Data Lifecycle Challenges in Production Machine
Learning: A Survey -

Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang { Martin Zinkevich

Google Research
{npolyzotis, sudipr, martinz;@google.com

ABSTRACT

Machine learning has become an essential tool for glean-
ing knowledge from data and tackling a diverse set of
computationally hard tasks. However, the accuracy of a
machine learned model is deeply tied to the data that it is
trained on. Designing and building robust processes and
tools that make it easier to analyze, validate, and trans-
form data that is fed into large-scale machine learning
systems poses data management challenges.

Drawn from our experience in developing data-centric
infrastructure for a production machine learning plat-
form at Google, we summarize some of the interest-
ing research challenges that we encountered, and survey
some of the relevant literature from the data manage-
ment and machine learning communities. Specifically,
we explore challenges in three main areas of focus —
data understanding, data validation and cleaning, and
data preparation. In each of these areas, we try to ex-
plore how different constraints are imposed on the solu-
tions depending on where in the lifecycle of a model the
problems are encountered and who encounters them.

1. INTRODUCTION

Machine learning (ML) has become essential in
modern computing. More and more organizations
are adopting ML to glean knowledge from data and
tackle a diverse set of computationally hard tasks,
ranging from machine perception and text under-
standing to health care and genomics. As a striking
example, deep learning techniques can be used to
detect diabetic eye diseases with an accuracy on-
par with ophthalmologists [1].

However, developing reliable, robust, and under-
standable ML models requires much more than a
good training algorithm. Specifically, it is necessary
to build the model using high-quality training data.

*This article extends a tutorial the authors delivered at
the SIGMOD conference in 2017.

tCorresponding author, work done at Google and KAIST

SIGMOD Record, June 2018 (Vol. 47, No. 2)

KAISTT
swhang@kaist.ac.krf

Moreover, this training data needs to be translated
into a set of features that can expose the underly-
ing signal to the training algorithm. And finally, the
data fed to the model at serving time must be sim-
ilar in distribution (and in features) to the training
data, otherwise the model’s accuracy will decrease.
Ensuring that each of these steps is done in a con-
sistent manner becomes even more challenging in
a setting where new training data arrives continu-
ously and accordingly triggers the training and de-
ployment of updated models.

To further illustrate the previous points, we con-
sider a scenario where a software error in a data
source causes a feature in the training data to get
pinned to an error value (e.g., -1). Training on such
corrupted data will typically lead to reduced model
accuracy that may only be noticed after a few days.
The predictions obtained using the poor model will
persist in the logged serving data (new data on
which the model runs on). Typically this logged
data is fed back as training data for the next train-
ing cycle. This can therefore cause the data error to
percolate through the system and taint downstream
data, which can make recovery painful. Depending
on the impact of the error on the model accuracy, it
can at best cause a small reduced model accuracy
and at worst cause a hard to recover service outage.
This scenario illustrates the importance of catching
errors early and reasoning about their propagation
within the data flow of an ML pipeline.

In this article, driven from our experience in build-
ing data management infrastructure for a large-scale
ML platform [11], we identify several core challenges
in the management of ML data that are relevant to
[11] and other ML platforms [17]. We organize these
challenges around the following broad themes: data
understanding, data validation and cleaning, and
data preparation. We draw connections to existing
work in the data management literature and outline
open problems that remain to be solved.

17



Training
Data Model

Serving
Model oo

L

Training
Data

Serving
Input —>
Data

Figure 1: An overview of an end-to-end machine learning pipeline with a data point of view.

The rest of the paper is structured as follows:

We provide an overview of large-scale ML pipelines
through the lens of data management (Section 2).

We focus on the following data management themes
and study existing work: data understanding (Sec-

tion 3), data validation and cleaning (Section 4),
and data preparation (Section 5). At the end of
each section, we identify open research challenges.

e We summarize lessons learned through our expe-
rience in building data management infrastruc-
ture for large-scale ML (Section 6).

The article aims to inform both database researchers

and practitioners about the class of problems that
exist in the intersection of production ML pipelines
and data management, and to motivate further re-
search in this area. We believe that the database
community is well positioned to tackle these prob-
lems in the context of ML.

2. OVERVIEW OF PRODUCTION ML

The data management community has explored
several interesting problems around the optimiza-
tion of ML pipelines as data flows, and this line of
work has resulted in the development of novel sys-
tem architectures such as Velox [24], Weld [54], and
SystemML [15]. In comparison this survey takes a
data centric point of view and focuses on the chal-
lenges that arise in the management of ML data,
which are largely separate from the efficiency issues
of large-scale data flows.

More recently model understanding has become
a critical issue especially when using deep learning
or representative learning on semi-structured or un-
structured data. The challenges range from under-
standing the state at different layers of deep archi-
tectures, interpreting results [28], to finding mini-
mal architectures without reducing model accuracy.
Model understanding deserves a survey on its own,
and this survey complements by focusing more on
training and serving data.

18

In this section, we introduce two dimensions that
help us characterize data management challenges.
The first dimension derives from the different classes
of users of an ML pipeline. The second dimen-
sion stems from the data’s lifecycle through an ML
pipeline and the corresponding activities performed
by the users. The following subsections discuss these
dimensions in more detail.

2.1 Users Interacting with ML Platforms

An often overlooked aspect of large-scale ML at
bigger companies is that multiple people play differ-
ent roles [41] in the development and maintenance of
an ML pipeline. The best person for coming up with
new features is unlikely to be the best person to de-
velop the ML architecture or to handle emergencies
with the production system: moreover, people will
approach the pipeline with different priorities. Bor-
rowing from marketing and UX research, we iden-
tify three personas [37] representative of groups that
would use an ML pipeline based on our experience:

e ML Expert: has a broad knowledge of ML, knows
how to create models and how to use statistics,
and can advise multiple pipelines.

e Software Engineer: understands the problem do-
main and has the most engineering expertise for
a specific product.

e Site Reliability Engineer: maintains the health of
many ML pipelines simultaneously, but cannot
afford to know the application details.

As an example of how these personas play differ-
ent roles, suppose that the pipeline is experiencing
new errors due to an out-of-range feature value (e.g.,
the price of an item is higher than expected). The
ML expert could fix the quantization of the price
for model training. The software engineer could
implement the quantization and run backfilling (ex-
plained in Section 2.2). The site reliability engineer,
on the other hand, may want to rollback the pipeline
to a working state first.

SIGMOD Record, June 2018 (Vol. 47, No. 2)



Finally, the three personas play different roles
in an ML pipeline’s lifecycle. During the experi-
ments phase, the ML expert and software engineer
are mostly involved. During the launch, the site
reliability engineer becomes involved. The subse-
quent refinement of the pipeline is done by the soft-
ware engineer while the maintenance of the overall
pipeline is done by the site reliability engineer. A
key takeaway is that many people with radically dif-
ferent backgrounds will have to handle a variety of
tasks to keep the pipeline running smoothly.

2.2 Data Lifecycle in an ML Pipeline

The data lifecycle of an ML pipeline starts with
generating Training data. Specifically, we distin-
guish the raw input data that is fetched from a vari-
ety of sources including databases, key-value stores,
and logs, to name a few. Depending on the type
of the problem at hand and available data, this
data can be structured, semi-structured, or unstruc-
tured, and may correspond to different degrees of
curation. In many cases, a few invariants can be
asserted over the data [62].

As a running example, suppose a team is develop-
ing an app store. The initial raw input data is illus-
trated on the left side of Figure 2, and the goal is to
predict app purchases based on app store user and
product features. (Note that the “app store users”
are not the same as “users” of the ML pipeline.)
While the example is intentionally simplistic, the
input data can be large and generated by joining
heterogeneous data sources with different data qual-
ities and trust issues.

purchase: { )

product_id: 0x1234
user_id: 4321

- \

user: {

4321 |
}

“purchase™: [1]
“user™ [.1,.25,.13]

“category”: [*FOOD”, “FICTION"] |

product: {
id: 0x1234
|category: [“FOOD”, “FICTION"]

<Training Data>

}

<Training Input Data>

Figure 2: Input to Training Data for the App
Store ML pipeline. The same preparation
must also be done for serving data as shown
in Figure 1.

Prepare. The input data is transformed to the train-
ing data through the Prepare module. Figure 2
shows how the raw input data is converted to a
format of features and values, which can be used

SIGMOD Record, June 2018 (Vol. 47, No. 2)

for training by the Train module. For example, the
user information has been mapped to a vector of
three values, which is called an embedding. The key
questions to ask for preparation are: what features
can be generated from data, what are the proper-
ties of the feature values, and what are the best
practices to transcode values.

Train and Evaluate. Once the training data is ready,
it is fed into the Train module, which can be frame-
works including TensorFlow [5], Keras [3], and Apache
MZXNet [4]. The trained model can be evaluated by
an Fwvaluate module, which checks if the model has
an acceptable accuracy, whether the data should be
encoded differently, and whether there should be
more data or features. Note that an ML pipeline
may train an ensemble of models using either the
same or different input data where the predictions
are intersected or unioned to increase accuracy.

Validate. The Validate module is necessary to make
sure the training data does not contain errors that
may propagate down to the model training. To il-
lustrate why validating data is important, suppose
that an engineer is refactoring a backend that gen-
erates a feature for the app store ML pipeline, but
introduces a bug that results in the generation of
wrong values. Note that in this case there are no
newly introduced features or data, and the training
and serving logic remain the same. Once the erro-
neous code rolls out to production, it causes the fea-
ture to acquire erroneous values. The bad feature
values then cause the model training accuracy to
decrease and result in significant production issues
during model serving where the model is executed
for the app store users. Overall, data validation
is a key element of production ML infrastructure:
by detecting an issue during training time, we can
avoid the rollout of a broken model and thus pre-
vent a significant negative impact on the app store
users and revenue.

Validating data is a complex problem that needs
to be solved for various parts of the pipeline. In
the Prepare module, the key questions to ask are
which data properties affect significantly the model
accuracy and whether there are any dependencies to
other data and infrastructure. Validation is also re-
quired between the Training Data and Serving Data
(depicted as the arrow from Serving Data to Vali-
date in Figure 1). If there are deviations between
the two types of data, then the model trained on the
training data will not perform consistently during
serving. Hence, the questions to ask are what are
possible deviations between the two types of data
and when they can be problematic.

19



Any detected data errors must be forwarded to
the user as alerts. An important challenge is to
formulate alerts so they are understandable and ac-
tionable. As an example, consider the detection of
a missing feature Country from the app store user
data and the following alternatives to formulate the
alert: (a) feature Country is missing, (b) feature
Country is missing from 18% of the input examples,
or (c) feature Country is missing from the examples
that correspond to “gender=female”. Clearly, some
of these formulations are more actionable and allow
the user to understand better both the scope of the
error and its potential effect on model accuracy. An-
other issue is how sensitive the alerts should be. If
there are too many false positives, the user may end
up ignoring alerts altogether. On the other hand,
being too strict on alerts will result in failing to
detect critical errors.

Clean. The user may also decide to fix the data
based on the alerts, after understanding whether
cleaning the data will improve the model, which
part of the data is to be fixed, and how should the
fix be reflected to all the input data until now (this
operation is known as backfilling).

Serve. After a model is trained and deployed, the
Serve module is responsible for receiving the serving
input data (in our example, app store user impres-
sions and clicks) and preparing it as serving data
that can be processed through the model. The serv-
ing input data is typically generated a single exam-
ple at a time, and has stringent latency constraints.
The serving input data needs the same preparation
as was applied to the raw training time before being
sent to the model.

It is often the case that serving data is logged
and channelled back as training data for the next
training epoch through some bulk data processing
stages, thereby completing the data lifecycle.

In summary, there are various data management
challenges that arise at different stages of the data
lifecycle, which we broadly classify as follows:

e Data Understanding: analyzing and knowing what
to expect from the data.

e Data Validation and Cleaning: identifying and
fixing any errors in the data.

e Data Preparation: engineering features and gath-
ering examples for training.

3. DATA UNDERSTANDING

The first step of ML is to understand your data.
There are largely two parts in an ML pipeline for

20

data understanding. First, sanity checks are impor-
tant when training a model for the first time. Next,
more advanced analysis and diagnosis are needed
during the launch and iterate cycles where a model
is iteratively improved with new training data.

3.1 Sanity Checks

When the user performs sanity checks, the chal-
lenge is to see if the data has the expected “shape”
before training the first model. The following are
some examples of sanity checks:

e A continuous feature’s minimum, maximum, most
common values, and histogram are reasonable (e.g.,
latitude values must be within the range [-90, 90]

or [~%, 5], and not all values are in one bucket).

e The distribution of a categorical value is as ex-
pected (e.g., it has the expected domain, and the
more common values are what you would expect).

e A feature is present in enough examples (e.g., the
country code must be in >70% of the examples).

e A feature has the right number of values (e.g.,
there cannot be more than one age of a person).

e Labels from external services may have trust is-
sues and must be verified with known labels.

The key ML challenge here is how to set such
expectations of the data. For example, how do we
know a distribution is “right”? If we know exactly
what we need, then one can use any SQL tool to
perform sanity checks. However, the requirements
are often unclear because there may be no owner-
ship of the feature. In this case, visualization tools
can help us understand the data shape by discover-
ing surprising properties of data and thus develop
better sanity checks.

SeeDB [70] recommends data-driven visualizations
using deviation-based metrics (e.g., Earth Mover’s
distance, Euclidean distance, Kullback-Leibler di-
vergence, and Jenson-Shannon distance). The rec-
ommendations can provide insights to users on what
to expect of the training data and subsequent ones.
For example, suppose there are two histograms that
show Desktop versus Mobile usage between two groups
of people. If the two groups are female versus male,
the two histograms may not differ much. How-
ever, if the groups are users in emerging versus ma-
ture markets, there may be a relatively higher mo-
bile usage in emerging markets. This difference in
usage makes the latter histogram more interesting
and thus more likely to be recommended. ZenVis-
age [66] is a follow-up work on interactive visual
analytics using the ZQL query language.

Another recent line of work is to control false dis-
covery rates for recommending visualizations. Con-

SIGMOD Record, June 2018 (Vol. 47, No. 2)



tinuing our example above, as more visual recom-
mendations are made, there is bound to be more
meaningless ones as well. The QUDE system [14,
75] takes a statistical approach and provides an in-
teractive data exploration framework that uses mul-
tiple hypothesis testing to control the false posi-
tives. Traditional methods for controlling family-
wise error rates (e.g., Bonferroni correction) or false-
discovery rates (e.g., Benjamini-Hochberg procedure)
assume “static” hypotheses and do not work for
interactive data exploration. QUDE proposes a-
investing to control the marginal false discovery rate,
which is the expected value of the false discovery
rate. Intuitively, recommending good visualizations
will be rewarded with more budget to explore while
bad recommendations will result in losing it.

3.2 Analyses for Launch and Iterate

The next part of data understanding is to do more
analyses during the launch and iterate cycles.

3.2.1 Feature-based Analysis

There are major ML challenges that involve fea-
ture analysis. One is analyzing features in conjunc-
tion with a trained model where the goal is to find
interesting training data slices (based on features)
that lead to high/low model accuracy. For example,
an app recommendation model may perform poorly
for people in certain countries. Another challenge
is detecting training-serving skew, which was briefly
mentioned in Section 1. For instance, if the model
was trained on data that had an even gender ratio,
but the actual serving logs have a completely differ-
ent ratio for people in the age range [20, 40], then
the model may be biased due to the skew. As an-
other example, there may be unseen features that
appear on serving data, but not in training data.
Skew can be fixed by debugging data generation,
which is usually the culprit, or possibly making the
model training more robust to skew.

Data cube analysis can be applied to analyze slices
of data, which are defined with features or feature
crosses. For example, MLCube [39] is a tool for
visually exploring ML results that enable users to
define slices using feature conditions to compute ag-
gregate statistics and evaluation metrics over the
slices. The tool can be used to help understand and
debug a model or compare two models. Another in-
teresting work is prediction cubes [21], which sum-
marize models trained on individual cubes.

While such manual exploration is useful, an inter-
esting research question is how to automatically pri-
oritize user attention and identify what are the “im-
portant” slices. While we are not aware of any re-

SIGMOD Record, June 2018 (Vol. 47, No. 2)

cent data cube research that directly addresses this
problem, intelligent roll-ups in multi-dimensional
OLAP data [60] are relevant and have been pro-
posed to automatically generalize from a specific
problem case in detailed data and return the broad-
est context in which the problem occurs. Similarly,
smart drill-downs [38] discover and summarize in-
teresting slices of the entire data. The roll-ups or
drill-downs can be used to find problematic slices in
training data that positively (or negatively) affect
model metrics (e.g., log loss, AUC, and calibration).

3.2.2 Data Lifecycle Analysis

Another important analysis is to track the lifecy-
cle of data. A common analysis is to identify de-
pendencies of features. For example, a label feature
must not “leak” into any other feature where some
of its information is duplicated or encoded in the
other feature, and the model trained on that infor-
mation makes unrealistically-accurate predictions,
but generalizes poorly. Another useful analysis is
to identify sources of data errors. For example, a
subset of the training data may have been dropped
because a data source was unavailable. The tools
to address these analyses largely fall into two cate-
gories: coarse-grained and fine-grained tracking.

The advantage of coarse-grained tracking is that
it is general and not tied to a particular system.
Goods [35] gathers metadata from tens of billions
of datasets (including provenance) within Google
and implements services on top of this metadata.
A key design choice is to gather this data in a post-
hoc fashion where dataset owners do not have to
do any registration, and the metadata is crawled
afterwards in a non-intrusive manner. As a result,
while Goods can track which dataset was generated
from which process, it cannot extend the tracking
to individual features.

Fine-grained tracking, on the other hand, can an-
alyze individual features, but tends to be tightly
coupled with the underlying system. ProvDB [49]
provides a unified provenance and metadata man-
agement system to support lifecycles of complex col-
laborative data science workflows. The metadata
consists of artifacts, which include version lineages
of data, scripts, results, data provenance among ar-
tifacts, and workflow metadata on derivations and
dependencies among artifact snapshots. Other rele-
vant systems include ModelDB [69], ModelHub [50],
and Amazon’s ML experiments system [61], which
provide lifecycle management for various models,
and Ground [36], which has a goal similar to that
of ProvDB, but with a simple, flexible metamodel
that is model agnostic.

21



3.3 Open Challenges

There are open questions for ML analysis that
are not covered by the previous techniques. Re-
cently, determining if a trained model is “fair” [59]
has become a critical issue. For example, we would
like to know if a model is prejudiced against certain
classes of data. Since a model is only as good as its
training data, we need to understand if the data re-
flects reality. Identifying new kinds of “spam” [34]
is an open challenge as well. For example, are users
abusing the system in an adversarial way? Here,
we need to apply adversarial testing on the training
data. While using general SQL-based systems [48,
6] is an “escape hatch” for analysis, we may need
more specialized tools to address the above issues.

4. DATA VALIDATION AND CLEANING

Since ML largely depends on its data, it requires
data validation to perform well. Models cannot an-
swer questions they are not asked. For example,
suppose a model uses the feature Country and un-
derstands when its value is “US”. However, if in
the next batch of training data the value becomes
“us”, then without any validation or preprocessing,
the model will simply think that there is a new
country. As another example, a feature may sud-
denly change its unit (e.g., age changes from days
to hours) or even disappear. Unfortunately, model
training is resilient to such errors, and instead of
crashing, the model accuracy may simply decrease.
Hence, data must be validated early on to avoid
errors from propagating to model training.

How do we deal with these problems? If a fea-
ture value is not consistent, we could insert auto-
matic corrections (e.g., capitalize all countries). If
a feature appears for the first time, we can cre-
ate a new field. If a feature disappears, we can
find where it disappeared using provenance or root
cause analysis [53, 72, 9]. While some fixes can be
done automatically, in many cases, we need to no-
tify users to solve the problems by providing “play-
books,” which are manuals that contain concrete
actions to take for addressing each alert. Although
many data cleaning [68, 40, 45] techniques are rel-
evant, in production ML it is equally important to
design actionable alerts with humans in mind.

4.1 Alert Tradeoffs

When alerting users to validate and fix data er-
rors, there is a tradeoff to make between recall and
precision. It is not rare for some ML data issue to
cause a minor emergency for a particular product.
A common response is to overcompensate, by set-
ting alerts for every conceivable issue with the data.

22

Then, these alerts fire every day, annoying users and
making them insensitive to real issues. As a result,
all the alerts are ignored, and the vicious cycle starts
again. Hence, it is important to balance recall (i.e.,
what fraction of problems we catch) and precision
(what fraction of alerts lead to good catches).

An alert is considered a good catch if it is ac-
tionable and eventually leads to a fix. For example,
alerting that a feature is missing is clearly action-
able. However, alerting that there was a distribu-
tional shift in a feature’s value may be less action-
able. Imagine an ML expert saying that the age
should have a Kolmogorov distance of less than 0.1
from the previous day and then leaves and works
on a different system. Later on, another engineer
may be alerted that the age has a Kolmogorov dis-
tance of 0.11. While the alert may indicate a real
problem, the engineer may not know how to resolve
it. Hence, the question is not whether something is
wrong if an alert fires, but whether it gets fixed.

In some cases, a data fix may encompass fixing
a constraint. For example, suppose a Country fea-
ture is known to contain four values, but from some
point a new value “SS” is introduced in the train-
ing data. While this value may indeed be incorrect,
“SS” could also be a valid country (say South Su-
dan), which means the constraint should now in-
clude five countries. Existing work [22, 33] provides
opportunities to fix both data and constraints.

If there are many alerts, finding alerts that are
related and combining them becomes useful. In the
literature, cost-based models [16, 42] and conflict
hypergraphs [23] are proposed.

Not all anomalies are equally important, and the
ones that result in worse model accuracy in pro-
duction must be alerted first. In large-scale ML,
features with different qualities co-exist. Often, an
“alpha” or completely new and untested features
will co-exist with more established production fea-
tures that the system relies on. An untested feature
is evaluated in an experimental model, which may
become the next production model. At some point,
a feature may also be deprecated. Hence, fixing fea-
tures that are used in production is more useful than
fixing features for experimental models. An inter-
esting open question is whether the improvements
of correcting a feature can be estimated without
having to make the correction itself.

4.2 Alert Categories

General alerts are hard to design and depend on
the training data. For example, predicting car ac-
cidents, house prices, social connections, or clicks
on a web page will have very different data, and it

SIGMOD Record, June 2018 (Vol. 47, No. 2)



is hard to predict the expected data shape for all
these applications. To handle a variety of domains
with minimal effort, there needs to be some com-
monalities among them.

One common setting is where data arrives con-
tinuously, say in web applications. As new data
arrives, old data is thrown away, and newer data
is given more priority. The data validation can be
done by comparing data with its previous versions,
and alerts can be raised based on accumulated evi-
dence to date [71]. In case there is a concept drift,
the expected data shape can be updated based on
the user’s judgement.

In this setting, basic alerts are motivated by en-
gineering problems. For example, missing fields can
be detected by checking if a field that was present
is now absent. RPC timeouts can be detected by
checking if the most common value is not more com-
mon than before. Format changes can be detected
by checking if the domain of values has increased.

It is also worth mentioning alerts that are based
on statistics including homogeneity tests, analysis of
variance (e.g., ANOVA [30, 31]), time series anal-
ysis, and change detection. For example the chi-
squared test can be used to check homogeneity [55]
by rejecting the null hypothesis for the distribu-
tions being the same. One problem with a chi-
squared test is that statistically significant changes
may be common on all fields if the data is large
enough. Other metrics that can be used include the
L; and L, metrics or Earth Mover’s distance [32,
70]. Some metrics including the number of exam-
ples, the number of positive labels, or the total num-
ber of clicks may fluctuate, but are nonetheless very
important. Time series analysis [10, 27, 18] can help
track these statistics.

4.3 Open Challenges

Selecting alerts that lead to the most impact in
production is an open question. Ideally, we can
perform impact analysis that will estimate how the
system would improve if an error were fixed. Au-
tomatically generating fixes and playbooks is also
an open-ended challenge. There is an interesting
connection between the notion of alerts and fixes to
existing work on automatic database repairs. Simi-
larly, the notion of minimizing the number of alerts
to users is analogous to active learning, which tries
to minimize the number of labelings.

S. DATA PREPARATION

One of the largely “black art” aspects of ML is
data preparation. Similar to the other data man-
agement challenges, specific facets of the data prepa-

SIGMOD Record, June 2018 (Vol. 47, No. 2)

ration problem arise in different forms at different
points in the ML lifecycle. For instance, during the
initial development of a model, data preparation
boils down to engineering a set of features that are
most predictive of the task label. Once the models
are more mature, the focus may shift to resource
optimization and latency reduction by selecting a
subset of all the available features while still retain-
ing the same accuracy. This is typically referred
to as the feature selection problem. Finally, often
the original data that was available for the task may
simply be incomplete or partially complete. A third
aspect of data preparation is enriching the train-
ing data by importing information from other data
sources.

5.1 Feature Engineering and Selection

Feature engineering is a well-studied problem 7,
44, 43, 74, 58, 46, 8, 67] with a suite of techniques
that are largely designed based on experience of ML
experts. Consider the following specific ML task.
Starting with the census data on housing, we would
like to predict the median housing prices at the
granularity of city blocks. For this task, reasonable
features include location of blocks (possibly speci-
fied using latitude and longitude coordinates), num-
ber of households per block, crime rate, and so on.
While some of these features may directly be avail-
able in the census data, others may require some
queries over the data to extract. Furthermore, the
goodness of a feature is typically based on the pre-
dictive power of the feature. While the predictive
power is hard to estimate upfront, a good proxy is to
understand the correlation of the feature with the
label. Analyses techniques discussed in Section 3
that easily present these correlations to experts can
be invaluable here.

Even once the raw features are designed, often
a suite of transformations are applied before they
are fed into the ML pipeline. Some of the typi-
cal transformations applied include normalization,
bucketization, winsorizing, one-hot encoding, fea-
ture crosses, and using a pre-trained model or em-
beddings (mappings from values such as words to
real numbers) to extract features [51]. For example,
the crime rate of a city block could be transformed
into a one-hot encoding using three categories: low,
medium, and high. The exact feature transform to
perform depends on both the data as well as the
ML training algorithm. Some algorithms that na-
tively perform transformation include Lasso (regu-
larize unimportant features to zero) and on-the-fly
scaling and shifting (avoid turning sparse data into
dense data).

23



An interesting research direction is to learn fea-
ture engineering itself. Feeding training data di-
rectly to a deep neural network and letting it fig-
ure out the features is referred to as “representa-
tion learning” in the ML community. Some promis-
ing techniques include autoencoders and restricted
Boltzmann Machines [12]. However, learning both
the representations and the objective may require
significant resources and data, so manual feature
engineering is still used in most cases. A middle
ground between completely automated feature en-
gineering and manual feature engineering is data-
driven feature engineering where based on certain
data characteristics we can automatically infer the
best set of transformations to apply. While this is
relatively simple to do in many cases, determining
the best embedding that should be used on a fea-
ture by searching over an available set of pre-trained
embeddings is still an open research problem.

As models become more mature, developers often
experiment with addition and removal of new fea-
tures. This is one instance of a problem that high-
lights the different views that users with different
roles have for the same problem. For example, an
ML expert could be choosing features that improve
the model accuracy the most. However, the soft-
ware engineer may have to also worry about how to
actually add the feature into the existing pipeline.
The check list includes making sure the feature is
available at serving time, whether one is allowed to
even use the feature, and what the return of invest-
ment is for the feature. The site reliability engineer
may have to worry about introducing new depen-
dencies and making sure the pipeline is robust. An-
other concern is whether the feature will affect the
model size and prediction latency.

5.2 Data Enrichment

Data enrichment [29, 56, 64] refers to the aug-
mentation of the training and serving data with in-
formation from external data sources in order to
improve the accuracy of the generated model. A
common form of enrichment is to join in a new
data source in order to augment the existing fea-
tures with new signals. Another form is using the
same signals with different transformations, e.g., us-
ing a new embedding for text data.

A first step for data enrichment is cataloging and
contextualizing all the available data. Different sys-
tems have been designed that solve this problem
within enterprises as well as over the web. For ex-
ample, systems including Goods [35], Ground [36],
and Datahub [13] can be used to explore datasets
siloed within product areas of organizations. On the

24

web, tools including Webtables [19], Kaggle [2], and
Data Civilizer [20] can be used to search scientific
datasets published independently by organizations.

The next step is to extract knowledge and acquire
labels, which can be challenging when labeling is
expensive and/or heterogeneous sources can have
different label qualities and labeling costs. Crowd-
sourcing frameworks like Alfred [25] help moder-
ately skilled crowd workers in extracting knowledge
from a corpus of unstructured documents. Deep-
Dive [73] uses incomplete knowledge bases and rules
for distant supervision to minimize expensive hu-
man annotations. In active learning [26, 63, 52],
the learning procedure decides how best to enrich
the data iteratively. Transfer learning is a way to
leverage previously acquired knowledge from one
domain to improve the model accuracy of a different
domain. Weak supervision is used in Snorkel [57,
56] where hand labeling is avoided altogether, and
workers can programmatically generate lower-quality
labels, which are then denoised with generative mod-
els. Finally, label hierarchies can be used to predict
unseen labels.

While data enrichment often leads to model ac-
curacy improvements, this is not always the case.
Sheng et al. [65] shows how improving the qual-
ity of the already available labels can better im-
prove model accuracy than collecting more exam-
ples. Hence, there may be a tradeoff between ob-
taining more data and improving its data. Similary,
a recent paper [47] has looked into understanding
the impact of adding new features by joining with
other data sources for a specific class of algorithms.
It would be interesting to consider extensions to
other cases (e.g., training with black-box learning
algorithms that are hard to approximate, or using
different transformations on existing signals).

5.3 Open Challenges

Given input features and an ML training algo-
rithm, automatically generating feature transforms
that result in the highest model accuracy is an open
question. From our experience, this step is a pain
point for users who do not necessarily understand
the nuances of transforms.

6. LESSONS LEARNED

In building a production ML platform for Google [11],

we encountered a host of the challenges that we have
presented in this survey. We summarize some of the
over-arching lessons that we learnt on the way.

e Interesting data management challenges beyond
optimizing data flow. The data management com-
munity has focused more on optimizing data flow

SIGMOD Record, June 2018 (Vol. 47, No. 2)



for large scale data processing (specifically for
ML). However, as we discussed in this article,
there are data management problems beyond op-
timizing data flow. Complementing the tradi-
tional data flow point of view, we have provided
a data point of view for ML pipelines and identi-
fied challenges in understanding, validating, and
preparing data. As shown in the previous sec-
tions, many prior techniques from the data man-
agement literature are relevant to building robust
large-scale ML systems. The data management
and ML communities have a lot to learn from
each other through closer collaboration.

Make realistic assumptions when developing solu-
tions. In developing research solutions, we must
be careful about the assumptions that we make.
For instance, it is unreasonable to assume that
data lives in a single source (e.g., a DBMS). In-
stead, most enterprise data often resides in mul-
tiple storage systems (e.g., Spanner, BigTable,
Dremel, and CNS, to name a few) that have dif-
ferent characteristics. Typically, there needs to
be an ingestion step that converts this data to
become compatible with the trainer. Similarly, it
is important to stay abreast of the state-of-art de-
velopments in the ML community and ensure that
the data management solutions complete them.

Be aware of the diverse needs of different users.
Many of the key design decisions in our infras-
tructure were based on diverse needs of different
set of users that interact with such a system. In
addition to the personas covered in this paper,
ML systems may have a wide spectrum of end
users as well, starting from ML novices who have
yet to train their first models up to experts with
extensive modeling experience. Building a large-
scale ML system must be flexible enough to ac-
commodate all these users as much as possible.

Ensure that your solution integrates smoothly into
the development workflow. The launch and iter-
ate cycle time for ML pipelines is small, and users
will not use tools unless they are necessary for
their critical development workflows. To ensure
the adoption of data management tools, it is thus
critical to integrate them into workflows smoothly
and make the benefits of using them obvious.

7. CONCLUSION

Data management in large-scale ML systems will

only get more important as the amount of data con-
tinues to increase rapidly. In this survey, we have
described large-scale ML pipelines in a data point of
view. We then focused on three data management

SIGMOD Record, June 2018 (Vol. 47, No. 2)

challenges — understanding, validation and clean-
ing, and preparation — and surveyed relevant tech-
niques from the data management literature. Fi-
nally, we summarized lessons learned from building
data management infrastructure for a large-scale
ML platform. We believe data management re-
search in ML systems has plenty of open challenges
that can be solved with close collaboration between
the data management and ML communities.

8. REFERENCES

[1] Deep learning for detection of diabetic eye
disease.
https://research.googleblog.com/2016/11/
deep-learning-for-detection-of-diabetic.html.

[2] Kaggle. https://www.kaggle.com/.

[3] Keras. https://keras.io/.

[4] Mxnet. https://mxnet.incubator.apache.org/.

[5] Tensorflow. https://www.tensorflow.org/.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries
with bounded errors and bounded response
times on very large data. In Eurosys, pages
29-42, 2013.

[7] M. R. Anderson, D. Antenucci, V. Bittorf,

M. Burgess, M. J. Cafarella, A. Kumar,
F. Niu, Y. Park, C. Ré, and C. Zhang.
Brainwash: A data system for feature
engineering. In CIDR, 2013.

[8] M. R. Anderson and M. J. Cafarella. Input
selection for fast feature engineering. In
ICDE, pages 577-588, 2016.

[9] P. Bailis, E. Gan, S. Madden, D. Narayanan,
K. Rong, and S. Suri. Macrobase: Prioritizing
attention in fast data. In SIGMOD, pages
541-556, 2017.

[10] M. Basseville and I. V. Nikiforov. Detection of
Abrupt Changes: Theory and Application.
Prentice-Hall, Inc., 1993.

[11] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel,
C. Y. Foo, Z. Haque, S. Haykal, M. Ispir,

V. Jain, L. Koc, C. Y. Koo, L. Lew,

C. Mewald, A. N. Modi, N. Polyzotis,

S. Ramesh, S. Roy, S. E. Whang, M. Wicke,
J. Wilkiewicz, X. Zhang, and M. Zinkevich.
Tfx: A tensorflow-based production-scale
machine learning platform. In SIGKDD, pages
1387-1395, 2017.

[12] Y. Bengio, A. Courville, and P. Vincent.
Representation learning: A review and new
perspectives. TPAMI, 35(8):1798-1828, 2013.

[13] A. P. Bhardwaj, S. Bhattacherjee, A. Chavan,

A. Deshpande, A. J. Elmore, S. Madden, and
A. G. Parameswaran. Datahub: Collaborative

25



data science & dataset version management at
scale. CoRR, abs/1409.0798, 2014.

[14] C. Binnig, L. D. Stefani, T. Kraska, E. Upfal,
E. Zgraggen, and Z. Zhao. Toward sustainable
insights, or why polygamy is bad for you. In
CIDR, 2017.

[15] M. Boehm, M. W. Dusenberry, D. Eriksson,
A. V. Evfimievski, F. M. Manshadi,

N. Pansare, B. Reinwald, F. R. Reiss, P. Sen,
A. C. Surve, and S. Tatikonda. Systemml:
Declarative machine learning on spark.
PVLDB, 9(13):1425-1436, 2016.

[16] P. Bohannon, W. Fan, M. Flaster, and
R. Rastogi. A cost-based model and effective
heuristic for repairing constraints by value
modification. In SIGMOD, pages 143-154,
2005.

[17] J.-H. Bése, V. Flunkert, J. Gasthaus,

T. Januschowski, D. Lange, D. Salinas,
S. Schelter, M. Seeger, and Y. Wang.
Probabilistic demand forecasting at scale.
PVLDB, 10(12):1694-1705, 2017.

[18] K. H. Brodersen, F. Gallusser, J. Koehler,

N. Remy, and S. L. Scott. Inferring causal
impact using bayesian structural time-series
models. Annals of Applied Statistics,
9:247-274, 2015.

[19] M. J. Cafarella, A. Halevy, D. Z. Wang,

E. Wu, and Y. Zhang. Webtables: Exploring
the power of tables on the web. PVLDB,
1(1):538-549, 2008.

[20] R. Castro Fernandez, D. Deng, E. Mansour,

A. A. Qahtan, W. Tao, Z. Abedjan,

A. Elmagarmid, I. F. Ilyas, S. Madden,

M. Ouzzani, M. Stonebraker, and N. Tang. A
demo of the data civilizer system. In
SIGMOD, pages 1639-1642, 2017.

[21] B.-C. Chen, L. Chen, Y. Lin, and
R. Ramakrishnan. Prediction cubes. In
PVLDB, pages 982-993, 2005.

[22] F. Chiang and R. J. Miller. A unified model
for data and constraint repair. In ICDE,
pages 446-457, 2011.

[23] X. Chu, I. F. Ilyas, and P. Papotti. Holistic
data cleaning: Putting violations into context.
In ICDE, pages 458-469, 2013.

[24] D. Crankshaw, P. Bailis, J. E. Gonzalez,

H. Li, Z. Zhang, M. J. Franklin, A. Ghodsi,
and M. I. Jordan. The missing piece in
complex analytics: Low latency, scalable
model management and serving with velox. In
CIDR, 2015.

[25] V. Crescenzi, P. Merialdo, and D. Qiu.

Crowdsourcing large scale wrapper inference.
33:1-28, 2014.

26

[26]

[27]

[28]

[29]

[32]

[33]

[40]

S. Dasgupta and J. Langford. Tutorial
summary: Active learning. In ICML, page 18,
2009.

H. Ding, G. Trajcevski, P. Scheuermann,

X. Wang, and E. Keogh. Querying and mining
of time series data: Experimental comparison
of representations and distance measures.
PVLDB, 1(2):1542-1552, 2008.

F. Doshi-Velez and B. Kim. A roadmap for a
rigorous science of interpretability. CoRR,
abs/1702.08608, 2017.

R. C. Fernandez, Z. Abedjan, S. Madden, and
M. Stonebraker. Towards large-scale data
discovery: Position paper. In EzploreDB,
pages 3-5, 2016.

R. A. Fisher. On the probable error of a
coefficient of correlation deduced from a small
sample. Metron, 1:3-32, 1921.

R. A. Fisher. Statistical Methods for Research
Workers, pages 66-70. Springer New York,
1992.

A. L. Gibbs and F. E. Su. On choosing and
bounding probability metrics. International
Statistical Review, 70(3):419-435, 2002.

L. Golab, I. F. Ilyas, G. Beskales, and

A. Galiullin. On the relative trust between
inconsistent data and inaccurate constraints.
In ICDE, pages 541-552, 2013.

1. J. Goodfellow, J. Shlens, and C. Szegedy.
Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014.

A. Halevy, F. Korn, N. F. Noy, C. Olston,

N. Polyzotis, S. Roy, and S. E. Whang.
Goods: Organizing google’s datasets. In
SIGMOD, pages 795-806, 2016.

J. M. Hellerstein, V. Sreekanti, J. E.
Gonzales, Sudhansku, Arora,

A. Bhattacharyya, S. Das, A. Dey, M. Donsky,
G. Fierro, S. Nag, K. Ramachandran, C. She,
E. Sun, C. Steinbach, and V. Subramanian.
Establishing common ground with data
context. In CIDR, 2017.

A. Jenkinson. Beyond segmentation. Journal
of Targeting, Measurement and Analysis for
Marketing, (1):60-72, 1994.

M. Joglekar, H. Garcia-Molina, and A. G.
Parameswaran. Interactive data exploration
with smart drill-down. In ICDE, pages
906-917, 2016.

M. Kahng, D. Fang, and D. H. P. Chau.
Visual exploration of machine learning results
using data cube analysis. In HILDA, pages
1:1-1:6, 2016.

Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden,

SIGMOD Record, June 2018 (Vol. 47, No. 2)



[53]

M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz,
N. Tang, and S. Yin. Bigdansing: A system
for big data cleansing. In SIGMOD, pages
1215-1230, 2015.

M. Kim, T. Zimmermann, R. DeLine, and
A. Begel. Data scientists in software teams:
State of the art and challenges. TSE,
PP(99):1-1, 2017.

S. Kolahi and L. V. S. Lakshmanan. On
approximating optimum repairs for functional
dependency violations. In ICDT, pages 53-62,
2009.

P. Konda, A. Kumar, C. Ré, and

V. Sashikanth. Feature selection in enterprise
analytics: A demonstration using an r-based
data analytics system. PVLDB,
6(12):1306-1309, 2013.

T. Kraska, A. Talwalkar, J. C. Duchi,

R. Griffith, M. J. Franklin, and M. I. Jordan.
Mlbase: A distributed machine-learning
system. In CIDR, 2013.

S. Krishnan, J. Wang, E. Wu, M. J. Franklin,
and K. Goldberg. Activeclean: Interactive
data cleaning for statistical modeling.
PVLDB, 9(12):948-959, 2016.

A. Kumar, R. McCann, J. Naughton, and

J. M. Patel. Model selection management
systems: The next frontier of advanced
analytics. SIGMOD Rec., 44(4):17-22, 2016.
A. Kumar, J. F. Naughton, J. M. Patel, and
X. Zhu. To join or not to join?: Thinking
twice about joins before feature selection. In
SIGMOD, pages 19-34, 2016.

S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: Interactive analysis of web-scale
datasets. PVLDB, 3(1-2):330-339, 2010.

H. Miao, A. Chavan, and A. Deshpande.
Provdb: A system for lifecycle management of
collaborative analysis workflows. CoRR,
abs/1610.04963, 2016.

H. Miao, A. Li, L. S. Davis, and

A. Deshpande. Towards unified data and
lifecycle management for deep learning. In
ICDE, pages 571-582, 2017.

T. Mikolov, K. Chen, G. Corrado, and

J. Dean. Efficient estimation of word
representations in vector space. CoRR,
abs/1301.3781, 2013.

F. Olsson. A literature survey of active
machine learning in the context of natural
language processing. volume T2009 of SICS
Technical Report. Swedish Institute of

Computer Science, 2009.
C. Olston and B. Reed. Inspector gadget: A

SIGMOD Record, June 2018 (Vol. 47, No. 2)

[60]

[61]

[62]

framework for custom monitoring and
debugging of distributed dataflows. In
SIGMOD, pages 1221-1224, 2011.

S. Palkar, J. J. Thomas, A. Shanbhag,

M. Schwarzkopt, S. P. Amarasinghe, and

M. Zaharia. A common runtime for high
performance data analysis. In CIDR, 2017.
K. Pearson. On the Criterion that a Given
System of Deviations from the Probable in the
Case of a Correlated System of Variables is
Such that it Can be Reasonably Supposed to
have Arisen from Random Sampling, pages
11-28. Springer New York, 1992.

A. Ratner, S. H. Bach, H. R. Ehrenberg, J. A.
Fries, S. Wu, and C. Ré. Snorkel: Rapid
training data creation with weak supervision.
PVLDB, 11(3):269-282, 2017.

A. J. Ratner, C. D. Sa, S. Wu, D. Selsam, and
C. Ré. Data programming: Creating large
training sets, quickly. In NIPS, pages
3567-3575, 2016.

C. Ré, A. A. Sadeghian, Z. Shan, J. Shin,

F. Wang, S. Wu, and C. Zhang. Feature
engineering for knowledge base construction.
IEEF Data Eng. Bull., 37(3):26-40, 2014.

A. Romei and S. Ruggieri. A multidisciplinary
survey on discrimination analysis. Knowledge
Eng. Review, 29(5):582-638, 2014.

G. Sathe and S. Sarawagi. Intelligent rollups
in multidimensional olap data. In VLDB,
pages 531-540, 2001.

S. Schelter, J.-H. Boese, J. Kirschnick,

T. Klein, and S. Seufert. Automatically
tracking metadata and provenance of machine
learning experiments. In Workshop on ML
Systems at NIPS 2017, 2017.

D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary,

M. Young, J.-F. Crespo, and D. Dennison.
Hidden technical debt in machine learning
systems. In NIPS, pages 2503-2511, 2015.

B. Settles. Active Learning. Synthesis
Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool, 2012.
V. Shah, A. Kumar, and X. Zhu. Are
key-foreign key joins safe to avoid when
learning high-capacity classifiers? PVLDB,
11(3):366-379, 2017.

V. S. Sheng, F. Provost, and P. G. Ipeirotis.
Get another label? improving data quality
and data mining using multiple, noisy
labelers. In SIGKDD, pages 614—622, 2008.
T. Siddiqui, A. Kim, J. Lee, K. Karahalios,
and A. Parameswaran. Effortless data

27



exploration with zenvisage: An expressive and
interactive visual analytics system. PVLDB,
10(4):457-468, 2016.

[67] E. R. Sparks, S. Venkataraman, T. Kaftan,
M. J. Franklin, and B. Recht. Keystoneml:
Optimizing pipelines for large-scale advanced
analytics. In ICDFE, pages 535-546, 2017.

[68] M. Stonebraker, D. Bruckner, I. F. Ilyas,

G. Beskales, M. Cherniack, S. B. Zdonik,
A. Pagan, and S. Xu. Data curation at scale:
The data tamer system. In CIDR, 2013.

[69] M. Vartak. MODELDB: A system for machine
learning model management. In CIDR, 2017.

[70] M. Vartak, S. Rahman, S. Madden, A. G.
Parameswaran, and N. Polyzotis. SEEDB:
efficient data-driven visualization
recommendations to support visual analytics.
PVLDB, 8(13):2182-2193, 2015.

28

[71] M. Volkovs, F. Chiang, J. Szlichta, and R. J.
Miller. Continuous data cleaning. In ICDE,
pages 244-255, 2014.

[72] X. Wang, X. L. Dong, and A. Meliou. Data
x-ray: A diagnostic tool for data errors. In
SIGMOD, pages 1231-1245, 2015.

[73] C. Zhang. DeepDive: A Data Management
System for Automatic Knowledge Base
Construction. PhD thesis, 2015.

[74] C. Zhang, A. Kumar, and C. Ré.
Materialization optimizations for feature
selection workloads. ACM TODS,
41(1):2:1-2:32, 2016.

[75] Z. Zhao, L. De Stefani, E. Zgraggen,

C. Binnig, E. Upfal, and T. Kraska.
Controlling false discoveries during interactive
data exploration. In SIGMOD, pages 527-540,
2017.

SIGMOD Record, June 2018 (Vol. 47, No. 2)



