Peter Bailis Speaks Out on building
tools users want to use

Marianne Winslett and Vanessa Braganholo

Peter Bailis
http://www.bailis.org/

Welcome to this installment of ACM Sigmod Records series of interviews with distinguished members of the database
community. I'm Marianne Winslett and today we’re at the 2017 SIGMOD and PODS Conference in Chicago. I have
here with me Peter Bailis who's a professor at Stanford University. Peter won the 2017 ACM SIGMOD Jim Gray
Dissertation award for his thesis entitled “Coordination Avoidance in Distributed Databases.” Peter’s advisors were

Joseph Hellerstein, lon Stoica, and Ali Ghodsi at Berkeley.

SIGMOD Record, September 2018 (Vol. 47, No. 3) 29



So, Peter, welcome!
Thanks.
What is your thesis about?

My thesis looks at distributed databases — if and when
it’s possible to build databases that execute concurrent
operations without incurring communication across
replicas. As we saw the rise of geo-distributed cloud
computing, it became possible to run databases in
multiple data centers, a setting where the speed of
communication is fundamentally limited by the speed of
light. And so the question we asked was: can I run
transactions and other kinds of operations in my
database without actually having these different replicas
communicate?

Now, we knew from a bunch of research dating back to
the 70s and 80s that you have to pay the price of this
coordination via synchronous communication when you
use conventional serializable transactions. But with the
rise of many new applications, like those we saw in the
online services (e.g., the Facebook social graph,
maintaining distributed secondary indices), we wanted
to know: could we satisfy these new types of application
demands without coordination, and make them faster?

We are the database
community, but I think more
broadly we’re the data-
intensive systems and tools
community. So finding users
that will actually give you
feedback on what you're
working on, that can
potentially adopt the
algorithms or even the
software that you're
producing is incredibly
valuable.

Was it a point paying for them?

There was a bit of a culture war between the database
old guard, the David DeWitt’s and Mike Stonebraker’s
ofthe world and this new class of developers, who threw
a lot of the conventional wisdom from database

30

management systems out the window and built their
own class of data stores. These “NoSQL” developers
started rebuilding databases from scratch and saying:
“We don’t need transactions. We don’t want to run with
the overhead of transactions for a number of reasons,
one of which is scalability.” And so, in our research, we
found that we can actually provide many of the
guarantees these developers wanted for their
applications, but without the overhead of the
conventional protocols that they had given up on.

There was a really interesting interplay between these
evolving application demands and the core ideas behind
conventional protocols, which in many cases were very
close to what we’d like in the coordination-free setting,
but not exactly. That is, we’d still use protocols like two
phase commit in the design of these coordination-free
algorithms. But we didn’t use them with conventional
synchronization mechanisms like locks. We also used a
lot of multi-versioning but modified conventional
versions of these protocols to scale while still providing
guarantees that application developers wanted.

So, would you say you’re working on a NoSQL killer?
Or relational database killer?

The goal of my work and in particular this thesis is to
provide useful tools that help people work more
productively with their data. I think that as a
community, we tell our users a lot of things that they
should do. What I’m personally interested is in helping
build tools that our users want to use in the first place.
In the case of my thesis, developers had an application
specification. They didn’t have protocols to implement
the specification. However, it turned out there was a lot
of interesting theory and practical algorithms that came
out of listening to what they wanted to use. We weren’t
throwing away the old theory, but adapting it to these
new use cases and actually bringing it to practice. And
so, the “relational versus NoSQL” debate is a bit of a
red herring.

What I"d like to see more of our community doing and
one of the things I’'m proud of in this work is starting to
bridge this divide between classical protocols, like
consensus and two phase commit, and the demand of
modern applications today. And I think that if you look
at how programmers actually interact with transactional
databases today, they need dramatically different
interfaces, abstractions, and semantics than what we’ve
built in the systems we provide them from the last 40
years.

So, can we find those features going into commercial
systems now?

SIGMOD Record, September 2018 (Vol. 47, No. 3)



The work has seen various degrees of uptake. Some of
the work we did early on in consistency prediction with
the Apache Cassandra database, we just learned recently
it’s just now on Azure’s CosmosDB. And some of the
protocols we did for the secondary index maintenance,
we have an ongoing dialogue with NoSQL developers
about putting these into their systems as well.

That’s great. Do you have any words of advice for
graduate students or recent graduates?

The No. 1 piece of advice I’d give for grad students or
recent graduates is find people who have real problems
working with data. We are the database community, but
I think more broadly we’re the data-intensive systems
and tools community. So finding users that will actually
give you feedback on what you’re working on, that can
potentially adopt the algorithms or even the software
that you’re producing is incredibly valuable.

And I agree with you completely but in your specific
case working on a classic database topic, most of our
readers don’t have that kind of shoulders rubbing with
Facebook and other big companies that are facing this
problem because most of them aren’t located in Silicon
Valley and other hotbeds. So, what does that advice
mean for them?

That’s a great question. There are many types of users
and Internet services are only one type of user. I imagine
most listeners are at or near a university and there are a
large number of people at universities that are dealing
with these sorts of data-intensive problems of crippling
scale. Maybe not multi-data center databases, but, for
instance, some of our work at Stanford right now is
working with folks in Earth Sciences. They have all this

SIGMOD Record, September 2018 (Vol. 47, No. 3)

seismic data coming in, with literal decades of archives
that they’d like to process with more sophisticated
methods. But they don’t have the computational
resources or the algorithms to scale them up.

So, I think that, at almost any university, if you go out
and you spend some time doing some needs finding with
domain scientists, with large amounts of data or even
small amounts of data that could be dirty or not correctly
labeled, there are interesting problems there. In a sense,
your prerogative as a researcher is to actually step away
from classic database systems. Don’t work on faster
serializable transaction processing. Don’t work on
query optimization. Don’t work on relational analytics.
Figure out what people in the wild who aren’t
necessarily Facebook and Google need to build.

It could be your roommate who is doing her Ph.D. in
Biochemistry or in Earth Science. Go talk to them and
ask them, “Hey, what do you do with data?” If you think
about it, this is really the golden era of data. Everyone
has recognized the value of data and yet the tools we
have for dealing with data are geared towards a very
particular, conventional, buttoned-up world of relational
data management are really not in many cases adequate
or serving the needs of the people who need it the most.

Working with this class of users that’s beyond just the
Facebooks and the Googles of the world, the folks who
can’t afford to hire the teams of data scientists to build
these models to maintain their data and so on — that’s
where a lot of the new action is.

Great advice. Thank you very much for talking with us
today.

Thanks.

31



