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Editor’s Notes 
	

Welcome	to	the	December	2018	issue	of	the	ACM	SIGMOD	Record!		
	
This	issue	starts	with	the	Database	Principles	column	featuring	an	article	on	graph	queries	by	Boni-
fati	 and	 Dumbrava.	 The	 article	 provides	 an	 overview	 of	 topics	 in	 graph	 processing,	 focusing	 on	
graph-query	language	fragments	that	are	both	tractable	from	the	complexity	standpoint	and	practi-
cally	relevant.	The	authors	summarize	complexity	results	for	graph-query	evaluation	and	contain-
ment		for	a	variety	of	language	fragments,	and	outline	foundations	for	an	evaluation	and	incremen-
tal	view	maintenance	engine	for	one	such	fragment,	regular	queries.	Other	topics	discussed	in	the	
column	include	approaches	to	evaluating	complex	regular	path	queries,	namely	approximate	query	
evaluation	and	path	query	learning.	The	column	also	outlines	challenges	encountered	in	the	work	
on	 query	 benchmarking	 and	 log	 analysis,	 thus	 inviting	 the	 readers	 to	 participate	 in	 new	 lines	 of	
research.		
	
The	Distinguished	Profiles	column	 features	Andrew	Chien,	Professor	at	 the	University	of	Chicago,	
previously	vice	president/director	of	Intel	Research.	Andrew	is	an	ACM	Fellow,	an	IEEE	Fellow,	and	
a	 Fellow	 of	 the	American	Association	 for	 the	Advancement	 of	 Science.	 In	 this	 interview,	 Andrew	
shares	his	experience	and	vision	concerning	a	range	of	challenges	in	emerging	and	future	computa-
tional	systems.	He	notes	that	the	SIGMOD	community	is	uniquely	positioned	to	address	such	chal-
lenges,	 because	 its	 researchers	 have	 thought	 of	 computation	 and	 data	 in	 an	 integrated	 form.	 He	
then	outlines	major	trends	and	directions	that	SIGMOD	researchers	may	be	interested	in.	Andrew	
also	gives	advice	for	fledging	and	mid-career	database	researchers,	and	shares	his	desire	to	explore	
and	experiment	with	the	exciting	new	systems	produced	by	the	community	and	industry.		
	
The	 Centers	 column	 features	 an	 article	 by	 Abedjan,	 Breß,	 Markl,	 Rabl,	 and	 Soto	 on	 data-
management	 systems	 research	 at	 TU	 Berlin,	 Germany.	 The	 research	 is	 advanced	 with	 several	
groups	and	encompasses	a	wide	range	of	topics	discussed	in	detail	in	the	article,	including	scalable	
data	processing,	modern	hardware,	benchmarking,	and	data	 integration.	The	authors	also	discuss	
funding	support	for	the	group,	research	translation	into	products	and	systems,	and	ways	in	which	
the	research	group	has	supported	the	database	community.		
	
The	Reports	Column	features	two	articles.	The	first	article	is	the	SIGMOD	2018	Program	Committee	
Chair's	Report	by	Philip	Bernstein.	The	report	provides	detailed	information	about	the	submissions,	
the	reviewing	process,	decisions	on	revisions	and	acceptance,	and	the	conference	program,	includ-
ing	notes	on	changes	from	previous	years.	Bernstein	also	shares	observations	and	thoughts	on	the	
reviewing	quality,	and	provides	detailed	recommendations	on	producing	good	reviews.	Historical	
notes	 in	 the	article	 cover	Bernstein's	experience	and	contributions	as	PC	Chair	 for	SIGMOD	1979	
and	 VLDB	 2002.	 The	 article	 concludes	with	 a	 remark	 on	 how	 the	 conference	 reviewing	 process	
could	be	improved,	and	with	acknowledgments	to	the	SIGMOD	2018	PC	members	and	vice	chairs.	
The	 second	 article	 in	 the	 Reports	 Column	 reports	 on	 the	 proceedings	 of	 the	 First	 International	
Workshop	on	 Incremental	Recomputation:	Provenance	and	Beyond	(IRPb).	The	goal	of	 the	work-
shop	was	to	explore	the	breadth	and	depth	of	the	recomputation	problem,	with	specific	emphasis	
on	the	role	of	provenance	in	the	area.	The	workshop	topics	were	characterized	using	the	categories	
of	 recomputation,	 incremental	 computation,	approximate	computation,	and	provenance.	The	con-
tributions	also	covered	a	variety	of	application	domains.	The	report	summarizes	the	contributions	
and	provides	a	pointer	to	the	abstracts	and	presentations.		
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On	behalf	of	the	SIGMOD	Record	Editorial	board,	I	hope	that	you	enjoy	reading	the	December	2018	
issue	of	the	SIGMOD	Record!	
	
Your	submissions	to	the	SIGMOD	Record	are	welcome	via	the	submission	site:	

http://sigmod.hosting.acm.org/record		
	
Prior	to	submission,	please	read	the	Editorial	Policy	on	the	SIGMOD	Record’s	website:		

https://sigmodrecord.org		
	

Yanlei	Diao	and	Rada	Chirkova	

December	2018	
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Graph Queries: From Theory to Practice

Angela Bonifati
University of Lyon 1 & CNRS LIRIS
{angela.bonifati}@univ-lyon1.fr

Stefania Dumbrava
∗

ENS Rennes & CNRS IRISA & INRIA
{stefania-gabriela.dumbrava}@ens-rennes.fr

ABSTRACT
We review various graph query language fragments that
are both theoretically tractable and practically relevant.
We focus on the most expressive one that retains these
properties and use it as a stepping stone to examine the
underpinnings of graph query evaluation along graph
view maintenance. Further broadening the scope of
the discussion, we then consider alternative processing
techniques for graph queries, based on graph summa-
rization and path query learning. We conclude by pin-
pointing the open research directions in this emerging
area.

1. INTRODUCTION
Graphs are semantically rich data models able

to represent inherently complex object structures
and their interconnectivity relationships. Due to
their high expressivity, graphs are used in numer-
ous domains, including Knowledge Representation
and the Semantic Web, Linked Open Data, geoloca-
tion data, as well as life science repositories, such as
those used in medicine, biology, and chemistry. Sev-
eral graph datasets, such as DBPedia [11], Wikidata
[40], and Bio2RDF [34], to name a few, are readily
available and exhibit a continuous growth, as new
user content is injected on a daily basis. Hence,
such massive, graph-shaped data have tremendous
potential to be queried and explored for knowledge
extraction purposes [17].

In this paper, which summarizes our previous
work in this area [16, 13, 23], we survey estab-
lished theoretical graph query foundations and dis-
cuss their practical impact. To this end, we exam-
ine graph query evaluation and incremental main-
tenance techniques, along with implementation as-
pects. We also review alternative graph query pro-
cessing techniques, such as approximate query eval-
uation and path query learning.

∗Work mainly done while affiliated with University of
Lyon 1 & CNRS LIRIS.

As opposed to their relational counterparts,
graph queries are recursive in nature and need to
inspect both the structure and the heterogeneity
of the underlying data. We illustrate this aspect
with the following user-specified query that we have
taken from the online Wikidata query set, formu-
lated by real users at the Wikidata SPARQL query
service 1. The query outputs the geolocation infor-
mation of all hospitals in the Wikipedia ontology at
a world-wide scale:

Q1: SELECT ∗ WHERE {
? item wdt : P31∗/wdt : P279∗ wd: Q16917 ;

wdt : P625 ? geo .
}

Note that wd:Q16917 is a hospital item, wdt:P31
and wdt:P279 are the “instance of” and “subclass
of” Wikidata properties, while wdt:P625 is a coor-
dinate location property. Such a query relies on a
recursive expression of the kind a∗/b∗, which drives
the navigation of the Wikipedia ontology to find
all possible occurrences of hospitals, as item in-
stances or subclasses. More precisely, the above
query retrieves a set of geolocation data points that
represent the positions of hospitals in a map. As
such, its result represents a graph of interconnected
hospital locations. Concerning the language frag-
ment to which this query belongs, we can classify
it as a Conjunctive Regular Path query, belonging
to C2RPQ, a notable query fragment that we dis-
cuss in Section 2. Due to the presence of recursion,
such a query performs complex navigation on the
Wikidata graph. An alternative example of a graph
query is the following Wikidata one, which retrieves
a single aggregate value, namely the total number
of humans in Wikidata 2.

Q2: SELECT (COUNT(? item ) AS ? count )
WHERE {

? item wdt : P31/wdt : P279∗ wd:Q5 .
}
1https://www.wikidata.org/wiki/Wikidata:
SPARQL_query_service/queries/examples
2Amounting to 4531233 (on September 25, 2018).
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In such a case, a property path of the type a/b∗

allows to navigate the Wikidata ontology.
While the first query belongs to C2RPQ, the sec-

ond query is a counting regular path query (a frag-
ment henceforth named RPQC). Even though these
fragments have remarkable differences in terms of
their evaluation complexity (see Section 3), they are
also significantly different in terms of their retrieved
output. In fact, while the result of the first query is
a geographical network, the second query retrieves
a semantically rich aggregate value.

This wide array of possibilities, in terms of query
input and output, along with the complexity of
query evaluation, drives and motivates our current
research in the area [23, 16, 22, 18, 8, 15, 7, 13, 12,
9], part of which we revisit in this paper.

We start by describing the actual expressivity
and computational complexity of practical graph
query fragments, as used in various modern graph
query languages [3], and focus on how to efficiently
process them. We also expand on ensuring the re-
liability of potentially security-critical applications
that can leverage queries in the above languages. To
this end, we illustrate in [16] the feasibility of em-
ploying formal methods to formalize the expressive
regular query (RQ) language and to mechanize the
implementation of a corresponding inference and
view maintenance engine, whose correct behavior
we establish through machine-checked proofs.

Hence, we turn to RPQs and study approximate
query processing (AQP), which gives the users the
agency to decide the tradeoff w.r.t efficiency for
query fragments that are expensive to process. In
particular, in [23], we investigate the effectiveness
of storing pre-computed aggregates to approximate
the result of RPQC queries, which have a high run-
time evaluation cost. To this purpose, we illustrate
a query-driven summarization algorithm that we in-
troduced. As we will outline in Section 4, we tackle
reachability preservation, in the presence of aggre-
gates, with the explicit purpose of obtaining a small,
reusable graph summary that can lend itself easily
to in-database approximate evaluation.

Next, we illustrate path query learning as an
alternative processing technique for graph queries
[13]. Still on the RPQ fragment, we show how to in-
fer a query statement from a set of positive and neg-
ative examples, the latter embodying the expected
(or not) query results. As the consistency checking
problem for RPQ queries is PSPACE-complete, we
resort to lifting the soundness condition of the learn-
ing algorithm and propose a learning algorithm that
selects paths of a given length. Finally, we discuss
an interactive scenario, which leads to a learning al-

gorithm that starts with an empty sample and con-
tinuously interacts with the user, in order to infer
the goal query.

The paper is organized as follows. We start in
Section 2 with an outline of the underlying graph
data models and the fundamental graph query frag-
ments that have been studied in the literature and
identified as retaining practical interest. Section 3
expands on the complexity of query and incremental
view evaluation and illustrates both evaluations for
a highly expressive query fragment. Section 4 de-
scribes approximate analytical processing and path
query learning. Finally, we conclude in Section 5,
by highlighting open problems in this area and by
providing future research directions.

2. PRELIMINARIES
Graph Database Models. Graph databases rely
on nodes, to denote abstract entities, and on edges,
to denote the relationships between them. Such is
the structure of the basic edge-labeled model, which
we consider in Section 3. This can be further en-
hanced, to account for direction, by taking edges to
be ordered pairs of vertices, for heterogeneity, by
allowing multiple edges between a given pair of ver-
tices, as well as multiple labels, on both vertices
and edges, and for data storage, by allowing an ar-
bitrary number of properties, or key/value pairs, to
be attached to both vertices and edges. Considering
these extensions, we reach the expressivity level of
the property graph model (PGM) [2, 17], on which
we focus in Section 4 and which we define next.

Given a finite sets of symbols (labels) Σ, prop-
erty keys K, and property values N , a property
graph instance G over (Σ, K, N ), is a structure
(V, E, η, λ, ν), such that V and E are finite sets of
vertex/edge identifiers, η : E → V × V associates
a pair of vertex identifiers to each edge identifier,
λ : V ∪ E → P(Σ) 3 associates a set of labels to
vertex/edges, and ν : (V ∪ E)×K → N , associates
a value to each vertex/edge property key.

Example 1. We exemplify the base, edge-labeled
model with the graph instance GSN in Fig. 1, which
represents a social network, whose schema is in-
spired by the LDBC benchmark [24]. Entities are
customers (type Person, Ci), connected (l0) and/or
following (l1) each other, that can purchase (l4)
merchandise (type Product, Mi). This is promoted
(l5) in ads (type Message, Ai), which are posted
(l3) on brand pages (type Forum, Pi), moderated
(l2) by specific persons. Additionally, customers can
endorse (l6) each other or endorse a brand.

3i.e., P(Σ) denotes the set of finite subsets of Σ.
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Figure 1: Example Social Graph GSN

Fundamental Query Fragments. Regular ex-
pressions over a finite alphabet Σ are defined as
e ::= ε | s, with s ∈ Σ | e + e | e · e | e∗. A reg-
ular language L(Σ) of complex labels can thus be
inductively built: L(ε) = {ε}; L(s) = {s| s ∈ Σ};
L(e1 +e2) = L(e1)∪L(e2); L(e1 ·e2) = L(e1)·L(e2);
L(e∗) = {e1 · e2 | e1 ∈ L(e) ∧ e2 ∈ L(e∗)}. Next,
given V, a countably infinite set of variables, and
D, a domain of constant values, terms are elements
of V ∪ D. Based on these building blocks, the fol-
lowing prominent query fragments have emerged:
1) regular path queries, RPQ = {s(t1, t2)|s ∈
L(Σ)}, 2) counting RPQ, RPQC = {s(t1, t2)|s ∈
L(Σ ∪ {count})}, 3) 2-way RPQs, which al-
low backward navigation, 2RPQ = {s(t1, t2)|s ∈
L(Σ ∪ {s−|s ∈ Σ})}, 4) conjunctive 2RPQ,
C2RPQ = {∧i∈N si(t1, t2)|si ∈ 2RPQ}, 5) union
of C2RPQ, UC2RPQ = {∨i∈N si(t1, t2)|si ∈
C2RPQ}, 6) nested UC2RPQ, nUC2RPQ =
{∨i∈N si(t1, t2)|si ∈ {s∗|s ∈ UC2RPQ}}, 7) union
of conjunctive, nested 2RPQ, UCN2RPQ =
{∨i∈N

∧
j∈N si,j(t1, t2)|si,j ∈ {s∗|s ∈ 2RPQ}}, and

the recent 8) regular queries, RQ = {s(t1, t2)|s ∈
{s∗|s ∈ UCN2RPQ}}.

The most expressive graph query fragment, RQ
(regular queries) [39, 36], is an extension of
unions of conjunctive 2-way regular path queries
(UC2RPQs) and of unions of conjunctive nested
2-way regular path queries (UCN2RPQs). Regu-
lar queries support expressing complex regular pat-
terns between graph nodes. They also correspond
to Datalog with linear recursion [31], also known as
non-recursive Datalog, extended, at the language-
level, with transitive closures of binary predicates.

Example 2. Revisiting Example 1, we illustrate
the above query fragments on the social graph GSN
from Figure 1:

Q1 : Ω1(X,B)← (l0 + l1)∗ · l6(X,B)
Q2 : Ω2(X,B)← l−4 · l5 · l−3 (X,B)
Q3 : Ω3(C, ) ← l−4 · l5 · l−3 (X,B), count(X,C)
Q4 : Ω4(X,B)← l−2 (X,B), l6 · l5 · l−3 (X,B)
Q5 : Ω5(X,Y )← l4 · Ω4

+ · l4(X,Y )
Q6 : Ω6(X,Y )← l3 · l5(B, X),Ω5(X,Y ), l3 · l5(B, Y )
Q7 : Ω7(X,Y )← (l−6 · (l0 + l1)+ + Ω6)(X,Y )
Q8 : Ω8(X,Y )← (l−4 · Ω7 · l4)+(X,Y )

Consider B to be a brand in the social graph GSN .
Ω1 returns the customers connected, directly or in-
directly, to an endorser, while Ω2 returns B’s cus-
tomers. Ω3 counts the above, while Ω4 returns B’s
fans, i.e., the customers that monitor a B page and
endorse its merchandise. Ω5 returns the products
that are viral, i.e., purchased (or endorsed, for Ω7)
by connected brand fans (of brand B, for Ω6). Ω8

returns all consumers that purchase viral B prod-
ucts. In terms of query expressivity, the following
memberships hold: Q1 ∈ RPQ,Q2 ∈ 2RPQ,Q3 ∈
RPQc, Q4 ∈ C2RPQ,Q5 ∈ UC2RPQ,Q6 ∈
nUC2RPQ,Q7 ∈ UCN2RPQ,Q8 ∈ RQ.

3. GRAPH QUERY PROCESSING
Our discussion on the evaluation and processing

of graph queries begins in Section 3.1, with an brief
overview of the respective complexity of the various
query classes we discuss. Narrowing down on Reg-
ular Queries, which represent the most expressive
fragment, we then proceed, in Section 3.2, to pre-
senting the design of a custom RQ evaluation and
incremental maintenance algorithm. In Section 3.3,
we provide insights concerning its corresponding im-
plementation and formal development, carried out
with the Coq proof assistant [37]. To the best of
our knowledge, this work constitutes the first cer-
tified specification and implementation of the RQ
language and of its mechanized processing engine.

3.1 Complexity Results
In Table 1, we summarize the main complexity re-

sults [36, 39] regarding the evaluation and contain-
ment of the graph query classes in Section 2. Note
that, at a foundational level, these fragments rely on
conjunctive queries (CQ), whose evaluation is poly-
nomial and whose containment is NP-complete [19].
Their common denominator is that they perform
edge traversals (through join chains), while specify-
ing and checking the existence of constrained paths.

The most expressive class we consider is RQ (Reg-
ular Queries) [36], already described in Section 2.
Unlike full Datalog [1], with P-complete evalua-
tion and undecidable containment, Regular Datalog
is particularly well-behaved. First, its evaluation
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t ::= n ∈ D | x ∈ V (Term)
A ::= s(t1, t2), s ∈ Σ | t1 = t2 (Atom)
L ::= A | A+ (Literal)
B ::= L1 ∧ . . . ∧ Ln (Conj. Body)
D ::= B1 ∨ . . . ∨Bn (Disj. Body)
C ::= (t1, t2)← D (Clause)
Π ::= Σ→ {C1, . . . , Cn} (Program)

Figure 2: Regular Datalog Grammar

has NLOGSPACE-complete data complexity and is
hence included in NC, the class of highly paralleliz-
able problems. Second, the containment of Regu-
lar Datalog queries is decidable, with an elementary
tight bound (2EXPSPACE-complete) [36].

The behaviors of the other fragments presented
in Table 1 resemble each other, with two excep-
tions. The evaluation of counting label-constrained
reachability queries RPQC has #P−complete data
complexity [38] and its containment problem is un-
defined. The containment problem for RPQ and
2RPQ is PSPACE-complete [6]. For the sake of con-
ciseness, we omit here further details on the com-
plexity of evaluation of special classes of RPQ, boil-
ing down to the trichotomy in [9] and to simple
transitive expressions in [33].

3.2 Evaluation and Maintenance
We present the theoretical foundations of an eval-

uation and incremental view maintenance engine for
regular queries (RQ). We begin with a high-level de-
scription of the basic algorithm underpinning eval-
uation and then extend the introduced constructs
to support incremental maintenance.
Evaluation. As a subset of Datalog, RQs can
consequently lend themselves to the same evalua-
tion techniques employed by deductive reasoning
engines. The adopted evaluation strategies of these
engines can be classified as: 1) bottom-up, i.e., start
from the extensional database and generate new
facts by forward-chaining, 2) top-down, i.e., start
from the query (part of the intensional database)
and construct a proof tree or a refutation proof by
back-chaining, or 3) rewriting-based, i.e., transform
the query into one for which bottom-up evaluation
emulates top-down information passing (magic-sets
[10]) or pushdown automata (chain-queries [28]).
Henceforth, we focus on the bottom-up approach,
and build on it in order to construct the first in-
ference engine. Our choice is motivated by the
desirable properties of bottom-up inference, such
as guaranteed termination for finite models and
amenability to formalization. Specifically, we rely

on its fundamentally set-theoretical nature to spec-
ify the RQ engine’s behavior and to construct its
machine-checked soundness proof in the Coq proof
assistant.

To facilitate efficient mechanical reasoning, we
represent RQ constructs as illustrated in Fig. 2.
Notably, we formalize programs as mappings from
indexing symbols to a single pair of source-target
nodes and to a normalized disjunctive body. The
normalized form is obtained through a completion
procedure, uniformizing clause heads and regroup-
ing their respective bodies. For example, the pro-
gram s(a, b). s(z, y) ← p(x, y), q+(z, x) is normal-
ized as s(x, y)← (a = x∧b = y)∨(p(z, y)∧q+(x, z))
and represented by a function from s to the head
and disjunctive body. Based on this representation,
we define an RQ over a graph G as a stratified, Reg-
ular Datalog program Π, along with a distinguished
query clause, whose head is the top-level view. We
illustrate this in Example 3, with lr(X,Y ) as RQ.

Example 3. In GSN , let B be a brand wanting to
determine if a customer pair (lc) is in the same ad-
vertising reachability cluster (lr). We say that B’s
advertising reaches a customer X either: 1) directly

(ld), if X endorses (l6) or purchases (l−4 ) merchan-
dise promoted (l5) in ads posted (l3) on the brand’s
page, or 2) indirectly (li), if X is linked via a fol-
lower/connection chain to another customer that is
under the direct reach of B.

lr(X,Y ) ← lc
+(X,Y )

lc(X,Y ) ← li(X,B), li(Y,B)
li(X,B) ← (l1 + l0)+ · ld(X,B)

ld(X,B) ← (l6 + l−4 ) · l5 · l3(X,B)

Figure 3: Advertising Reachability Clusters

The semantics of Regular Datalog programs fol-
lows standard term-model definitions. For opti-
mization purposes, we model interpretations G as
indexed relations (Σ× {∅,+})→ P(D ×D), which
contain labeled graphs and their transitive closure.
Given that closures are thus internalized, we also
impose that interpretations be well-formed, i.e.,
that the information stored in G(s,+) corresponds
to the actual transitive closure of G(s, ∅). Hence,
we check if, for every node pair (n1, n2) ∈ G(s,+),
there exists a path (vertex sequence) that starts
with n1 and ends with n2. Hence, a ground literal
sm(n1, n2) is satisfied by G iff (n1, n2) ∈ G(s,m),
with m ∈ {∅,+}, the transitive closure marker.
Consequently, a clause, with index s and disjunc-
tive body D ≡ (L1,1 ∧ . . . ∧ L1,n) ∨ . . . ∨ (Lm,1 ∧
. . . ∧ Lm,n), is satisfied by G, G |=s (t1, t2) ←
D, iff ∀η,∨i=1..m(

∧
j=1..n G |= η(Li,j)) ⇒ G |=
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Query Fragment Evaluation Containment
RPQ NLOGSPACE-complete PSPACE-complete

RPQC #P−complete Undefined
2RPQ NLOGSPACE-complete PSPACE-complete

C2RPQ NLOGSPACE-complete EXPSPACE-complete
UC2RPQ NLOGSPACE-complete EXPSPACE-complete

nUC2RPQ NLOGSPACE-complete EXPSPACE-complete
UCN2RPQs NLOGSPACE-complete EXPSPACE-complete

RQ NLOGSPACE-complete 2EXPSPACE-complete

Table 1: Evaluation and containment data complexity for the language fragments studied in this paper.

η(s(t1, t2)), i.e, for all substitutions η, which ground
body literals, if an instantiated body disjunct is sat-
isfied, then so is the instantiated head. The latter is
indeed a ground literal, as we impose the safety con-
dition that all head variables appear in the body. A
well-formed interpretation G is thus a model for a
program Π w.r.t Σ iff G satisfies all clauses indexed
by Σ symbols, i.e., G |=Σ Π iff ∀ s ∈ Σ,G |=s Π(s).

To compute models, we implement bottom-up
RQ evaluation based on the consequence operator
[1]. This relies on a generic matching algorithm
that, for an initial interpretation and a clause con-
struct, computes the set of all satisfying substi-
tutions. For example, given G and a literal l,
the matching function MB

G (l) outputs all substi-
tutions σ, such that G |= σ(l). For a clause,
Π(s) ≡ (t1, t2) ← ∨

i=1..nBi, it extends to body
matching straightforwardly, with MB

G (Bi) travers-
ing Bi and collecting the set of substitutions ob-
tained from the individual matching. Substitu-
tions for each disjunctive clause are thus accumu-
lated and the resulting ground heads, newly inferred
facts, are added to the interpretation. The conse-
quence operator, encoding nested-loop join, is ex-
pressed set-theoretically as TΠ,s(G) ≡ {σ(t1, t2) |
σ ∈ ⋃

i=1..nM
B
G (Bi)}.

Maintenance. Given updates ∆ to a base graph G,
the above evaluation procedure non-incrementally
maintains the top-level Π view, without reusing or
adjusting the previously computed maintenance in-
formation. This makes it especially inefficient when
few nodes are added to a high-cardinality graph.

To remedy this situation, we extend our pre-
vious algorithm to take into account information
from previously computed models. The key idea
is to restrict matching to graph updates in the
spirit of incremental view maintenance for relational
databases [27]. For example, let V be a material-
ized view, defined as the path over two base edges,
r and s, i.e., V (X,Y ) ← r(X,Z), s(Z, Y ). No-
tice that this path can also be seen as a join be-
tween the binary relations r and s on the Z vari-
able, abbreviated as V = r ./ s. For base deltas,
∆r and ∆s, we can compute the view delta as

∆V = (∆r ./ s) ∪ (r ./ ∆s) ∪ (∆r ./ ∆s), or,
factoring, as ∆V = (∆r ./ s) ∪ (rν ./ ∆s), with
rν = r ∪∆r. Hence, ∆V = ∆V1 ∪∆V2, with ∆V1

and ∆V2 computable via the following delta clauses:

δ1 : ∆V1 ← ∆r(X,Z), s(Z, Y )

δ2 : ∆V2 ← rν(X,Z),∆s(Z, Y )

In general, for V ← L1, . . . , Ln and an additive up-
date ∆, we can determine the view delta ∆V [G; ∆]
as the set of facts such that V [G : + : ∆] =
V [G]∪∆V [G; ∆]. To this end, we compute the delta
program δ(V ) = {δi | i ∈ [1, n]}, where each delta
clause δi is V ← L1, . . . , Li−1,∆Li, L

ν
i+1, . . . , L

ν
n.

Note that Lνj marks that we match Lj against
atoms in G ∪∆G with the same symbol as Lj and
∆Lj marks that we match Lj against atoms in ∆G
with the same symbol as Lj . We revisit the schema
in Example 1, on a slightly different graph instance,
to illustrate this incremental view computation.

Example 4. Consider Figure 4a, in which en-
tity Y is monitored (lm) by X, if X is its connec-
tion/follower/moderator, and auto-referrals (lar)
are computed as cyclic endorsements.

lm(X,Y ) ← (l0 + l1 + l2)(X,Y )
lar(X,Y ) ← l6(X,Y ), l6(Y,X)

All detectable auto-referrals are computable with
RQ below, as JΩKG = {(V6, V0), (V3, V0))}

Ω(X,Y )← lar(X,Y ), lm(Z,X), lm(Z, Y )

When updating the previous graph in Figure 4b:
JΩKG′ = {(V6, V0), (V3, V0), (V0,V2), (V2,V0), (V0,V5)}.
The delta update ∆Ω = {(V0,V2), (V2,V0), (V0,V5)}
can be incrementally computed from Π∆ = δ1∪δ2∪δ3,
as: δ1 = ∅, δ2 = {(V2,V0)}, δ3 = {(V0,V2), (V0,V5)}.

3.3 Implementation and Certification
The implementation of the engine accounts for

two modes of evaluation: base and incremental.
Note that the former is still needed as, in some cases
we identify, incremental evaluation is either not pos-
sible or not sensible, as full recomputation may be
faster. The built-in engine heuristic is bottom-up
and we leverage the non-recursive, stratified nature
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δ1 : ∆Ω(X,Y ) ← ∆lar(X,Y ), lm(Z,X), lm(Z, Y )
δ2 : ∆Ω(X,Y ) ← lar

ν(X,Y ),∆lm(Z,X), lm(Z, Y )
δ3 : ∆Ω(X,Y ) ← lar

ν(X,Y ), lm
ν(Z,X),∆lm(Z, Y )

(c) Delta Program for Detectable Auto-Referrals

Figure 4: Detectable Auto-Referrals

of the input programs to achieve single-pass, fine-
grained incremental model computation. In the fol-
lowing, we outline the top-level engine interface and
the main soundness theorem we formally prove.
Implementation. The static parameters of the
engine are: a program Π, a graph G, and a sym-
bol set, or support supp, indicating the validity of
a G subset, i.e., what information the incremental
engine needs not recompute. Indeed, as we will
see, a precondition of the engine is that the in-
put graph is a model of Π up to supp, i.e., that
G |=supp Π. Note that in the database literature,
the set of G symbols, Σ, is often seen as a disjoint
set pair, (ΣE ,ΣI), corresponding to the extensional
and intensional program parts. For our engine, this
distinction is “dynamic”, as the already-processed
strata-level is “extensional”, or immutable, for the
rest of the execution. Thus, typical cases for supp
are supp ≡ ΣE , when the engine has never been
run before, or supp ≡ Σ, where G is the output of
a previous run, and thus the consequences for all
clauses have been computed. The dynamic param-
eters, capturing the current execution state, are: ∆,
the current update, modified at each call, and the
already and to-be processed strata, Σ� and Σ�.

Relying on an incrementality-aware consequence
operator, TΠ,s

G,supp(∆), the engine iterates over Σ�

and, for each unprocessed symbol s, computes its
corresponding closure. The algorithm then calls it-
self recursively, adding both s and s+ to Σ�.

Before discussing the implementation of
TΠ,s
G,supp(∆), we explain the modifications made

to base matching, in order to accommodate delta
clauses and programs. Specifically, for each body
to be processed incrementally, we generate a
mask, B∆, by marking each of its literals with
m ∈ {B,D,F}. This indicates whether the engine
should match against the base interpretation, the

update, or both. We then define incremental atom
matching as:

MA,m
G,∆ (a) = (if m ∈ {B,F} then MA

G (a) else ∅) ∪
(if m ∈ {D,F} then MA

∆(a) else ∅)
Incremental body matching, MB

G,∆, proceeds as in
Section 3.2, but additionally takes into account B∆,
generated following the diagonal factoring below,
where each row corresponds to a mask element:




L1
D L2

F . . . Ln−1
F Ln

F

L1
B L2

D . . . Ln−1
F Ln

F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L1
B L2

B . . . Ln−1
B Ln

D




Finally, the last piece to complete the incremental
engine is the top-level clausal maintenance operator
TΠ,s
G,supp(∆) itself. This is more complex than its base

counterpart, as it must take into account which in-
crementality heuristics to apply, distinguishing be-
tween two cases. If s /∈ supp, or ∆ contains dele-
tions for any of the literals in the body of Π(s), it
uses the base operator TΠ,s(G :+: ∆), as we either
cannot reuse the previous model or cannot support
deletions through our incremental strategy. Other-
wise, it generates a body mask, B∆, for each of the
bodies B, and returns

⋃
Bm∈B∆

MB
G,∆(Bm).

Certification. Before stating the key result with
regard to the correct behavior of our engine, we
mention the pre-conditions imposed. First, we re-
quire our input programs Π be stratified, i.e., that
none of its head symbols depend on other that have
not been previously defined. Second, as we reason
about satisfaction up to a given symbol set, Σ, we
say that Π is a well-formed slice of Σ, if, for every s
in Σ, the symbols defining s in Π are contained in
Σ. We establish that the engine operates over well-
formed slices, which allows us to isolate reasoning
about the current iteration. Finally, we formally
prove that the incremental graph view maintenance
engine is sound, as stated below.

Theorem 1. Let Π be a safe, stratifiable, Regu-
lar Datalog program; Σ, its symbols; G, a graph in-
stance; ∆, an update. The incremental view main-
tenance engine cumulatively processes each strata
symbol, such that, if the already processed symbols,
Σ�, are a well-formed slice, if ∆ only modifies Σ�,
and if the updated graph is a model of Π under Σ�,
then it outputs an incremental update, which, when
applied to G, forms a model of Π under Σ.

The proof follows by structural induction on Σ�,
relying on results we establish regarding modular
satisfaction. These are paramount, as they allow
us to reason about satisfaction locally, within each
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well-formed slice. Note that the corresponding Coq
proof of Theorem 1 is about 25 lines long and, thus,
comparable to its paper-version. In total, the li-
brary we developed amounts to ∼ 1K lines of defini-
tions, specifying our mechanized theory, and ∼ 700
lines of proofs. Its compactness is mostly due to
the fact that we rely on a library fine-tuned for the
computer-aided theorem proving of finite-set theory
results. This was built to carry out the mechanized
proof of the Feit-Thompson theorem [26] on finite
group classification. We leveraged the finite reason-
ing support, by giving a high-level, mathematical
representation of the core engine components, as
exemplified with the definition of the consequence
operator in Section 3.2. This leads to composable
lemmas that boil down to set-theoretic statements
and, ultimately, to a condensed development, avoid-
ing the proof-complexity explosion characteristic of
formal verification efforts.

4. OTHER PROCESSING TECH-
NIQUES

We present alternative approaches that seek to
mitigate the challenges posed by the evaluation of
complex RPQ, as discussed in Section 3.1. First,
in Section 4.1, we focus on leveraging the expres-
sivity of the property graph model to develop effi-
cient approximate query evaluation techniques for
the RPQC fragment. Second, in Section 4.2, we
highlight the promise shown by path query learning
approaches, in the basic RPQ setting.

4.1 Query Approximation
In the following, we outline a newly introduced

algorithm for graph summarization, and its ap-
plication to the approximate evaluation of RPQC

queries.
Graph Summarization. Sampling approaches,
typically used for approximating relational queries,
are not directly applicable to graph processing, due
to the lack of the linearity assumption in graph-
oriented data [30]. Indeed, the linear relationship
between the sample size and execution time typ-
ical of relational query processing falls apart in
graph query processing. For this reason, we focus
on query-driven graph summarization as a baseline
technique for untangling approximate graph query
processing.

Our effort targets the efficient, high-accuracy, es-
timation of RPQC analytical queries, known to be
costly in terms of runtime. We tackle both chal-
lenges, in an effort to achieve an optimal trade-
off. First, we seek to obtain a compact (yet in-
formative) summary, by explicitly inspecting the

query workload and partitioning the graph accord-
ing to the connectivity of the labels identified as
most important. Second, we rely on the expres-
siveness of the property graph model to store perti-
nent, approximation-relevant, data, in the property
lists of both nodes and edges. Specifically, these
recorded statistics serve the purpose of preserving
label-constrained reachability information.

Since both the original and summarized graphs
adhere to the property graph data model (as pre-
sented in Section 2), the approximate evaluation
can be done directly inside the graph database itself,
thanks to a seamless query translation we provide.

We now focus on explaining and illustrating the
underlying summarization algorithm. Let G =
(V, E) be a graph with edge labels Λ(G). We intro-
duce a summarization algorithm that compresses G
to an AQP-amenable property graph, Ĝ, tailored
for counting label-constrained reachability queries,
with labels in ΛQ, where ΛQ ⊆ Λ(G).

The summarization algorithm consists of the fol-
lowing three phases. First, the grouping phase com-
putes Φ, a label-driven partitioning of G into group-
ings, following the label connectivity on the most
frequent labels in Λ(G). Next, the evaluation phase
refines the previous step, further isolating into su-
pernodes the grouping components that satisfy a
custom property concerning label-connectivity. The
merge phase then coalesces supernodes into hyper-
nodes, based on label-reachability similarity condi-
tions, as specified the heuristic mode m.

The grouping phase returns a partitioning Φ of
G, such that |Φ| is minimized and, for each Gi ∈ Φ,
the number of occurrences of the most frequent edge
label in Λ(Gi), max

l∈Λ(Gi)
(#l), is maximized. Hence, we

first sort the edge label set Λ(G) into a frequency list,−−−→
Λ(G). For each li ∈

−−−→
Λ(G), in descending frequency

order, we identify the largest G-subgraphs that are
weakly-connected on li.

Example 5. Let G be the graph from Figure 1.
It holds that: #l0 = 11, #l1 = 3, #l2 = 2, #l3 =
6, #l4 = 7, #l5 = 7, #l6 = 1. Hence, we can

take
−−−→
Λ(G) = [l0, l5, l4, l3, l1, l2, l6]. Note that, as

#l4 = #l5, we can choose an arbitrary order for

the labels in
−−−→
Λ(G). We first add G1 to Φ, as it re-

groups the maximal weakly-label components on l0.
Hence, V = {R1 − R7,M1 −M6, F1, F2}. Next, we
add G2 to Φ, as it regroups the maximally weakly-
label component on l5. We obtain V = {F1, F2} and
Φ = {G1,G2,G3}, as shown in Figure 5a.

The evaluation phase takes as input Φ, the pre-
viously obtained G-partitioning, together with ΛQ,
and outputs G∗ = (V∗, E∗), an AQP-amenable com-
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pression of G. The phase computes V∗, the set
of supernodes (SN), and E∗, the set of superedges
(SE). After each step, G∗ is enriched with AQP-
relevant properties, such as: VWeight and EWeight,
the number of inner vertices and edges; LPercent,
the percentage-wise label occurrence; and LReach,
the number of vertex pairs connected by an edge
with a given label. We also record pairwise label-
traversal information, such as: EReach, the number
of paths between two cross-edges with given labels,
directions, and common node; and δ, the number
of traversal edges, i.e., inner/cross-edge pairs, with
given labels, directions, and common endpoint. Fi-
nally, we compute VF , the number of frontier ver-
tices, given a fixed label and direction, as well as
δ, the relative label participation, i.e., the number
of cross-edges on a given label, relative to that of
frontier vertices on another label.

The merge phase takes as input the G∗ graph and
ΛQ and outputs a compressed graph, Ĝ = (V̂, Ê).
The phase proceeds in two steps, corresponding to
the creation of V̂, the set of hypernodes (HN), and,

respectively, to that of Ê, the set of hyperedges
(HE). HNs are computed by merging together su-
pernodes based on two criteria. The primary, inner-
merge, condition for candidate supernodes requires
them to be maximal weakly label-connected on the
same label. The source-merge heuristic additionally
requires that they share the same set of outgoing la-
bels, while the target-merge heuristic requires that
they share the same set of ingoing labels. HEs are
obtained by merging superedges that share the same
label and endpoints. Finally, Ĝ is enriched with pre-
vious AQP-relevant properties, with the addition of
V∗Weight, the average SN weight in each HN.

The three phases of the summarization algorithm
are illustrated on our running example in Figure 5.
Optimal Summarization: NP-Completeness.
We prove the intractability of the optimal graph
summarization problem, under the conditions of our
algorithm. Specifically, let G = (V, E) and Φ =
{Gi = (Vi, Ei) | i ∈ [1, |V|]}, a G-partitioning. Each
HN in Gi ∈ Φ contains HN-subgraphs, Gki , that
are all maximal weakly label-connected on a label
l ∈ Λ(G). A summarization function χΛ : V → N
assigns to each vertex, v, a unique HN identifier
χΛ(v) ∈ [1, k]. χΛ is valid, if, for any v1, v2, where
χΛ(v1) = χΛ(v2), v1, v2 are in the following cases.
Case 1: part of the same HN-subgraph, Gki , that is
maximal weak label-connected on l.
Case 2: part of different HN-subgraphs, Gk1

i , Gk2
i ,

each maximal label-connected on l and not con-
nected by an l-labeled edge in G.

Theorem 2. Let MinSummary be the problem
that, for a graph G and an integer k′ ≥ 2, decides
if there exists a label-driven partitioning Φ of G,
|Φ| ≤ k′, such that χΛ is a valid summarization.
MinSummary is NP-complete, even for undirected
graphs, |Λ(G)| ≤ 2 and k′ = 2.

Approximate Query Evaluation. For a graph
G and a counting reachability query Q, we approxi-
mate the result JQKG of evaluating Q over G. Hence,
we translate Q into a query QT , evaluated over the
summarization Ĝ of G, such that JQT KĜ ≈ JQKG , as
discussed next.
Simple and Optional Label Queries. There are two
configurations in which a label l can occur in Ĝ: ei-
ther within a HN or on a cross-edge. Thus, we either
cumulate the number of l-labeled HN inner-edges
or the l-labeled cross-edge weights. To account for
the potential absence of l, we also estimate, in the
optional-label queries, the number of nodes in Ĝ, by
cumulating those in each HN.
Kleene Plus and Kleene Star Queries. To estimate
l+, we cumulate the counts within HNs containing
l-labeled inner-edges and, as above, the weights on
l-labeled cross-edges. For the first part, we use the
statistics gathered during the evaluation phase. We
distinguish three scenarios, depending on whether
the l+ reachability is due to: 1) inner-edge connec-
tivity – hence, we use the corresponding property
counting the inner l-paths; 2) incoming cross-edges
– hence, we cumulate the l-labeled in-degrees of HN
vertices; or 3) outgoing cross-edges – hence, we cu-
mulate the number of outgoing l-paths. To handle
the ε-label in l∗, we additionally estimate, as before,
the number of nodes in Ĝ.
Disjunction. We treat each possible configuration,
on both labels. Hence, depending on each case, we
cumulate the number of HN inner-edges, on either
label, or the cross-edge weights with either label.
Binary Conjunction. We consider all cases, depend-
ing on whether: 1) the concatenation label l1 · l2
appears on a path within a HN, 2) one of the labels
l1, l2 occurs on a HN inner-edge and the other, as a
cross-edge, or 3) both labels occur on cross-edges.

Example 6. We evaluate the AQP-translation
of example queries of each of the types mentioned
above:
Jl5KĜ = QTL(l5) =

∑
v̂∈V̂

EWeight(v̂, l5) ∗ LPercent(v̂, l5)

= EWeight(HN2, l5) ∗ LPercent(HN2, l5) = 7
Jl2?KĜ = QTL(l2) +

∑
v̂∈V̂
V∗Weight(v̂) ∗ VWeight(v̂) = 27

Jl+0 KĜ =
∑
v̂∈V̂

LReach(v̂, l0) +
∑
ê∈Ê

EWeight(ê, l0) = 15

Jl∗0KĜ = Jl+0 KĜ +
∑
v̂∈V̂
V∗Weight(v̂) ∗ VWeight(v̂) = 40

Jl4 + l1KĜ = Jl4KĜ + Jl1KĜ = 14 and Jl−4 · l1KĜ = 7.
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Figure 5: Summarization Phases for GSN

4.2 Query Learning
The problem of learning a regular path query q ∈

RPQ consists of deriving a query statement from
a set of user examples, specified under the form of
positive and negative labels on the nodes of an in-
put graph instance. A positive example is thus a
positively labeled node n+ in the input graph G if n
should be present in the query result, while a nega-
tive example n− is the opposite. We denote by S+

the set of positive examples and by S− the set of
negative ones and their union by S = S+ ∪ S−. In
this work, we exemplify the query to be learned as
an automaton. Regular languages can alternatively
be represented by automata. We refer to [28] for
standard definitions of nondeterministic finite word
automaton (NFA) and deterministic finite word au-
tomaton (DFA). We rely on a Gold-style learning
algorithm [25], thus on the standard framework of
language identification in the limit. We aim at a
polynomial query learning algorithm that is at the
same time sound and complete. Soundness means
that given the set of positive and negative exam-
ples, the algorithm will correctly return a consis-
tent query with respect to the input positive and
negative examples. The algorithm should also be
complete, in the sense that it should be capable of
learning any query from the set of input examples.
It is easy to see that soundness is difficult to achieve,
due to the intractability of consistency checking [13,
12], which is PSPACE-complete for queries in RPQ
and NP-complete for concatenations of symbols.

Example 7. Consistency checking for a query of
the kind Q(l4, l5) ≡ l4 · l5( , ) corresponding to the
direct reach of a company via its page ads (i.e., the
node pairs of customers and product advertisements
in Figure 1) is already NP-complete.

Due to this intractability, in our work [13, 12]
we lifted the soundness condition of the algorithm
and resorted to query learning with an abstain con-
dition. If a consistent query cannot be efficiently
found, the algorithm abstains from answering. The
learning model with abstain is guaranteed to re-
turn, in polynomial time, either a consistent query
or a null value, if such a query cannot be found. In
particular, if a polynomial characteristic sample is
provided, the learning algorithm is guaranteed to
return the goal query.

The learning algorithm works by selecting the
smallest consistent paths (SCPs) of length bounded
by k (in order to avoid the enumeration of infinite
paths). It then generalizes the SCP by states merge
on the automaton [35].

The learnability of our query class corresponding
to RPQ≤n (denoting the RPQ of size at most n)
is stated by the following result.

Theorem 3. The query class RPQ≤n is learn-
able with abstain in polynomial time and data, us-
ing the algorithm learner with the parameter k set
to 2× n+ 1.

In order to illustrate the underpinnings of our
learning algorithm, we define the notion of a con-
sistent path as follows. A path is consistent if it
can be selected by the algorithm, for each positive
node, and it does not cover any negative node. One
can enumerate consistent paths (according to the
canonical order ≤) by identifying the paths of each
node labeled as positive and stopping when a con-
sistent path is found, for each node. We refer to the
obtained set of paths as the set of smallest consis-
tent paths (SCPs).
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Example 8. For example, given the graph in
Figure 1 and a sample s.t. S+ = {C2, C10} and
S− = {M5}, we obtain the SCPs l0 · l6, for C10,
and, respectively, l0 · l0 · l0 · l6, for C2.

Notice that in this case the disjunction of the
SCPs (i.e., the query l0 · l6 + l0 · l0 · l0 · l6) is consis-
tent with the input sample and one may think that
a learning algorithm should return such a query.
The shortcoming of such an approach is that the
learned query would be always very simple, in the
sense that it uses only concatenation and disjunc-
tion. Since we want a learning algorithm that covers
all the expressibility of RPQ (in particular includ-
ing the Kleene star), we need to extend the algo-
rithm with a further step, namely the generaliza-
tion. The PTA (Prefix Tree Acceptor) [21] of the
previous SCPs can be constructed and its states are
tentatively merged, if the obtained DFA does not
select any negative node. In our example, it is easy
to see that the generalized path expression should
correspond to l+0 · l6.

Although Theorem 3 provides a theoretical k in
order to guarantee learnability of queries of a cer-
tain size, our practical evaluation [13, 12] showed
that small values of k (ranging between 2 and 4)
are enough to cover many notable cases of graph
query learning.

The above setting is static since the set of posi-
tive and negative examples is provided beforehand
and no interaction with the user takes place dur-
ing the learning process. An alternative, interactive
scenario, can be envisioned that leads to a learning
algorithm that starts with an empty sample and
continuously interacts with the user during the con-
struction of the input sample. The user provides
positive and negative labels on the nodes of the in-
put graph G until she is satisfied with the output of
the learned query. Thus, the sample keeps growing
until at most one query consistent with the user’s
labels is found. This scenario is inspired by the An-
gluin’s model learning with membership queries [4].

Let S be a sample over a graph G, the set of all
queries consistent with S over G is defined as:

C(G, S) = {q ∈ RPQ | S+ ⊆ q(G)∧S− ∩ q(G) = ∅}.
Assuming that the user labels the nodes consis-
tently with some goal query q, the set C(G, S) al-
ways contains q, where, initially, S = ∅.

Therefore, an ideal strategy of presenting nodes
to the user is able to get us quickly from S = ∅ to a
sample S s.t. C(G, S) = {q}. In particular, a good
strategy should not propose to the user the certain
nodes i.e., nodes not yielding new information when
labeled by the user. Formally, given a graph G, a

sample S, and an unlabeled node ν ∈ G, we say
that ν is certain (w.r.t. S) if it belongs to one of
the following sets:

Cert+(G, S) = {ν ∈ G | ∀q ∈ C(G, S). ν ∈ q(G)},
Cert−(G, S) = {ν ∈ G | ∀q ∈ C(G, S). ν /∈ q(G)}.

In other words, a node is certain with a label α if
labeling it explicitly with α does not eliminate any
query from C(G, S).

The notion of certain nodes is inspired by pos-
sible world semantics and certain answers [29],
and already employed for XML querying for non-
expert users [20] and for the inference of relational
joins [14, 15]. Additionally, given a graph G, a sam-
ple S, and a node ν, we say that ν is informative
(w.r.t. S), if it is neither labeled by the user nor
certain.

An intelligent strategy should propose to the user
only informative nodes. Since deciding the informa-
tiveness of a node is intractable, we need to explore
practical strategies that efficiently compute the next
node to label. The basic idea behind these is to
avoid the intractability of deciding the informative-
ness of a node, by only looking at a small number
of paths of that node. More precisely, we say that a
node is k-informative, if it has at least one path of
length at most k that is not covered by a negative
example. If a node is k-informative, then it is also
informative, otherwise we are not able to establish
its informativeness w.r.t. the current k.

5. CONCLUSION AND PERSPEC-
TIVES

In addition to our overview of topics we addressed
concerning graph query evaluation, approximate
processing and learning, we also would like to briefly
outline the challenges encountered when tackling
the problems of query benchmarking and log anal-
ysis, as reported in our previous work [8, 18]. In
gMark [8], we addressed the graph and query work-
load generation problems concerning edge-labeled
graph instances and UC2RPQ query workloads.
Such a generator has been employed in the experi-
mental evaluation of [16, 23] to generate varied test
cases of these engines. Benchmarking is a long-
standing question in our community, which serves,
at the same time, the purpose of both system-driven
and theoretical research. On the other hand, em-
pirical analysis of real-world SPARQL query logs
[18] also brought to our attention specific query lan-
guage fragments adopted in practice by users and
bots. A major future challenge is to let these stud-
ies influence the design of graph query benchmarks
that take into account the requirements of users and
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applications, as reflected by concrete usage of graph
query languages.

As discussed in Section 2, the efforts to under-
stand and hone in graph query expressivity have
benefited from the purely-declarative, logic based
formulation provided by Datalog. Various of its
fragments have been tailored to user-specific ap-
plications, with Regular Datalog having recently
emerged as an optimal compromise between usabil-
ity and tractability. In this setting, we provide,
as presented in Section 3, a mechanically certified
specification of this query language, as well as a cus-
tom algorithm for its evaluation and fine-grained
incremental maintenance in the dynamic setting.
Additionally, we build on state-of-the-art theorem
proving technology to verify, with the Coq theo-
rem prover, the correct behavior of the engine. As
shown in [16], its reasonable performance on realis-
tic, synthetically-generated [8] graph instances as-
certains the potential of employing formal methods
to obtain correct-by-construction query engines.

Various works, such as [32, 9, 33], have tackled
the complexity of evaluating graph queries, high-
lighting the challenges it poses. To mitigate these,
in Section 4, we explore alternative processing ap-
proaches. A first such technique is based on ap-
proximate query evaluation, as introduced in [23].
Inspired by the internalization of transitive closure,
which lies at the core of Regular Queries, we define
a graph summarization that seeks to compress the
nodes in the same label-connectivity closure. We
combine the compactness of the obtained represen-
tation with the expressivity of the property graph
model, used to store reachability preservation in-
formation, to maximize both evaluation efficiency
and accuracy. With respect to existing related ap-
proaches, we base our work on the property graph
model, leveraging aggregate pre-computation and
query-driven graph summarization to provide scal-
able, high-accuracy, in-database query answers.

In Section 4.2, we have described a polynomial al-
gorithm for learning graph queries of the basic RPQ
class. More expressive fragments, for example those
including conjunctions, can benefit from our previ-
ous work on learning relational queries [14]. A pos-
sible unification between the two lines of research
would be desirable given the actual occurrences of
C2RPQ in real-world query logs [18]. Another di-
rection of future work would be to actually amelio-
rate the interactive paradigm presented in [14, 13,
12]. In these instances, the initial sample is empty
and the user gradually fills the sample by providing
positive and negative labels, until the inferred query
and the user goal query coincide. For instance, more

feedback from the learning system would be needed
to more accurately model the user’s intentions and
to more efficiently reduce the search space given by
the initial sample, through asking questions [5].
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So, Andrew, welcome! 

Nice to be here.  

You’re from outside the SIGMOD community, a highly 
successful systems researcher. From your outside 
perspective, what words of wisdom do you have for us 
data and information researchers? 

That’s a very interesting question, Marianne. It’s a high 
bar for an outsider, actually. 

Well, let me narrow it down a little bit. Can you tell us 
what, from your perspective, either we’ve done wrong 
so far or important problems we haven’t given enough 
attention to yet? 

So, yeah, I think the SIGMOD community, actually, is 
an amazing, dynamic community, and as I look across 
computer science, several of the great strengths of the 
community is its deep attachment both to applications 
as well as to underlying technology and how that 
changes the game periodically. I also think – I mean, it’s 
pretty obvious to everyone that the growing importance 
of data and computing systems writ large puts the 
SIGMOD community sort of in the driver’s seat for all 
kinds of secular change in computing systems. 
So, the strengths of the community, I think, are evident, 
and if I had any advice to give, what I would say is that 
it seems to me that the SIGMOD community is unique 
in Computer Science in that it has thought of 
computation and data in an integrated form. That is, you 
talk about queries and computation and transactions 
with a data model, with a schema, with some notion of 
the structure of the data. Then, you talk about 
consistency of those kinds of data collections and so on, 
again in that integrated view of consistency with respect 
to transactions or computations or workloads or even 
applications. I actually hope that and would wish that 
the SIGMOD community would actually try and take 
some of its learnings and not straightforwardly 
transliterate them into other fields, into other areas of 
computer science, but I think that the community has a 
lot to contribute to the broader space of computing 
systems.  
I spent many of my years as a computer architect, and I 
can tell you that the issues of data locality, data 
orchestration, efficient location of computation, 
efficient parallelization are all fundamental problems in 
computing systems of every type today, and I can’t think 
of any community that understands better how to 
combine data organization with consistency with 
computation than the SIGMOD community. So, I think 
there are vast contributions to be made by the 
community. 

I think I understand what you’re getting at, but can you 
give me an example of something you could imagine us 
deciding to do? 

I don’t know if it’s a collective thing. It’s sort of can 
some members of the SIGMOD community that have 
this knowledge decide to forge out and create new kinds 
of computational systems that go a bit further from just 
the data part up into – you’re starting to see this, I guess, 
in certain kinds of – learning systems. Perhaps some 
examples of systems that are data-centric but actually 
are much more encompassing than just the data 
management tasks, so reaching out to include much 
more complex forms of computation, much more 
compute-intensive kinds of data transformation and 
analysis as an integral part of what you might think of 
as the data management system. 

Does Spark Streaming count, or Storm? 

I think those systems are examples of movement in that 
direction. I don’t know that they go very far. What do I 
mean by that? I think that, as I understand those systems 
– we’re fortunate to have an expert in those systems at 
Chicago now (we have Mike Franklin there now) – 
there’s more of a divide, actually, between the parts of 
the system around which you have strong properties of 
consistency or the like and the part that’s doing the 
computation.  
I think those systems, as I understand them, are 
behaving mostly like integration platforms, rather than 
trying to extend the semantics and the properties and the 
capabilities and analysis of the underlying database 
system or data management system up into those 
computational domains. 

So, you’d like to see stronger, for example, consistency 
guarantees or fault recovery properties in other types of 
systems as well. Are you thinking more up to new 
applications or down, putting them at lower levels of the 
system? 

I think it’s both directions, actually. I think that you’d 
like to have those nice properties evident at higher 
application layers, as you suggested. I think it’s also true 
one of the great successes of the database community is 
concurrency management as embodied with this notion 
of transactions, data orchestration, very efficient data 
movement, and aggregation of different operators, 
standard query across the memory hierarchy and 
understanding how to organize that data and that 
movement and how to represent that data.  
Those kinds of things, I think, are in their infancy in 
computer architecture and in systems, and when you 
look at the proliferation of nonvolatile storage all over 
these systems, new kinds of memories – and I’m happy 
to talk more about that – the opportunities to do 
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intelligent things are vast, but the frameworks and the 
understanding for how to do things that are not just 
locally intelligent but globally intelligent, I think, are 
lacking. 

What future trends in the lower levels of the system stack 
in the hardware world do we need to know about that 
we don’t already know about? 

Gosh, let me try to address that by rattling off some of 
the things that I think that are exciting that are 
happening in the hardware world right now. I think that, 
starting from several years ago, it’s become increasingly 
clear that specialization is the order of the day. So, what 
does specialization mean? Well, I don’t mean GPUs. 
GPUs are now a 10-year-old specialization trend. But 
now, I think you’re starting to see pushed both from the 
bottom – that is in mobile devices – but also from the 
top – large-scale cloud systems – customization of 
architectures for higher performance, for energy 
efficiency, for density, lower latency.  
So, that’s beginning in the forms of things like FPGAs 
(Field Programmable Gate Array), Microsoft’s Catapult 
project, and Google’s TPU (Tensor Processing Units). 
TensorFlow processing recently got a lot of press. But 
it’s also true that anyone working in a large-scale 
vertical application now has the means and the 
capability and the economics, actually, to do 
architectural specialization. 
So, what does that mean? I think you can expect to see 
accelerators for almost any focused, large-scale 
transformation you might want to do. There are the 
simple things like compression and crypto, which 

everyone is aware of, but you might imagine indexing, 
certain kinds of parsing tasks, certain kinds of data 
representation tasks. Transformations will be 
accelerated by new kinds of architectural features in the 
future. That has implications for software. That has 
implications for query optimization, perhaps, and the 
costs of different operations, and perhaps it has 
implications in the long-run for how people formulate 
their applications. 

Do you mean they’re accelerated by being put on 
FPGAs and TPUs, or do you mean some other way of 
accelerating? 

Oh, I view FPGAs as a halfway house. It’s a way of 
balancing the cost of putting custom silicon into these 
systems, yet preserving some of the breadth and 
flexibility by allowing it to be reprogrammed. I think 
what you’re going to see over the next couple of years 
is more and more custom silicon, hardwired silicon, 
being put onto these chips as SOCs, as instruction set 
extensions. Oracle has already done some interesting 
things in their Sonoma series of processors, Sparc-
based, that didn’t get, I think, a huge amount of press 
because that’s a narrow kind of exposure these days. 
But I think those things are happening because they give 
benefits of 10x, sometimes 100x efficiency in those 
tasks, and that’s just getting too big to ignore, and we 
have so much silicon. The latest chips being released 
have 20 billion transistors on computing chips, so 
there’s a lot of room to put interesting stuff on there. 

So, for researchers, unless you’re in a company who 
happens to produce these specialty chips, how would 
one do research on that topic? 

It’s a good question. I think FPGAs are a vehicle for 
doing research on these kinds of things, and there are 
systems available like the NSF Chameleon system that 
has a set of FPGAs deployed where you could do 
experiments. Amazon and the other cloud guys. 

Whoa! The FPGA is no problem, but the actual custom 
hardware is going to be way faster than the FPGA. That 
was what I was getting at. 

I think that’s a difficult challenge. So, when I was at 
Intel, the timescale from conception for new 
architecture features to them appearing in silicon in 
products was four to five years, but increasingly, in this 
new world, we’re seeing that distance being more like 
18 months, 24 months, something like that. So, I think 
it’s possible to work with folks with FPGAs and with 
simulation, and then, shortly thereafter, with actual 
hardware deployed at scale in these cloud centers or the 
like. 

[…]	the	issues	of	data	
locality,	data	orchestration,	

efficient	location	of	
computation,	efficient	
parallelization	are	all	

fundamental	problems	in	
computing	systems	of	every	
type	today,	and	I	can’t	think	
of	any	community	that	

understands	better	how	to	
combine	data	organization	
with	consistency	with	
computation	than	the	
SIGMOD	community.	
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So, I don’t have any magic bullet that makes it possible 
to have this time machine and deal with these future 
hardware systems today before they exist, but if there’s 
any encouragement, it’s that the timescales are much 
shorter. It isn’t the time from when you’re a graduate 
student to when you’re a full professor when the ideas 
actually get out there. It’s more like two or three 
SIGMOD review cycles. 

Okay, sounds great. 

There’s a couple of other things on that front. I think 
there’s a number of other trends that are happening that 
also are disruptive and play to this idea that folks 
who’ve been thinking about computation coupled with 
data coupled with efficient data movement have a lot to 
contribute.  
First, the memory hierarchies in these systems are 
getting much deeper, and that’s despite the fact that 
processor clock rates aren’t getting any faster. What’s 
happening is that multi-core requires more and more 
bandwidth, and in order to meet these bandwidth needs, 
people are moving to exotic stacked DRAM kinds of 
technologies.  
Perhaps you’ve heard of HBM or HBM2 or HBM3. 
These are stacked DRAM technologies that allow you 
to get into the terabytes range of memory bandwidth. 
These represent a super-fast but small memory 
hierarchy. So, you might have 16 gigabytes, 30 
gigabytes, those kinds of numbers, and then, beyond 
that, you can have the super-large DDR kinds of 
DRAMs, terabytes or those kinds of things, but you’re 
not going to have terabytes of this super-small, fast 
memory. 
So, if you’re thinking memory hierarchies go away, they 
probably don’t go away. What you’re seeing is one 
grows, and that means that that gives birth to another 
smaller one that’s above it. These memory hierarchies 
not only have bandwidth differences, so you might have 
terabytes per second of bandwidth in this small stacked 
memory hierarchy. That might actually mean that at the 
DDR level or in this future persistent 3D XPoint or other 
kinds of nonvolatile memory, you might have even less 
memory bandwidth there. You might have 100 
gigabytes per second or less because the introduction of 
a new tier usually for architects is an excuse to reduce 
bandwidth and performance at lower layers.  
So, I think that’s a challenging problem. Beyond that, of 
course, we have the widespread acceptance of SSDs and 
flash-based things. So, you’ve got at least three or four 
interesting tiers of memory hierarchy that seem to be 
here for the foreseeable future. 
Beyond that, there are all kinds of opportunities to do 
interesting things between them because the gap isn’t so 
large. I think the storage management community, the 

data community, has been, for many years, to a degree, 
shaped by the large gap between disk and DRAM. 

Not anymore. 

And now we have flash and NAND. 

We went main memory a while back because key 
customers tend to have problems that fit in main 
memory, so you’ve got to rethink everything from 
scratch. So, we went to the app route. And caching and 
buffering is always a popular topic, but I don’t know 
that we’ve gone for quite as many layers as you’ve been 
talking about yet. I don’t know. 

Okay, well, that’s good to hear. So, that’s one dimension 
of what’s happening. Another thing that has happened 
is that in this push to create the DRAM replacement, the 
hardware technology community has produced a whole 
bunch of different kinds of memories, and some of 
them, actually, are quite a bit faster and more reliable 
and more persistent than some of the technologies being 
pushed as DRAM replacements.  
So, just to hold out a few examples, there’s MRAM 
technologies and other kinds of exotic memory types 
that, while not cheap enough that you would ever dream 
of replacing all of your SRAM or all of your DRAM 
with those technologies, they can be used in spots and 
different special functions. 
So, I know there are some researchers looking at this, 
but I think there’s probably a larger opportunity to 
exploit those kinds of special memory technologies for 
narrower uses, perhaps certain kinds of locking 
structures, certain kinds of logging structures, things 
related to performance-critical aspects. 

Do you think that, in the nodes in the cloud, there’ll be 
little bits of these specialty memories sprinkled around? 

I think that’s likely, and I think it’s also likely you may 
see little bits of the specialty memory actually integrated 
into compute chips in the future, so that would be 
another way it could become generally accessible. 
I was going to add one more thing about memories. 
There’s a lot of exciting stuff happening in memory 
systems, perhaps more change now than there has been 
in decades. Another thing that’s happening is this vision 
around disaggregated servers or this looser association 
between memories and CPUs. For a long time, we’ve 
had this traditional notion of either pizza boxes – 
processor, DRAM, and maybe some disk or maybe 
some other kind of storage and scale out in the cloud – 
and now, increasingly, you have fat nodes and other 
kinds of pairings of quantities of DRAM and network-
attached storage and other kinds of things.  
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Sort of the natural and logical extension of that that’s 
being enabled by super-high-speed networks and 
interconnects is disaggregated resources in the cloud. 
So, you can imagine large nodes that are close to 
memory only. You can imagine nodes that are primarily 
compute and coupled to large shared pools of memory 
that might be shared amongst multiple different 
domains of processing. 
So, this raises a bunch of really interesting questions 
about how do you manage irregular memory 
performance, distributed memories of different 
capacities, various associations of computing, and all 
the data locality problems are different now in this 
space. And I think that we’re perhaps well-prepared 
from the distributed systems and cloud software side to 
think about those problems, but understanding how to 
do it well, I think, requires this integrated data model 
and computation view that has been one of the cores of 
the database community for years. 

Super. What major trends at the application level might 
have escaped our attention? 

Gosh, I’m loathe to presume that they’ve escaped this 
database community’s attention, but some of the things 
I think that are big changes, compared to what I hear 
about the database community focused on, is there’s this 
explosive growth around how data relates to society, 
that is, geographic, national boundaries, regulatory 
boundaries, different commercial proprietary 
boundaries, and so on, and it seems like that’s 
increasingly a fundamental aspect of function and 
performance of these systems. And while I don’t 
pretend to know everything that’s going on in the 
database community, it seems to me that those aren’t 
traditional foci of the community and I think are 
important challenges for how this all goes forward. 
The second area that I would comment on is there’s 
excitement around IoT – Internet of Things – self-
driving cars, any other kinds of network or edge devices 
that might be high data-rate sources. So, there are a 
couple different ways to think about those systems. I 
hear a lot about people thinking about the cloud side or 
the server side element of those problems, “After I’ve 
uploaded a lot of that data, how do I do analytics on it? 
How to do real-time analytics on it? How do I store and 
organize it and so on?” But the reality is that for lots of 
those systems, large fractions of the data will never 
make it to the cloud. One of the funny secrets of the 
sensor systems is that most video cameras don’t bother 
capturing, actually, most of their data. Certainly, the 
self-driving cars, where they’re talking about data rates 
of many gigabytes per second while the vehicles are in 
operation, imagine multiplying that by tens of millions 
of these vehicles. It’s not hard to figure out that you 
can’t actually afford to capture, network, and store all of 
that stuff for very long, if it ever gets to the data center. 

So, there’s a bunch of interesting challenges about how 
do you do distributed and streaming data analytics, how 
do you deal with collections that are fundamentally 
asymmetrically distributed, and how do you host 
applications in some reasonable programming and 
performance-tuning model across those very, very 
complicated kinds of infrastructures. And then, you’ve 
got all the security and privacy and governance kinds of 
questions we talked about before.  

We had some very interesting conversations with a 
provider here in Chicago that turns out to be the host of 
a lot of self-driving or connected-car kinds of 
applications. It’s the company that was formerly called 
Navteq, bought by Nokia and then sold to an alliance of 
German auto manufacturers. Very interesting company. 
And the challenge they have is how do they service 
these different companies that are fundamentally 
competitors, and of course they all have their own data. 
They all would benefit from some kind of data pooling 
because some of the companies are exotic, high-end 
kinds of firms that don’t sell tens of millions of cars a 
year and don’t have the same coverage. Others are that, 
but don’t necessarily have the high-end sensing 
platforms in their vehicles for economic reasons.  
So, those kinds of companies and venues have all of 
these problems today, and I can tell you from talking to 
them, they don’t have good systems solutions to address 
the privacy needs, the sharing needs, and the vertical 
aspects of those systems. 

Do you have any words of advice for fledgling or mid-
career researchers? 

That’s an interesting challenge. I guess what I would say 
is what I’ve learned over the years is I’d encourage them 
not to pursue any fads. There are lots of fads.   

You	should	realize	that	the	
process	of	research	is	to	
make	a	contribution	to	the	
intellectual	direction	of	the	

community.	If	you’re	
completely	aligned	with	the	
intellectual	direction	of	the	
community,	you’re	not	

making	any	contribution	to	
the	vector.	Maybe	a	small	
contribution	to	magnitude,	

but	not	direction.	

SIGMOD Record, December 2018 (Vol. 47, No. 4) 21



So, how do you know you’re not pursuing a fad? I think 
you need to make sure that the trends that your research 
ideas or research direction depend on are fundamental, 
and you have to figure that out for yourself because the 
fads won’t tell you that. And if you look hard and try to 
understand what the fundamentals are that are driving 
the importance of a set of research ideas or research 
direction, when you formulate your research problems 
and contributions, you’re likely to get resistance from 
the community.  
This is not necessarily a bad thing. You should realize 
that the process of research is to make a contribution to 
the intellectual direction of the community. If you’re 
completely aligned with the intellectual direction of the 
community, you’re not making any contribution to the 
vector. Maybe a small contribution to magnitude, but 
not direction. So, it’s not a bad thing if you initially get 
resistance, and you have to make the case, and you have 
to make a justification of the problems and so on that 
you work on. But I think that if you’re persistent at it, 
then that’s the way, actually, to make a long-term 
impact. 
And my experience has been we’ve worked in areas, and 
I have to confess that for me personally, at times, we had 
strong convictions about where things were gonna go, 
and we gave up too soon. And I think that in hindsight, 
when the community finally came around to those 
thoughts and ideas, we could have made a larger 
contribution if we had stuck with it and really built up 
that critical mass of both understanding as well as 
evidence and prominence in that area to drive the 
community forward. 

If you magically had enough extra time to do one 
additional thing at work that you’re not doing now, 
what would it be? 

There are a hundred things, but the thing I miss the most, 
and actually the reason that I decided to come back to 
the university, was the opportunity to have more time to 

be hands-on with technology. So, for me today, that 
means experimenting with new systems that have been 
put out. That means writing a little code. I never get to 
write as much as I would like. Maybe it means doing a 
little hardware design for me. But designing is as much 
about exploring all of the exciting new things that the 
community and the industry is producing and 
understanding what’s possible as it is about designing 
or coding per se. 

If you could change one thing about yourself as a 
computer science researcher, what would it be? 

I think I would say, and it’s related to the comment I 
made earlier about advice for young researchers, it 
would be patience. One of the things I’ve learned over 
the years is that you can often figure out a problem – 
first, you make sure it’s a real problem – and produce 
academic-quality kinds of ideas and solutions and proof. 
And then, if you build on that, you have a larger mass 
of proof. But it takes a long, long time for those ideas or 
systems to actually find their way into large-scale use. 
The idea is to find their way into the center of the 
community and so on. 
So, I think that we’re all, in the research community, 
very, very smart, quick people, and we need to 
understand that there’s a big gap between understanding 
at an intellectual level and acceptance and broad 
dissemination. So, one improvement for me would be to 
have the patience, actually, to see these things through, 
to make sure that inventions that we have or good ideas 
that we have actually have the maximum impact they 
can have. 

Thank you very much for talking with us today. 

Thank you for having me.  
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ABSTRACT
Data management systems research at TU Berlin is spear-
headed by the Database Systems and Information Man-
agement (DIMA) Group, the Big Data Management (Big-
DaMa) Group, as well as the affiliated Intelligent An-
alytics for Massive Data (IAM) Research Group at the
German Research Center for Artificial Intelligence (DFKI).
Jointly, our research activities encompass a wide variety
of database topics, including benchmarking, data inte-
gration, modern hardware, and scalable data processing.

As of Fall 2018, the current team is comprised of
three university professors, thirteen senior and postdoc
researchers, twenty PhD students, and several research
assistants. Among our notable accomplishments is the
DFG-funded Stratosphere Research Unit, which laid the
groundwork for what would later become Apache Flink.
DIMA has also been leading the Berlin Big Data Center,
one of only two BMBF-funded Big Data Competence
Centers in Germany since 2014. In addition, DIMA
is co-directing the Berlin Center for Machine Learning,
one of four BMBF-funded Machine Learning Compe-
tence Centers in Germany.

1. INTRODUCTION
Modern applications have to cope with large, fast,

and heterogeneous data, bridging the worlds of ad-
vanced data analysis and machine learning with data
management. Naturally, this poses numerous re-
search challenges for the design and usage of data
analytics systems. Fortunately, novel advances in
hardware technologies, data flow architectures, and
machine learning techniques are making it possi-
ble to build efficient and user-friendly data pro-
cessing systems. With a team of thirty database
researchers, comprised of doctoral students, senior
researchers, and university professors, TU Berlin is
well positioned to address key challenges.

Given the significant importance of data flow sys-
tems, at its onset DIMA1 embarked on the develop-
ment of a next generation big data analytics plat-
1https://www.dima.tu-berlin.de/

form. Initially, known as Stratosphere [6], over the
course of several years, it would later go on to be-
come Apache Flink, an open-source stream process-
ing framework for parallel dataflow analysis.

Today, ongoing research focuses on meeting the
requirement needs of novel Internet of Things in-
frastructures and increasing their ease of use. We
have developed a declarative programming interface
to enable data scientists to primarily focus their
attention on analysis. Other key research topics
that are underway include research on modern hard-
ware, systems benchmarking, end-to-end machine
learning pipelines, responsible data management,
data analysis infrastructures, and information mar-
ketplaces. Moreover, the recently established Big-
DaMa Group2 is actively conducting research (e.g.,
building end-to-end data preparation systems) to
address data heterogeneity challenges.

In the following sections, we further motivate sev-
eral of the aforementioned research topics and high-
light key contributions from our database systems
researchers. We will conclude with an overview
of our existing grants and collaboration activities
across our research projects.

2. SCALABLE DATA PROCESSING
Many specialized data processing systems have

been developed, in order to analyze high volume,
velocity, and variety data, efficiently and effectively.
To meet these demands, systems often exploit spe-
cially optimized libraries. For example, to perform
numerical linear algebra operations, conduct natu-
ral language processing, or execute graph analytics.
Moreover, system building commonly employs both
modern storage, such as non-uniform memory ac-
cess (NUMA) designs and processing architectures,
such as heterogeneous CPUs, to achieve higher per-
formance. It is the wide diversity of systems and
hardware solutions that greatly improve function-
ality and reduce the execution time for many data
2https://www.bigdama.tu-berlin.de
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analytics-dependent applications.
Next, we discuss our research contributions in

the area of scalable data processing, which includes
Stratosphere, Apache Flink, stream processing, and
declarative programming.

2.1 Stratosphere and Apache Flink
The official Apache Flink project website [1, 18]

declares that “Apache Flink is an open source plat-
form for distributed stream and batch data process-
ing. [At its] core [it] is a streaming data flow engine
that provides data distribution, communication, and
fault tolerance for distributed computations over data
streams.“

Many of the original concepts in Stratosphere in-
spired or were carried over to Apache Flink [8, 23],
such as the query optimizer, the streaming dataflow
runtime, and the support for iterations. While oth-
ers remained experimental features, such as the op-
timistic fault tolerance [32, 48]).

Apache Flink offers numerous additional features.
For example, it: (i) provides consistent, exactly
once guarantees for event time processing, (ii) is
fault-tolerant, even for stateful operations, and (iii)
is highly scalable, able to run on thousands of nodes
with high throughput and low latency.

Additionally, Apache Flink offers several APIs.
For example, the DataStream API applies transfor-
mations, such as filtering and aggregation on data
streams. The Table API supports the composition
of queries from relational operators, such as selec-
tion, filter, and join. Furthermore, Flink provides
numerous libraries, such as the: CEP library for
complex event-processing, FlinkML library for ma-
chine learning, and Gelly library for graph-processing.
Using Flink’s APIs and libraries, software develop-
ers are empowered to build and execute applications
that run on Flink. Flink is increasingly gaining trac-
tion around the world. According to Alibaba [33],
it is Flink’s distinguishing technological capabilities
that make it the "most advanced stream processing
engine today.”

2.2 Stream Processing
In recent years, our researchers have investigated

how to enhance Apache Flink and related systems.
For example, we devised a novel technique to ad-
dress performance challenges faced when conduct-
ing aggregate sharing in data stream windows. Sub-
sequently, we developed a prototype in Flink and
demonstrated that our technique outperforms the
state-of-the-art [19, 28].

Moreover, we developed optimizations to improve
both the sharing of windows and computation for

highly distributed setups [50], interactivity in stream-
ing visualizations [51], and surveyed state manage-
ment [49]. Currently, we are conducting research on
the management of large-state for analytics that are
beyond the capabilities of today’s batch and stream
processing engines.

2.3 Managing the Data Science Process
Reducing the entry barrier and cost of analyzing

large amounts of data at scale requires the simplifi-
cation of the data analysis process, which is today a
grand challenge in data management research [42].
Addressing this demand, will require the develop-
ment of a novel approach to automate the imple-
mentation decisions that data scientists routinely
make, such as the decisions about the heteroge-
neous computing environments to employ. Particu-
larly, since they are founded on a broad spectrum
of theories, systems, and hardware solutions. Auto-
mated optimization, parallelization, and hardware-
adaptation is a holy-grail of data science.

This grand challenge can be met, if we combine
existing data processing technologies currently avail-
able in the scientific and systems community. The
major obstacle to achieving automation is the ab-
sence of a principled model for scalable data science
systems, akin to relational algebra in database sys-
tems. The key is to provide a declarative, algebraic,
and optimizable representation for the entire data
analysis process. To solve this problem, we need to
integrate disparate hardware and software compo-
nents present in today’s data analysis architectures
into a unified mosaic of systems, hardware devices,
and theories that view analytics as graphs, matri-
ces, or relations.

As a first step towards solving the automation
problem, our researchers developed Emma [2, 7],
a Scala DSL that enables holistic optimizations of
data flow programs for scalable data analysis on
Apache Flink and Apache Spark. As a result, devel-
opers can disregard the details of a platform-specific
API, which reduces both program development and
execution time. In 2015, Emma garnered an ACM
SIGMOD Research Highlight Award.

Our researchers also introduced Lara, a deeply
embedded language in Scala that enables develop-
ers to exploit optimizing transformations across lin-
ear and relational algebra operators [38] and phys-
ical operators, such as Blockjoin [39] to bridge re-
lational and matrix representations and write scal-
able programs. Additionally, we devised a novel
approach called ScootR [40] that significantly im-
proves the performance of R programs executed in
data flow systems, by establishing bidirectional ac-
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cess between native user-defined functions and Flink’s
data structures. We also developed novel data han-
dling methods, to better cope with large data sets
and more efficiently yield visualizations by exploit-
ing data aggregation approaches [34, 35]. The re-
search conducted in this area received a VLDB best
paper award in 2014.

Currently, we are investigating how to optimize
the entire iterative data science process, from data
source selection over information extraction and in-
tegration to data analysis, model building, model
application, and visualization. Moreover, we are
embarking on novel research in the areas of large-
scale data analysis infrastructures, data manage-
ment for the Internet of Things, data processing
in the fog, end-to-end machine learning, informa-
tion marketplaces, and technological enablers for
responsible data management.

3. MODERN HARDWARE
The modern hardware landscape is rapidly evolv-

ing. Today, there are massively parallel proces-
sors with anywhere from hundreds to thousands of
cores in graphic processing units (GPU) and the
many integrated core (MIC) architecture, whose se-
ries of microarchitectures integrate many physical
cores onto a single integrated circuit. Addition-
ally, main memory costs have continued to drop,
enabling a database to be stored in main memory.
Network technologies, such as Infiniband and re-
mote direct memory access (RDMA) provide low
latency communication and low network bandwidth
on the same order of magnitude as main memory
bandwidth, as discussed by Binnig et al. in [10].

These novel technologies can accelerate data man-
agement by orders of magnitude, decrease comput-
ing costs by scaling-down cluster resources, and re-
duce the data to knowledge time. We conduct re-
search in the modern hardware space to discover
new ways to exploit these technologies.

3.1 Hardware Tailored Query Compilation
The power wall is arguably the defining limit of

modern processor performance. Thus, vendors de-
velop processor cores that are specialized to partic-
ular tasks, such as ARM big.LITTLE, a heteroge-
neous computing architecture. Alternatively, they
develop processors that adhere to a new proces-
sor architecture, which is fundamentally different
than classical CPUs, as discussed by Borkar and
Chien [14] and Esmaeilzadeh et al. [22]. However,
for data management systems it is difficult to ex-
ploit these heterogeneous processors. Instead, costly
experts are required to re-implement and optimize

query processors for new processor architectures.
To overcome this challenge, we launched the Hawk

Project3, in order to automatically exploit heteroge-
neous processors and increase performance in data
management systems. The key problem is how to
support many heterogeneous processors efficiently
without having to rewrite code, for each new proces-
sor release. A problem that commonly arises with
data management operators. Naturally, such an ef-
fort is both costly and error prone. Our aim is to
enable data management systems to rewrite their
code until they run optimally on a single processor.

W have developed a hardware-tailored code gen-
erator called Hawk [15] based on the CoGaDB sys-
tem [16]. Hawk utilizes advanced query compilation
strategies to produce custom code variants for each
processor and query. By automatically exploring
code variants, Hawk can tune generated code for
each processor avoiding manual tuning and sidestep-
ping the need for expensive experts.

3.2 Data Processing on Modern Processors
Over the past few years, we have been investi-

gating alternative ways to leverage heterogeneous
processor capabilities. For example, we explored
code variants for selections and aggregations us-
ing an approach akin to micro adaptivity [46, 47].
We also implemented vectorized hashing primitives
(e.g., gather, scatter, selective load, selective store)
in OpenCL, to reduce code complexity and enable
portability for both CPUs and MICs [9].

In addition, we devised a new approach to exe-
cute the k-means [41] algorithm more efficiently on
GPUs and achieve a higher throughput (up to 20x
over state-of-the-art approaches). Furthermore, we
discovered how we can use the GPU memory hier-
archy efficiently and developed compilation-based
query processing strategies for massively parallel
processors [27]. We also experimentally evaluated
design aspects of current stream processing systems
on modern hardware and found that the throughput
of streaming systems on a single node can be im-
proved by up to two orders of magnitude [53]. Our
system Ocelot [31] is an OpenCL-based execution
engine for the MonetDB main-memory database,
which assesses efficiency in systems that completely
rely on a hardware-oblivious code base. Finally, we
investigated how to accelerate query optimization
using massively parallel processors [29, 30, 37].

4. BENCHMARKING
Today’s big data systems are designed to be scal-

able and meant to be run on a large number of
3https://www.dfg-spp2037.de/ma4662-5
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nodes, in order to distribute workloads and speedup
processing. Once these systems come to exist, bench-
marking them is of paramount importance, to mea-
sure their performance under varying real-world sce-
narios. Historically, the Transaction Processing Per-
formance Council’s (TPC) benchmarks have enabled
database researchers to meet their optimization goals.
With the sheer-diversity of data processing systems
under development at an ever-increasing pace, new
benchmarking scenarios as well as novel tooling are
required to properly assess system performance.

Our research in benchmarking data management
systems includes designing, developing, and con-
ducting performance surveys, devising novel mea-
surement techniques and building software tools that
implement them, and contributing to standardiza-
tion efforts. Our objectives include identifying a
system’s capabilities and limitations as well as pro-
viding insight into functional areas, where additional
investigation is required. Next, we present our bench-
marking tools for big data, stream processing, and
machine learning systems.

4.1 Benchmarking Big Data Systems
Our researchers have been instrumental in the de-

velopment and standardization of several application-
level benchmarks, including TPCx-BB [17], TPCx-
IOT [44], and TPC-DS [45]. Typically, benchmark
projects require a large number of configuration and
data collection steps for the many experiments that
need to be conducted. To simplify this tedious pro-
cess, we have developed the Peel [11] framework.
It automates the setup and deployment of big data
frameworks, conducts benchmark experiments, gath-
ers all system and performance data, and stores
them in versioned repositories.

4.2 Benchmarking Stream Processing Sys-
tems

In recent years, there has been a surge in the
number of novel stream processing systems (SPS).
This poses numerous challenges for benchmarking
due to the many subcomponents involved. In par-
ticular, since these may be outside of the bound-
ary of the system under test and can easily become
the predominant bottleneck. Recently, we demon-
strated that all of the earlier benchmarking stud-
ies for SPS violated assumptions about the sys-
tem setup. Consequently, since system’s do not
have control over incoming data streams, our exper-
iments demonstrated [36] that the measurements re-
ported in these studies both overestimated through-
put and underestimated latency.

4.3 Benchmarking Machine Learning Sys-
tems

Machine learning has become ubiquitous for many
data-driven applications. Since there is a natural
trade-off between accuracy and performance in ma-
chine learning models, solely benchmarking the per-
formance of machine learning systems is insufficient.
Thus, we are currently conducting research to de-
velop comprehensive benchmarks and build bench-
marking tools that ensure reproducibility for ma-
chine learning systems.

The advent of big data processing systems, such
as Hadoop and next generation systems, such as
Apache Spark have quickly spurred interest in im-
plementing more complex analytics jobs (beyond
simple indexing or sorting) on these scalable sys-
tems. Among these complex analytics are Apache
Mahout and SparkML. Although these libraries sim-
ilarly feature weak-scaling capabilities as simple pro-
cessing jobs, they do not scale in other ways (e.g.,
in terms of model dimensionality [13]). Further-
more, many evaluations today compare their ma-
chine learning systems against weak baselines, such
as simple and highly-inefficient Hadoop implemen-
tations that are easily outperformed by state of the
art single-node machine learning libraries [12].

5. DATA INTEGRATION
Increasingly, organizations want to obtain value

from their disparate datasets. To do so, they in-
ject all of their data into data lakes, to make the
data available for analysis. Although this approach
solves the data access problem, another challenge
for effective data analysis remains: metadata about
datasets is often missing or poorly documented and
data scientists rarely possess comprehensive knowl-
edge about the data lake. Today, data discovery,
data integration, and data cleaning are factually the
most time-consuming and least enjoyable tasks for
data scientists [20]. In addition to small contribu-
tions to the field of entity resolution [21, 43], our
research in the area of data integration tackles two
general challenges, i.e., data discovery in data lakes
and iterative data preparation.

5.1 Data Lake Management
Despite the presence of data lakes, discovering the

data of actual interest is still very challenging [25].
Due to the abundance of data without a central
owner, a holistic organization of these datasets via
ETL is infeasible. As a compromise, a proposed
solution is to generate easy to obtain metadata [5]
from datasets in the data lake and infer relation-
ships, such as foreign/primary key relationships and
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other types of inter-column similarities.
Jointly, with colleagues from Massachusetts In-

stitute of Technology (MIT), Qatar Computing Re-
search Institute (QCRI), and the University of Wa-
terloo, we built Data Civilizer [20, 26], an end-to-
end big data management system. Data Civilizer
incorporates a data discovery component called Au-
rum [24] that achieves the aforementioned function-
alities and efficiently identifies column similarities
and overlaps. However, these types of heuristics can
lead to the generation of many false positives. In
particular, numerical columns, such as ID columns
are often quite similar. Currently, we aim to solve
this problem, by developing new heuristics that dis-
ambiguate those columns more accurately.

5.2 Iterative Data Cleaning
While there has been a huge body of work in the

area of data cleaning, most data practitioners resort
to custom data wrangling scripts. The main reason
behind this is that there is still no one-size-fits-all
system for data cleaning [4]. Algorithms tackle very
specific types of errors, such as rule or pattern viola-
tions and outliers. As a result, the data scientist will
undergo an iterative try-and-error procedure, which
is time-consuming. Additionally, most of these al-
gorithms require some sort of hyperparameter or a
set of given patterns/rules, which may be unavail-
able. To bridge this gap, we treat data cleaning as
an iterative process and preserve the history of pre-
viously performed cleaning tasks, to minimize the
overall user-effort and identify the right set of clean-
ing routines and their respective configurations for
the task at hand. Furthermore, have studied several
aggregation methods to combine the effectiveness of
varying error detection strategies [52].

6. GRANTS, ALLIANCES, AND SERVICE
Our research activities are funded through grants

obtained from varying national, international, and
industry sources, including the German Federal Min-
istry of Education and Research (BMBF), the Ger-
man Federal Ministry for Economic Affairs and En-
ergy (BMWi), the German Federal Ministry of Trans-
port and Digital Infrastructure (BMVI), the Ger-
man Research Foundation (DFG), and the Euro-
pean Union, among others. Most notably, we are
coordinating two German flagship big data projects,
the Berlin Big Data Center4 (BBDC) and the Smart
Data Forum5 as well as co-directing the Berlin Cen-
ter for Machine Learning (BZML).

We have transferred our research into numerous
4https://www.bbdc.berlin
5https://smartdataforum.de

commercial products and open-source systems. We
closely collaborate with many leading information
management companies and have created several
startups based on our research. We also contribute
to our governmental and scientific communities. For
example, we serve as grant reviewers and on expert
panels at national and international funding agen-
cies and provide expert advice to government agen-
cies in Germany and the EU.

Our researchers support the database community
on various levels. In 2013, Volker participated in the
Beckman Database Research Self-Assessment Meet-
ing to discuss the state of database research and
offer perspectives on key directions for future re-
search [3]. Since 2018, Volker is President of the
VLDB Endowment. Furthermore, we have hosted
an EDBT conference and served as conference offi-
cers and program committees for VLDB, SIGMOD,
and ICDE, among others.
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ABSTRACT 

This paper reports on the program committee process 

for SIGMOD 2018, including statistics, trends, and 

changes from previous years. Some highlights are: 

• Submissions to SIGMOD 2018 were down 6% 

from 2017. The acceptance rate of research papers 

was 20%, which is in line with recent years. 

• Reviewers showed a strong bias to reject borderline 

papers rather than giving authors the opportunity to 

revise. By being biased in the second round in favor 

of offering authors the opportunity to submit a 

revision, we increased the acceptance rate signifi-

cantly from the first to second round. We strongly 

recommend that future PC chairs adopt this bias. 

• To help ensure high quality reviews, we gave PC 

members a light reviewing load and ensured that 

95% of review assignments went to PC members 

who bid Eager or Willing to review the paper. 

Nevertheless, approximately 20-25% of reviews 

are unacceptably shallow. We need to do better. 

• The main changes in 2018 were (i) to reduce the 

number of parallel sessions, (ii) include tutorials 

during the main conference (Tuesday – Thursday), 

and (iii) return to clustering industry presentations 

into separate industry sessions rather than grouping 

them with research papers on the same topic. To 

enable (i) and (ii), we shortened the standard 

presentation time to 20 minutes and offered only 10 

minutes to 40% of the papers. Anecdotal evidence 

is that attendees were happy with these changes. 

The paper closes with comments about my previous 

experiences as PC chair for SIGMOD 1979 and VLDB 

2002 and with the evolution of PC processes.  

1. SUBMISSIONS 
Submission statistics are summarized in Table 1. The 

acceptance rate for research papers has been constant for 

the past few years at 20%. However, the absolute 

number has been declining. There was a big jump in the 

research submissions in 2016, presumably due in part to 

the attractive location of the conference, San Francisco. 

Since then, the number has been declining, but is still 

11% higher than 2015. 

For the 2018 industry track, we reverted from 2017’s 

invitation-only approach back to the tradition of eval-

uating unsolicited submissions. The acceptance rate was 

38%, and there were two invited papers. For the demon-

stration track, the acceptance rate was 33%.   Seven of  

 

Table 1 Submission-Acceptance Statistics 

14 tutorial submissions were accepted, and two of the 

seven were asked to merge into a single 3-hour tutorial. 

Figure 1 shows the number of research submissions 

with a given number of coauthors. Only 1 of 21 papers 

with one author was accepted. Most submissions had 2-

6 coauthors, with acceptance rates of 18% to 22%. The 

acceptance rate was much higher for papers with 7-9 

coauthors and dropped to zero after that.   

 

As shown in Figure 2, most authors submitted just one 

research paper. The authors who submitted a lot of 

papers are professors who were coauthors of many of 

their students’ submissions. 

About 20% of submitted abstracts do not result in a 

submitted paper. In the future, if you are an author of 

such a paper, please withdraw your paper before or 

immediately after the submission deadline. This saves 

work for the PC chair, who has to search for such papers 

and delete them manually. 

  2015 2016 2017 2018 

Research Submitted 413 569 489 458 

Accepted 106 

(25%) 

116 

(20%) 

96 

(19%) 

90 

(20%) 

Industry Submitted 18 50 0 40 

Accepted 18 21   0 17  

Invited 0 4 4 2 

Demo Submitted 86 126 90 108 

Accepted 30 31 31 36 

Tutorial Submitted 11 24 16 14 

Accepted 4 10 13 6 

Figure 1 Number of research submissions 

with a given number of coauthors 
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2. REVIEWING PROCESS 
The quality of the research program depends heavily on 

the quality of reviewing. It is therefore important to 

maximize the expertise of reviewers of each paper.  

In each of the two submission rounds, PC members and 

group leaders read abstracts to guide them to bid for pa-

pers they wanted to review: Eager, Willing, In-a-Pinch, 

or Not-Willing. After running the automatic assignment 

algorithm, I did manual fix-up to improve the result. 

Overall, 95% of reviewing assignments went to PC 

members who bid Eager or Willing. (To be precise: 54% 

Eager, 41% Willing, 4% In-a-Pinch, 0.4% Not-Willing.) 

All cases of In-a-Pinch or Not-Willing assignments 

were papers that had an insufficient number of Eager or 

Willing bids. I manually chose those reviewers. 

I assumed that Eager/Willing reviewers would be very 

knowledgeable about the paper’s topic. This didn’t 

always turn out to be true. It can happen because a PC 

member misjudges the submission’s technical focus 

based on the abstract. I suspect (but cannot prove) that 

sometimes a PC member will bid Eager/Willing in order 

to learn about the topic. Please don’t do this! It’s unfair 

to the authors and causes extra work for the PC chair, 

who receives low-confidence reviews and then has to 

get additional reviews under time pressure. 

As in recent years, we used a large PC to ensure a light 

reviewing load. In each round, most PC members had 

four papers to review in a 4-week reviewing period, for 

a total of eight papers for the two rounds. A few had 

more, either because we had too many submissions in 

their areas of expertise or because we called on them for 

a 4th review of a borderline paper (see Figure 3). A few 

external reviewers reviewed one paper, and a few PC 

members were recruited for round two to cover topics 

for which we received more submissions than expected.  

Each paper was also assigned to a group leader, who 

read the paper, guided the discussion after the reviews 

were in, recommended a decision, and wrote a meta-

review. Group leaders also escalated borderline cases to 

my attention. If reviewers disagreed or they all thought 

 

the paper was borderline, we pushed them to discuss it 

on-line. The average number of comments was the same 

in 2018 and 2017; see Figure 4 where the number of 

2017 submissions was multiplied by 458/489 to normal-

ize for the larger number of submissions than in 2018.  

 

3. DECISIONS 
Of the 458 research submissions, 20 were desk rejected 

either because they were very weak or out-of-scope. Of 

the 210 round-one submissions, we accepted 4 (2%) 

without revision and asked for a revision of 39 (19%), 

of which 33 were accepted (85%). I received feedback 

on the first round from systems researchers that papers 

they thought were excellent were rejected. The authors 

speculated this was due to reviews by PC members who 

weren’t systems researchers and didn’t know how to 

evaluate such papers. Since 95% of reviews were by PC 

members who bid Eager or Willing, I was skeptical of 

this diagnosis. Therefore, I investigated it by re-reading 

a lot of reviews and came to a different conclusion: in 

borderline cases, PC members are strongly inclined to 

reject rather than offering the authors an opportunity to 

revise. This inclination seemed to be equally true for all 

topics, not just for systems papers.  

In round one, I tried to mitigate this tendency by encour-

aging group leaders and PC members to ask for more 

reviews of borderline papers. Nevertheless, in the com-

mon case that all three reviewers believed themselves to 

be relatively knowledgeable about a paper, they pushed 

Figure 2 Number of authors with a 

given number of research submissions 

Figure 3 Reviewing Load: Number of PC 

members with a given reviewing load 

Figure 4 Number of submissions with a given 

number of discussion comments 
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to reach a decision without additional reviews. They 

took me up on the offer for only 10% of the round-one 

submissions. I found many of the 4th reviews helpful. In 

retrospect, I should have requested many more 4th 

reviews even if the reviewers and group leader did not. 

I apologize to authors of rejected papers that I might 

have been able to save with more effort. 

Given my experience in round one, in round two I read 

the abstract and reviews of most papers. In cases where 

I thought the reviewers were insufficiently generous, I 

added discussion comments to try to move the 

consensus toward a revision. For example, I pushed 

negative reviewers to be specific about the improve-

ments they would like to see for the paper to be 

acceptable. I also looked for papers where another 

review or two might help, and sometimes asked for the 

reviews even if the PC members and group leader 

thought it was unnecessary. As a result, we requested 

revisions of 63 (25%) of the 248 submissions, of which 

48 (76%) were accepted. With the 5 papers accepted 

without revision, that gave us an acceptance rate of 

21.4% ⎯ significantly higher than round one.  

Based on this experience, I recommend that we be more 

generous in giving authors an opportunity to revise their 

papers. Often, PC members think that the authors can’t 

make the required changes in the one-month revision 

period we offered. I believe they should not make this 

judgement. Authors are highly motivated and will go to 

great lengths to improve a paper under time pressure, if 

they have a list of specific improvements that are 

required. Let them decide if they have enough time. I 

still advocate that we give them a list of specific 

required changes, and not simply ask the authors to do 

their best with the reviewers’ criticisms, as is often done 

with journal submissions. However, we should not 

reject a paper that has a potentially good idea just 

because the list of changes seems too long. 

4. REVIEWING QUALITY 
I read hundreds of reviews. Most reviewers do a very 

good job. They think about the ideas presented in the 

paper, consider whether the ideas have merit, check that 

the paper justifies its conclusions, compare the paper’s 

contributions to prior work, and write a review that 

conveys all this to the authors, the other reviewers, and 

ideally in enough detail that the PC chair (who probably 

won’t read the paper) can understand it. Great reviews 

aren’t always long, but they are always insightful.  

Last year’s PC Chair, Dan Suciu, introduced a “Distin-

guished PC Member Award” to recognize reviewers 

who did a great job, ~10% of the PC. This year, the vice 

chairs, group leaders, and I continued this new tradition 

by recognizing the following PC members: Ashraf 

Aboulnaga, Manos Athanassoulis, Sebastian Breß, 

Graham Cormode, Sudipto Das, Khuzaima Daudjee, 

Aaron Elmore, Ada Fu, Michael Hay, Yuxiong He, 

Yannis Katsis, Alexandra Meliou, Dan Olteanu, An-

drew Pavlo, Peter Pietzuch, Lucian Popa, Semih Saliho-

glu, Ryan Stutsman, Yufei Tao, & Alexander Thomson. 

I regret to report that my impression from reading so 

many reviews is that 20%-25% of them were unaccepta-

bly shallow and sketchy. Previous PC chairs told me this 

was consistent with their experience. In these cases, the 

reviewer clearly didn’t think hard about the paper, and 

the review reflects it by offering just a few cheap shots, 

e.g., the motivation is weak, some sections are hard to 

understand, more experiments are needed, there are too 

many typos, and some references are missing. Probably 

all of that was true, but what did the reviewer think of 

the ideas? Are they good or bad ideas? Why? What is 

was weak about the justification for the proposed 

innovation? What did you expect to see that’s lacking?  

Weak reviews are not a measure of the strength of the 

reviewer as a researcher. Many were from people with 

excellent publication records. A few PC members con-

sistently produced weak reviews. Some weak reviews 

were from reviewers who also wrote very good reviews. 

Given that PC members were asked to review only four 

papers in each round, the problem cannot be the review-

ing load. I suspect the following scenario is common: 

PC members are busy, and they treat reviewing as their 

lowest priority task. A PC member reads a paper once. 

Without thinking hard or spending much more time on 

it, he or she writes a few obvious criticisms, plus a Weak 

Accept or Weak Reject rating, depending on the PC 

member’s first impression. Task complete. 

Unfortunately, writing a good review is time-consum-

ing. To do it, I usually have to read a paper three times. 

My first reading is to understand the main ideas and get 

an overall opinion of the work. On the second pass, I 

start writing the review while I’m reading, commenting 

on each section as I go. But that writing activity usually 

makes me question some of my criticisms, which re-

quires a third pass to sharpen my arguments. The hours 

usually add up to a full working-day, sometimes more, 

over several days. Despite the effort, I usually find the 

time well spent because it forces me to think deeply 

about a topic, even if the submission is quite weak. 

With a 170-person PC, it’s a statistical certainty that 

some reviewers will have an unexpected problem with 

work, family, or health that prevents them from invest-

ing enough time to do a competent review. But that does 

not account for a quarter of the reviews being unaccept-

ably shallow. We need to improve. Which means that 

some of you reading this article need to improve.  

A weak review leaves a lasting negative impression on 

other reviewers of the paper. It certainly lowered my 

opinion of the technical depth of some PC members. I’d 

have thought that PC members who submit superficial 
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reviews would be embarrassed when they see their 

colleagues’ substantial reviews. Apparently not.  

Moreover, weak reviews are hugely unfair to authors. 

We all know the weeks, or more often months of effort 

it takes to write a paper, even a weak one. Authors have 

a right to expect reviewers to spend enough time to give 

substantial feedback. 

I don’t know of any silver bullet to fix this problem.  

Here are some suggestions I’ve heard that might 

encourage people to write better reviews: 

1. Have each PC chair ask PC chairs of the last few 

database conferences to review the proposed list of 

PC members, to identify reviewers they would not 

recommend. Not all PC chairs do this, and often 

only for the preceding conference, so it misses 

some weak reviewers.  

2. Ask authors to vote on whether each review of their 

paper was well done—thumbs up or down. This 

isn’t a vote on whether the author agrees with the 

review—only on whether the review reflects a 

serious attempt at understanding the work and 

thinking about its novelty, importance, and 

correctness. We should report it as an aggregate, 

only to PC members who reviewed enough papers 

that would make the feedback anonymous. 

3. Ask PC members to vote on the quality of other 

reviews of papers they reviewed. Again, report it as 

an aggregate only to PC members who reviewed 

enough papers that would make the feedback anon-

ymous, perhaps merging it with the result of (2). 

4. PC chairs and group leaders could ask some PC 

members to strengthen particular reviews. I did this 

in a few cases where I thought a gentle push would 

get the desired effect. In general, it is hard because 

it is a direct criticism of a PC member’s work, 

which everyone involved finds uncomfortable. 

5. THE CONFERENCE PROGRAM 
Since 2005, SIGMOD’s policy has been to accept all 

papers that passed the PC’s quality bar, with no budget 

for the maximum number of presentation slots. Then the 

program schedule was adjusted to give all papers a 

presentation slot. This has led to a conference schedule 

of 5-6 parallel SIGMOD sessions, plus a PODS session 

on Tuesday and Wednesday. Table 2 reports the number 

of parallel sessions, including industry, tutorial, and 

demo sessions. 

As an experiment, SIGMOD 2016 organizers compress-

ed the program into 3 parallel sessions. To fit all papers 

into the schedule, they gave each paper a 15-minute slot, 

which meant about 12 minutes of presentation plus 3 

minutes of Q&A, and they moved tutorials to Friday af-

ter the conference. Instead of separate industry sessions 

Table 2 Number of parallel SIGMOD sessions 

Year Tuesday Wednesday Thursday 

2009 5 6 5 

2010 6 6 6 

2011 6 6 6 

2012 5 5 5 

2013 5 5 6 

2014 5 5 6 

2015 5 5 6 

2016 3 3 3 (tutorials 

on Friday) 

2017 5 5 5 (tutorials 

on Friday) 

2018 4 4 4 

sessions, they grouped presentations of industry papers 

with research papers on the same topic. In 2017, the 

conference reverted to 5-way parallelism and 

compensated by introducing plenary teaser talks. It kept 

the tutorials on Friday and again mixed industry and 

research papers in the same sessions. 

I thought the 2016 experiment was largely successful, 

as did many attendees who responded to the survey 

distributed after the conference. However, I found the 

15-minute slot too short for many papers, and longer 

than necessary for others. Therefore, with the approval 

of the 2017 SIGMOD officers, I decided to try the 

compressed program again with three modifications: (i) 

different lengths of presentation slots, 20 minutes or 10 

minutes, depending on the paper, (ii) tutorials as a 4th 

parallel session on Tuesday – Thursday, and (iii) indus-

try presentations placed into separate industry sessions.  

There were 54 long presentations and 39 short ones. The 

decision of long vs. short had several phases. During the 

reviewing process, PC members were asked to recom-

mend whether each paper, if accepted, should be offered 

a full presentation slot. Then research PC group leaders 

made a recommendation for each accepted paper they 

supervised—definitely 20 minutes, 20 minutes if there’s 

time available, no preference, or definitely 10 minutes 

—based on reviews, reviewer discussions, and their 

own judgment, without knowing the identity of authors. 

Their recommendation is not necessarily a quality 

metric. They recommended “definitely 10” for some 

papers highly-rated by reviewers, because the topic was 

narrow, could be explained in 10 minutes, or couldn’t 

be explained in 20 minutes so extra time wouldn’t help. 

All papers rated definitely-20 or 20-if-there’s-time were 

given long slots, plus some of the no-preference ones. 

For the latter, the final decision was based on many 

factors, such as topic diversity, institutional diversity, 

and the time available in the relevant session. 

The industry PC chairs, Sam Madden and Neoklis 

Polyzotis, were given a free hand in choosing industry 
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submissions and scheduling them in four sessions. Most 

of the papers were chosen with the help of the Industry 

PC. There were also two invited papers. I made the 

mistake of not asking the industry chairs to align the 

lengths of talks with the 20- and 10-minute boundaries 

of research talks. This interfered with session hopping, 

which didn’t occur to me until it was too late to change. 

Due to recent changes in U.S. immigration policy, some 

authors have been unable to attend a conference to 

present their papers. To accommodate these authors, the 

SIGMOD officers and VLDB Endowment agreed to 

allow papers that could not be presented in a SIGMOD 

or VLDB conference to be presented instead at the next 

such conference. As a result, three research papers and 

one demonstration paper from VLDB 2017 were 

presented at SIGMOD 2018.  

Authors of ACM TODS papers can present their paper 

as a poster at the next SIGMOD conference after the 

paper’s publication. One such TODS paper was 

presented as a SIGMOD 2018 poster. 

I considered compressing the program into three parallel 

sessions: 2 parallel paper sessions, plus 4 industry 

sessions, 4 tutorials, 2 demo sessions, and a panel. Using 

the same schedule as 2018, there would be 960 minutes 

of presentation time for research papers. With 93 pre-

sentations, all of them would have only 10 minutes. To 

offer 20 minutes for some presentations, some papers 

would get only a 3-minute teaser talk. I seriously 

considered doing this for 2018. But when I saw that with 

three parallel papers sessions we could give everyone at 

least a 10-minutes talk, I dropped that plan.  

At SIGMOD 2017, in place of traditional keynotes, 

there were invited plenary talks on hot topics by 

database researchers. In my opinion, the talks were 

excellent, and the concept of invited database research 

talks is worth repeating. However, I would make space 

by reducing the number of long paper presentations and 

reserve plenary slots for high-profile invited speakers 

who would not ordinarily attend SIGMOD. 

6. PROCEEDINGS AND BOOKLET 
The proceedings and booklet handout were prepared in 

parallel with the conference program. There is manual 

effort in preparing both of them, which requires great 

care to avoid inconsistencies. Many authors make last-

minute changes to their paper’s title and author affilia-

tions, and to schedule constraints that affect session 

assignment. Maybe someday this will all be generated 

automatically from a single database. Until that nirvana 

arrives, authors should do their best to notify the PC and 

proceedings chairs as early as possible of such changes. 

They should also strive to submit their non-technical 

material on time, e.g., photo and bio for tutorial 

speakers, to assist in the booklet preparation process. 

7. HISTORICAL NOTES 
This section summarizes my experiences as PC chair of 

two earlier major database research conference.  

7.1 SIGMOD 1979 
The last time I was SIGMOD PC Chair was for 

SIGMOD 1979. For the amusement of younger readers 

(nearly everyone, I guess) and to capture a bit of history, 

let me describe what that activity was like. Unfortu-

nately, I no longer have a written record about the PC 

process, so my foggy memory will have to suffice. 

In those days, the Internet was a research project, not a 

utility. And the World Wide Web was still about 13 

years in the future. Therefore, everything was done via 

hard copy and the postal service. The latter slowed down 

the process a lot. The schedule had to leave enough time 

for coast-to-coast mail delays of 4-5 days. 

People on the SIGMOD mailing list received a hard-

copy call-for-papers in the mail. The call-for-papers was 

usually published a year in advance, so it could be 

distributed at the previous SIGMOD conference. 

Except for researchers at a few wealthy labs who had 

access to fancy printers, most authors prepared their 

submissions with a text editor and impact printer. (My 

first access to a laser printer came 5 years later.) If the 

paper had a lot of fancy math, then it might have 

required using a typewriter (i.e., no computer). Authors 

had to mail five photocopies of their submission to the 

PC Chair (i.e., me), ensuring I would receive it before 

the submission deadline. There were about 75-80 

submissions to SIGMOD 1979, the vast majority of 

which were from U.S. universities and research labs. 

I knew each PC member well enough to assign papers 

that were within their areas of expertise. After doing the 

reviewer assignments, I mailed a package of papers to 

each PC member, with copies of the review form for 

them to fill out. That left two copies of the paper in my 

file, one for me and one for an extra reviewer if needed. 

During the reviewing period, I read all the submissions. 

I’m told this wasn’t common practice for SIGMOD PC 

chairs, but I doubt I was the first or last to do so.  About 

a quarter of them were so weak that after a half-hour of 

reading it was obvious they would be rejected, so I 

didn’t have to dig deeper. I read the rest more carefully, 

but even so, it was a manageable load for a ten- to 

twelve-week reviewing period.  

PC members mailed (mostly hand-written) reviews to 

me, to arrive before the reviewing deadline, which was 

a week before the face-to-face PC meeting, which all PC 

members attended. I produced a list of all the papers in 

order of their average review score. Unlike today, we 

had a quota of how many papers to accept, about 24, to 

fill a two-and-a-half-day single-track program. We 

started at the top of the list and accepted papers until we 
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hit a controversial one. Then we switched to the bottom 

of the list and rejected papers until we hit a controversial 

one. Most of the discussion happened on the papers in 

the middle. We talked about them one-by-one until we 

converged on a final list. Then it was dinner time, the 

reward for a day of intense discussions. 

7.2 VLDB 2002 
I was overall PC chair for VLDB 2002. In response to a 

request by the VLDB Endowment Board to strengthen 

the trend of broadening the database field beyond data-

base engines, we had two program committees, one for 

Core Database Technology (chaired by Raghu Rama-

krishnan) and another for higher levels of the stack, 

called Infrastructure for Information Systems (IIS) 

(chaired by Yannis Ioannidis). The committees accepted 

38 of 209 and 31 of 222, respectively (16% overall).  

VLDB continued splitting the research PC into two 

tracks until 2011. By then, it was agreed that the com-

munity sufficiently welcomed IIS papers that they no 

longer needed a separate PC to obtain a fair hearing.  

The PC process was similar to SIGMOD 2018, and very 

different from SIGMOD 1979. Like today, everything 

was done on-line: submissions, reviews, and reviewer 

discussions. If I recall correctly, this was the first VLDB 

that required submissions to be in camera-ready format, 

to avoid arguments about whether a submission exceed-

ed the length limit. A big difference from today’s con-

ference was that we did not offer authors an opportunity 

to revise a paper and resubmit it for a second evaluation. 

That is, every paper was accepted or rejected. 

At that time, there were growing complaints that PC 

decisions were too random. As PC chair, I was on the 

front-line listening to those complaints. As a result, after 

the conference, I started lobbying to improve the pro-

cess by having an on-line journal with the same struc-

ture as a PC but including a revision cycle. I was not 

alone in promoting change. Rick Snodgrass, then Edi-

tor-in-Chief of ACM TODS, worked to speed up turna-

round time to make TODS as appealing to authors as 

conferences. In 2003, he and I proposed to the VLDB 

Endowment Board and SIGMOD Executive Committee 

that borderline rejected papers from one conference 

could be revised and resubmitted to the next one with 

the same reviewers, plus one new reviewer for the re-

ceiving conference. This process started in 2005 and ran 

for a couple of years. We also suggested this evolve into 

an on-line journal, but it was viewed as too radical and 

rejected. Over the next several years, I presented ver-

sions of that concept at CIDR 2003, in panel sessions on 

PC processes at SIGMOD 2004 [1] and VLDB 2005 [2], 

and at annual VLDB Endowment Board meetings in 

2003-2005. There were many other proposals, some 

presented in [1] and [2] and some discussed privately at 

SIGMOD and VLDB Board meetings. I was insuffi-

ciently persuasive to get either organization to agree to 

the change. However, after I rolled off the VLDB 

Endowment Board in 2006, H.V. Jagadish got approval 

for a related proposal: changing VLDB to an on-line 

journal, PVLDB, with monthly submissions year-round. 

I believe the approval was helped by his agreement to 

serve as its first editor-in-chief, something I was not 

willing to do. There is widespread agreement that 

PVLDB has been a big success, which was one of many 

contributions for which Jagadish received the 2013 

SIGMOD Contributions award. 

An aside: The VLDB 2002 general chair, Fred 

Lochovsky, and I pushed for approval to publish the 

proceedings only in electronic form. The VLDB 

Endowment Board declined our request and insisted on 

a printed copy, which ended up as a weighty tome of 

1050 pages. Old habits die hard. It took a few more 

years before hard-copy proceedings were abandoned. 

8. FINAL REMARK 
Our community has been at the forefront of changes in 

the PC conference reviewing process for many years. 

Today’s processes are imperfect, and we should contin-

ue to strive to improve them. If I could wave a magic 

wand to get only one improvement, it would be that all 

PC members invest enough time to give substantial 

thought to every paper they review and write a detailed 

evaluation. That would go a long way to increase author 

satisfaction of the processes that we currently use. 
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1. INTRODUCTION
In the last decade, advances in computing have

deeply transformed data processing. Increasingly
systems aim to process massive amounts of data
efficiently, often with fast response times that are
typically characterised by the 4V’s, i.e., Volume,
Variety, Velocity, and Veracity. While fast data pro-
cessing is desirable, it is also often the case that the
outcomes of computationally expensive processes
become obsolete over time, due to changes in in-
puts, reference datasets, tools, libraries, and deploy-
ment environment. Given massive data processing,
such changes must be carefully accounted for, and
their impact on original computation assessed, to
determine how much re-computation is needed in
response to changes.

A core challenge is how to optimise re-computation
in the presence of changes, given an existing process
execution baseline. Specific research questions in-
clude (1) how, and under what assumptions, can re-
computation be optimised using incremental and/or
partial processing techniques given the baseline, and
(2) how do we determine the impact of a set of
changes on the outcomes, in order to decide when
changes should trigger re-computations.

In this article we report on the proceedings of
the First International Workshop on Incremental
Re-computation: Provenance and Beyond (IRPb),
which was organised to explore the breadth and
depth of the re-computation problem, with spe-
cific emphasis on the role of provenance in this
area. Within this scope, the workshop provided
a forum for experts to constructively explore the-
oretical, systems-oriented, and provenance-related
challenges in developing and using incremental re-
computation based systems.

IRPb was held in conjunction with Provenance-
Week 2018, a bi-annual week-long event that
includes the 7th edition of the International Prove-
nance and Annotation Workshop (IPAW), and the
10th Usenix Workshop on the Theory and Practice

Of Provenance (TAPP). The format chosen for the
workshop was designed to encourage discussion
without requiring a paper contribution, other
than an abstract. Held over two half-days, IRPb
consisted of a collection of 12 short talks (15-20’)
plus ample time for discussion, given by recognised
experts in the areas within the scope, and 2 longer
keynote talks. Abstracts and presentations are
available at https://tinyurl.com/y7c8vttn.

2. WORKSHOP TOPICS
With each of the 14 contributors presenting their

own perspective on the topic, we have used the fol-
lowing categories to characterise the contributions,
using tags to annotate the individual talks.

Re-computation, i.e., the repeating of a process
execution, all or in parts, under slightly different in-
puts or configuration each time, and making use of
one or more prior execution baselines as a basis for
optimization. We use tags #howto-recomp and
#using-recomp to distinguish research that de-
scribes techniques that advance the state of the art
on performing re-computation, from research that
makes use of such techniques, respectively.
Incremental computation. This is naturally
viewed as one of the ways re-computation can be
optimised, however it is arguably more general, as
it does not require a prior baseline (first time execu-
tions may be incremental). As before, we use tags
#howto-incr-comp and #using-incr-comp.
Approximate computation, a well-established
field is identified using tag #howto-approx-
comp.
Provenance, including all phases of its lifecy-
cle, namely capture, storage, query, and analysis.
Again, we make a distinction between #using-
provenance and #for-provenance.

Contributions also covered a diversity of appli-
cations areas, ranging from the Life Sciences (ge-
nomics and metagenomics), machine learning, data
journalism, transportation science, and large-scale
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simulations, as well as research areas ranging from
databases and data integration, programming lan-
guages, reproducibility of e-science processes (scien-
tific workflows, including workflow steering), pro-
cess mining, and naturally, core provenance re-
search.

3. CONTRIBUTIONS

3.1 Keynote: Language-based issues in in-
cremental computation

James Cheney’s talk presented the different forms
on incremental computation and their use in pro-
gramming languages. He outlined work (mostly by
others) in three sub-areas (i) on incremental, (ii)
self-adjusting and (iii) bidirectional computation,
clarifying the meaning and subtle formalism differ-
ence within each area. James presented a simpli-
fied example of a delta data structure used to com-
pute the square of the sum of two numbers, and
described how such data structure is maintained
using static differentation and more involved incre-
mental lambda calculus as described in the semi-
nal paper of Cai et. al. [2]. Self-adjusting compu-
tation implies recomputing efficiently as the input
is changed, using caching to avoid recomputation
of sub-expressions whose results have not changed.
James covered work from Acar et.al [4] and de-
scribed the primary idea of self-adjusting traces,
which first use execution to generate annotations
(the trace), and then use the annotated program
trace to make subsequent runs probably faster com-
pared to running “from scratch”. He highlighted
the opportunity of including provenance-like infor-
mation in these traces to improve incremental com-
putation. The limitation of the approach is that
generating annotations often requires slight pro-
gram modification, but also mentioned significant
progress on how to reduce the annotations. Finally,
he covered bidirectional computation, which means
updating the input to a computation to be consis-
tent with a proposed new output: a generalization
of the view update problem. In this he presented
a recent contribution to incremental view update
problem in relational databases, which is of inter-
est for computing “missing answer” or hypothetical
explanations for database settings.

3.2 Keynote: Modern Dataflow
Frank McSherry’s keynote talk summarized his

recent work on Differential Dataflow [11], a data-
parallel programming and execution model for scal-
able and incremental computation, which is based
on the ‘Timely Dataflow’ framework [12] and a data

serialization library called ‘Abomonation’.
Differential Dataflow is a collection-oriented pro-

gramming model in which users program their al-
gorithms with a set of functional operators, while
the system manages incremental changes to the in-
put data. The set of operators includes well-known
data-parallel functions like: map, reduce and join
but also iterate, which allows incremental and iter-
ative algorithms to be implemented. The key el-
ement of the model, which makes it distinct from
other approaches to incremental computation, is
that in Differential Dataflow the state of compu-
tation and its updates are associated with a multi-
dimensional logical timestamp. Such association al-
lows the system to maintain a partially ordered set
of versions (data updates) rather than only the most
up-to-date coalesced state of computation.

Frank compared the efficiency of his platform and
showed at least an order of magnitude speed-up for
graph-based problems like PageRank and connected
components. He also illustrated computation on di-
rected acyclic graphs in which 40% of the compu-
tation does not change the output due to change in
inputs, whereas 60% changes it only moderately.

The talk also briefly introduced two other el-
ements of the Modern Dataflow platform: the
Timely Dataflow framework, to scale the same pro-
gram up from a single thread to distributed execu-
tion on a cluster of machines, and the Abomonation
library for fast data serialization, in the Rust lan-
guage.

3.3 Short Presentations
Answering Why-Not queries Against Scien-
tific Workflow Provenance Khalid Belhajjame
(University Paris-Dauphine, France) focused on a
variation of the well-known problem of answering
Why-not database queries, that is, to explain why
a certain tuple is not returned as part of a query an-
swer. The problem finds a similar formulation but
requires a new approach when the question is posed
on the result of a workflow execution. The proposed
approach is shown to require the re-computation
of parts of the workflow. #using-recomp, #for-
provenance.

The Marriage of Incremental and Approxi-
mate Computing Pramod Bhatotia (University
of Edinburgh) described differences between incre-
mental and approximate computation. In essence,
both paradigms rely on computing over a subset
of data items instead of computing over the entire
dataset, but they differ in their means for skipping
parts of the computation. Pramod suggests that the
two approaches are complementary and can be com-
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bined, namely by using a stratified sampling algo-
rithm that biases the sample selection to the mem-
oized data items from previous runs. The resulting
implementation, based on Apache Spark Stream-
ing, is part of a data analytics system called IncAp-
prox (Incremental + Approximate Computing) [9].
#howto-incr-comp, #howto-approx-comp.

Supporting Incremental Re-Computation
with Whole System Provenance: Issues and
Approaches Ashish Gehani (SRI International,
USA) focused on whole system provenance, that is,
provenance collected from observations of system-
level events during process execution, as a way to
make process re-computation efficient, i.e., by re-
ducing the fraction of computation that needs to
be performed again. The talk addressed practi-
cal issues that arise in this context, and outlined
approaches to address them. The challenges in-
clude ephemeral intermediate artifacts, conflated
causality, dynamic runtime environments, and ex-
ternal dependencies. #howto-recomp, #using-
provenance

TensorCell - approximating outcomes of
computer simulations using machine learning
algorithms. Pawel Gora (University of Warsaw,
Poland) presented an approach for approximating
the result of traffic simulations using neural net-
works. Simulating the collective behaviour of traffic
lights in a large city, such as Warsaw, is computa-
tionally complex. Exploring “what-if” scenarios by
repeating the simulation becomes prohibitive. The
authors tested the hypothesis that reasonable ap-
proximations of the expected waiting time at each
of the lights can be obtained by training a neural
network on an exemplar set of light configurations
(on 15 significant crossroads). The results are en-
couraging, with average prediction error varying be-
tween 1.18% and 6.8%, with sub-second processing
time on the network. #howto-approx-comp.

Progressive Provenance Capture Through
Re-computation Paul Groth (Elsevier Labs, NL)
described his research on using record-replay tech-
nology within virtual machines to incrementally add
additional provenance instrumentation by replay-
ing computations after the fact. #using-Recomp,
#for-provenance

Incremental Recomputation in Data Integra-
tion Melanie Herschel’s (University of Stuttgart,
Germany) contribution focused on complex data
integration processing pipelines, which are often
developed and maintained incrementally, and re-
quire multiple iterations to reach satisfactory re-
sults. The talk discussed the potential benefits of

how-provenance and what-if analysis in supporting
incremental re-computation. #using-incr-comp,
#using-provenance

Incremental Recomputation: Those who
cannot remember the past are condemned
to recompute it Bertram Ludascher (University
of Illinois at Urbana Champaign, USA) explored
the connection between re-computation, Models
of Computation (MoC), and models of provenance
(MoP). He made the point that “computing
with deltas” has been common for a variety of
“Models of Computation”, from Datalog (Delta
Computations and semi-naive evaluation, Statelog
(Stateful Datalog)) to incremental view mainte-
nance in databases, to workflow programming. In
particular, a connection has been made over the
years between MoCs associated with workflows, for
example when using Kepler [10], and corresponding
MoPs [1], and can also serve as a foundation for
implementing provenance-based fault tolerance
mechanisms [8], i.e., using checkpoints and partial
re-run. #howto-incr-comp, #howto-recomp

Incremental Recomputation in Containers
Tanu Malik (DePaul University, USA) described the
need for incremental computation in reproducible
computation. She showcased Sciunit (https://
sciunit.run) reproducible containers, which cap-
ture necessary and sufficient binaries and data
so as to repeat the computation in a new envi-
ronment, but must be entirely re-evaluated every
time a change to input parameter or dataset is
made [13]. She highlighted the need of incremental
re-computation techniques on versioned provenance
graphs. #howto-recomp, #using-recomp.

Collecting Provenance of Steering Actions
Mattoso and Sousa (UFRJ, Brasil) presented work-
flow steering [14], a form of human-in-the-loop sci-
entific workflows where experts are given the chance
to repeatedly tune some of the process’ parame-
ters at runtime, with the aim to significantly im-
prove execution performance or improve result qual-
ity. The problem addressed in the talk is how to
track and record users’ steering actions, i.e., us-
ing a provenance-based framework. #howto-incr-
comp, #using-provenance.

Provenance and recomputing in the realm of
large scale environmental sequence analysis
Folker Meyer (Argonne National Labs, USA) talked
about the needs for re-computing in the realm of
large scale environmental sequence (metagenomics)
analysis, where frequent changes in the under-
lying knowledge databases render in-silico analy-

SIGMOD Record, December 2018 (Vol. 47, No. 4) 37



sis results both uncertain and unstable. Taking
the perspective of a large-scale analysis provider
(MG-RAST, https://mg-rast.org) which caters
to tens of thousands of scientists from many do-
mains, the talk highlighted the need for effective
re-computation tools. #using-recomp, #using-
provenance.

The ReComp project: an overview Paolo
Missier (Newcastle University, UK) started from the
observation that the outcomes of computationally
intensive processes (data processing pipelines, sim-
ulations) are often time-sensitive, as they depend
on algorithms, tools, and reference databases that
evolve over time. A re-computation problem natu-
rally occurs when some of the changes in these ele-
ments invalidate some of the outcomes. The prob-
lem is to estimate which of the past outcomes are
affected by a change, and to what extent. The talk
provided an overview of ReComp (http://recomp.
org.uk), a generic framework designed to deter-
mine the minimal process fragment that requires
re-computation [3]. #howto-recomp, #using-
recomp.

Handling late data in process mining algo-
rithms Tomasz Pawlowski and Jacek Sroka (Uni-
versity of Warsaw, Poland) situate their research
at the intersection of process mining, a very ma-
ture research area, and stream data processing.
They observe that, while a number of process min-
ing techniques exist analyse and visualise repetitive
processes, those mostly operate offline, on static
event logs. They focus instead on online analysis of
streams of logs, where problems occur when some
events are logged out-of-order. For instance, out-
of-order events happen when a streaming process
is offline. The authors investigate how in this set-
ting incremental re-computation of existing process
mining algorithms occurs—in particular to handle
out-of-order data without repeating the whole data
mining computation from scratch. #howto-incr-
comp.

Self-Explaining Computation with Explicit
Change Perera (University of Edinburgh, UK) pro-
posed a notion of self-explaining computation with
explicit change. He used Jupyter notebooks as an
example of data-driven storytelling that can offer
some form of explorable explanations. But Prera
mentioned there are limitations with respect to
transparency of explainations. The goal of self-
explaining computation with explicit change is to
increase transparency by making it explicit how
parts of a computation relate to other parts, and
how changes cause other changes. The latter

point connects this research with incremental (re-
)computation, with the idea to leveraging ideas
from partial and incremental computation as well
as self-explaining computation [4] [6, 7] to user
interfaces, namely by enabling components which
use provenance [5] to support slicing and delta-
visualisation, making explanations accessible di-
rectly from data views. #using-incr-comp
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[8] Köhler, S., Riddle, S., Zinn, D., McPhillips, T.,
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