLA 9.9CGB | 84GB | 6GB | 44GB | 3.6GB

50000 9 5 yra (Uncompressed)
—&—  Snappy (RDD Compression)
@ 40000 —
o —4— CLA
& 30000 28
T 216GB
2 |
£ 20000 Uncompressed |
2 fits in memory ! _A
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Figure 8: L2SVM End-to-End Performance Mnist.

goals for CLA: superior compression ratios (per Table 1) and
operation performance comparable to uncompressed. The
overall impact on performance is discussed below.

RDD Storage Size: ULA and CLA wuse the dese-
rialized storage level MEM_AND_DISK, while Snappy uses
MEM_AND_DISK_SER because RDD compression requires se-
rialized data. ULA also uses MEM_AND_DISK_SER for sparse
matrices whose sizes exceed aggregated memory. Table 3
shows the RDD storage size of Mnist8m with varying Sys-
temMUL block size. For 16K, we observe a compression ratio
of 2.5x for Snappy but 5x for CLA. We obtained similar ra-
tios for larger Mnist subsets. CLA’s compression advantage
increases with larger block sizes because the common header
is stored only once per column group per block.

L2SVM on Mnist: We first investigate the common
classification algorithm L2SVM. An L2SVM model is fit to
training data by adjusting its parameters to minimize train-
ing error via iterative gradient-descent. For each gradient
step, an inner loop searches for the optimal step size. In our
setup the aggregated memory size is 216 GB. SystemML uses
hybrid runtime plans, where only operations that exceed the
driver memory are executed as distributed Spark instruc-
tions; all other vector operations are executed—similarly
for all baselines—as single-node operations at the driver.
For L2SVM, we have two scans of X per outer iteration
(matrix-vector and vector-matrix), whereas all inner-loop
operations are purely single-node for the data at hand. Fig-
ure 8 shows the results. In reference to our goals from Fig-
ure 1, Spark spills data to disk at the granularity of par-
titions (128 MB as read from HDFS), leading to a graceful
performance degradation. As long as the data fits in aggre-
gated memory (Mnist80m, 180 GB), all runtimes are almost
identical, with Snappy and CLA showing overheads of up to
25% and 10%, respectively. However, if the ULA format no
longer fits in aggregated memory (Mnist160m, 360 GB), we
see significant improvements from compression because the
size reduction avoids spilling, i.e., reads per iteration. The
larger compression ratio of CLA allows to fit larger datasets
into memory (e.g., Mnist240m). Once the CLA format no
longer fits in memory, the runtime differences converge to
the differences in compression ratios.

Other ML Algorithms on Mnist: Next, we study a
range of algorithms, including algorithms with RDD opera-
tions in nested loops (e.g., GLM, Mlogreg) and non-iterative
algorithms (e.g., LinregDS and PCA). Table 4 shows the re-
sults for the interesting points of Mnist40m (90 GB), where
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Table 4: End-to-End Performance Mnist40m/240m.

Algorithm | Mnist40m (90 GB) Mnist240m (540 GB)
ULA | Snappy | CLA | ULA | Snappy | CLA

Logreg 630s | 875s [622s|83,153s|27,626s|4,379s

GLM 409s | 647s [397s|74,301s|23,717s|2,787s
LinregCG [173s| 220s | 176s | 2,959s | 1,493s | 902s
LinregDS | 187s| 208s | 247s | 1,984s | 1,444s [1,305s

PCA 186s| 203s | 242s | 1,203s |1,020s | 1,287s

Table 5: End-to-End Performance ImageNet15/150.

Algorithm [ ImageNet15 (65 GB) | ImageNet150 (650 GB)
ULA | Snappy| CLA ULA |Snappy| CLA

L2SVM [157s| 199s 159s | 25,572s | 8,993s [ 3,097 s
Mlogreg | 255s| 400s | 250s |100,387s|31,326s(4,190s
GLM 190s | 304s | 186s | 60,363s |16,002s|2,453 s
LinregCG | 69s 98 s Tls 3,829 997s 623 s
LinregDS | 207s | 216s | 118s | 3,648s | 2,720s |1,154s
PCA 211s| 215s | 119s | 2,765s | 2,431s [1,107s

all datasets fit in memory, and Mnist240m (540 GB), where
neither uncompressed nor Snappy-compressed datasets en-
tirely fit in memory. For Mnist40m and iterative algorithms,
we see similar ULA/CLA performance but a 50% slowdown
with Snappy. This is because RDD compression incurs de-
compression overhead per iteration, whereas CLA’s initial
compression cost is amortized over multiple iterations. For
non-iterative algorithms, CLA is up to 32% slower while
Snappy shows less than 12% overhead. Beside the initial
compression overhead, CLA also shows less efficient TSMM
performance, while the RDD decompression overhead, is
mitigated by initial read costs. For Mnist240m, we see signif-
icant performance improvements by CLA—of up to 26x and
8x——compared to ULA and RDD compression for Mlogreg
and GLM. This is due to many inner iterations with RDD
operations in the outer and inner loop. In contrast, for Lin-
regCG, we see only moderate improvements due to a single
loop with one matrix-vector chain per iteration, where the
CLA runtime was dominated by initial read and compres-
sion. Finally, for LinregDS, CLA shows again slightly inferior
TSMM performance but moderate improvements compared
to ULA. Overall CLA shows positive results with significant
improvements for iterative algorithms due to smaller mem-
ory bandwidth requirements and reduced I/0.

ML Algorithms on ImageNet: To validate the end-
to-end results, we study the same algorithms over replicated
ImageNet datasets. Due to block-wise compression, repli-
cation did not affect the compression ratio. Table 5 shows
the results for ImangeNetl5 (65 GB) that fits in memory,
and ImageNet150 (650 GB). For LinregDS and PCA, CLA
performs better than on Mnist due to superior vector-matrix
and thus TSMM performance. Overall, we see similar results
with improvements of up to 24x and 7x.

6. CONCLUSIONS

We have shown that compressed linear algebra (CLA)—in
which matrices are compressed with lightweight techniques
and linear algebra operations are performed directly over
the compressed representation—can yield significant per-
formance benefits for common ML algorithms over real-
world data. CLA is enabled by declarative ML, which hides
the underlying physical data representation. CLA general-
izes sparse matrix representations, encoding both dense and
sparse matrices in a universal compressed form. CLA is also
broadly applicable to any system that provides blocked ma-

SIGMOD Record, March 2017 (Vol. 46, No. 1)

trix representations, linear algebra, and physical data in-
dependence. Meanwhile, we have also made our CLA pro-
totype available open source in Apache SystemML’s 0.11
release. Interesting future work includes (1) full optimizer
integration, (2) global planning and physical design tuning,
(3) integrating additional compression schemes, and (4) ef-
ficient operations beyond matrix-vector.
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Updates to the TODS Editorial Board

Christian S. Jensen
csj@cs.aau.dk

It is of paramount importance for a scholarly journal
such as ACM Transactions on Database Systems to have
a strong editorial board of respected, world-class schol-
ars. The editorial board plays a fundamental role in at-
tracting the best submissions, in ensuring insightful and
timely handling of submissions, in maintaining the high
scientific standards of the journal, and in maintaining the
reputation of the journal. Indeed, the journal’s associate
editors, along with the reviewers and authors they work
with, are the primary reason that TODS is a world-class
journal.

As of January 1, 2017, three Associate Editors—Divyakant

Agrawal, Sihem Amer-Yahia, and Paolo Ciaccia—ended
their terms, each having served on the editorial board
for roughly six years. In addition, they will stay on until
they complete their current loads.

Paolo, Divy, and Sihem have provided very substan-
tial, high-caliber service to the journal and the database
community. Specifically, they have lent their extensive
experience, deep insight, and sound technical judgment
to the journal. I have never seen them compromise on
quality when handling submissions. Surely, they have
had many other demands on their time, many of which
are better paid, during these past six years. We are all
fortunate that they have donated their time and unique
expertise to the journal and our community during half
a dozen years. They deserve our recognition for their
commitment to the scientific enterprise.

Also as of January 1, 2017, three new Associate Edi-
tors joined the editorial board:

e Feifei Li, University of Utah, https://www.
cs.utah.edu/~lifeifei

e Kian-Lee Tan, National University of Singapore,
https://www.comp.nus.edu.sg/~tankl

e Jeffrey Xu Yu, Chinese University of Hong Kong,
http://www.se.cuhk.edu.hk/people/
yu.htmlc

All three are highly regarded scholars in database sys-
tems. We are very fortunate that these outstanding schol-
ars are willing to volunteer their valuable time and in-
dispensable expertise for handling manuscripts for the
benefit of our community. Indeed, I am gratified that
they have committed to help TODS continue to evolve
and improve, and I am looking forward to working with
them.
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