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= 2017 Winner: Peter Bailis. Honorable Mention: Immanuel Trummer

= 2018 Winner: Viktor Leis. Honorable Mention: Luis Galarraga and Yongjoo Park
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Editor’s Notes

Welcome to the June 2018 issue of the ACM SIGMOD Record!

This issue starts with the Database Principles column featuring an article by Michael Benedikt,
summarizing recent results on reformulating queries over restricted data interfaces in the presence
of integrity constraints. In this setting, the question is how to translate a source query written in
some declarative language into a target object, either a query or a program, subject to the require-
ments that such translation must respect a set of integrity constraints and the interface restriction
such as restricted access only to a set of views or a set of access methods. This article presents a
common framework for dealing with both types of restricted access, as well as the key ideas behind
some of the main techniques.

The Surveys column features two articles. The first article, by Polyzotis et al., discusses data lifecy-
cle challenges in production machine learning. As machine learning has become an essential tool for
gleaning knowledge from data, there is a realization that the accuracy of a machine learned model is
deeply tied to the data that it is trained on. Drawn from the experience in developing data-centric
infrastructure for a production machine learning platform at Google, the authors summarize the
interesting research challenges encountered, and survey some of the relevant literature from the
data management and machine learning communities. The second article, by Hirzel et al., surveys
stream processing languages in the Big Data era. It showcases several languages designed for the
purpose of high-volume or scalable data stream processing, articulates their underlying principles,
and outlines open challenges.

The Distinguished Profiles column includes two articles. The first article features Kenneth Ross,
Professor at Columbia University. In this interview, Ken talks about his well-known work on the
semantics of Datalog and main memory databases, as well as his recent work on biology. Ken also
shares his experience in transitioning from theoretical topics to systems research, and from com-
puter science to biology and bioinformatics. The second article features Paris Koutris, who won the
2016 ACM SIGMOD Jim Gray Dissertation Award for his thesis entitled "Query Processing in Mas-
sively Parallel Systems." Paris is now a professor at the University of Wisconsin-Madison, and he
did his Ph.D. work with Dan Suciu at the University of Washington.

The Industry Perspectives column features an article by Michels et al. on the new and improved
SQL:2016 standard. This new standard is expanding the SQL language to support new data storage
and retrieval paradigms that are emerging from the NoSQL and Big Data worlds. The major new
features in SQL:2016 include: (a) support for Java Script Object Notation (JSON) data; (b) polymor-
phic table functions; and (c) row pattern recognition.

The Research Centers Column features two articles. The first article presents the complex event
recognition (CER) group affiliated with the National Centre of Scientific Research “Demokritos” in
Greece. The CER group works towards advanced and efficient methods for the recognition of com-
plex events in a multitude of large, heterogeneous data streams, covering topics such as efficient
detection of patterns, handling uncertainty and noise in streams, machine learning techniques for
inferring interesting patterns, and event forecasting. The second article features the data and in-
formation management research team at Nanyang Technological University. It presents an over-
view of the key research themes in the group including graph data management, social data man-
agement, information privacy, and fair peer review management.
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Finally, the issue closes with a message from the Editor-in-Chief of ACM TODS on recent changes to
the editorial board.

On behalf of the SIGMOD Record Editorial board, I hope that you enjoy reading the June 2018 issue
of the SIGMOD Record!

Your submissions to the SIGMOD Record are welcome via the submission site:
http://sigmod.hosting.acm.org/record

Prior to submission, please read the Editorial Policy on the SIGMOD Record’s website:
https://sigmodrecord.org

Yanlei Diao

June 2018

Past SIGMOD Record Editors:

Ioana Manolescu (2009-2013)  Alexandros Labrinidis (2007-2009) Mario Nascimento (2005-2007)

Ling Liu (2000-2004) Michael Franklin (1996-2000) Jennifer Widom (1995-1996)
Arie Segev (1989-1995) Margaret H. Dunham (1986-1988) Jon D. Clark (1984-1985)
Thomas J. Cook (1981-1983)  Douglas S. Kerr (1976-1978) Randall Rustin (1974-1975)

Daniel O’Connell (1971-1973) Harrison R. Morse (1969)
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Logic-based Perspectives on Query Reformulation
over Restricted Interfaces

Michael Benedikt
University of Oxford, UK

michael.benedikt@cs.ox.ac.uk

ABSTRACT

We overview recent developments on query reformula-
tion over a restricted interface, in the presence of in-
tegrity constraints. We overview an approach to the prob-
lem via reduction to query containment with constraints,
where the reduction makes use of interpolation algo-
rithms from logic. We first present the approach in the
context of reformulating one query as another query us-
ing a fixed set of tables. We then generalize to reformu-
lation of a query as a plan over a set of access methods.

1. INTRODUCTION

This article summarizes a series of articles [2, 8,
9, 5, 6, 4] revisiting reformulating queries over re-
stricted data interfaces in the presence of integrity
constraints. In this problem, we start with a source
query ) written in some declarative language and
a set of integrity constraints 3. We also have some
“interface restriction”, representing a limit on how
data is accessed. We want to translate @) into a tar-
get object P — either a query or a program — that
satisfies two properties:

e P is equivalent to @ for all query inputs satis-

fying the constraints %

e P satisfies the interface restriction.

We consider two flavors of interface restriction.
The first is vocabulary-based restriction. We have a
subset V of the tables in the schema, and we want P
to be a query referencing only tables in V. The pro-
totypical case is where V is a set of view tables, and
Y includes the assertion that each view table stores
exactly the tuples satisfying the corresponding view
definition.

A second kind of interface restriction is given by
access methods: each table T' with n attributes is as-
sociated with a set (possibly empty) of access meth-
ods. Each method is further associated with a sub-
set of the attributes of T' — the input positions. The
idea is that a method gives functional access to table
T': given a binding for the input positions, it returns
the matching tuples in 7. Our reformulation prob-
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lem is to see if () is equivalent, modulo constraints
Y, to something “executable with respect to the ac-
cess methods”. That is, we want a plan that makes
use of the access methods, whose result agrees with
Q@ for all inputs satisfying 3.

Thus our reformulation problem generalizes both
rewriting queries with respect to views, which has
been studied for decades, as well as prior work on
determining whether a query can be executed with
access methods [20, 19, 31, 23, 24, 12].

We present a common framework for dealing with
both of these problems, using a reduction to query
containment with constraints. From a proof of a
query containment one can extract a reformulation,
using a technique from logic called interpolation.
This framework provides new reformulation algo-
rithms both when the target is a query and when
the target is a plan. It also gives a common way to
see many prior results in the area. For instance, it
allows us to re-derive classic results on querying over
views, such as Levy, Mendelzon, Sagiv, and Srivas-
tava’s [17], and methods for reformulating queries
using constraints, such as the Chase and Backchase
of Deutsch, Popa, and Tannen [16, 14, 26].

Although the unified presentation of reformula-
tion comes from our own work, it builds on a long
line of prior papers. Particularly important is Nash,
Segoufin and Vianu’s work on characterizing when
a query can be expressed using views [25]. Two
other key antecedents are Deutsch, Ludascher, and
Nash’s paper [12] on querying with access methods
and integrity constraints, and the book of Toman
and Weddell [30] on reformulation over constraints.

In this survey article we will go through some of
the main ideas, skipping most of the details. A full
exposition of the techniques, as well as a detailed
discussion of related work, can be found in [4].

Organization:. Section 2 contains standard DB
preliminaries, as well as some results on query con-
tainment with constraints. Section 3 looks at the
reformulation problem for vocabulary-based inter-



faces. Section 4 turns to interfaces based on access
methods. We present a discussion of implications
and future directions in Section 5, before conclud-
ing in Section 6.

2. PRELIMINARIES

Data and queries. The basic data model of a
querying scenario is given by a relational schema
S that consists of a set of relations each with an
associated arity (a positive integer). The positions
of a relation R of S are 1,...,n where n is the arity
of R. An instance of R is a set of n-tuples (finite or
infinite), and an instance I of S consists of instances
for each relation of S. For an instance I of S and a
relation R € S, the set of tuples assigned to R in [
is the interpretation of R in I. We can equivalently
see I as a set of facts R(aj...a,) for each tuple
(a1 ...ap) in the instance of each relation R. The
active domain of I, denoted adom(I), is the set of
all the values that occur in facts of I.

The source queries that are being reformulated
will be conjunctive queries (CQs) which are expres-
sions of the form 3z ...z (A1 A--- A A,,), where
the A; are relational atoms of the form R(xy ... x,),
with R being a relation of arity n and x ...z, be-
ing variables or constants. A union of conjunctive
queries (UCQ) is a disjunction of CQs. The tar-
get for reformulation of a CQ will not necessarily
be another CQ or even a UCQ. Sometimes it will
be a formula of first-order logic (FO). FO is built
up from relational atoms and equalities using the
boolean operations and quantifiers V and 3, where
quantifiers always range over the active domain. For
an instance I and query @ given by an FO formula,
the set of bindings for the variables that satisfy the
formula is the output of @ on I, denoted Q(I).

Integrity constraints. To express integrity con-
straints on instances, we will use sentences of FO.
Some of the results apply only to dependencies, which
will be either tuple-generating dependencies (TGDs)
or equality-generating dependencies (EGDs).

A TGD is an FO sentence 7 of the form VZ (¢(Z) —
37 (&, 7)) where ¢ and ¢ are CQs. An EGD is of
the form: VZ (o(Z) — z; = x;) where ¢ is a CQ
whose variables include z; and x;.

For brevity, in the sequel, we will omit outermost
universal quantifications in dependencies.

Query containment problems. A query con-
tainment with constraints is an assertion

QCs @

where (Q and Q' are queries given by logical formu-
las, and X is a set of integrity constraints (given by
logical sentences). Such a containment holds if for

6

every instance I satisfying ¥, the result of @ on [ is
contained in the result of Q' on I '. We say that “Q
is contained in @’ with respect to 7. To verify a
query containment, it is necessary and sufficient to
find a proof in some suitable proof system. There
are many proof systems for first-order logic. One ex-
ample is the tableau proof system. A tableau proof
witnesses that a first-order logic formula ¢ is unsat-
isfiable. It is a tree where every node p is associated
with a set of formulas F},. The root of the tree is as-
sociated with the singleton set of formulas {¢} and
every leaf must be associated to a set containing an
explicitly contradictory formula (False). A non-leaf
node p, associated with formulas F},, has at most
two children. For each child ¢, the set of formulas
F. is related to F}, by adding on some subformula
of a formula 7, € F,. For example, if F}, includes
a formula -, that is a disjunction v; V 72, then one
of the children will contain 7; and the other will
contain 5. Tableau proofs give a complete method
for detecting unsatisfiability of a sentence:

Proposition 1: If ¢ is unsatisfiable there is some
tableau proof witnessing this. |

A query containment ()1 Cs: Q2 holds exactly when
Q1 N X A Q> is unsatisfiable. Thus tableau proofs
provide a complete method to verify query con-
tainment with arbitrary first-order integrity con-
straints 3. Other proof systems for first-order logic
include resolution and natural deduction. For query
containment problems in which the constraints X
consist of dependencies, there are more specialized
proof systems, such as the chase [22].

3. REFORMULATING OVER A SUBSET
OF THE RELATIONS

We revisit the reduction from reformulation to
query containment with constraints implicit in the
work of Nash, Segoufin, and Vianu [25]. We will
phrase their work in terms of reformulation of a
query defined over a source vocabulary, where the
goal is to translate it into a query over a target vo-
cabulary. We have integrity constraints that can
involve relations in both the source vocabulary and
the target vocabulary. Thus the “interface” is de-
fined by giving the target vocabulary.

Let S be a collection of relations, ¥ a set of in-
tegrity constraints, and V a subset of S. A first-
order reformulation of QQ over V with respect to X

'Note that in this work we will always consider contain-
ments over all instances, not just finite ones. The the-
orems presented here do not hold for general first-order
logic if only finite instances are considered. However,
for many classes of interest, the results hold verbatim
over finite instances [4].
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means a safe first-order query @y (that is, a query
equivalent to a relational algebra query), using only
the relations in V., and such that for every instance

I satisfying ¥, Q(I) = Qv (I).

Example 3.1. A university database has a relation
Prof containing ids and last names of professors,
along with the name of the professor’s department.
It also has a relation Stud listing the id and last
name of each student, along with their advisor’s id.

The database does not allow users to access the
Prof and Stud relations directly, but instead exposes
a view VProf where the id attribute is dropped, and
a relation VStud where the advisor’s id is replaced
with the advisor’s last name.

That is, VProf is a view defined by the formula:

{ Iname, dname |

3 profid Prof (profid, Iname, dname)}

or equivalently by the constraint:

(Iprofid Prof (profid, Iname, dname)) <> VProf (Iname, dname)
VStud is a view defined by the formula:

{studid, Iname, profname |
Jprofid Idname Stud(studid, Iname, profid)
AProf (profid, profname, dname) }

or equivalently by the constraint:

[(3profid Idname Prof (profid, profname, dname)A
Stud(studid, Iname, profid))
> VStud(studid, Iname, profname)]

Consider the query asking for the names of the
advisors of a given student. We can reformulate
this query over the VStud view. The reformulation
is just the query returning the profname attribute
of the view. But a query asking for the last names
of all students that have an advisor in the history
department can not be refomulated using these two
views: knowing the advisor’s name is not enough to
identify the department. N

If £ is some subset of FO, we can similarly talk
about an £ reformulation of @) over V with respect
to 2.

One of the main ideas of [25] is a reduction of
finding a reformulation to verifying a query contain-
ment with constraints, and the key to this reduction
is the notion of determinacy, which we define next.
If 3 is a collection of first-order constraints, we say
that a first-order query Q) over S is determined over
V relative to X if:

For any two instances I and I’ that sat-
isfy ¥ and have the same interpretation of
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all relations in V (that is, they have the
same T-facts for each T € V), we have

QI = Q).

That is, two instances that agree on V must agree
on Q. How does determinacy connect with reformu-
lation? We first show that determinacy boils down
to checking query containment with constraints. Let
us extend our original schema for the constraints X
and the query @ by making a copy R’ of every re-
lation R in the schema. Let Q' be the copy of ) on
the new relations, and ¥’ be the copy of the con-
straints > on the new relations. Our assumption of
determinacy of ) can be restated as a query con-
tainment problem @ Cr @', where I' contains X, ¥/
and the additional interface axioms:

N\ Vi T(@i) < T'()

TEY
This is the query containment corresponding to de-
terminacy of @ over V relative to X.

We now want to argue that when the query con-
tainment above holds, we can get a reformulation
of ) over V with respect to 3. To do this, we need
to bring into the picture interpolation. If we have
a query containment problem @ Cr @', and a par-
tition of I' into 'y and I's, an interpolant for the
containment and partition is a formula y such that:

e () is contained in x with respect to I'y and x
is contained in @’ with respect to I'y

e Every relation in x occurs in both {Q} U Ty
and in {Q'} UTs.

The crucial facts about interpolants that are rel-
evant to us are:

e For every query containment problem @) Cr
Q', for every partition of I into I'1,T'g, there
1s an interpolant. Thus in particular if @ is
determined over V relative to X, then for ev-
ery partition of I' the containment QQ Cr Q'
above corresponding to determinacy has an in-
terpolant.

e Suppose that the query containment correspond-
ing to determinacy of @) over V relative to ¥
holds, and partition I' above into I'y = ¥,
I's = ¥’ U the interface axioms. Let Qy be any
interpolant for the query containment relative
to this partition. Then @y is a reformulation
of @ over V with respect to X.

The first item, saying that interpolants exist, is
a basic result in logic; we do not prove it here. We
give the short proof of the second item, saying that



interpolants for this particular partition give refor-
mulations. It is a variant of an argument in [11].

PRrROOF. For simplicity, in the proof we assume
Q@ is a sentence. The definition of interpolant says
that @y can use only relations that occur both in
{Q} UT; and also in I'; U {Q'}. This implies that
@y uses only relations in V.

Since @ Cr, @y, we know that if an instance
satisfies the constraints > and also satisfies @, it
must also satisfy Qy.

We argue that if an instance satisfies 3 and also
satisfies Qy, it must also satisfy Q). Fix I satisfying
¥ such that Qy holds in I. Extend I to an instance
I + I by letting the interpretation of each primed
relation R’ be the same as the corresponding un-
primed relation R of I. The instance I + I’ satisfies
Qv, ¥/, and the interface axioms. Since Qy Cr, Q,
we know that I+ 1’ satisfies Q'. By the construction
of I + I', this means I satisfies Q.

We have shown that for an instance satisfying 3,
@ holds if and only if @)y holds, which means Qy is
a reformulation.

Since the existence of a reformulation implies that
the query containment for determinacy holds, we
have the following result:

Theorem 3.1: A conjunctive query ) has a first-
order reformulation with respect to vocabulary V
and constraints ¥ if and only if @ is determined over
V relative to X if and only if the query containment
corresponding to determinacy of @ over V relative
to X holds. ]

Finding the reformulation. Theorem 3.1 re-
duces the problem of ezistence of a reformulation
to a query containment problem. But of course, we
do not just want to know if a reformulation exists,
we want to be able to find it. There is a refine-
ment of Theorem 3.1 that talks about finding the
reformulation from a witness that the query con-
tainment holds. The witness we require is a proof.
We mentioned in the preliminaries that there are
many proof systems for first-order logic, and most of
them admit feasible interpolation algorithms. One
example is the tableau proof system mentioned in
the preliminaries. One can find interpolants quickly
from tableau proofs:

Proposition 2: There is a polynomial time algo-
rithm that given a tableau proof that Q7 Cx; Q2 and
a partition of 3 into X1, 35, finds an interpolant y
for the containment and partition. |

Using Proposition 2 we can get the refined version
of Theorem 3.1 mentioned above:

Theorem 3.2: A conjunctive query @ has a first-
order reformulation with respect to vocabulary V
and constraints X if and only if the query contain-
ment for determinacy of @ over V holds. Further,
given a tableau proof of the query containment we
can extract a reformulation in polynomial time. W

If the constraints X are arbitrary first-order sen-
tences, we cannot bound the time taken to find
tableau proof, since query containment with first-
order constraints is undecidable. But for many re-
stricted classes of constraints — e.g. referential con-
straints — we can show that the query containment
for determinacy is also decidable. Indeed, for many
classes C' of constraints the query containment prob-
lem for determinacy is no more complex than the
problem of query containment for the class C.

There is a subtlety we should mention. In our
reformulation problems we start with a CQ, and
we are interested in reformulations that can be con-
verted to relational algebra. That is, we want refor-
mulations that are not arbitrary first-order, but for-
mulas which only quantify over the active-domain,
and where the free variables are safe. Using classi-
cal tableau with prior interpolation procedures does
not give us this. But by varying both the proof
system and the interpolation algorithm slightly, we
can get active-domain formulas. Safe reformula-
tions can be achieved by post-processing the inter-
polants. Details can be found in [4].

3.1 Variation: vocabulary-based reformu-
lation with positive existential queries

We now explore what happens when we restrict
the target language for a reformulation. A positive
existential formula with inequalities (317 formula)
is a formula built up using only existential quantifi-
cation, starting from atomic relations and inequal-
ities. By convention, we also consider the formula
False to be positive existential with inequalities. A
safe FO formula in this class is equivalent to a re-
lational algebra expression that does not have the
difference operator, but allows inequalities in selec-
tions. Thus we will sometimes refer to 37 formu-
las as “USPJ7” queries”.

Given a conjunctive query @, restricted vocabu-
lary V, and constraints ¥ given by FO sentences,
we are interested in getting a 3% reformulation of
Q over V with respect to ¥. This means we want
a 3t7 formula over V that agrees with @ for in-
stances satisfying the constraints.

The query containment for 3+7 reformula-
tion. We start by finding the appropriate variant
of determinacy equivalent to a query @ having a
3+# reformulation. The property was isolated in
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[25]. We say that a query @ over schema Sch is
monotonically-determined over V relative to X if:

whenever we have two instances I, I’ that
satisfy ¥ and for each relation T' € V), the
interpretation of T € I is a subset of the
interpretation of T in I’, then Q(I) C

Q).

If a 3% formula Qy over V is true on an in-
stance I, then it is true on any instance I’ which
only adds tuples to the relations in V. It follows
that monotonic-determinacy of () over V relative to
Y is a necessary condition for @ to have a IT#
reformulation over V with respect to X.

We can express monotonic-determinacy as a query
containment problem. Again we will use a vocabu-
lary that allows us to talk about two copies of the
relations, with R’ being a copy of R. We let ¥’ be
a copy of the constraints > where each occurrence
of a relation R in S has been replaced by a copy R’.
And we let Q" be defined from @ analogously.

Then monotonic-determinacy of a first-order query
Q@ over V relative to X can be restated as saying
that the query containment Q Cr Q' holds, where
I contains X, ¥’ and the “forward interface axiom”:

N\ Vi T(@) = T' ()
Tey
That is, the difference from determinacy is that
we have only implication in the “forward” direction,
from unprimed to primed, while for determinacy we
have implications in both directions. This is the
query containment for monotonic-determinacy.
Generating 37 reformulations from proofs
of the query containment. We now give a result
saying that from proofs of the query containment
for monotonic-determinacy, we get 37# reformula-
tions. It is an analog of Theorem 3.1.

Theorem 3.3: If the constraints ¥ are first-order
then conjunctive query Q has a USPJ7” reformu-
lation over V relative to ¥ if and only if the query
containment for monotonic-determinacy holds. W

Theorem 3.3 is proven using the same technique
as Theorem 3.1: applying an interpolation algo-

rithm to the query containment associated to monotonic-

determinacy. One needs to ensure that the inter-
polants have some additional properties in order to
be sure that the interpolant coming from the proof
does not have negation. Many interpolation algo-
rithms are known to ensure this additional prop-
erty [21]. As with Theorem 3.1, there is a variant
that tells us we can find the reformulation effectively
given a proof of the query containment.
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3.2 Variation: existential reformulation

We now look at another variation of the refor-
mulation problem: determining whether a query
can be reformulated using an ezistential formula,
or equivalently a UCQ with negation allowed only
on atomic formulas. That is, a formula that is
built up from atoms and negated atoms by pos-
itive boolean operators and existential quantifica-
tion. There are conjunctive queries that are equiv-
alent to existential formulas but not to positive ex-
istential ones. For example, in the absence of any
constraints 3z S(z) A ~R(z) is not equivalent to a
positive existential formula.

As before, let Sch be a schema with a set of in-
tegrity constraints ¥ in FO, and V a subset of the
relations of Sch. We start by isolating a determi-
nacy property that ) must have in order to possess
an existential reformulation.

For a set of relations V and instances I and I’, we
say that I is a V induced-subinstance of I' provided
for each T' € V two conditions hold. First, I’ con-
tains every fact T'(¢) in I. Second, I contains every
fact T(cy...c,) in I’ such that each ¢; occurs in
the domain of some relation of V in I. We say that
a query @ over schema Sch is induced-subinstance-
monotonically-determined over V relative to X if:

Whenever we have two instances I,I’ that sat-
isfy 2, and I is a V induced-subinstance of I’, then

Q) € QI).

If an existential formula over V is true on an in-
stance I, then it is true on any instance I’ which
only adds tuples to the relations in V and never
“destroys a negated assertion about a relation of V
holding in I”. From this we see that if a formula
is equivalent to an existential formula under con-
straints X, then the formula is induced-subinstance-
monotonically-determined over V relative to X.

As in the previous cases, we can translate this
property into a query containment with constraints,
but it will be slightly more complicated than deter-
minacy or monotonic-determinacy. Let InDomainy ()
abbreviate the formula:

\/ \/ 311)1 ‘e ij_l Ele_,_l ‘e wa,ity(T)
TeV j

T(wi,. . Wj—1, T, Wit1, - -+ s Warity(T))
So InDomainy, states that z is in the domain of a
relation in V. The query containment for induced-

subinstance-monotonic-determinacy is Q Cr Q’, where
I' contains X, ¥/, and also the following two addi-
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tional axioms:

N (%57 T() = T'(3)
Tey

A (¢ /\ InDomainy, (y;) A T'(5) — T(%) )
TeY I

Comparing with the two previous query contain-
ments, we have the forward interface axiom, used in

the axioms for determinacy and monotone-determinacy.

We also have a restriction of the backward interface
axiom used in determinacy. It is easy to see that
induced-subinstance-monotonic-determinacy is equiv-
alent to this containment holding.

Extracting reformulations from a proof of
the query containment. Continuing the prior
pattern, we can show that from a proof of the query
containment corresponding to induced-subinstance-
monotonic-determinacy, we can extract an existen-
tial reformulation from it:

Theorem 3.4: If the constraints ¥ are in FO, and

o A finite collection C of schema constants (“Smith”,
3, ...). Schema constants represent a fixed set
of values that will be known to a user prior
to interacting with the data. Values that can
be used in queries and constraints should be
schema constants, as before. In addition, any
fixed values that might be used in plans that
implement queries should come from the set of
schema constants. For example, a plan that re-
formulates a query about the mathematics de-
partment might involve first putting the string
“mathematics” into a directory service.

e For each relation R, a collection (possibly empty)
of access methods?. Each access method mt is
associated with a collection (possibly empty)
of positions of R — the input positions of mt.

e Integrity constraints, which are sentences of
first-order logic as before.

CQ Q is induced-subinstance-monotonically-determined EXxample 4.1. Suppose we have a Profinfo rela-

over V relative to X, then there is an existential for-
mula ¢(Z) using only relations in V that is a refor-
mulation of Q with respect to X. |

The bottom line on vocabulary-based reformula-
tion is:

For every target language, we have a different
query containment problem. From proofs of the query
containment, we can extract reformulations.

When constraints are dependencies, one can use
chase proofs to verify the query containment. For
chase proofs, extraction of the reformulation from a
proof turns out to be very simple (see [9, 4]).

4. ACCESS METHODS

In the previous section the target of reformula-
tion was specified through vocabulary restrictions.
We wanted a query that used a fixed set of target
relations, perhaps restricted to be positive existen-
tial or existential. In this section we deal with a
finer notion of reformulation, where the target has
to satisfy access restrictions.

Access methods are close to the traditional no-
tion of interface in programming languages: a set
of functions that access the data. A specification
of this interface will be an extended set of meta-
data describing both the format of the data (e.g.
the vocabulary that would be used in queries and
constraints) and the access methods (functions that
interact with the stored data).

An access schema consists of:

e A collection of relations, each of a given arity.

10

tion containing information about faculty, includ-
ing their last names, office number, and employee
id. We have a restricted interface that requires giv-
ing an employee id as an input.

Intuitively, in such a schema we can not find out
information about all professors. But if we had
a query asking about a particular professor, hard-
coding the professor’s employee id, we would be able
to use the interface to answer it. N

An access (relative to a schema as above) consists
of an access method of the schema and a method
binding — a function assigning values to every input
position of the method. If mt is an access method
on relation R with arity n, I is an instance for a
schema that includes R, and AccBind is a method
binding on mt, then the output or result of the ac-
cess (mt, AccBind) on T is the set of n-tuples ¢ such
that R(Z) holds in I and # restricted to the input
positions of mt is equal to AccBind.

An access method may be “input-free”: have an
empty collection of input positions. In this case, the
only access that can be performed using the method
is with the empty method binding.

The goal is to reformulate source queries in a tar-
get language that represents the kind of restricted
computation done over an interface given by an ac-
cess schema. We formalize this as a language of
plans. Plans are straight-line programs that can
perform accesses and manipulate the results of ac-
cesses using relational algebra operators. This lan-

20ur definition of “access methods” is a variant of the
terminology “access patterns” or “binding patterns”
found in the database literature.
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guage could model, at a high-level, the plans used
internally in a database management system. It
could also describe the computation done within a
data integration system, which might access remote
data via a web form or web service and then com-
bine data from different sources using SQL within
its own database management system.

Example 4.2. Suppose we have a Profinfo rela-
tion with a restricted interface that requires giv-
ing an employee id as an input, as in Example 4.1.
But we also have a Udirectory relation containing
the employee id and last name of every university
employee, with an input-free access method. The
fact that the directory contains every employee and
that a professor is an employee is captured by the
integrity constraint stating that every employee id
in the Profinfo is also contained in Udirectory.

Suppose we are interested in the query asking for
ids of faculty named “Smith”:

@ = Jonum Profinfo(eid, onum, “Smith”)

A reformulation is a program using the given meth-
ods, where the program is equivalent to @ for all
inputs satisfying the integrity constraints 3.

One can easily see that there is a reformulation
of @ using these access methods: we simply access
Udirectory to get all the employee ids, then use these
to access Profinfo, filtering the resulting tuples to
return only those that have name “Smith”.

On the other hand, if we did not have access to
Udirectory, we can see intuitively that there is no
such reformulation. <

Formally, we have a plan language with two basic
commands. The first is an access command. Over
a schema Sch with access methods, an access com-
mand is of the form:

T <:OutMap mt <:InMap E

where:
e F is a relational algebra expression, the input
expression, over some set of relations not in
Sch (henceforward “temporary relations”);
e mt is a method from Sch on some relation R;
e InMap, the input mapping of the command,
is a function from the output attributes of F
onto the input positions of mt;
e T the output relation of the command, is a
temporary relation;
e OutMap, the output mapping of the command,
is a bijection from positions of R to attributes
of T.
Note that an access command using an input-free
method must take the empty relation algebra ex-
pression () as input.
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The manipulation of data retrieved by an access
is modeled with the other primitive of our plan lan-
guage, a middleware query command. These are
of the form T := @, where @ is a relational alge-
bra expression over temporary relations and 7T is a
temporary relation. We use the qualifier “middle-
ware” to emphasize that the queries are performed
on temporary relations created by other commands,
rather than on relations of the input schema.

A relational algebra-plan (or simply, RA-plan)
consists of a sequence of access and middleware query
commands, ending with at most one return com-
mand of the form Return E, where F is a relational
algebra expression.

Example 4.3. We return to Example 4.2 where we
had two sources of information. One was Profinfo,
which was available through an access method mtpyfinfo
requiring input on the first position. The second
was Udirectory, which had an access method mtydirectory
requiring no input. Our query @ asked for ids of fac-
ulty named “Smith”. One plan that is equivalent to

Q@ would be represented as follows

T <= Mtydirectory <= 0

Ty := Teid (TIname=<“Smith” T1)
T3 <= mtprofinfo <= T2
Return Weid(Tg)

Above we have omitted the mappings in writing ac-
cess commands, since they can be inferred from the
context. <

Fragments of the plan language. There are
fragments of our plan language, analogs of the stan-
dard fragments of relational algebra and first-order
logic. In RA-plans, we allowed arbitrary relational
algebra expressions in both the inputs to access
commands and the middleware query commands.
We can similarly talk about USPJ 7 -plans, where
both kinds of commands can only use USPJ 7 queries.

Plans that reformulate queries. We now de-
fine what it means for a plan to correctly implement
a query. Given an access schema Sch, a plan refor-
mulates a query @ with respect to Sch if for every
instance I satisfying the constraints of Sch, the out-
put of the plan on I is the same as the output of
Q. We often omit the schema from our notation,
since it is usually clear from context, saying that a
plan PL reformulates Q. Note that this extends the
notion of a query @y over relations V reformulating

a query Q.
4.1 Reduction to query containment

Recall from Section 3 that a query @ had a re-
formulation with respect to a vocabulary-based in-
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terface V if and only if the output of @) was deter-
mined by the data stored in V. In the case of access
methods, we would like to say that ) can be re-
formulatable using the access methods if and only
if it is “determined by the data we can get via the
access methods”. We will require some auxiliary
definitions to formalize what we mean by “the data
we can get via the access methods”.

Given an instance I for schema Sch the accessible
part of I, denoted AccPart(I) consists of all the facts
over I that can be obtained by starting with empty
relations and iteratively entering values into the ac-
cess methods. This will be an instance containing
a set of facts AccessedR(v; ... vy), where R is a re-
lation and vy ...v, are a subset of the values in the
domain of I such that R(v;...v,) holds in I. The
content of relations AccessedR will be formed as a
limit of inductively-defined sets AccessedR;. In the
inductive process we will also build a set of elements
accessible;. If Sch contains no schema constants, we
start the induction with relations AccessedRy and
accessibleg empty. We then iterate the following
process until a fixpoint is reached:

accessible; {1 = accessible; U U m;(AccessedR;)

R a relation
j<arity(R)

and

AccessedR; 1 = AccessedR; U

(Ro{51se-20m})
there is a method on R with inputs j1,...,jm

{vi...vn|R(v1...vn) in I, vj, ...vj,, € accessible;}

Above m;(AccessedR;) denotes the projection of
AccessedR; on the j** position. For a finite in-
stance, this induction will reach a fixpoint after |I|
iterations, where |I| denotes the number of facts
in I. For an arbitrary instance the union of these
instances over all ¢ will be a fixpoint.

Assuming Sch does include schema constants, we
modify the definition by starting with accessibleg
consisting of the schema constants, rather than be-
ing empty.

Above we consider AccPart(I) as a database in-
stance for the schema with relations accessible and
AccessedR. Below we will sometimes refer to the
values in the relation accessible as the accessible val-
ues of I.

Example 4.4. Suppose our schema has a relation
Related of arity 2, with an access method mtgejated
with input on the first position of Related. The
schema has exactly one schema constant “Jones”.

12

Let instance I consist of facts

{Related(“Jones”, “Kennedy”), Related(“Kennedy”, “Evans”),
Related(“Smith”, “Thompson”)}

We construct the accessible part of I. We begin by
computing:

AccessedRelatedy = ), accessibleg = {“Jones” }

That is, initially the accessible part contains no
facts and the only accessible constant is the schema
constant “Jones”.

We can now apply the inductive rules to get after
one iteration:

AccessedRelated; = {(“Jones”, “Kennedy”)}
accessible; = {“Jones”, “Kennedy” }.

and after a second iteration:

AccessedRelateds =
{(“Jones”, “Kennedy”), (“Kennedy”, “Evans”)}
accessibles = {“Jones”, “Kennedy”, “Evans” }

At this point, we have reached a fixpoint, so the
accessible part of I consists of facts

{AccessedRelated(“Jones”, “Kennedy”),
AccessedRelated( “Kennedy”, “Evans”)}

The accessible values of I are

{“Jones”, “Kennedy”, “Evans” }
N

Query @ is said to be access-determined over Sch
if for all instances I and I’ satisfying the constraints
of Sch with AccPart(I) = AccPart(I’) we have Q(I) =
Q(I'). If a query is not access-determined, it is ob-
vious that it cannot be reformulated through any
plan, since any plan can only read tuples in the ac-
cessible part.

Example 4.5. We return to the setting of Exam-
ple 4.1, where we have a Profinfo relation contain-
ing information about faculty, including their last
names, office number, and employee id, but with
only an access method mtpfinfo that requires giv-
ing an employee id as an input. We consider again
the query @ asking for ids of faculty named “Smith”,
where “Smith” is a schema constant.

We show that @ is not access-determined. For
this, take I to be any instance that contains ex-
actly one tuple, with lastname “Smith”, but with an
employee id that is not one of the schema constants.
Let I’ be the empty instance. The accessible parts
of I and I’ are empty, since in both cases when we
enter all the constants we know about in mtpfinfo,
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we get the empty response. But @ has an output
on I but no output on I'.

I and I’ witness that @ is not access-determined.
From this we see that @) can not be reformulated by
any plan using only mtpofinfo- <

We now show that access-determinacy reduces to
a query containment. Given a schema Sch with con-
straints ¥ and access methods, we form a schema
AcSch®(Sch) that has only integrity constraints.
AcSch® will contain two copies of every relation
in Sch, with the copy of R denoted as R’. The
constraints of AcSch®™ will include all constraints
Y of Sch, a copy ¥’ of the constraints on the new
relations, and also the following additional axioms,
which we call accessibility axioms. The first set of
axioms, which we call forward accessibility axioms,
are as follows (universal quantifiers omitted):

/\ accessible(zj,) A R(z1 ... 2,) —

i<m

R(x1...20) A /\ accessible(x;)

(3

Above, R is a relation of Sch having an access method
with input positions jj ... Jm.

The second set of axioms, backward accessibility
azioms, just reverses the roles of R and R':

/\ accessible(z;,) A R'(z1...2,) —

i<m

R(zy...zp) A /\ accessible(x;)

K3

where again R is a relation of Sch having an access
method with input positions ji ... jm.

Intuitively, the primed and unprimed copies are
a way of writing a statement about two instances.
The relation accessible represents the common ac-
cessible values of the two instances. The axioms
state that both instances satisfy the constraints,
and ensure that their accessible parts are the same.
The notation AcSch® (Sch) emphasizes that we have
constraints from primed to unprimed and vice versa.

As before, we extend the priming notation to
queries, letting )’ be obtained from @ by replac-
ing each relation R by R’. The query containment
for access-determinacy is then @ Cacsche (sch) Q.
Analogously to the vocabulary-based case, we can
show that this query containment captures the pro-
posed determinacy property, access-determinacy.

We can also show that whenever the query con-
tainment for access-determinacy holds, we can ex-
tract a plan that reformulates Q:
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Theorem 4.1: For any CQ @ and access schema
Sch with constraints in FO, the query containment
for access-determinacy holds if and only if there
is an RA-plan reformulating @ (over instances of
Sch). |

The proof of Theorem 4.1 uses another refinement
of interpolation. Theorem 4.1 only talks about dis-
covering whether a plan exists. There is a variation
that says we can find the plan given a suitable proof,
analogously to the vocabulary-based setting.

4.2 Variation: plans without negation

When we defined the language of RA-plans,we
argued that it forms a natural counterpart to rela-
tional algebra in the setting where the interface to
data is given by a set of access methods. The ana-
log of It# formulas (equivalent to USP.J7 queries)
in the setting of plans are the USPJ7-plans men-
tioned earlier, where we do not allow relational alge-
bra difference in any expressions within commands.
We will now consider the problem of reformulating
a query as a USPJ7-plan.

We need a variation of determinacy correspond-
ing to a plan that only uses “accessible data” and
only uses it monotonically. We say @ is access-
monotonically-determined over Sch if whenever we
have instances I and I’ satisfying the constraints
of Sch with every fact of AccPart(I) contained in
AccPart(I), then Q(I) C Q(I").

The query containment corresponding to access-
monotonic-determinacy is simple: we take the same
queries @, Q' as with access-determinacy, but we
include only the forward accessibility axioms.

It is easy to verify that the query containment
captures access-monotonic-determinacy. And once
again, we can take a proof of the query containment
and extraction a reformulation, using the appropri-
ate interpolation algorithm:

Theorem 4.2: For any CQ @ and access schema
Sch containing constraints specified in FO, there
is a USPJ7-plan reformulating Q (over instances
in Sch) if and only if the query containment for
access-monotonic-determinacy holds if and only if @
is access-monotonically-determined over Sch. Fur-
thermore, for every tableau proof witnessing the
query containment, we can extract a USPJ 7'é—plaun
that reformulates Q. |

4.3 More variations on restrictions based
on access methods

Recall that for vocabulary-based restrictions, there
was a variation of the technique for existential re-
formulation: we are looking for a reformulation and
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allow it to use negation, but only at the atomic level.
There is a similar variation for plans that “only use
negation at the atomic level”. The definition of such
plans is a bit technical, since in the plan language
simply restricting query middleware commands to
only use atomic negation is not enough. The defi-
nitions and the details of the reformulation method
can be found in [9, 4].

In our plans we assumed that an access method
on relation R returns all the matching tuples on
R. Web service access methods may impose result
limits, setting an upper bound on the number of
matching tuples returned. Another variation of the
method, described in [1], shows how to find refor-
mulations with access methods that include result
bounds.

S. DISCUSSION

We have presented a few theorems that are rep-
resentative of the reduction to query containment.
In this section we go through some of the implica-
tions of the results. This will include a discussion
of the main theoretical advantage of the technique,
the immediate prospects of applying the results in
practice, and remarks on the history of the topic.

5.1 Querying over interfaces

Reformulation is a very broad topic, with still
many aspects untouched. Dimensions of the prob-
lem include:

o The logical operators allowed in the target of
reformulation. In this article we have looked at
three flavors of reformulation depending on the

operators allowed. In “first-order” or “relational-

algebra” reformulation, negation is allowed in

the target. In “monotone” or “positive-existential”

reformulation, we want a reformulation that
does not use negation. In between is “existen-
tial reformulation”, in which we allow nega-
tion, but not nested. Surely there are many
more possibilities for the allowed operators.

e The notion of interface. Reformulation is about
synthesizing an implementation with a given
interface. Here we have dealt with only two,
but there are many notions of data interface
that can be considered.

o The class of constraints. Integrity constraints
are implicit in any analysis of reformulation.
In the case of reformulation over views, the
constraints are just the view definitions. But
one can consider much broader or more re-
stricted classes of constraints, and the class
considered will impact the algorithms.

14

e The reasoning system used to verify that a re-
formulation exists. For constraints that are
dependencies, the natural reasoning system for
proving query containments for reformulation
is the chase. But other proof systems can be
used even in the case of dependencies, and
more general proof systems need to be used
once one goes beyond dependencies. We men-
tioned tableau and resolution as proof systems
in some of our results, but there are many
proof systems that can be applied.

The majority of prior work has focused on one
spot within the space:

e the interface is given by views

e the constraints consist of view definitions and /or

weakly-acyclic dependencies

e the target is a monotone query;

e the reasoning system is the chase.
This case is of course important in practice, and it
is attractive because it allows intuitive algorithms
like the Chase & Backchase (C&B) [16, 14, 26].
The biggest impact of the work presented here is
a common framework for exploring a much wider
space. This has a conceptual benefit, and provides,
at least in principle, reformulation algorithms for
classes that have not been considered in the past.

There are many other kinds of data interfaces
that could be considered e.g. web interfaces that
allow one to send SQL commands; keyword base
interfaces. And for other data models there are still
further possibilities. The broader framework pre-
sented here could be useful for generalizing refor-
mulation to new contexts.

5.2 Practical aspects

The approach based on reduction to query con-
tainment has an advantage in its generality. But
does it provide better algorithms in practice?

Suppose we specialize this framework to the most
well-studied setting: a vocabulary-based interface,
the target being USPJ # queries (“monotone queries”,
for short) and constraints that are dependencies
where the chase process [22] terminates. If we use
the chase as our proof system, and look at the al-
gorithm that results from applying the machinery,
what we obtain is a variation of the C&B algorithm
mentioned above. The framework by itself only tells
us how to find one reformulation. For finding a
good reformulation, one needs a way of searching
through the space of proofs, and then selecting the
best one. When constraints are dependencies, there
are additional optimizations for efficiently searching
the search space, and these have been incorporated
into the C&B [16]. In the same way, traditional
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algorithms for finding negation-free rewritings over
CQ views [18, 27] include important techniques for
efficiently enumerating the space of rewritings. One
does not get this “for free” from the interpolation
framework.

Let us now stick to the vocabulary-based setting,
searching for monotone reformulations, but let our
constraints be disjunctive dependencies, rules with
disjunction in the head. One can use an extension
of the chase, the “disjunctive chase” [13] as a proof
system. Specializing our framework using interpola-
tion to this setting, one gets a variation of the C&B
using disjunction [12]. However, there are other
proof systems that one can apply, such as tableau
proofs or resolution, and applying the framework
with these will give different rewritings than those
provided by the C&B. Preliminary results [3] show
that the interpolation-based approach on top of res-
olution can give much more succinct reformulations
than the approach using the disjunctive chase.

When the constraints go beyond disjunctive de-
pendencies, we know of no competitor to the ap-
proach via interpolation. But to make use of the
technique here may require more complex theorem
proving techniques. Similarly, if we look at finding
general first-order reformulations over views, rather
than monotone rewritings, we can still apply the
technique to reduce to theorem proving, but the
theorem proving problem is undecidable in general
[15], so we may need to make use of incomplete
or non-terminating methods. Further, to find a
good reformulation, one needs access to multiple
proofs from a theorem prover, and a way to search
through these proofs: theorem provers do not have
such APIs at present.

One of the simplest practical application of the
frameworks is in the case of access methods and
integrity constraints in the form of dependencies
with terminating chase. In a data integration set-
ting, these constraints may relate local sources that
have access methods to an integrated schema. They
may also restrict the local sources. Given a query
(e.g. over an integrated schema), the access meth-
ods, and the constraints, the variant of the approach
given in Subsection 4.2 can be applied to determine
whether a USPJ 7£—plan can be generated, and if so
synthesize a plan. We have applied the framework
to a number of application settings, ranging from
web services [7] to more traditional database access
methods [5, 6].

5.3 Algorithms and semantics

Finally, we want to mention a general “lesson
learned” from this line of work, concerning the in-
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terplay of algorithms and semantics.

There is a long history of algorithmic work for
rewriting queries over restricted interfaces. Exam-
ples include the work of Levy, Mendelzon, Sagiv,
and Srivastava [17], leading to the well known bucket
[18] and MiniCon [27] algorithms. The C&B is an-
other example of a clever algorithm for finding re-
formulations, in the more general setting of queries
over a subset of the relations with respect to in-
tegrity constraints [16, 14, 26].

A parallel line of research deals with character-
izing queries that can be rewritten in certain ways,
relating the syntactic restrictions in the target lan-
guage and semantic properties of the source query.
Examples in this line are the homomorphism preser-
vation theorem (see [28]), which states that a first-
order formula can be rewritten as a UCQ exactly
when it is preserved under homomorphism. In
databases, the semantic line includes the work of
Segoufin and Vianu [29] and the subsequent TODS
paper of Nash, Segoufin, and Vianu [25]. They de-
fined the notion of determinacy we used in Section
3, and showed that it characterizes queries that have
relational algebra reformulations.

Another message of this work is that the semantic
and algorithmic lines are connected. The semantic
approach gives a clean way to see that certain re-
formulations exists. But it can be converted to an
algorithmic technique, applicable not only to view-
based reformulation, but to reformulation with in-
tegrity constraints and access methods. We think
that reformulation gives a nice example of how ex-
pressiveness results and algorithmic methods can
interact.

6. CONCLUSION

We have presented an overview of a recipe for
query reformulation over interfaces. It involves two
components: a reduction to query containment prob-
lems, and then the use of interpolation algorithms
applied to proofs of a containment. We have given
an idea of the generality of the framework, showing
it is applicable to different kinds of interfaces and
different kinds of logical operators in the reformu-
lation target.

A more detailed look at reformulation can be
found in Toman and Weddell’s book [30], or in the
book that takes the perspective presented here, [4].
For the reader interested primarily in the case of

TGD constraints, the paper [9] gives a shorter overview.
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ABSTRACT

Machine learning has become an essential tool for glean-
ing knowledge from data and tackling a diverse set of
computationally hard tasks. However, the accuracy of a
machine learned model is deeply tied to the data that it is
trained on. Designing and building robust processes and
tools that make it easier to analyze, validate, and trans-
form data that is fed into large-scale machine learning
systems poses data management challenges.

Drawn from our experience in developing data-centric
infrastructure for a production machine learning plat-
form at Google, we summarize some of the interest-
ing research challenges that we encountered, and survey
some of the relevant literature from the data manage-
ment and machine learning communities. Specifically,
we explore challenges in three main areas of focus —
data understanding, data validation and cleaning, and
data preparation. In each of these areas, we try to ex-
plore how different constraints are imposed on the solu-
tions depending on where in the lifecycle of a model the
problems are encountered and who encounters them.

1. INTRODUCTION

Machine learning (ML) has become essential in
modern computing. More and more organizations
are adopting ML to glean knowledge from data and
tackle a diverse set of computationally hard tasks,
ranging from machine perception and text under-
standing to health care and genomics. As a striking
example, deep learning techniques can be used to
detect diabetic eye diseases with an accuracy on-
par with ophthalmologists [1].

However, developing reliable, robust, and under-
standable ML models requires much more than a
good training algorithm. Specifically, it is necessary
to build the model using high-quality training data.

*This article extends a tutorial the authors delivered at
the SIGMOD conference in 2017.

tCorresponding author, work done at Google and KAIST
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Moreover, this training data needs to be translated
into a set of features that can expose the underly-
ing signal to the training algorithm. And finally, the
data fed to the model at serving time must be sim-
ilar in distribution (and in features) to the training
data, otherwise the model’s accuracy will decrease.
Ensuring that each of these steps is done in a con-
sistent manner becomes even more challenging in
a setting where new training data arrives continu-
ously and accordingly triggers the training and de-
ployment of updated models.

To further illustrate the previous points, we con-
sider a scenario where a software error in a data
source causes a feature in the training data to get
pinned to an error value (e.g., -1). Training on such
corrupted data will typically lead to reduced model
accuracy that may only be noticed after a few days.
The predictions obtained using the poor model will
persist in the logged serving data (new data on
which the model runs on). Typically this logged
data is fed back as training data for the next train-
ing cycle. This can therefore cause the data error to
percolate through the system and taint downstream
data, which can make recovery painful. Depending
on the impact of the error on the model accuracy, it
can at best cause a small reduced model accuracy
and at worst cause a hard to recover service outage.
This scenario illustrates the importance of catching
errors early and reasoning about their propagation
within the data flow of an ML pipeline.

In this article, driven from our experience in build-
ing data management infrastructure for a large-scale
ML platform [11], we identify several core challenges
in the management of ML data that are relevant to
[11] and other ML platforms [17]. We organize these
challenges around the following broad themes: data
understanding, data validation and cleaning, and
data preparation. We draw connections to existing
work in the data management literature and outline
open problems that remain to be solved.
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Figure 1: An overview of an end-to-end machine learning pipeline with a data point of view.

The rest of the paper is structured as follows:

e We provide an overview of large-scale ML pipelines
through the lens of data management (Section 2).

e We focus on the following data management themes
and study existing work: data understanding (Sec-
tion 3), data validation and cleaning (Section 4),
and data preparation (Section 5). At the end of
each section, we identify open research challenges.

e We summarize lessons learned through our expe-
rience in building data management infrastruc-
ture for large-scale ML (Section 6).

The article aims to inform both database researchers

and practitioners about the class of problems that
exist in the intersection of production ML pipelines
and data management, and to motivate further re-
search in this area. We believe that the database
community is well positioned to tackle these prob-
lems in the context of ML.

2. OVERVIEW OF PRODUCTION ML

The data management community has explored
several interesting problems around the optimiza-
tion of ML pipelines as data flows, and this line of
work has resulted in the development of novel sys-
tem architectures such as Velox [24], Weld [54], and
SystemML [15]. In comparison this survey takes a
data centric point of view and focuses on the chal-
lenges that arise in the management of ML data,
which are largely separate from the efficiency issues
of large-scale data flows.

More recently model understanding has become
a critical issue especially when using deep learning
or representative learning on semi-structured or un-
structured data. The challenges range from under-
standing the state at different layers of deep archi-
tectures, interpreting results [28], to finding mini-
mal architectures without reducing model accuracy.
Model understanding deserves a survey on its own,
and this survey complements by focusing more on
training and serving data.
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In this section, we introduce two dimensions that
help us characterize data management challenges.
The first dimension derives from the different classes
of users of an ML pipeline. The second dimen-
sion stems from the data’s lifecycle through an ML
pipeline and the corresponding activities performed
by the users. The following subsections discuss these
dimensions in more detail.

2.1 Users Interacting with ML Platforms

An often overlooked aspect of large-scale ML at
bigger companies is that multiple people play differ-
ent roles [41] in the development and maintenance of
an ML pipeline. The best person for coming up with
new features is unlikely to be the best person to de-
velop the ML architecture or to handle emergencies
with the production system: moreover, people will
approach the pipeline with different priorities. Bor-
rowing from marketing and UX research, we iden-
tify three personas [37] representative of groups that
would use an ML pipeline based on our experience:

e ML Expert: has a broad knowledge of ML, knows
how to create models and how to use statistics,
and can advise multiple pipelines.

e Software Engineer: understands the problem do-
main and has the most engineering expertise for
a specific product.

e Site Reliability Engineer: maintains the health of
many ML pipelines simultaneously, but cannot
afford to know the application details.

As an example of how these personas play differ-
ent roles, suppose that the pipeline is experiencing
new errors due to an out-of-range feature value (e.g.,
the price of an item is higher than expected). The
ML expert could fix the quantization of the price
for model training. The software engineer could
implement the quantization and run backfilling (ex-
plained in Section 2.2). The site reliability engineer,
on the other hand, may want to rollback the pipeline
to a working state first.
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Finally, the three personas play different roles
in an ML pipeline’s lifecycle. During the experi-
ments phase, the ML expert and software engineer
are mostly involved. During the launch, the site
reliability engineer becomes involved. The subse-
quent refinement of the pipeline is done by the soft-
ware engineer while the maintenance of the overall
pipeline is done by the site reliability engineer. A
key takeaway is that many people with radically dif-
ferent backgrounds will have to handle a variety of
tasks to keep the pipeline running smoothly.

2.2 Data Lifecycle in an ML Pipeline

The data lifecycle of an ML pipeline starts with
generating Training data. Specifically, we distin-
guish the raw input data that is fetched from a vari-
ety of sources including databases, key-value stores,
and logs, to name a few. Depending on the type
of the problem at hand and available data, this
data can be structured, semi-structured, or unstruc-
tured, and may correspond to different degrees of
curation. In many cases, a few invariants can be
asserted over the data [62].

As a running example, suppose a team is develop-
ing an app store. The initial raw input data is illus-
trated on the left side of Figure 2, and the goal is to
predict app purchases based on app store user and
product features. (Note that the “app store users”
are not the same as “users” of the ML pipeline.)
While the example is intentionally simplistic, the
input data can be large and generated by joining
heterogeneous data sources with different data qual-
ities and trust issues.

purchase: {
product_id: 0x1234
user_id: 4321

ks “purchase”: [1]
user: {
id:4321 | ——Pr["user™ [, .25, .13]

- | “category”™: [*FOOD", “FICTION"] |
¢

product: {
id: 0x1234
lcalcgory: [“FOOD”, “FICTION"]

<Training Data>

!
5

<Training Input Data>

Figure 2: Input to Training Data for the App
Store ML pipeline. The same preparation
must also be done for serving data as shown
in Figure 1.

Prepare. The input data is transformed to the train-
ing data through the Prepare module. Figure 2
shows how the raw input data is converted to a
format of features and values, which can be used
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for training by the Train module. For example, the
user information has been mapped to a vector of
three values, which is called an embedding. The key
questions to ask for preparation are: what features
can be generated from data, what are the proper-
ties of the feature values, and what are the best
practices to transcode values.

Train and Evaluate. Once the training data is ready,
it is fed into the Train module, which can be frame-
works including TensorFlow [5], Keras [3], and Apache
MXNet [4]. The trained model can be evaluated by
an Fvaluate module, which checks if the model has
an acceptable accuracy, whether the data should be
encoded differently, and whether there should be
more data or features. Note that an ML pipeline
may train an ensemble of models using either the
same or different input data where the predictions
are intersected or unioned to increase accuracy.

Validate. The Validate module is necessary to make
sure the training data does not contain errors that
may propagate down to the model training. To il-
lustrate why validating data is important, suppose
that an engineer is refactoring a backend that gen-
erates a feature for the app store ML pipeline, but
introduces a bug that results in the generation of
wrong values. Note that in this case there are no
newly introduced features or data, and the training
and serving logic remain the same. Once the erro-
neous code rolls out to production, it causes the fea-
ture to acquire erroneous values. The bad feature
values then cause the model training accuracy to
decrease and result in significant production issues
during model serving where the model is executed
for the app store users. Overall, data validation
is a key element of production ML infrastructure:
by detecting an issue during training time, we can
avoid the rollout of a broken model and thus pre-
vent a significant negative impact on the app store
users and revenue.

Validating data is a complex problem that needs
to be solved for various parts of the pipeline. In
the Prepare module, the key questions to ask are
which data properties affect significantly the model
accuracy and whether there are any dependencies to
other data and infrastructure. Validation is also re-
quired between the Training Data and Serving Data
(depicted as the arrow from Serving Data to Vali-
date in Figure 1). If there are deviations between
the two types of data, then the model trained on the
training data will not perform consistently during
serving. Hence, the questions to ask are what are
possible deviations between the two types of data
and when they can be problematic.
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Any detected data errors must be forwarded to
the user as alerts. An important challenge is to
formulate alerts so they are understandable and ac-
tionable. As an example, consider the detection of
a missing feature Country from the app store user
data and the following alternatives to formulate the
alert: (a) feature Country is missing, (b) feature
Country is missing from 18% of the input examples,
or (c) feature Country is missing from the examples
that correspond to “gender=female”. Clearly, some
of these formulations are more actionable and allow
the user to understand better both the scope of the
error and its potential effect on model accuracy. An-
other issue is how sensitive the alerts should be. If
there are too many false positives, the user may end
up ignoring alerts altogether. On the other hand,
being too strict on alerts will result in failing to
detect critical errors.

Clean. The user may also decide to fix the data
based on the alerts, after understanding whether
cleaning the data will improve the model, which
part of the data is to be fixed, and how should the
fix be reflected to all the input data until now (this
operation is known as backfilling).

Serve. After a model is trained and deployed, the
Serve module is responsible for receiving the serving
input data (in our example, app store user impres-
sions and clicks) and preparing it as serving data
that can be processed through the model. The serv-
ing input data is typically generated a single exam-
ple at a time, and has stringent latency constraints.
The serving input data needs the same preparation
as was applied to the raw training time before being
sent to the model.

It is often the case that serving data is logged
and channelled back as training data for the next
training epoch through some bulk data processing
stages, thereby completing the data lifecycle.

In summary, there are various data management
challenges that arise at different stages of the data
lifecycle, which we broadly classify as follows:

e Data Understanding: analyzing and knowing what
to expect from the data.

e Data Validation and Cleaning: identifying and
fixing any errors in the data.

e Data Preparation: engineering features and gath-
ering examples for training.

3. DATA UNDERSTANDING

The first step of ML is to understand your data.
There are largely two parts in an ML pipeline for
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data understanding. First, sanity checks are impor-
tant when training a model for the first time. Next,
more advanced analysis and diagnosis are needed
during the launch and iterate cycles where a model
is iteratively improved with new training data.

3.1 Sanity Checks

When the user performs sanity checks, the chal-
lenge is to see if the data has the expected “shape”
before training the first model. The following are
some examples of sanity checks:

e A continuous feature’s minimum, maximum, most
common values, and histogram are reasonable (e.g.,
latitude values must be within the range [-90, 90]

or [~%, 5], and not all values are in one bucket).

e The distribution of a categorical value is as ex-
pected (e.g., it has the expected domain, and the
more common values are what you would expect).

e A feature is present in enough examples (e.g., the
country code must be in >70% of the examples).

e A feature has the right number of values (e.g.,
there cannot be more than one age of a person).

e Labels from external services may have trust is-
sues and must be verified with known labels.

The key ML challenge here is how to set such
expectations of the data. For example, how do we
know a distribution is “right”? If we know exactly
what we need, then one can use any SQL tool to
perform sanity checks. However, the requirements
are often unclear because there may be no owner-
ship of the feature. In this case, visualization tools
can help us understand the data shape by discover-
ing surprising properties of data and thus develop
better sanity checks.

SeeDB [70] recommends data-driven visualizations
using deviation-based metrics (e.g., Earth Mover’s
distance, Euclidean distance, Kullback-Leibler di-
vergence, and Jenson-Shannon distance). The rec-
ommendations can provide insights to users on what
to expect of the training data and subsequent ones.
For example, suppose there are two histograms that
show Desktop versus Mobile usage between two groups
of people. If the two groups are female versus male,
the two histograms may not differ much. How-
ever, if the groups are users in emerging versus ma-
ture markets, there may be a relatively higher mo-
bile usage in emerging markets. This difference in
usage makes the latter histogram more interesting
and thus more likely to be recommended. ZenVis-
age [66] is a follow-up work on interactive visual
analytics using the ZQL query language.

Another recent line of work is to control false dis-
covery rates for recommending visualizations. Con-
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tinuing our example above, as more visual recom-
mendations are made, there is bound to be more
meaningless ones as well. The QUDE system [14,
75] takes a statistical approach and provides an in-
teractive data exploration framework that uses mul-
tiple hypothesis testing to control the false posi-
tives. Traditional methods for controlling family-
wise error rates (e.g., Bonferroni correction) or false-
discovery rates (e.g., Benjamini-Hochberg procedure)
assume “static” hypotheses and do not work for
interactive data exploration. QUDE proposes a-
investing to control the marginal false discovery rate,
which is the expected value of the false discovery
rate. Intuitively, recommending good visualizations
will be rewarded with more budget to explore while
bad recommendations will result in losing it.

3.2 Analyses for Launch and Iterate

The next part of data understanding is to do more
analyses during the launch and iterate cycles.

3.2.1 Feature-based Analysis

There are major ML challenges that involve fea-
ture analysis. One is analyzing features in conjunc-
tion with a trained model where the goal is to find
interesting training data slices (based on features)
that lead to high/low model accuracy. For example,
an app recommendation model may perform poorly
for people in certain countries. Another challenge
is detecting training-serving skew, which was briefly
mentioned in Section 1. For instance, if the model
was trained on data that had an even gender ratio,
but the actual serving logs have a completely differ-
ent ratio for people in the age range [20, 40], then
the model may be biased due to the skew. As an-
other example, there may be unseen features that
appear on serving data, but not in training data.
Skew can be fixed by debugging data generation,
which is usually the culprit, or possibly making the
model training more robust to skew.

Data cube analysis can be applied to analyze slices
of data, which are defined with features or feature
crosses. For example, MLCube [39] is a tool for
visually exploring ML results that enable users to
define slices using feature conditions to compute ag-
gregate statistics and evaluation metrics over the
slices. The tool can be used to help understand and
debug a model or compare two models. Another in-
teresting work is prediction cubes [21], which sum-
marize models trained on individual cubes.

While such manual exploration is useful, an inter-
esting research question is how to automatically pri-
oritize user attention and identify what are the “im-
portant” slices. While we are not aware of any re-
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cent data cube research that directly addresses this
problem, intelligent roll-ups in multi-dimensional
OLAP data [60] are relevant and have been pro-
posed to automatically generalize from a specific
problem case in detailed data and return the broad-
est context in which the problem occurs. Similarly,
smart drill-downs [38] discover and summarize in-
teresting slices of the entire data. The roll-ups or
drill-downs can be used to find problematic slices in
training data that positively (or negatively) affect
model metrics (e.g., log loss, AUC, and calibration).

3.2.2 Data Lifecycle Analysis

Another important analysis is to track the lifecy-
cle of data. A common analysis is to identify de-
pendencies of features. For example, a label feature
must not “leak” into any other feature where some
of its information is duplicated or encoded in the
other feature, and the model trained on that infor-
mation makes unrealistically-accurate predictions,
but generalizes poorly. Another useful analysis is
to identify sources of data errors. For example, a
subset of the training data may have been dropped
because a data source was unavailable. The tools
to address these analyses largely fall into two cate-
gories: coarse-grained and fine-grained tracking.

The advantage of coarse-grained tracking is that
it is general and not tied to a particular system.
Goods [35] gathers metadata from tens of billions
of datasets (including provenance) within Google
and implements services on top of this metadata.
A key design choice is to gather this data in a post-
hoc fashion where dataset owners do not have to
do any registration, and the metadata is crawled
afterwards in a non-intrusive manner. As a result,
while Goods can track which dataset was generated
from which process, it cannot extend the tracking
to individual features.

Fine-grained tracking, on the other hand, can an-
alyze individual features, but tends to be tightly
coupled with the underlying system. ProvDB [49]
provides a unified provenance and metadata man-
agement system to support lifecycles of complex col-
laborative data science workflows. The metadata
consists of artifacts, which include version lineages
of data, scripts, results, data provenance among ar-
tifacts, and workflow metadata on derivations and
dependencies among artifact snapshots. Other rele-
vant systems include ModelDB [69], ModelHub [50],
and Amazon’s ML experiments system [61], which
provide lifecycle management for various models,
and Ground [36], which has a goal similar to that
of ProvDB, but with a simple, flexible metamodel
that is model agnostic.
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3.3 Open Challenges

There are open questions for ML analysis that
are not covered by the previous techniques. Re-
cently, determining if a trained model is “fair” [59]
has become a critical issue. For example, we would
like to know if a model is prejudiced against certain
classes of data. Since a model is only as good as its
training data, we need to understand if the data re-
flects reality. Identifying new kinds of “spam” [34]
is an open challenge as well. For example, are users
abusing the system in an adversarial way? Here,
we need to apply adversarial testing on the training
data. While using general SQL-based systems [48,
6] is an “escape hatch” for analysis, we may need
more specialized tools to address the above issues.

4. DATA VALIDATION AND CLEANING

Since ML largely depends on its data, it requires
data validation to perform well. Models cannot an-
swer questions they are not asked. For example,
suppose a model uses the feature Country and un-
derstands when its value is “US”. However, if in
the next batch of training data the value becomes
“us”, then without any validation or preprocessing,
the model will simply think that there is a new
country. As another example, a feature may sud-
denly change its unit (e.g., age changes from days
to hours) or even disappear. Unfortunately, model
training is resilient to such errors, and instead of
crashing, the model accuracy may simply decrease.
Hence, data must be validated early on to avoid
errors from propagating to model training.

How do we deal with these problems? If a fea-
ture value is not consistent, we could insert auto-
matic corrections (e.g., capitalize all countries). If
a feature appears for the first time, we can cre-
ate a new field. If a feature disappears, we can
find where it disappeared using provenance or root
cause analysis [53, 72, 9]. While some fixes can be
done automatically, in many cases, we need to no-
tify users to solve the problems by providing “play-
books,” which are manuals that contain concrete
actions to take for addressing each alert. Although
many data cleaning [68, 40, 45] techniques are rel-
evant, in production ML it is equally important to
design actionable alerts with humans in mind.

4.1 Alert Tradeoffs

When alerting users to validate and fix data er-
rors, there is a tradeoff to make between recall and
precision. It is not rare for some ML data issue to
cause a minor emergency for a particular product.
A common response is to overcompensate, by set-
ting alerts for every conceivable issue with the data.
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Then, these alerts fire every day, annoying users and
making them insensitive to real issues. As a result,
all the alerts are ignored, and the vicious cycle starts
again. Hence, it is important to balance recall (i.e.,
what fraction of problems we catch) and precision
(what fraction of alerts lead to good catches).

An alert is considered a good catch if it is ac-
tionable and eventually leads to a fix. For example,
alerting that a feature is missing is clearly action-
able. However, alerting that there was a distribu-
tional shift in a feature’s value may be less action-
able. Imagine an ML expert saying that the age
should have a Kolmogorov distance of less than 0.1
from the previous day and then leaves and works
on a different system. Later on, another engineer
may be alerted that the age has a Kolmogorov dis-
tance of 0.11. While the alert may indicate a real
problem, the engineer may not know how to resolve
it. Hence, the question is not whether something is
wrong if an alert fires, but whether it gets fixed.

In some cases, a data fix may encompass fixing
a constraint. For example, suppose a Country fea-
ture is known to contain four values, but from some
point a new value “SS” is introduced in the train-
ing data. While this value may indeed be incorrect,
“SS” could also be a valid country (say South Su-
dan), which means the constraint should now in-
clude five countries. Existing work [22, 33] provides
opportunities to fix both data and constraints.

If there are many alerts, finding alerts that are
related and combining them becomes useful. In the
literature, cost-based models [16, 42] and conflict
hypergraphs [23] are proposed.

Not all anomalies are equally important, and the
ones that result in worse model accuracy in pro-
duction must be alerted first. In large-scale ML,
features with different qualities co-exist. Often, an
“alpha” or completely new and untested features
will co-exist with more established production fea-
tures that the system relies on. An untested feature
is evaluated in an experimental model, which may
become the next production model. At some point,
a feature may also be deprecated. Hence, fixing fea-
tures that are used in production is more useful than
fixing features for experimental models. An inter-
esting open question is whether the improvements
of correcting a feature can be estimated without
having to make the correction itself.

4.2 Alert Categories

General alerts are hard to design and depend on
the training data. For example, predicting car ac-
cidents, house prices, social connections, or clicks
on a web page will have very different data, and it
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is hard to predict the expected data shape for all
these applications. To handle a variety of domains
with minimal effort, there needs to be some com-
monalities among them.

One common setting is where data arrives con-
tinuously, say in web applications. As new data
arrives, old data is thrown away, and newer data
is given more priority. The data validation can be
done by comparing data with its previous versions,
and alerts can be raised based on accumulated evi-
dence to date [71]. In case there is a concept drift,
the expected data shape can be updated based on
the user’s judgement.

In this setting, basic alerts are motivated by en-
gineering problems. For example, missing fields can
be detected by checking if a field that was present
is now absent. RPC timeouts can be detected by
checking if the most common value is not more com-
mon than before. Format changes can be detected
by checking if the domain of values has increased.

It is also worth mentioning alerts that are based
on statistics including homogeneity tests, analysis of
variance (e.g., ANOVA [30, 31]), time series anal-
ysis, and change detection. For example the chi-
squared test can be used to check homogeneity [55]
by rejecting the null hypothesis for the distribu-
tions being the same. One problem with a chi-
squared test is that statistically significant changes
may be common on all fields if the data is large
enough. Other metrics that can be used include the
L; and Ly, metrics or Earth Mover’s distance [32,
70]. Some metrics including the number of exam-
ples, the number of positive labels, or the total num-
ber of clicks may fluctuate, but are nonetheless very
important. Time series analysis [10, 27, 18] can help
track these statistics.

4.3 Open Challenges

Selecting alerts that lead to the most impact in
production is an open question. Ideally, we can
perform impact analysis that will estimate how the
system would improve if an error were fixed. Au-
tomatically generating fixes and playbooks is also
an open-ended challenge. There is an interesting
connection between the notion of alerts and fixes to
existing work on automatic database repairs. Simi-
larly, the notion of minimizing the number of alerts
to users is analogous to active learning, which tries
to minimize the number of labelings.

S. DATA PREPARATION

One of the largely “black art” aspects of ML is
data preparation. Similar to the other data man-
agement challenges, specific facets of the data prepa-
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ration problem arise in different forms at different
points in the ML lifecycle. For instance, during the
initial development of a model, data preparation
boils down to engineering a set of features that are
most predictive of the task label. Once the models
are more mature, the focus may shift to resource
optimization and latency reduction by selecting a
subset of all the available features while still retain-
ing the same accuracy. This is typically referred
to as the feature selection problem. Finally, often
the original data that was available for the task may
simply be incomplete or partially complete. A third
aspect of data preparation is enriching the train-
ing data by importing information from other data
sources.

5.1 Feature Engineering and Selection

Feature engineering is a well-studied problem 7,
44, 43, 74, 58, 46, 8, 67] with a suite of techniques
that are largely designed based on experience of ML
experts. Consider the following specific ML task.
Starting with the census data on housing, we would
like to predict the median housing prices at the
granularity of city blocks. For this task, reasonable
features include location of blocks (possibly speci-
fied using latitude and longitude coordinates), num-
ber of households per block, crime rate, and so on.
While some of these features may directly be avail-
able in the census data, others may require some
queries over the data to extract. Furthermore, the
goodness of a feature is typically based on the pre-
dictive power of the feature. While the predictive
power is hard to estimate upfront, a good proxy is to
understand the correlation of the feature with the
label. Analyses techniques discussed in Section 3
that easily present these correlations to experts can
be invaluable here.

Even once the raw features are designed, often
a suite of transformations are applied before they
are fed into the ML pipeline. Some of the typi-
cal transformations applied include normalization,
bucketization, winsorizing, one-hot encoding, fea-
ture crosses, and using a pre-trained model or em-
beddings (mappings from values such as words to
real numbers) to extract features [51]. For example,
the crime rate of a city block could be transformed
into a one-hot encoding using three categories: low,
medium, and high. The exact feature transform to
perform depends on both the data as well as the
ML training algorithm. Some algorithms that na-
tively perform transformation include Lasso (regu-
larize unimportant features to zero) and on-the-fly
scaling and shifting (avoid turning sparse data into
dense data).
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An interesting research direction is to learn fea-
ture engineering itself. Feeding training data di-
rectly to a deep neural network and letting it fig-
ure out the features is referred to as “representa-
tion learning” in the ML community. Some promis-
ing techniques include autoencoders and restricted
Boltzmann Machines [12]. However, learning both
the representations and the objective may require
significant resources and data, so manual feature
engineering is still used in most cases. A middle
ground between completely automated feature en-
gineering and manual feature engineering is data-
driven feature engineering where based on certain
data characteristics we can automatically infer the
best set of transformations to apply. While this is
relatively simple to do in many cases, determining
the best embedding that should be used on a fea-
ture by searching over an available set of pre-trained
embeddings is still an open research problem.

As models become more mature, developers often
experiment with addition and removal of new fea-
tures. This is one instance of a problem that high-
lights the different views that users with different
roles have for the same problem. For example, an
ML expert could be choosing features that improve
the model accuracy the most. However, the soft-
ware engineer may have to also worry about how to
actually add the feature into the existing pipeline.
The check list includes making sure the feature is
available at serving time, whether one is allowed to
even use the feature, and what the return of invest-
ment is for the feature. The site reliability engineer
may have to worry about introducing new depen-
dencies and making sure the pipeline is robust. An-
other concern is whether the feature will affect the
model size and prediction latency.

5.2 Data Enrichment

Data enrichment [29, 56, 64] refers to the aug-
mentation of the training and serving data with in-
formation from external data sources in order to
improve the accuracy of the generated model. A
common form of enrichment is to join in a new
data source in order to augment the existing fea-
tures with new signals. Another form is using the
same signals with different transformations, e.g., us-
ing a new embedding for text data.

A first step for data enrichment is cataloging and
contextualizing all the available data. Different sys-
tems have been designed that solve this problem
within enterprises as well as over the web. For ex-
ample, systems including Goods [35], Ground [36],
and Datahub [13] can be used to explore datasets
siloed within product areas of organizations. On the

24

web, tools including Webtables [19], Kaggle [2], and
Data Civilizer [20] can be used to search scientific
datasets published independently by organizations.

The next step is to extract knowledge and acquire
labels, which can be challenging when labeling is
expensive and/or heterogeneous sources can have
different label qualities and labeling costs. Crowd-
sourcing frameworks like Alfred [25] help moder-
ately skilled crowd workers in extracting knowledge
from a corpus of unstructured documents. Deep-
Dive [73] uses incomplete knowledge bases and rules
for distant supervision to minimize expensive hu-
man annotations. In active learning [26, 63, 52],
the learning procedure decides how best to enrich
the data iteratively. Transfer learning is a way to
leverage previously acquired knowledge from one
domain to improve the model accuracy of a different
domain. Weak supervision is used in Snorkel [57,
56] where hand labeling is avoided altogether, and
workers can programmatically generate lower-quality
labels, which are then denoised with generative mod-
els. Finally, label hierarchies can be used to predict
unseen labels.

While data enrichment often leads to model ac-
curacy improvements, this is not always the case.
Sheng et al. [65] shows how improving the qual-
ity of the already available labels can better im-
prove model accuracy than collecting more exam-
ples. Hence, there may be a tradeoff between ob-
taining more data and improving its data. Similary,
a recent paper [47] has looked into understanding
the impact of adding new features by joining with
other data sources for a specific class of algorithms.
It would be interesting to consider extensions to
other cases (e.g., training with black-box learning
algorithms that are hard to approximate, or using
different transformations on existing signals).

5.3 Open Challenges

Given input features and an ML training algo-
rithm, automatically generating feature transforms
that result in the highest model accuracy is an open
question. From our experience, this step is a pain
point for users who do not necessarily understand
the nuances of transforms.

6. LESSONS LEARNED

In building a production ML platform for Google [11],

we encountered a host of the challenges that we have
presented in this survey. We summarize some of the
over-arching lessons that we learnt on the way.

e Interesting data management challenges beyond
optimizing data flow. The data management com-
munity has focused more on optimizing data flow
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for large scale data processing (specifically for
ML). However, as we discussed in this article,
there are data management problems beyond op-
timizing data flow. Complementing the tradi-
tional data flow point of view, we have provided
a data point of view for ML pipelines and identi-
fied challenges in understanding, validating, and
preparing data. As shown in the previous sec-
tions, many prior techniques from the data man-
agement literature are relevant to building robust
large-scale ML systems. The data management
and ML communities have a lot to learn from
each other through closer collaboration.

Make realistic assumptions when developing solu-
tions. In developing research solutions, we must
be careful about the assumptions that we make.
For instance, it is unreasonable to assume that
data lives in a single source (e.g., a DBMS). In-
stead, most enterprise data often resides in mul-
tiple storage systems (e.g., Spanner, BigTable,
Dremel, and CNS, to name a few) that have dif-
ferent characteristics. Typically, there needs to
be an ingestion step that converts this data to
become compatible with the trainer. Similarly, it
is important to stay abreast of the state-of-art de-
velopments in the ML community and ensure that
the data management solutions complete them.

Be aware of the diverse needs of different users.
Many of the key design decisions in our infras-
tructure were based on diverse needs of different
set of users that interact with such a system. In
addition to the personas covered in this paper,
ML systems may have a wide spectrum of end
users as well, starting from ML novices who have
yet to train their first models up to experts with
extensive modeling experience. Building a large-
scale ML system must be flexible enough to ac-
commodate all these users as much as possible.

Ensure that your solution integrates smoothly into
the development workflow. The launch and iter-
ate cycle time for ML pipelines is small, and users
will not use tools unless they are necessary for
their critical development workflows. To ensure
the adoption of data management tools, it is thus
critical to integrate them into workflows smoothly
and make the benefits of using them obvious.

7. CONCLUSION

Data management in large-scale ML systems will

only get more important as the amount of data con-
tinues to increase rapidly. In this survey, we have
described large-scale ML pipelines in a data point of
view. We then focused on three data management
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challenges — understanding, validation and clean-
ing, and preparation — and surveyed relevant tech-
niques from the data management literature. Fi-
nally, we summarized lessons learned from building
data management infrastructure for a large-scale
ML platform. We believe data management re-
search in ML systems has plenty of open challenges
that can be solved with close collaboration between
the data management and ML communities.

8. REFERENCES

[1] Deep learning for detection of diabetic eye
disease.
https://research.googleblog.com/2016/11/
deep-learning-for-detection-of-diabetic.html.

[2] Kaggle. https://www.kaggle.com/.

[3] Keras. https://keras.io/.

[4] Mxnet. https://mxnet.incubator.apache.org/.

[5] Tensorflow. https://www.tensorflow.org/.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries
with bounded errors and bounded response
times on very large data. In Eurosys, pages
29-42, 2013.

[7] M. R. Anderson, D. Antenucci, V. Bittorf,

M. Burgess, M. J. Cafarella, A. Kumar,
F. Niu, Y. Park, C. Ré, and C. Zhang.
Brainwash: A data system for feature
engineering. In CIDR, 2013.

[8] M. R. Anderson and M. J. Cafarella. Input
selection for fast feature engineering. In
ICDE, pages 577-588, 2016.

[9] P. Bailis, E. Gan, S. Madden, D. Narayanan,
K. Rong, and S. Suri. Macrobase: Prioritizing
attention in fast data. In SIGMOD, pages
541-556, 2017.

[10] M. Basseville and I. V. Nikiforov. Detection of
Abrupt Changes: Theory and Application.
Prentice-Hall, Inc., 1993.

[11] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel,
C. Y. Foo, Z. Haque, S. Haykal, M. Ispir,

V. Jain, L. Koc, C. Y. Koo, L. Lew,

C. Mewald, A. N. Modi, N. Polyzotis,

S. Ramesh, S. Roy, S. E. Whang, M. Wicke,
J. Wilkiewicz, X. Zhang, and M. Zinkevich.
Tfx: A tensorflow-based production-scale
machine learning platform. In SIGKDD, pages
1387-1395, 2017.

[12] Y. Bengio, A. Courville, and P. Vincent.
Representation learning: A review and new
perspectives. TPAMI, 35(8):1798-1828, 2013.

[13] A. P. Bhardwaj, S. Bhattacherjee, A. Chavan,

A. Deshpande, A. J. Elmore, S. Madden, and
A. G. Parameswaran. Datahub: Collaborative

25



data science & dataset version management at
scale. CoRR, abs/1409.0798, 2014.

[14] C. Binnig, L. D. Stefani, T. Kraska, E. Upfal,
E. Zgraggen, and Z. Zhao. Toward sustainable
insights, or why polygamy is bad for you. In
CIDR, 2017.

[15] M. Boehm, M. W. Dusenberry, D. Eriksson,
A. V. Evfimievski, F. M. Manshadi,

N. Pansare, B. Reinwald, F. R. Reiss, P. Sen,
A. C. Surve, and S. Tatikonda. Systemml:
Declarative machine learning on spark.
PVLDB, 9(13):1425-1436, 2016.

[16] P. Bohannon, W. Fan, M. Flaster, and
R. Rastogi. A cost-based model and effective
heuristic for repairing constraints by value
modification. In SIGMOD, pages 143-154,
2005.

[17] J.-H. Bése, V. Flunkert, J. Gasthaus,

T. Januschowski, D. Lange, D. Salinas,
S. Schelter, M. Seeger, and Y. Wang.
Probabilistic demand forecasting at scale.
PVLDB, 10(12):1694-1705, 2017.

[18] K. H. Brodersen, F. Gallusser, J. Koehler,

N. Remy, and S. L. Scott. Inferring causal
impact using bayesian structural time-series
models. Annals of Applied Statistics,
9:247-274, 2015.

[19] M. J. Cafarella, A. Halevy, D. Z. Wang,

E. Wu, and Y. Zhang. Webtables: Exploring
the power of tables on the web. PVLDB,
1(1):538-549, 2008.

[20] R. Castro Fernandez, D. Deng, E. Mansour,

A. A. Qahtan, W. Tao, Z. Abedjan,

A. Elmagarmid, I. F. Ilyas, S. Madden,

M. Ouzzani, M. Stonebraker, and N. Tang. A
demo of the data civilizer system. In
SIGMOD, pages 1639-1642, 2017.

[21] B.-C. Chen, L. Chen, Y. Lin, and
R. Ramakrishnan. Prediction cubes. In
PVLDB, pages 982-993, 2005.

[22] F. Chiang and R. J. Miller. A unified model
for data and constraint repair. In ICDE,
pages 446-457, 2011.

[23] X. Chu, I. F. Ilyas, and P. Papotti. Holistic
data cleaning: Putting violations into context.
In ICDE, pages 458-469, 2013.

[24] D. Crankshaw, P. Bailis, J. E. Gonzalez,

H. Li, Z. Zhang, M. J. Franklin, A. Ghodsi,
and M. I. Jordan. The missing piece in
complex analytics: Low latency, scalable
model management and serving with velox. In
CIDR, 2015.

[25] V. Crescenzi, P. Merialdo, and D. Qiu.

Crowdsourcing large scale wrapper inference.
33:1-28, 2014.

26

[26]

[27]

[28]

[29]

[32]

[33]

[40]

S. Dasgupta and J. Langford. Tutorial
summary: Active learning. In ICML, page 18,
2009.

H. Ding, G. Trajcevski, P. Scheuermann,

X. Wang, and E. Keogh. Querying and mining
of time series data: Experimental comparison
of representations and distance measures.
PVLDB, 1(2):1542-1552, 2008.

F. Doshi-Velez and B. Kim. A roadmap for a
rigorous science of interpretability. CoRR,
abs/1702.08608, 2017.

R. C. Fernandez, Z. Abedjan, S. Madden, and
M. Stonebraker. Towards large-scale data
discovery: Position paper. In EzploreDB,
pages 3-5, 2016.

R. A. Fisher. On the probable error of a
coefficient of correlation deduced from a small
sample. Metron, 1:3-32, 1921.

R. A. Fisher. Statistical Methods for Research
Workers, pages 66-70. Springer New York,
1992.

A. L. Gibbs and F. E. Su. On choosing and
bounding probability metrics. International
Statistical Review, 70(3):419-435, 2002.

L. Golab, I. F. Ilyas, G. Beskales, and

A. Galiullin. On the relative trust between
inconsistent data and inaccurate constraints.
In ICDE, pages 541-552, 2013.

1. J. Goodfellow, J. Shlens, and C. Szegedy.
Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014.

A. Halevy, F. Korn, N. F. Noy, C. Olston,

N. Polyzotis, S. Roy, and S. E. Whang.
Goods: Organizing google’s datasets. In
SIGMOD, pages 795-806, 2016.

J. M. Hellerstein, V. Sreekanti, J. E.
Gonzales, Sudhansku, Arora,

A. Bhattacharyya, S. Das, A. Dey, M. Donsky,
G. Fierro, S. Nag, K. Ramachandran, C. She,
E. Sun, C. Steinbach, and V. Subramanian.
Establishing common ground with data
context. In CIDR, 2017.

A. Jenkinson. Beyond segmentation. Journal
of Targeting, Measurement and Analysis for
Marketing, (1):60-72, 1994.

M. Joglekar, H. Garcia-Molina, and A. G.
Parameswaran. Interactive data exploration
with smart drill-down. In ICDE, pages
906-917, 2016.

M. Kahng, D. Fang, and D. H. P. Chau.
Visual exploration of machine learning results
using data cube analysis. In HILDA, pages
1:1-1:6, 2016.

Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden,

SIGMOD Record, June 2018 (Vol. 47, No. 2)



[53]

M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz,
N. Tang, and S. Yin. Bigdansing: A system
for big data cleansing. In SIGMOD, pages
1215-1230, 2015.

M. Kim, T. Zimmermann, R. DeLine, and
A. Begel. Data scientists in software teams:
State of the art and challenges. TSE,
PP(99):1-1, 2017.

S. Kolahi and L. V. S. Lakshmanan. On
approximating optimum repairs for functional
dependency violations. In ICDT, pages 53-62,
2009.

P. Konda, A. Kumar, C. Ré, and

V. Sashikanth. Feature selection in enterprise
analytics: A demonstration using an r-based
data analytics system. PVLDB,
6(12):1306-1309, 2013.

T. Kraska, A. Talwalkar, J. C. Duchi,

R. Griffith, M. J. Franklin, and M. I. Jordan.
Mlbase: A distributed machine-learning
system. In CIDR, 2013.

S. Krishnan, J. Wang, E. Wu, M. J. Franklin,
and K. Goldberg. Activeclean: Interactive
data cleaning for statistical modeling.
PVLDB, 9(12):948-959, 2016.

A. Kumar, R. McCann, J. Naughton, and

J. M. Patel. Model selection management
systems: The next frontier of advanced
analytics. SIGMOD Rec., 44(4):17-22, 2016.
A. Kumar, J. F. Naughton, J. M. Patel, and
X. Zhu. To join or not to join?: Thinking
twice about joins before feature selection. In
SIGMOD, pages 19-34, 2016.

S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: Interactive analysis of web-scale
datasets. PVLDB, 3(1-2):330-339, 2010.

H. Miao, A. Chavan, and A. Deshpande.
Provdb: A system for lifecycle management of
collaborative analysis workflows. CoRR,
abs/1610.04963, 2016.

H. Miao, A. Li, L. S. Davis, and

A. Deshpande. Towards unified data and
lifecycle management for deep learning. In
ICDE, pages 571-582, 2017.

T. Mikolov, K. Chen, G. Corrado, and

J. Dean. Efficient estimation of word
representations in vector space. CoRR,
abs/1301.3781, 2013.

F. Olsson. A literature survey of active
machine learning in the context of natural
language processing. volume T2009 of SICS
Technical Report. Swedish Institute of

Computer Science, 2009.
C. Olston and B. Reed. Inspector gadget: A

SIGMOD Record, June 2018 (Vol. 47, No. 2)

[60]

[61]

[62]

framework for custom monitoring and
debugging of distributed dataflows. In
SIGMOD, pages 1221-1224, 2011.

S. Palkar, J. J. Thomas, A. Shanbhag,

M. Schwarzkopt, S. P. Amarasinghe, and

M. Zaharia. A common runtime for high
performance data analysis. In CIDR, 2017.
K. Pearson. On the Criterion that a Given
System of Deviations from the Probable in the
Case of a Correlated System of Variables is
Such that it Can be Reasonably Supposed to
have Arisen from Random Sampling, pages
11-28. Springer New York, 1992.

A. Ratner, S. H. Bach, H. R. Ehrenberg, J. A.
Fries, S. Wu, and C. Ré. Snorkel: Rapid
training data creation with weak supervision.
PVLDB, 11(3):269-282, 2017.

A. J. Ratner, C. D. Sa, S. Wu, D. Selsam, and
C. Ré. Data programming: Creating large
training sets, quickly. In NIPS, pages
3567-3575, 2016.

C. Ré, A. A. Sadeghian, Z. Shan, J. Shin,

F. Wang, S. Wu, and C. Zhang. Feature
engineering for knowledge base construction.
IEEF Data Eng. Bull., 37(3):26-40, 2014.

A. Romei and S. Ruggieri. A multidisciplinary
survey on discrimination analysis. Knowledge
Eng. Review, 29(5):582-638, 2014.

G. Sathe and S. Sarawagi. Intelligent rollups
in multidimensional olap data. In VLDB,
pages 531-540, 2001.

S. Schelter, J.-H. Boese, J. Kirschnick,

T. Klein, and S. Seufert. Automatically
tracking metadata and provenance of machine
learning experiments. In Workshop on ML
Systems at NIPS 2017, 2017.

D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary,

M. Young, J.-F. Crespo, and D. Dennison.
Hidden technical debt in machine learning
systems. In NIPS, pages 2503-2511, 2015.

B. Settles. Active Learning. Synthesis
Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool, 2012.
V. Shah, A. Kumar, and X. Zhu. Are
key-foreign key joins safe to avoid when
learning high-capacity classifiers? PVLDB,
11(3):366-379, 2017.

V. S. Sheng, F. Provost, and P. G. Ipeirotis.
Get another label? improving data quality
and data mining using multiple, noisy
labelers. In SIGKDD, pages 614—622, 2008.
T. Siddiqui, A. Kim, J. Lee, K. Karahalios,
and A. Parameswaran. Effortless data

27



exploration with zenvisage: An expressive and
interactive visual analytics system. PVLDB,
10(4):457-468, 2016.

[67] E. R. Sparks, S. Venkataraman, T. Kaftan,
M. J. Franklin, and B. Recht. Keystoneml:
Optimizing pipelines for large-scale advanced
analytics. In ICDFE, pages 535-546, 2017.

[68] M. Stonebraker, D. Bruckner, I. F. Ilyas,

G. Beskales, M. Cherniack, S. B. Zdonik,
A. Pagan, and S. Xu. Data curation at scale:
The data tamer system. In CIDR, 2013.

[69] M. Vartak. MODELDB: A system for machine
learning model management. In CIDR, 2017.

[70] M. Vartak, S. Rahman, S. Madden, A. G.
Parameswaran, and N. Polyzotis. SEEDB:
efficient data-driven visualization
recommendations to support visual analytics.
PVLDB, 8(13):2182-2193, 2015.

28

[71] M. Volkovs, F. Chiang, J. Szlichta, and R. J.
Miller. Continuous data cleaning. In ICDE,
pages 244-255, 2014.

[72] X. Wang, X. L. Dong, and A. Meliou. Data
x-ray: A diagnostic tool for data errors. In
SIGMOD, pages 1231-1245, 2015.

[73] C. Zhang. DeepDive: A Data Management
System for Automatic Knowledge Base
Construction. PhD thesis, 2015.

[74] C. Zhang, A. Kumar, and C. Ré.
Materialization optimizations for feature
selection workloads. ACM TODS,
41(1):2:1-2:32, 2016.

[75] Z. Zhao, L. De Stefani, E. Zgraggen,

C. Binnig, E. Upfal, and T. Kraska.
Controlling false discoveries during interactive
data exploration. In SIGMOD, pages 527-540,
2017.

SIGMOD Record, June 2018 (Vol. 47, No. 2)



Stream Processing Languages in the Big Data Era

Martin Hirzel
IBM Research, USA
hirzel@us.ibm.com

Emanuele Della Valle
Politecnico di Milano, ltaly
emanuele.dellavalle@polimi.it

ABSTRACT

This paper is a survey of recent stream processing lan-
guages, which are programming languages for writing
applications that analyze data streams. Data streams, or
continuous data flows, have been around for decades.
But with the advent of the big-data era, the size of data
streams has increased dramatically. Analyzing big data
streams yields immense advantages across all sectors of
our society. To analyze streams, one needs to write a
stream processing application. This paper showcases
several languages designed for this purpose, articulates
underlying principles, and outlines open challenges.

1. INTRODUCTION

We have entered the big-data era: the world is
awash with data, and more data is being produced
every second of every day. Data analytics solu-
tions must contend with data being big both in the
static-data sense of an ocean of many bytes and
in the streaming sense of a firehose of many bytes-
per-second. In fact, driven by the realization that
static data is merely a snapshot of parts of a data
stream, the data technology industry is focusing in-
creasingly on data-in-motion. Analyzing the stream
instead of the ocean yields more timely insights and
saves storage resources [6].

Stream processing languages facilitate the devel-
opment of stream processing applications. Stream-
ing languages simplify common coding tasks and
make code more readable and maintainable, and
their compilers catch programming mistakes and
apply optimizing code transformations. The land-
scape of streaming languages is diverse and lacks
broadly accepted standards. Stephens [79] and John-
ston et al. [56] published surveys on stream process-
ing languages in 1997 and 2004. Much has hap-
pened since then, from database-inspired streaming
languages to the rise of big data and beyond. Our
survey continues where prior surveys left off, focus-
ing on streaming languages in the big-data era.
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A stream is a sequence of data items, and the
length of a stream is conceptually infinite, in the
sense that waiting for it to end is ill-defined [70]. A
streaming application is a computer program that
consumes and produces streams. A stream process-
ing language is a domain-specific language designed
for expressing streaming applications. The goal of a
stream processing language is to strike a balance be-
tween the three requirements of performance, gen-
erality, and productivity. Performance is about an-
swering high-throughput input streams with low-
latency output streams. Generality is about making
it possible to handle a variety of processing needs
and data formats. And productivity is about en-
abling developers to write good code quickly.

Traditionally, programming languages have been
characterized by their paradigm, including imper-
ative, functional, declarative, object-oriented, etc.
However, for streaming languages, the paradigm is
not the most important characteristic; most stream-
ing languages are more-or-less declarative. More
important characteristics include the data model
(e.g., relational, XML, RDF), execution model (e.g.,
synchronous, big-data), and target domain and users
(e.g., event detection, reasoning, end—users). Sec-
tion 2 surveys languages based on these character-
istics. Section 3 generalizes from individual lan-
guages to extract recurring concepts and principles.
Section 4 does the inverse: instead of looking at
what most streaming languages have in common, it
explores what most streaming languages lack. Fi-
nally, Section 5 concludes our paper.

2. STREAM PROCESSING LANGUAGES

There is much diversity in stream processing lan-
guages, stemming from different primary objectives,
data models, and ways of thinking. This section
surveys eight styles of stream processing languages.
Each subsection introduces one of these styles using
an exemplary language, followed by a brief discus-
sion of important other languages of the same style.
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2.1 Relational Streaming

1 Select IStream( Max(len) As mxl,

2 MaxCount(len) As num,

3 ArgMax(len, caller) As who )
4 From Calls[Range 24 Hours Slide 1 Minute]

Figure 1: CQL code example.

In 2004, Arasu et al. at Stanford introduced CQL
(for Continuous Query Language) [11]. CQL has
been designed as an SQL-based declarative language
for implementing continuous queries against streams
of data, such as the LinearRoad benchmark [10].
The design was influenced by the TelegraphCQ sys-
tem, which proposed an SQL-based language with a
focus on expressive windowing constructs [29]. Fig-
ure 1 illustrates a CQL code example that uses a
time-based sliding window (per minute within the
last 24 hours) over phone calls to return the max-
imum phone call length along with its count and
caller information.

Streams
Relations

IStream,
DStream,
RStream

I

Figure 2: CQL algebra operators.

The semantics of CQL are based on two phases of
data, streams and relations. As Figure 2 illustrates,
CQL supports three classes of operators over these
types. First, stream-to-relation operators freeze a
stream into a relation. These operators are based
on windows that, at any point of time, contain a his-
torical snapshot of a recent portion of the stream.
CQL includes time-based and tuple-based windows,
both with optional partitioning. Second, relation-
to-relation operators turn relations into another re-
lation. These operators are expressed using stan-
dard SQL syntax and come from traditional rela-
tional algebra, such as select (o), project (), group-
by-aggregate (), and join (<1). Third, relation-to-
stream operators thaw a relation back into a stream.
CQL supports three operators of this class: IStream,
DStream, and RStream (to capture inserts, deletes,
or the entire relation).

Streaming SQL dialects were preceded by tempo-
ral relational models such as the one by Jensen and
Snodgrass in the early *90s [55]. In their model, each
temporal relation has two main dimensions: a valid
time record and transaction time. Besides Tele-
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graphCQ, another CQL predecessor was GSQL [35].
In addition to the standard SQL operators (e.g., o,
m, v, ), GSQL supported a merge operator that
combines streams from multiple sources in order as
specified by ordered attributes. GSQL supported
joins as long as it could determine a window from
ordered attributes and join predicates.

CQL has influenced the design of many systems,
for example, StreamlInsight [5] and StreamBase [76].
Jain et al. described an approach to unify two differ-
ent proposed SQL extensions for streams [54]. The
first, by Oracle, was CQL-based and used a time-
based execution model that could model simultane-
ity. The second, by StreamBase, used a tuple-based
execution model that provided a way to react to
primitive events as soon as they are seen by the
system. SECRET goes beyond Jain et al.’s work to
comprehensively understand the results of various
window-based queries (e.g., time- and tuple-based
windows) [19]. Zou et al. showed how to turn a
stream of queries into a stream query by stream-
ing their parameters [89]. Chandramouli et al. pre-
sented TiMR, which implemented temporal queries
over the MapReduce framework [27]. And finally,
Soulé et al. [77] presented a type system and small-
step operational semantics for CQL via translation
to the Brooklet stream-processing calculus [78].

2.2 Synchronous Dataflow

node tracker (speed, limit: int) returns (t: int);
var x: bool; cpt: int when x;
let
x = (speed > limit);
cpt = counter((0, 1) when x);
t = current(cpt);
tel

N O U W N

Figure 3: Lustre code example.

Synchronous dataflow (SDF) languages were in-
troduced to ease the design of real-time embedded
systems. They allow programmers to write a well-
defined deterministic specification of the system. It
is then possible to test, verify, and generate em-
bedded code. The first dataflow synchronous lan-
guages Lustre [25] (Caspi and Halbwachs) and Sig-
nal [60] (Le Guernic, Benveniste, and Gautier) were
proposed in France in the late 1980s. A dataflow
synchronous program is a set of equations defining
streams of values. Time proceeds by discrete logi-
cal steps, and at each step, the program computes
the value of each stream depending on its inputs
and possibly previously computed values. This ap-
proach is reminiscent of block diagrams, a popu-
lar notation to describe control systems. Figure 3
presents a Lustre code example that tracks the num-
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ber of times the speed of a vehicle exceeds the speed
limit. The counter cpt starts with 0 and is incre-
mented by 1 each time the current speed exceed
the current limit (when x). The return value t main-
tains the last computed value of cpt between two
occurrences of x (current(cpt)).

Compared to the other languages presented here,
SDF languages are relatively low level and target
embedded controllers. The focus is on compiling ef-
ficient code that executes in bounded memory with
a predictable execution time. In particular, this im-
poses that the schedule and communication rates
can be statically computed by the compiler. Addi-
tional static analyses reject programs with potential
initialization or causality issues. Compilers produce
imperative code that can be executed in a control
loop without communication buffers triggered by
external events or on a periodic signal (e.g., every
millisecond). The link between logical and real time
is left to the designer of the system.

The dataflow synchronous approach has inspired
multiple languages: Lucid Synchrone [73] combines
the dataflow synchronous approach with functional
features & la ML, Streamlt [80] focuses on efficient
parallel processing of large streaming applications,
and Zélus [20] is a Lustre-like language extended
with ordinary differential equations to define contin-
uous-time dynamics. Lustre is also the backbone
of the industrial language and compiler Scade [34]
routinely used to program embedded controllers in
many critical applications.

2.3 Big-Data Streaming
1 stream<float64 len, rstring caller > Calls = CallsSrc() {}

2 type Stat = tuple<float64 len, int32 num, rstring who>;
3 stream<Stat> Stats = Aggregate(Calls) {

4 window Calls: sliding , time (24.0%60.0%60.0), time (60.0);

5 output Stats: len = Max(Calls.len),

6 num = MaxCount(Calls.len),

7 who = ArgMax(Calls.len, Calls. caller );
8}

Figure 4: SPL code example.

The need to handle diverse data and processing
requirements at scale motivated several recent big-
data streaming languages and systems [3, 4, 24, 26,
51, 59, 69, 81, 87]. Each of them makes it easy
to integrate operators written in general-purpose
languages and to parallelize them on clusters of
multicore computers. Hirzel et al. introduced the
SPL language as part of the IBM Streams product
in 2010 [50, 51]. Figure 4 shows an example for
a similar use-case as Figure 1. Line 1 defines a
stream Calls by invoking an operator CallsSrc, and
Lines 3-8 define a stream Stats by invoking an op-
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erator Aggregate. An SPL program explicitly speci-
fies a directed graph of stream edges and operator
nodes. Streams carry tuples; in the examples, tu-
ple attributes contain primitive values, but in gen-
eral, they can also contain compound values such
as other tuples or lists. Operators create and trans-
form streams; operators are defined by users or li-
braries, not built into the language. Operators can
be further configured upon invocation, for example,
with windows or output assignments. To facilitate
distribution, SPL’s semantics are defined to require
minimal synchronization between operators [77].

Like SPL, the core concept of other languages for
big-data streaming is also that of a directed graph of
streams and operators. This graph is an evolution
of the query plan of earlier stream-relational sys-
tems. In fact, one can view Aurora [2], Borealis [1],
and Spade [47] as the evolutionary links between
relational and big-data streaming languages. They
still focused on relational operators while already
encouraging developers to explicitly code graphs.

Unlike SPL, which is a stand-alone language, later
big-data streaming systems offer languages that are
embedded in a general-purpose host language, typ-
ically Java. MillWheel focused on key-based parti-
tioned parallelism and semi-automatic handling of
out-of-order data [3]. Naiad focused on supporting
both streaming and iterative batch analytics [69],
using elaborate timestamps and a LINQ-based sur-
face language [66]. Spark Streaming emulated stream-
ing by repeated computations on immutable in-me-
mory data batches [87]. Storm offered at-least-once
semantics via buffering and acknowledgements [81].
Trill used batching to improve throughput and of-
fered an extensible aggregation framework [26]. Heron
displaced Storm by adding several improvements,
such as a back-pressure mechanism [59]. Beam picks
up where MillWheel left off, giving programmers
ways to reconcile event time and processing time [4].
And finally, Flink focuses on supporting both real-
time streaming and batch analytics [24].

All of the above-listed big-data streaming sys-
tems offer embedded languages for specifying more-
or-less explicit stream graphs. An embedded lan-
guage is an advanced library or framework that
makes heavy use of host-language abstractions such
as lambdas, generics, and local variable type infer-
ence. For instance, LINQ integrates SQL-inspired
query syntax in a general-purpose language [66].
Embedded languages offer simple interoperability
with their host language, as well as leveraging host-
language tools and skills [52]. On the downside,
since they are not self-contained, they are hard to
isolate clearly from the host language, inhibiting de-
bugging, optimization, and standardization.
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2.4 Complex Event Processing

1 stream<Alert> Alerts = MatchRegex(Calls) {

2 param

3 partitionBy : caller ;

4 predicates : {

5 tooFarTooFast =

6 geoDist( First (loc), Last(loc)) >= 10.0
7 && timeDist(First(ts), Last(ts)) <= 60.0; };
8

pattern . " .4+ tooFarTooFast”;
9 output
10 Alerts : who=caller, where=Last(loc), when=Last(ts);
11 }

Figure 5: CEP example.

Complex event processing (CEP) uses patterns
over simple events to detect higher-level, compler,
events that may comprise multiple simple events.
CEP can be considered either as an alternative to
stream processing or as a special case of stream pro-
cessing. The latter consideration has led to the def-
inition of CEP operators in streaming languages.
For example, the MatchRegex [49] operator imple-
ments CEP in the library of the SPL language [51]
(Section 2.3). MatchRegex was introduced by Hirzel
in 2012, influenced by the MATCH-RECOGNIZE pro-
posal for extending ANSI SQL [88]. Compared to
its SQL counterpart, MatchRegex is simplified, syn-
tactically concise, and easy to deploy as a library
operator. MatchRegex is implemented via code gen-
eration and translates to an automaton for space-
and time-efficient incremental computation of ag-
gregates. However, it omits other functionalities
beyond pattern matching, such as joins and report-
ing tasks. Figure 5 shows an example for detecting
a complex event when simple phone-call events oc-
cur over 10 miles apart within 60 seconds. Line 8
defines the regular expression, where the period (.)
matches any simple event; the plus (+) indicates
at-least-once repetition; and tooFarTooFast is a sim-
ple event defined via a predicate in Lines 5-7. The
First and Last functions reference corresponding sim-
ple events in the overall match: in this case, the
start of the sequence matched by .+ and the simple
event matched by tooFarTooFast.

One of the earliest languages for complex event
queries on real-time streams was SASE [86]. The
language was designed to translate to algebraic op-
erators, but did not yet support aggregation or reg-
ular expressions with Kleene closure, as used in Fig-
ure 5. The Cayuga Event Language offered aggre-
gation and Kleene closure, but did so in a hand-
crafted syntax instead of familiar regular expression
syntax [42]. The closest predecessor of MatchRegex
was the MATCH-RECOGNIZE proposal for extending
SQL with pattern recognition in relational rows [88].
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It used regular-expression syntax as well as aggre-
gations. Like MatchRegex, it is embedded in a host
language that supports orthogonal features via op-
erators such as joins. Another take on CEP using
regular expressions was EventScript [33], which al-
lowed the patterns to be interspersed with action
blocks. While most CEP pattern matching is inher-
ently sequential, Chandramouli et al. generalized it
for out-of-order data streams [28], a topic further
discussed in Section 4.1.

Recently, CEP is also supported by several big-
data streaming engines, such as Trill [26], Esper [45],
and Flink [24], the latter exhibiting a CEP library
since its early 1.0 version. Indeed, the high through-
put and low latency nature of these engines make
them suitable for CEP’s real time analytics.

2.5 XML Streaming

In 2002, Diao et al. [44] presented YFilter, which
implemented continuous queries over XML stream-
ing data using a subset of the XPath language [32].
YFilter applied a multi-query optimization that used
a single finite state machine to represent and evalu-
ate several XPath expressions. In particular, YFil-
ter exploited commonalities among path queries by
merging the common prefixes of the paths so that
they were processed at most once. This shared
processing improved performance significantly by
avoiding redundant processing for duplicate path
expressions.

Before YFilter, which processed streams of XML
documents, came NiagaraCQ, which processed up-
date streams to existing XML documents [30], bor-
rowing syntax from XML-QL [43]. NiagaraCQ sup-
ported incremental evaluation to consider only the
changed portion of each updated XML file. It sup-
ported two kinds of continuous queries: change-
based queries, which trigger as soon as new relevant
data becomes available, and timer-based queries,
which trigger only at specified time intervals. XSQ
is an XPath-based language for not just filtering but
transforming streams of XML documents [71]. And
XMLParse is an operator for XML stream transfor-
mation in a big-data streaming language [67].

2.6 RDF Streaming

In 2009, Della Valle et al. called the semantic web
and Al community to investigate how to represent,
manage, and reason on heterogeneous data streams
in the presence of expressive domain models (cap-
tured by ontologies) [38]. Those communities were
still focusing on static knowledge bases, and solu-
tions to incorporate changes were too complex to
apply to big data streams. Della Valle et al. pro-
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posed to name this new research area stream reason-
ing [41], and the sub-area focused on the semantic
web RDF Stream Processing (RSP) [82]. This sec-
tion presents RSP, while Section 2.7 elaborates on
stream reasoning.

RSP research extended the semantic web stack [8]
to represent heterogeneous streams, continuous
queries, and continuous reasoning. Inspired by
CQL [11], Della Valle et al. proposed Continuous
SPARQL (C-SPARQL, [37]), inspiring multiple ex-
tensions [7, 23, 61]. In 2013, a W3C community
group! was established to define RSP-QL syntax [39]
and semantics [40]. In RSP-QL, an RDF stream
is an unbounded sequence of time-varying graphs
(t, ), where t is an RDF graph and 7 is a non-
decreasing timestamp. A RSP-QL query is a con-
tinuous query on multiple RDF streams and graphs.

1 REGISTER STREAM :out

2 AS CONSTRUCT RSTREAM { ?x a :Hub }

3 FROM NAMED WINDOW :lwin

4 ON :in [ RANGE PT120M STEP PT10M]
5 FROM NAMED WINDOW :swin

6 ON :in [ RANGE PT10M STEP PT10M]
7 WHERE {

8  WINDOW :lwin{

9 SELECT 7?x ( COUNT(*) AS ?totalLong)

10 WHERE { 7cl :callee 7x. }

11 GROUP BY 7x }

12 WINDOW :swin{

13 SELECT ?x ( COUNT(x) AS ?totalShort)

14 WHERE { ?c2 :callee ?x. }

15 GROUP BY 7x }

16  GRAPH :bg {?x :hasStandardDeviation ?s }

17 FILTER ((?totalShort — ?totalLong/12)/7s > 2)
18 } GROUP BY 7x

Figure 6: RSP-QL example.

Figure 6 illustrates an RSP-QL query that con-
tinuously identifies communication hubs. The idea
is to find callees who appear more frequently than
usual. Line 1 registers stream out and Line 2 sends
the query result on that stream. Lines 3-6 open a
short 10-minute tumbling window swin and a long
2-hour sliding window Iwin on the input stream in.
Lines 8-11 and 12-15 count the number of calls
per callee in the long and short window, respec-
tively. Lines 16-17 fetch the standard deviation of
the number of calls for each callee from a static
graph, join it with the callees appearing in both
windows, and select callees two standard deviations
above average.

2.7 Stream Reasoning

Automated reasoning plays a key role in modern
information integration where an ontology offers a
conceptual view over pre-existing autonomous data

"http://www.w3.org/community/rsp/
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SubObjectPropertyOf(
ObjectPropertyChain( :calls : calls ) : gossips

TransitiveObjectProperty( : gossips )

DU W N =
~

REGISTER STREAM GossipMeter AS

SELECT (count(?x) AS ?impact)

8 FROM NAMED WINDOW :win

9 ON :in [ RANGE PT60M STEP PT10M]
10 WHERE { :Alice :gossips ?x }

Figure 7: Stream reasoning example with
two ontological axioms and a RSP-QL query.

-

sources [63]. In this setting, the reasoner can find
answers that are not syntactically present in the
data sources, but are deduced from the data and the
ontology. This query-answering approach is called
ontology-based data access [72].

As RDF is the dominant data model in reason-
ing for data integration, RDF streaming languages
(Section 2.6) bridge the gap between stream pro-
cessing and ontology-based data integration. Della
Valle et al. opened up this direction, showing how
continuous reasoning can be reduced to periodic
repetition of reasoning over a windowed ontology
stream [37]. Figure 7 shows an RSP-QL query
that uses reasoning to continuously count how
many people : Alice gossips with. Consider an RDF
stream with the triples (:Alice : calls :Bob,7;) and
(:Bob :calls :Carl,7;41). Lines 1-4 define :gossips as
the transitive closure of : calls. When the window
contains these two triples, the RSP-QL query re-
turns 2, because :Alice :gossips :Bob directly call-
ing him, but the system can also deduce that she
: gossips : Carl indirectly via :Bob.

While conceptually simple, this kind of reasoning
is hard to do efficiently. Barbieri et al. [14] and Ko-
mazec et al. [57] pioneered it optimizing the DRed
algorithm observing that in stream processing dele-
tion becomes predictable. The current state-of-the-
art is the work of Motik et al. [68].

In parallel, Ren and Pan proposed an alterna-
tive approach via truth maintenance systems [74].
Calbimonte et al. exploited ontology-based data
access [22]. Heintz et al. developed logic-based
spatio-temporal stream reasoning [36]. Anicic et al.
bridged stream reasoning with complex event pro-
cessing grounding both in logic programming [7].
Beck et al. used answer set programming to model
expressive stream reasoning tasks [17] in Ticker [18]
and Laser [16]. Inductive stream reasoning, i.e., ap-
plying machine-learning to RDF streams or to on-
tology streams, is also an active field [15, 31, 62].

2.8 Streaming for End-Users

We use the term end-users to refer to users with-
out particular software development training. Prob-
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A B C D E E G

1 inputCalls mxI relative index

2 len caller 2

8 25 Bob =MATCH(D6,A3:A8,0)
4 40 Alice output Stats

5 35 Bob mxI num who

6 40 Dan 40 2 Alice

7 5 Carol =MAX(A3:A8) =COUNTIF( =INDEX(B3:B8,F2)

8 20 Alice A3:A8,D6)

Figure 8: ActiveSheets example.

ably the most successful programming tool for end-
users is spreadsheet formulas. And from the early
days of VisiCalc in 1979 [21], spreadsheet formulas
have been reactive in the sense that any changes
in their inputs trigger an automatic recomputation
of their outputs. Therefore, in 2014, Vaziri et al.
designed ActiveSheets, a spreadsheet-based stream
programming model [84]. Figure 8 gives an exam-
ple that implements a similar computation as Fig-
ure 1. Cells A3:B8 contain a sliding window of re-
cent call records, which ActiveSheets updates from
live input data. Cells D6:F6 contain the output
data, (re-)computed using reactive spreadsheet for-
mulas. The formula E6=COUNTIF(A3:A8,D6) counts
how many calls in the window are as long as a
longest call. The formula F6=INDEX(B3:B8,F2) uses
the relative index F2 of the longest len to retrieve
the corresponding caller. ActiveSheets was influ-
enced by synchronous dataflow, discussed in Sec-
tion 2.2. Of course, spreadsheets are not the only
approach for end-user programming. For instance,
MARIO constructed streaming applications auto-
matically based on search terms [75]. Linehan et
al. used a controlled natural language for specifying
event processing rules [65]. And TEM used model-
driven development based on a spreadsheet [46].

3. PRINCIPLES

The previous section described concrete stream
processing languages belonging to several families.
This section takes a cross-cutting view and explores
concepts that many of these languages have in com-
mon by identifying the language design principles
behind the concepts. The views and opinions ex-
pressed herein are those of the authors and are not
meant as the final word. Explicitly articulating
principles demystifies the art of language design.
We categorize language design principles according
to the three requirements from Section 1, namely
performance, generality, and productivity.

The performance requirement is addressed by
streaming language design principles P1-Py4:

Py, Windowing principle. Windows turn stream-
ing data into static data suitable for optimized
static computation. For instance, in CQL, win-
dows produce relations suitable for classic rela-
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tional algebra [9], optimizable via classic rela-
tional rewrite rules (see Figure 2).

P, Partitioning principle. Key-based partitions
enable independent computation over disjoint
state, thus simplifying data parallelism. For
instance, MatchRegex performs complex event
processing separately by partition [49] (see
Line 3 of Figure 5). Principles P; and P also
simplify advanced state management, e.g., in
key-value stores for operator migration [48].

Pg Stream graph principle. Streaming applications
are graphs of operators that communicate al-
most exclusively via streams, making them easy
to place on different cores or machines. This
principle is central to the big-data languages in
Section 2.3 such as SPL [51] (see Figure 4).

P4 Restriction principle. The schedules and com-
munication rates in a streaming application are
restricted for both performance and safety. For
instance, Lustre can be compiled to a simple
imperative control loop without communication
buffers [25] (see Section 2.2).

The generality requirement is addressed by
streaming language design principles P5—Pg:

Ps Orthogonality principle. Basic language fea-
tures are irredundant and work the same in-
dependently of how they are composed. For in-
stance, in CQL, relational-algebra operators are
orthogonal to windows [9] (see Section 2.1).

Pg No-built-ins principle. The core language re-
mains slim and regular by enabling extensions
in the library. For instance, in SPL, relational
operators are not built into the language, but
are user-defined in the library instead [51] (see
Lines 3-8 of Figure 4).

Pr Auto-update principle. The syntax of conven-
tional non-streaming computation is overloaded
to also support reactive computation. For in-
stance, ActiveSheets uses conventional spread-
sheet formulas, updating their output when
input cells change [84] (see Figure 8). The
Lambda or Kappa architectures [58] take this
to the extreme by combining batch and stream-
ing outside of the language.

Ps General-feature principle. Similar special-case
features are replaced by a single more-general
feature. For instance, operator parameters in
SPL [51] accept general uninterpreted expres-
sions, including predicates for the special case
of CEP [49] (see Lines 4-7 of Figure 5).

The productivity requirement is addressed by
streaming language design principles Pg—P12:
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Language Performance  Generality Productivity
CQL Py P2 P3 Ps Ps Pg

Lustre Py Ps Pg Py Pg Pg Pig P11 P12
SPL P1 P2 P3 Ps Ps Pgs Pg P11 P12
MatchRegex P Ps Pg Ps Pg Pig Pio
YFilter P4 Py Pg Pg P1o

RSP-QL P,  P3 P5s P¢ Ps Pg Pio P1y
ActiveSheets P1 Po P4 Ps Pg Py Ps Pg Pig

Table 1: Which of the languages that served
as examples in Section 2 satisfy which of the
language design principles in Section 3.

Py Familiarity principle.  The syntax of non-
streaming features in streaming languages is
the same as in non-streaming languages. This
makes the streaming language easier to learn.
For instance, CQL [11] adopts the select-from-
where syntax of SQL (see Figure 1).

P10 Conciseness principle. The most concise syntax
is reserved for the most common tasks. This in-
creases productivity since there is less code to
write and read. For instance, regular expres-
sions represent “followed-by” concisely via jux-
taposition e; ez (see Line 8 of Figure 5).

P11 Regularity principle. Data literals, patterns
that match them, and/or declarations all use
similar syntax. For instance, RSP-QL uses pat-
tern syntax resembling concrete RDF triples
(see Line 10 of Figure 6).

P12 Backward reference principle. Code direction is
consistent with both scope and control domi-
nance, for readability. For example, Lustre de-
clares variables before their use (see Figure 3).

3.1 Principles Summary

Good language design is driven by principles, but
it is also an exercise in prioritizing among these
principles.  For instance, CQL satisfies Pg (fa-
miliarity principle) by adopting SQL’s syntax and
CQL violates P15 (backward reference principle) by
adopting SQL’s scoping rules. Table 1 summarizes
principles by language. Only two of the twelve prin-
ciples (P5 and Py, shown in bold) are uniformly cov-
ered, both related to the ease of use of the language
(separation of concerns and syntax familiarity). Al-
though some of the languages exhibit fewer princi-
ples, Table 1 does not provide a comparative metric
for quantifying the coverage of each principle; such
a metric would be hard to agree upon. Satisfying
more principles does not automatically imply sat-
isfying the associated requirement better. While
we formulated the principles from the perspective
of streaming languages, we do not claim to have
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invented them: many are well-known from the de-
sign of other programming languages. For instance,
the orthogonality principle was a stated aim of the
Algol 68 language specification [83]. Now that we
have seen concepts that are present in most stream-
ing languages, the next section will explore what is
commonly missing or underdeveloped.

4. WHAT’S NEXT?

In the Big Data era, the need to process and
analyze a high volume of data is a fundamental
problem. Industry analysts point out that besides
volume, there are also challenges in variety, veloc-
ity, and veracity [53]. Streaming languages natu-
rally handle volume and velocity of the data, since
they are designed to process data in real-time in
a streaming way. Thus, in the following, we focus
on veracity and variety, since there are more open
research challenges in these directions despite much
recent progress in streaming languages. In addition,
we elaborate on the challenge of adoption, which is
an important problem of programming languages in
general and of streaming languages in particular.

4.1 Veracity

With the evolution of the internet of things and
related technologies, many end-user applications re-
quire stream processing and analytics. Stream-
ing languages should ensure veracity of the output
stream in terms of accuracy, correctness, and com-
pleteness of the results. Furthermore, they should
not sacrifice performance either, answering high-
throughput input streams with low-latency output
streams. Veracity in a streaming environment de-
pends on the semantics of the language since the
stream is infinite and new results may be added or
computed aggregates may change. It is important
that the output stream for a given input stream be
well-defined based on the streaming language se-
mantics. For example, if the language offers a slid-
ing time window feature, any aggregate should be
computed correctly at any time point based on all
data within the time window. Stream veracity prob-
lems may occur for different reasons. For example,
in multi-streaming applications, each stream may
be produced by sensors. Errors may occur either in
the data itself (e.g., noisy sensor readings) or by de-
lays or data loss during the transfer to the stream
processing system. For instance, data may arrive
out-of-order because of communication delays or be-
cause of the inevitable time drift between indepen-
dent distributed stream sources. Ideally, the output
stream should be accurate, complete, and timely
even if errors occur in the input stream. Unfortu-
nately, this is not always feasible.
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Why is this important? Veracity of the output
of streaming applications is important when high-
stakes and irreversible decisions are based on these
outputs. In the big-data era, veracity is one of the
most important problems even for non-streaming
data processing, and stream processing makes ve-
racity even more challenging than in the static case.
Streams are dynamic and usually operate in a dis-
tributed environment with minimal control over the
underlying infrastructure. Such a loosely coupled
model can lead to situations where any data source
can join and leave on the fly. Moreover, stream-
producing sensors have limitations such as process-
ing power, energy level, or memory consumption,
which can easily compromise veracity.

How can we measure the challenge? To esti-
mate the robustness of a streaming language imple-
mentation to veracity problems, we define as ground
truth the output stream in the absence of veracity
problems (for example data loss or delayed data).
Then we can quantify veracity. Let error be a func-
tion that compares the produced result of an ap-
proach with and without veracity problems. An
example of an error function is the number of false
positives and false negatives. An approach is robust
for veracity of streaming data if the error scales at
most linearly with respect to the size and the error
rate of the input stream, while the delay in the la-
tency is bounded and independent of the input size.
The streaming language veracity challenge can be
broken down into the following measures C;—Cs:

C1 Fault-tolerance. A program in the language is
robust even if some of its components fail. The
language can define different behaviors, for ex-
ample, at-least-once semantics in Storm [81] or
check-pointing in Spark Streaming [87].

Ca Out-of-order handling. This measure has two
facets. First, the streaming language should
have clear semantics about the expected result.
Second, the streaming language should be ro-
bust to out-of-order data and should ensure that
the expected output stream is produced with
limited latency. Li et al. define out-of-order
stream semantics based on low watermarks [64];
Spark Streaming relies on idempotence to han-
dle stragglers [87]; and Beam separates event
time from processing time [4].

Cs3 Inaccurate value handling. A program in the
language is robust even if some of its input data
is wrong. The language can help by supporting
statistical quality measures [85].

Why is this difficult? In stream processing,
data is typically sent on a best-effort basis. As a re-
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sult, data can be lost, incorrect, arrive out of order,
or be approximate. This is exacerbated by the fact
that the streaming setting affords limited opportu-
nity to compensate for these issues. Furthermore,
the performance requirements of streaming systems
encourage the use of approximate computing [12],
thus increasing the uncertainty of the data. Also,
machine-learning often yields uncertain results due
to imperfect generalization. An important aspect of
streaming data is ordering, typically characterized
by time. The correctness of the response to queries
depends on the source of ordering, such as the cre-
ation, processing, or delivery time. Stream process-
ing often requires that each piece of data must be
processed within a window, which can be charac-
terized by predefined size or temporal constraints.
In stream settings, sources typically do not receive
control feedback. Consequently, when exceptions
occur, recovery must occur at the destination. This
reduces the space of possibilities for handling trans-
action rollbacks and fault tolerance.

4.2 Data Variety

Data variety refers to the presence of different
data formats, data types, data semantics, and as-
sociated data management solutions in an infor-
mation system. The term emerged with the ad-
vent of Big Data, but the problem of taming vari-
ety is well known for machine understanding of un-
structured data such as text, images, and video as
well as (syntactic, structural, and semantic) inter-
operability and data integration for structured and
semistructured data. There are multiple known so-
lutions to data variety for a moderate number of
high-volume data sources. But data variety is still
unsolved when there are hundreds of data sources
to integrate or when the data to integrate is highly
dynamic or streaming (as in this paper).

Why is this important? Increasingly, appli-
cations must process heterogeneous data streams
in real-time together with large background knowl-
edge bases. Consider the following two examples
from [41] (where interested readers can find others).

In the first example, we want to use sensor
readings of the last 10 minutes to find electricity-
producing turbines that are in a state similar (e.g.,
Pearson correlated by at least 0.75) to any turbine
that subsequently had a critical failure. Here, data
variety arises from having tens of turbines of 3-4
different types equipped with different sensors de-
ployed other many years, where more sensors will
be deployed in the future. Moreover, in many cases,
once an anomaly is detected, the user also needs to
retrieve multimedia maintenance instructions and
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annotations to complete the diagnosis process.

In the second example, we want to use the latest
open traffic information and social media as well as
the weather forecast to determine if the users of a
mobile mobility app are likely to run into a traffic
jam during their commute tonight and how long
it will take them to get home. Here, data variety
arises from using third-party data sources that are
free to evolve in syntax, structure, and semantics.

How can we measure the challenge? The
streaming language data variety challenge can be
broken down into the following measures C4—Cg:

C4 Ezxpressive data model. The data model used
to logically represent information is expressive
and allows encoding multiple data types, data
structures, and data semantics. This is the path
investigated by RSP-QL [41, 82].

Cs Multiple representations. The language can in-
gest data in multiple representations, offering
the programmer a unified set of logical opera-
tors while implementing physical operators that
work directly on the representations for perfor-
mance. An example is the most recent evolution
of the Streaming Linked Data framework [13].

Cg New sources with new formats. The language
allows adding new sources where data are rep-
resented in a format unforeseen when the lan-
guage was released. This might be accom-
plished by extending R2RML2.

Why is this difficult? Deriving value is harder
for a system that has to tame data variety than
for a system that only has to handle a single well-
structured data source. This is because solutions
that analyze data require homogeneous well-formed
input data, so, when there is data variety, prepar-
ing such data requires a number of different data
management solutions that take time to perform
their part of the processing as well as to coordinate
among each others. This time is particularly rele-
vant in stream processing, where answers should be
generated with low latency. Even if the time avail-
able to answer depends on the application domain
(in call centers, routing needs to be decided in sub-
seconds, while in oil operations, dangerous situa-
tions must be detected within minutes), traditional
batch pipelines for feature extraction and extract-
transform-load (ETL) may take so long that the
results, when computed, are no longer useful. For
this reason, it is still challenging to tame variety in
stream processing systems.

’https://www.w3.org/TR/r2rml
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4.3 Adoption

Stream processing languages have an adoption
problem. As Section 2 illustrates, there are several
families of streaming languages comprising several
members each. But no one streaming language has
been broadly adopted. The language family receiv-
ing the most attention from large technology com-
panies is big-data streaming, including offerings by
Google [3], Microsoft [5], IBM [51], and Twitter [81].
However, they all differ. Furthermore, in the pur-
suit of interoperability and expediency, most big-
data streaming languages are not stand-alone but
embedded in a host language. While being embed-
ded gives a short-term boost to language develop-
ment, the entanglement with a host language makes
it hard to offer stable and clear semantics. And, if
the history of databases is any guide, such stable
and clear semantics are useful for agreeing on and
consistently implementing a standard. Part of the
reason that the relational model for databases dis-
placed its disparate predecessors is its strong math-
ematical foundation. Omne of the most-used lan-
guages mentioned in this survey is Scade [34], but it
is designed for embedded systems and not big-data
streaming. Getting broad adoption for a big-data
streaming language remains an open challenge.

Why is this important? Solving the adop-
tion problem for stream processing languages would
yield many benefits. It would encourage students
to build marketable skills and give employers a sus-
tainable hiring pipeline. It would raise attention to
streaming innovation, benefiting researchers, and to
streaming products, benefiting vendors. If most sys-
tems adopted more-or-less the same language, they
would become easier to benchmark against each
other. Other popular programming languages, such
as SQL, Java, and JavaScript, flourished when com-
panies competed against each other to provide bet-
ter implementations of the language. On the down-
side, focusing on a single language would reduce the
diversity of the eco-system, transforming innovation
and competition from being broad to being deep.
But overall, if the problem of streaming language
adoption were solved, we would expect streaming
systems to become more robust and faster.

How can we measure the challenge? The
streaming language adoption challenge can be bro-
ken down into the following measures C7—Cg:

Cr Widely-used implementation of one language.
One language in the family has at least one im-
plementation that is widely used in practice, for
instance, Scade for SDF [34].

Cg Standard proposal or standard. There are se-
rious efforts towards an official standard, for
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Languages Veracity ~ Variety — Adoption
Relational Co Csg Co
Synchronous Cay Cr Co
Big Data Ci Co Cy4 C5 Cg Cr

CEP C2 Ca Cs
XML Cy Ce

Stream Reasoning C3 C4 Cjs Cg Csg Co
End-user Cay

Table 2: Which of the language families from
Section 2 address which of the measures of
streaming language challenges in Section 4.

instance, Jain et al. for StreamSQL [54] or
MaTCH-RECOGNIZE for CEP [88].

Co Multiple implementations of same language.
One language in the family has multiple more-
or-less compatible implementations, for in-
stance, Lustre [25] and Scade [34] for SDF.

Language adoption is driven not just by the tech-
nical merits of the language itself but also by exter-
nal factors, such as industry support or implemen-
tations that are open-source with open governance.

Why is this difficult? Adoption is hard for
any programming language, but particularly so for
a streaming language. While streaming in general
is not new [79], big-data streaming is a relatively re-
cent phenomenon. And big-data streaming, in turn,
is driven by several ongoing industry trends, includ-
ing the internet of things, cloud computing, and
artificial intelligence (AI). Since all three of these
trends are themselves actively shifting, they provide
an unstable ecosystem for streaming languages to
evolve. Furthermore, innovation often takes place
in a setting where data is assumed to be at rest,
as opposed to streaming, where data is in motion.
For instance, most Al algorithms work over a fixed
training data set, so additional research is necessary
to make them work well online. When it comes to
streaming languages, there is not even a consensus
on what are the most important features to include.
For instance, both the veracity and the variety chal-
lenge discussed previously have given rise to many
feature ideas that have yet to make it into the main-
stream. Since people come to streaming research
from different perspectives, they sometimes do not
even know each other’s work, inhibiting adoption.
This survey aims to mitigate that problem.

4.4 Challenges Summary

Table 2 summarizes the challenges. Compared to
the coverage of principles in Table 1, the coverage
of challenges is more sparse and spread out over
research prototypes. That is why we tabulated it for
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language families instead of individual languages.
There is much space for future work. The measures
highlighted in bold are most covered across all the
languages families. The ability to handle a wide
variety of data formats appears to be a universal
concern. Ultimately, we aim at streaming languages
that are both principled and close the gap on all
challenges.

5. CONCLUSION

This paper surveys recent stream processing lan-
guages. Given their numbers, it appears likely that
more will be invented soon. We hope this survey
will help the field evolve towards better languages
by helping readers understand the state of the art.
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Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community. I'm
Marianne Winslett, and today we are in Snowbird, Utah, USA, site of the 2014 SIGMOD and PODS conference. 1
have here with me Ken Ross, who is a professor at Columbia University. He was a Sloan Fellow and a Packard
Fellow, as well as an NSF Young Investigator. His Ph.D. is from Stanford.
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So, Ken, welcome!
What is next for main memory databases?

So, I think as we go forward, main memory databases
are going to be the mainstream databases. We’re going
to be thinking of disk-resident databases as secondary.
The primary copy of the data and the primary activity is
going to be in main memory. IO and so on are going to
be things you think about just for recovery and
persistence. So main memory databases are the
mainstream. The obvious questions are how to get very
fast transaction processing, very fast analytics. As my
research interests kind of reflect, the hardware is
evolving relatively rapidly — you’re getting multi-core
machines, and on these multi-core machines, you’re
getting various kinds of hardware capabilities. I think
the critical thing going forward is making the best use
of these hardware capabilities. Things like SIMD units,
things like transactional memory, gather instructions,
relatively low-level things but they can make a very
significant performance difference when they’re in the
inner loop of a database join, or aggregation or some
important operation that is run many billions of times.

I think the Database field is
particularly good, perhaps
better than the many other
fields in and out of Computer
Science, in admitting work
that goes all the way from
theory to systems.

I can see how that would be really important, but isn’t
the rate of data collection expanding faster than
memory size?

The rate of data collection is growing very rapidly.
People are trying to scale systems accordingly. The
RAM sizes you see are dramatically increasing. That
being said, some of the biggest customers of Oracle, for
example, still have datasets that reside in large main
memories. Oracle is actually supplying main memory
systems to those customers. So, while there will always
be applications on the fringe that are in excess of what
we can store in main memory, things like large
astronomy datasets and so on, many of the applications,

' Jun Rao, Kenneth A. Ross: Making B+-Trees Cache
Conscious in Main Memory. SIGMOD Conference 2000:
475-486.
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a lot of the critical ones for economic or scientific
analysis will have working sets that do fit in main
memory and can benefit from these sorts of
technologies.

For our younger readers, can you say a few words about
how being in main memory changes everything
compared to the old disk-based days?

Okay, so in the disk-based days, you would have to wait
for an IO to do most operations. An 10 would take a few
milliseconds for the data to come in and if you had to
read that disk page to find out what the next item you
need to read is, then you have to wait for a second 10
that would have to be in sequence, you can’t make them
concurrent. So, you have a lot of latency. Once the data
is in main memory, you are now thinking about
nanoseconds rather than milliseconds, so you have six
orders of magnitude potential difference in speed to
access data. Then you start caring not about whether it’s
on disk or in memory but is it in memory or is it in the
cache? The caches can be a factor of 50 to 100 faster
than the main memory in terms of access. You have
similar problems in terms of trying (from a disk-based
database) to buffer the disk-resident data in RAM — you
see analogous problems at high levels of the memory
hierarchy trying to put the data you need not in RAM,
but in the cache (at least for a short period), to take
advantage of temporal locality and get faster
performance.

We 're still teaching them in the courses about B-trees.
Everything is based on B-trees. Are we teaching them
the right thing?

In my database implementation class, we start out
teaching them about B-trees, so I think for historical
reasons, it’s important to be founded in that kind of
knowledge, but then we go on and talk about cache
sensitive B+ trees! which is actually something I
worked on with my student Jun Rao back in 2000. You
take the basic B-tree structure and you re-work it to
make it work well in main memory. So instead of having
k+1 pointers and k data items, you’ll have 2k data items
and 1 pointer. So, you can fit much more in a node, and
you size the node to be the size of a cache line. You get
away with this because the pointer now points to a
contiguous set of child nodes and so as a result, you can
use arithmetic to figure out where the child node is.
Also, you get a much higher branching factor for one
cache line, so you get fewer cache misses during a
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traversal. So, the underlying concept of a B-tree is still
there, but as a research community, we have evolved it
to suit the appropriate kinds of memory technologies
that are appropriate for the time. So, I would hope, and
I do get told by some of my colleagues at other
institutions that things like cache sensitive B+ trees are
now being taught in the mainstream database classes.

Excellent. Is your research valuable to industry?

I think it’s very valuable to industry. I have some
collaboration with companies like Oracle where they’re
taking interns from my group. Some of the problems
that we’re working on, for example, there is a paper? that
we have at SIGMOD 2014 on track joins that is
motivated by a problem at Oracle where you have very
large joins over a cluster of network machines. My
student Orestis and I have come up with a technique to
do joins kind of like a semi-join where on a key-by-key
basis, the data is re-partitioned which ends up
transferring a lot less data than say if you did hashing.
This is a critical workload for Oracle. This is the slowest
query in an important customer workload that we were
able to speed up significantly. So that is just one
example of where these research techniques can have a
fairly direct impact.

To have that impact you had to know that it was the
slowest query for an important customer. So how do you
build that relationship where you learn those types of
things?

I think in this particular example, Orestis, my student,
was the key player. He was there as an intern. He found
out about what was going on in Oracle. I don’t take all
the credit, but I perhaps can take credit for placing
Orestis in Oracle and working with Eric Sedlar, for
example, to find a project where Orestis’s strengths
could be most utilized. It’s been fruitful, and we have an
ongoing collaboration with Oracle.

Your Ph.D. work was entirely theoretical, but most of
your subsequent research was on the system side. Do
you have tips for making that transition?

It was a complex thought process I had to go through as
I joined Columbia as a junior faculty member. I did a
thesis in which I developed the well-founded semantics

2 Orestis Polychroniou, Rajkumar Sen, Kenneth A. Ross:
Track join: distributed joins with minimal network traffic.
SIGMOD Conference 2014: 1483-1494.

3 Allen Van Gelder, Kenneth A. Ross, John S. Schlipf:
Unfounded Sets and Well-Founded Semantics for General
Logic Programs. PODS 1988: 221-230.
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for Datalog®* and that was actually relatively
influential. It had a number of citations and formed the
basis for a lot of work in Datalog. So, I was sort of
branded as being the person, along with my
collaborators John Schlipf and Allen Van Gelder, who
developed the well-founded semantics. And this is a
blessing and a curse in a way because as I progressed in
my career at Columbia, Datalog kind of went out of
fashion. If you’re working in a field that kind of goes
out of fashion and people point at you and say, “Oh he
did the important Datalog thing,” even if you are doing
other things, that’s what they remember you for. So, it
takes some effort to actually take what you’re doing
next and make it known in the community. In the period
before I was coming up for tenure for example, I went
to various other institutions and labs and gave talks
about some of the work I was doing on query processing
and optimization and so on which was more applied and
it was sort of hitting much more in the direction in which
I find myself right now.

Do you think that a young person starting their first
tenure-track job today could make that big switch to
systems where you had to really build things before you
can publish — would they have time to make such a big
transition before tenure?

That’s a tricky question. I think the best students are
able to span theoretical and practical concerns. I think
the Database field is particularly good, perhaps better
than the many other fields in and out of Computer
Science, in admitting work that goes all the way from
theory to systems. Even though I have moved from
theory to systems over the years, it just means I used to
publish in PODS, and now I publish in SIGMOD and
VLDB more, but it’s still the same conferences, I still
circulate with the same people, and 1 think that
interaction is good.

So, coming back to your question, I think there are
theoretical people who prefer to work on purely
theoretical problems, and that’s fine, but if you’re a
theoretical person who has an inclination to write code
and implement things like I like to do, I think it’s fun to
play with that. Don’t necessarily invest all of your
energy in that. Have one or perhaps two side projects
that may or may not pan out. Keep your mainstream
work that you feel you have the most cutting-edge
advantage in your research going, but do these side

4 Allen Van Gelder, Kenneth A. Ross, John S. Schlipf: The
Well-Founded Semantics for General Logic Programs. J.
ACM 38(3): 620-650 (1991).
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projects. These side projects can often expand and
become products that take a life of their own, and they
can drive you in these new directions. That was kind of
what happened for me.

In some sense, you've come full circle because your
recent sabbatical at LogicBlox involved working with
Datalog. Has the time finally come for Datalog in our
field?

That’s a very interesting question. I did get approached
by the principal people at LogicBlox, including Molham
Aref, and they sort of looked at me as if [ was this really
famous rock star type character because [ had done well-
founded semantics. And here I am 20 years later, having
put that in my past and not being used to people thinking
of me in that way. I have to say it was flattering. I
enjoyed the attention from having that kind of feedback.
Then it led to some interactions, and as a result, I did go
to LogicBlox and did some work while I was there
related to some of the interesting problems they were
having, that overlapped with the research I had done in
the past. So that kind of recapitulated and I looked at it
in a new way that might be relevant to LogicBlox. And
even after my sabbatical, I’ve managed to continue
having a consulting relationship to LogicBlox that I
think is helpful for both sides.

Coming back to your question about if this is the time
for Datalog... what I really like about Datalog is its
declarativeness. I think that SQL has succeeded in the
relational database community because it’s declarative.
People don’t know how to program yet they can write
SQL queries, so it takes less effort, energy, and
knowledge to master that technology. Datalog has the
disadvantage that it is a logic language and people are
often not as inclined to think in a logical framework in
terms of predicate calculus and so on. On the other hand,
sometimes you can use syntactic sugar to hide some of
those complexities. With Datalog, you can use recursion
to express things declaratively. Some of the work for
example, by Joe Hellerstein in Berkeley is using
recursion to reason about time and protocols and so on.
I think that’s an excellent kind of direction because it’s
taking advantage of the declarativeness, but using a
fairly limited expressive power language to write your
specifications so that you can reason about them, prove
correctness results, and form a layer of abstraction that
is much cleaner than an arbitrary procedural code. So, I
think it’s cool that these additional applications that
weren’t really foreseen for Datalog have come along
and are making it relevant again.

You are unusual among computer scientists in bringing
a broad scientific perspective to your work. In fact, most
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people don’t know that you’ve co-authored published
articles in physics.

Yes, when [ was an undergraduate student, as a summer
project I worked with an applied mathematician who
worked in physics on a model of the Ising spin chain. I
don’t actually understand it in full detail, but I did some
coding of some physical simulations that corresponded
to the physical problem that he was studying. It turned
out that the results were kind of interesting. They
showed a fractal structure that was somewhat new, and
as a result, we got a couple of publications in theoretical
physics journals.

I like the idea of working in
the scientific field itself,
trying to understand the
domain rather than just
building a tool to help the
domain scientists and I think
that provides a much more
satisfying and rounded type
of experience in making a
contribution.

And you're still working in science, although more
recently it’s been bio-informatics. How is it to work with
bio people?

Some of this interest in biology came from a point where
the human genome was about to be sequenced. The
various universities were being called to help work in
the sequencing of the human genome, and some people
from the Medical School at Columbia came down to the
Engineering School to try to recruit people to work on
the sequencing effort. In order to get them interested,
they gave a little short course on biology, a five-lecture
sequence in which they taught basic biology to
engineers. So, | attended this course, and I was actually
fascinated by some of the biology. I didn’t get involved
in the sequencing effort at the time, but it got me
thinking about many of these questions of biology.

Over the years, I’ve actually worked on a couple of
research questions in biology sort of on my own as one
of these pet projects as I’ve mentioned before. For
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example, you might not know I wrote an article’ about
why some groups of species have a very variable
chromosome number among different species in a clade
while other groups of species have a very conserved
number of chromosomes within a clade.

More recently, I’ve been thinking about autoimmune
diseases, and I have an article studying the genetics of
autoimmune disease with the hypothesis that the cause
of autoimmunity is an immune response against mutated
genes (mutated proteins that are expressed in the body).
In order to explore this, I took the human referenced
genome and ran some SQL queries on these referenced
genomes from the UCSC database® and found a
statistically significant overrepresentation of genes with
very long repeat regions among auto antigens. This was
kind of exciting, and I wrote it up. It required a lot of
reading and a lot of understanding of the biological
literature. It appeared at PLoS One’.

That work I did on my own, but in the biology field,
people don’t really take you seriously until you’ve got
an experimental validation of your ideas. I talked with
one of my colleagues who does computational biology,
and he recommended I speak to a certain person who
studies inflammatory valve disease at the Mount Sinai
Hospital. Her name is Judy Cho and so I’'m working
with her and some other people at Mount Sinai Hospital
to experimentally validate this hypothesis. So, in this
particular case, I’ve worked somewhat on my own but
then done the collaboration afterward.

Coming up for tenure, it’s
important to have your work
known by the community.
Give talks about your best
work and visit other labs.

I like the idea of working in the scientific field itself,
trying to understand the domain rather than just building
a tool to help the domain scientists and I think that
provides a much more satisfying and rounded type of
experience in making a contribution. Some of this work
was inspired by my Packard Foundation Fellowship.
You did mention I was a Packard Fellow (from 1993-
1998) and one of the things that the Packard Fellowship
does is that it brings all of the Packard fellows together
and they give talks about their work. Just as an aside,
one of my fondest memories was getting a pat on the
back from David Packard as I gave my talk at the

> Kenneth A. Ross: Alpha radiation is a major germ-line
mutagen over evolutionary timescales. Evolutionary
Ecology Research, 2006, 8: 1013—-1028.
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Packard Fellows meeting. And so, I'm up there giving
my talk, at the time I was doing some theoretical work
on object-oriented databases, and these other scientists
were talking about cures for Malaria and various other
very high impact things. I was kind of scratching my
head thinking, “Here I’'m doing object-oriented database
theory, and these people are really impacting the
world.” I kind of had this urge; I want to impact the
world too. I stayed in my main area of Computer
Science, and I still worked on databases, but I had a
strong incentive to do one or two of these pet projects to
try to explore things outside that domain. I just followed
my curiosity and had fun, so that’s how this biology
project eventuated.

It sounds amazing! Stepping back for a moment to the
validation, is that going to be more SQL queries over
particular patients’ genome or is this stuff they 're going
to do in a wet lab?

These will be wet lab experiments. There’s a particular
technology that allows you to sequence genomes in
particular regions with fairly long reads. That will
enable you to look for certain structures that should,
according to the hypothesis, differ between patients and
controls. These structures are actually not easy to detect
with current technologies because they’re longer than
the read length that most of these short read
technologies give. So, the nice thing about this
collaboration at Mount Sinai Hospital is that they have
this database of 30,000 patient’s blood samples that they
can go to, and you can get 100 people with a certain
disease and get their blood samples and test them versus
controls at relatively low overhead. It takes some effort
to setup the scientific experiment, and there are all kinds
of design issues for the experiment that are things that I
wouldn’t have thought of at first, but my collaborators
there have to go through to make sure that the
experiment is going to succeed and find the things we’re
looking for. That’s where it’s essential to have
collaborations because I have no wet lab experience and
we need to bring out our respective strengths to be able
to solve these bigger problems.

By thinking like a computer scientist, you came up with
this hypothesis for autoimmune disease. Does that mean
you have a hypothesis for how to cure them?

If this is, in fact, the mechanism that causes autoimmune
disease, which is speculative at this point because it’s
just a statistical association, it’s not validated, so I do

6 https://genome.ucsc.edu/

7 Kenneth A. Ross: Coherent Somatic Mutation in
Autoimmune Disease. PLoS One. 2014 Jul 2; 9(7): €101093.
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not want to claim that this is the solution to autoimmune
disease. But let’s imagine for a moment that in fact,
somatic mutation of these proteins is what triggers
autoimmune disease. It opens up certain possibilities. If
you know the specific proteins that might be causing the
autoimmune disease that have been mutated in a way
that is relatively deterministic and predictable, you
could do various things relative to that particular
protein. You can try to induce tolerance to that protein,
for example, or you could find ways to take that protein
out of circulation one way or another. My knowledge of
biology is limited in terms of knowing the different
options for which you might use that knowledge, but if
you know the basic procedures and steps that trigger a
disease, you can go early in this triggering process,
identify the early players and try to get things as close
to the causative part of the mechanism as possible. So,
by extending the knowledge base and by making the
knowledge closer to the triggering point and making the
identification of very specific targets, I think that opens
up much more opportunity compared to alternatives like
just generally dampening the immune system, which
can be effective and is the current treatment for many
autoimmune diseases but is non-specific to the
particular causative factor.

Do you have any words of advice for fledging or mid-
career database researchers?

So, for fledging database researchers, I wouldn’t worry
too much in the first year or two about having lots of
publications and so on. It takes a while to get started.
So, settle down, maybe write a grant proposal, get
comfortable with teaching, find students, don’t set high
expectations about publishing two big papers a year
during those first couple of years. Be easy on yourself
as you ramp up.

By mid-career are you suggesting before or after tenure?
Either way.

Ok, so leading up to tenure, I think it’s important to
focus on the tenure process. One of the nice things about
having tenure is that you can choose these arbitrary pet
projects and even choose to spend most of your time on
those and you have the academic license to do so.
Before tenure, there is maybe a little bit of a risk if you
spend a majority of the time on those because if they
don’t pan out, you would not have enough to show. So,
maybe limit yourself to one pet project before tenure
and maybe branch out afterward. Coming up for tenure,
it’s important to have your work known by the

8 The PODS paper has 591 citations, and the JACM paper has
2042 citations.
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community. Give talks about your best work and visit
other labs. The crucial thing about the tenure process,
having seen it from both sides, is the quality of the
letters of recommendation. You want to get letters from
people who know about the impact of your work. So,
tell people about the impact of your work at
conferences. Do the circulating among the people in the
field, particularly the senior people. Give them the
elevator pitch if necessary or try to sit down with them
for longer periods and communicate your work to get it
as well-known as possible.

The crucial thing about the
tenure process, having seen
it from both sides, is the
quality of the letters of
recommendation. You want
to get letters from people
who know about the impact
of your work.

Among all your past research, do you have a favorite
piece of work?

I guess I have several favorites. I like the well-founded
semantics I did in my Ph.D. thesis because it had high
impact. Even now, it has many citations® and it sort of
resolved a question that many people had posed for a
while. So that was satisfying, and I enjoyed that work
for that reason. Some other work that I like, I
particularly like the cache conscious B+ tree work that I
referred to earlier. I think we got in pretty early. I don’t
think many people at that time appreciated how
important the cache was in the database community. I
think we were trendsetters in that regard and this
particular paper has influenced how people design
indexes now and now it’s regularly routine to make
indexes cache sensitive or cache aware in various ways.
Maybe it’s too early to think of this biology paper that I
published at PLoS One as my favorite, but this was sort
of a major undertaking, it was a lot of fun doing and a
lot of work, and it’s something brand new. I have a fond
feeling about it.

If you magically had enough extra time to do one

additional thing at work that you're not doing now,
what would it be?
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Okay, so I imagine many people would say they’d like
to do more coding and that as a faculty member you
would distribute the coding tasks to your students and
not code yourself. I actually do find that I get time to
code and I like coding and programming and so on. That
is something I already do. I think the thing that I would
like to do beyond that is to explore new domains. For
example, in this biology application, I’'m reliant on these
other people doing the wet lab experiments and do the
sequencing and so on and I know I have some
colleagues at Columbia who started out as geneticists
doing the theoretical work and basically evolved
overtime and took courses to master the wet lab work
and so on. I think it would be fun to do that sort of thing,
to try to learn the technologies dealing with biological
reagents and so on. I think that would take a fairly big
investment of time and I’'m not sure I have the time to
do that, but if I had spare time, I think it would be fun to
get to that point that I could be competent at doing those
things and eventually direct others to do wet lab
experiments in support of these biological hypotheses.

If you could change one thing about yourself as a
computer science researcher what would it be?

Okay, so there was the big biological revolution when
the genome was sequenced where everyone was looking
at these questions, sequencing and so on. At the time
when that happened, I actually questioned whether I had
chosen the right field. I thought to myself, okay if I had
been doing my Ph.D. ten years later, might I have
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[...] having done database
work and being able to pick
up a lot of this biology, I can

make contributions that
kind of span the technology
and the science.

chosen to go into genetics or bioinformatics or
something like that instead of computer science? In
retrospect, I think I’m in a good position now because
having done database work and being able to pick up a
lot of this biology, I can make contributions that kind of
span the technology and the science. A lot of the stuff
that came out early in the genome revolution was
technology that became obsolete over time. Things
change a lot, and if you end up investing too much in a
particular technology and with time that goes obsolete,
then that is not so useful knowledge. That was hard to
see at the beginning of that time. So, I think maybe if I
were to change something, it would be to learn more
biology sooner, to be able to work on these problems,
but I think that at least in the subproblems that I’ve been
working on, I’ve been able to catch up so to speak.

Thank you very much for talking with me today.

You are welcome.
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Paris Koutris Speaks Out on a
Theoretical Model for Query Processing

Marianne Winslett and Vanessa Braganholo

Paris Koutris
http://pages.cs.wisc.edu/~paris/

Welcome to the ACM SIGMOD Record's series of interviews with distinguished members of the database community.
I'm Marianne Winslett, and today we're at SIGMOD 2017 in Chicago. I have with me Paris Koutris, who won the
2016 ACM SIGMOD Jim Gray Dissertation Award for his thesis entitled "Query Processing in Massively Parallel
Systems." Paris is now a professor at the University of Wisconsin-Madison, and he did his Ph.D. work with Dan Suciu

at the University of Washington.
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So, Paris, welcome!
It is great to be here.
What is your thesis about?

My thesis has to do with query processing in massively
parallel systems. The key observation is that due to the
data explosion we've seen over the last years, there's a
massive volume of data being around, and we have to
process this data. In order to process this data fast, one
way is to use parallelism. This has led to an explosion
of different types of systems — distributed systems,
parallel systems — that try to improve performance. My
work has to do with how we can theoretically model
these types of systems and how we can formally reason
about these systems.

My first contribution was introducing a model which we
called the Massively Parallel Computation model (or
MPC for short) that basically creates a theoretical
framework to analyze query processing. This model has
two main parameters. The first one is communication,
so it measures how much data is being exchanged, and
the other is the number of rounds or synchronizations.
This measures how often does the system have to
synchronize and wait for all the machines to reach the
same point before moving forward. Using this model,
my thesis analyzed different types of algorithms for join
processing. Joins are the backbone of any database
system. And so, what we did is try to find out if there is
a tradeoff between communication and synchronization,
and how can we model it, and not only try to create new
algorithms, but also try to give lower bounds on how
well these algorithms can perform. This is the main part
of my thesis.

The second part has to do with what we can do further.
For example, many times, data has skew, which means
that there are some values in the data that appear more
often than the others, and that can create an imbalance
in query processing. In this case, we have to use
different types of techniques to deal with skew. And my
thesis also tried to reason about these types of problems.

Does that mean that you introduced new join algorithms
yourself or improved the existing ones?

It's actually both. In the thesis, we both analyzed
existing algorithms and proved new bounds on how well
they can do, and also introduced some techniques that
were novel and could be actually used in practice.

! Leslie G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103—111, 1990.
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What kind of new join technique did you use?

For example, the new technique is how we can deal with
skew. Typically, when we are doing a hash join
algorithm, we are distributing the elements by hashing
a particular value. Now if this value appears very often,
there will be skew, so there's going to be a struggler in
a machine that will end up doing more work than the
other machines. In order to deal with this problem, we
essentially have to find out which are the values that
have skew and split up their work in more machines.
And we have to do it in a very particular way so that we
can get the best possible performance.

Given that this is a classic issue, I find it very surprising
that people hadn't already come up with techniques to
do a better job of spreading key values.

There are existing techniques to do that, but what we did
is we showed which are the theoretical optimal
techniques that you can use. So, for some cases, we did
use some existing tools. For some others, we had to
introduce new ways of balancing that were theoretically
optimal.

How close are we now to the theoretical optimal lower
bound?

This is an excellent question. In some cases, some of
these new theoretical ideas have proved to be faster in
practice than the typical algorithms. But there are cases
where the constants in the theoretical analysis are so
large that going back to some of the classic techniques
is faster.

The issue here — and this is generally an issue with
theoretical analysis — is that we make worst-case
assumptions about the data: for example, we are
assuming that we're analyzing the worst case that can
happen. And of course, for many real-world datasets
this is far away from the truth. So, a very exciting
direction is to try to incorporate this assumption in the
analysis and try to see how you can prove that the
analysis of an algorithm theoretically matches the
behavior that we see in the real systems.

What was your model like? Is it based on queuing theory
or another approach?

The model is actually very close to the BSP model by
Valiant, the Bulk Synchronous Model'. The idea is that
processing operates in rounds, and at each round there
is some communication, some computation, and then
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there is a synchronization barrier. But in order to make
our analysis feasible, we abstracted away some of the
parameters of Valiant’s model. For example, we ignore
the computation and try to figure out how well the data
is balanced across the different machines that we have.

That topic sounds quite classical and not very Dan
Suciu like. Where did the topic come from?

Excellent question. The story is interesting. When I
started my Ph.D. at the University of Washington, I
started talking with Dan on possible projects I could do.
And he was talking about probabilistic databases and all
the other things he has been doing, and then he also
mentioned this idea of “Oh, people like doing parallel
join processing, and we don't know yet how to analyze
this”, and I got immediately attracted to that problem
and started working on that. And I think that turned out
very well. So, it was kind of by luck that I started
working on this project, but it was very interesting.

[...] by talking with more
people and collaborating
with more people, you're
going to come across with
many different ideas. And
that may actually improve
your research.

Do you have any words of advice for graduate students?

Yes. One thing that I think is very important, and
sometimes in this competitive environment where you
are trying to publish as many papers as possible it is kind
of lost, is not only to do research but to also try to talk
with as many people as possible and try to network with
as many people as possible. And also try to develop
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collaborations with many people — other students in
your department, possibly other professors in your
department, or also other people and other students from
other departments. And the way I view it is that, if you
plan to stay in academia, these people will actually be
your colleagues for the rest of your career. That's one
thing. And second, by talking with more people and
collaborating with more people, you're going to come
across with many different ideas. And that may actually
improve your research.

So, the second thing that I want to say is that students
should not be afraid to tackle new problems. It's
probably easier to look at some existing papers and then
try to improve upon these or try to think about a new
technique that gets an improvement of 10 percent in the
performance. But I think it's much more impactful if you
try to go to new areas and try to introduce new problems,
new frameworks, and in general, try to explore new
things. The disadvantage of that is that it will be harder,
possibly, to convince the database community that this
is an important problem, and we need to do research on
that. But on the other hand, the results — the potential of
this type of research is much higher.

Did you have trouble convincing the community that
your particular topic was something they should care
about?

I would say no for my case, but I've come across many
other cases where this has happened. So, I know that this
is an issue and a danger if you're trying to do these types
of things. And my point is that you should not be
discouraged if this happens, and you should try to push
through these directions.

Alright. Well, thank you very much for talking with us
today.

Yeabh, it was very nice being here. Thank you very much
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ABSTRACT

SQL:2016 (officially called ISO/IEC 9075:2016,
Information technology — Database languages —
L) was published in December of 2016, replacing
SQL:2011 as the most recent revision of the SQL
standard. This paper gives an overview of the most
important new featuresin SQL:2016.

1. INTRODUCTION

The database query language SQL has been around for
more than 30 years. SQL was first standardized in
1986 by ANSI as a US standard and a year later by
ISO as an international standard, with the first
implementations of SQL preceding the standard by a
few years. Ever since first published, the SQL standard
has been a tremendous success. This is evidenced not
only by the many relationa database systems
(RDBMSs) that implement SQL as their primary
query® language but also by the so-called “NoSQL”
databases that more and more see the requirement (and
value) to add an SQL interface to their systems. One of
the success factors of SQL and the standard is that it
evolves as new requirements and technologies emerge.
Be it the procedural [23], active database, or object-
relational extensions that were added in the 1990s [22],
the XML capabilitiesin the 2000s[19], temporal tables
in the early 2010s [17], or the many other features
described in previous papers [18], [20], [21], and not
the least the features described in this paper, the SQL
standard has always kept up with the latest trends in
the database world.

SQL:2016 consists of nine parts [1]-[9], al of which
were published together. However, with the exception
of Part 2, “Foundation” [2], the other parts did not
significantly change from their previous versions,
containing mostly bug fixes and changes required to
align with the new functionality in Part 2. As with the
previous revisions, SQL:2016 is available for purchase
from the ANSI? and 1SO? web stores.

1 “Query” in this context is not restricted to retrieval-only
operations but a so includes, among others, DML and DDL
Statements.

2 http://webstore.ansi.org/
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A high-level theme in SQL:2016 is expanding the SQL
language to support new data storage and retrieval
paradigms that are emerging from the NoSQL and Big
Dataworlds. The major new featuresin SQL:2016 are;

e Support for Java Script Object Notation (JSON)
data

e Polymorphic Table Functions

*  Row Pattern Recognition

SQL:2016 aso includes a number of smaller features,
such as additional built-in functions.

In addition to the formal SQL standard, the SQL
committee has developed a series of Technical Reports
(TRs). TRs, while non-normative, contain information
that is useful for understanding how the SQL standard
works. The SQL Technical Report series contains
seven TRs [10] — [16] that are available at no charge
from the 1SO/IEC JTCL1 “Freely available standards’
web page.

The remainder of this paper is structured as follows:
section 2 discusses the support for JSON data, section
3 discusses polymorphic table functions, section 4
discusses the row pattern recognition functionality, and
section 5 showcases a select few of the smaller
enhancements.

2. SUPPORT FOR JSON DATA

JSON [24] isasimple, semi-structured data format that
is popular in developer communities because it is well
suited as a data seridization format for data
interchange. JSON data is annotated and the format
alows nesting making it easy-to-read by both humans
and machines. Many database applications that would
benefit from JSON also need to access “traditional”
tabular data. Thus, there is great value in storing,
querying, and manipulating of JSON data inside an
RDBMS as well as providing bi-directional conversion
between relational data and JSON data.

To minimize the overhead of a new SQL data type,
SQL:2016 uses the existing SQL string types (i.e.,
either character strings like VARCHAR and CLOB, or

3 https://www.iso.org/store.html
4 http://standards.iso.org/ittf/PubliclyAvailableStandards/
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binary strings like BLOB) to carry JSON vaues. Since
there is no standard JSON query language yet, the SQL
standard defines a path language for navigation within
JSON data and a set of SQL built-in functions and
predicates for querying within a JSON document.

We will illustrate the SQL/JSON® path language and
SQL/JSON operators in the following sections. Due to
space redtrictions, we cannot cover al SQL/JSON
features. For a detailed description of the SQL/JSON
functionality the interested reader is referred to [15].

2.1 Querying JSON in SQL

2.1.1 Sampledata
Our examples will use the table T shown below:

ID JCOL

111 | { "Name" : "John Smith",
"address' : {
"streetAddress': "21 2nd Street",
"city": "New York",
"state" : "NY",
"postalCode" : 10021 },
"phoneNumber” : [
{ "type" : "home",
"number" : "212 555-1234" },
{ "type" : "fax",
"number" : "646 555-4567" } ] }

222 | { "Name" : "Peter Walker",
"address’ : {
"streetAddress’: "111 Main Street”,
"city": "San Jose",
"state” : "CA",
"postalCode" : 95111 },
"phoneNumber" : [
{ "type" : "home",
"number" : "408 555-9876" },
{ "type" : "office",
"number" : "650 555-2468" } ] }

333 | { "Name": "JamesLe€" }

In T, the column JCOL contains JSON data stored in a
character string.

Curly braces { } enclose JSON objects. A JSON
object has zero or more comma-separated key/value
pairs, caled members. The key is a character string
before a colon; the value is a JSSON value placed after a
colon. For example, in each row, the outermost JSON
object has a key called "Name" with varying values in
each row.

5 The support for JSON is specified in Foundation [2] and
not in a separate part (as is done, e.g., for SQL/XML [9]).
Still, the moniker SQL/JSON is associated with the JSON-
specific functionality in SQL.

52

Square brackets [ ] enclose JSON arrays. A JSON
array is an ordered, comma-separated list of JSON
values. In the first and second rows, the key called
"phoneNumber” has a value which is a JSON array.
This illustrates how JSON objects and arrays can be
nested arbitrarily.

Scalar JSON values are character strings, numbers, and
theliteralstrue,fal seandnul | .

The sample data is fairly homogeneous, but this is not
a requirement of JSON. For example, the elements of
an array do not need to be of the same type, and
objects in different rows do not have to have the same

keys.

2.1.2 ISJSON predicate

Thel S JSON predicate is used to verify that an SQL
value contains a syntactically correct JSON value. For
example, this predicate can be used in a column check
congtraint, like this:

CREATE TABLE T (
Id | NTEGER PRI MARY KEY,
Jcol CHARACTER VARYI NG ( 5000 )
CHECK ( Jcol 1S JSON) )

The preceding might have been used to create the table
T, insuring that the value of Jcol isvalid JSON in all
rowsof T.

In the absence of such a constraint, one could use | S
JSON as afilter to locate valid JSON data, like this:

SELECT * FROM T WHERE Jcol |S JSON

2.1.3 SQL/JSON path expressions

The remaining SQL/JSON operators to query JSON
use the SQL/JSON path language. It is used to
navigate within a JSON value to its components. It is
similar to XPath for XML and also somewhat similar
to object/array navigation in the JavaScript language.
A path expression is composed of a sequence of path
steps; each step can be associated with a set of
predicates.

2.1.4 JSON_EXISTSpredicate
JSON_EXI STS is used to determine if an SQL/JSON
path expression has any matches in a JSON document.
For example, this query finds the IDs of the rows with
akey called “address’:
SELECT 1d
FROM T
VWHERE JSON_EXI STS ( Jcol,

"strict $.address' )

The example works as follows. The first argument to
JSON_EXI STS, Jcol , specifies the context item
(JSON value) on which JSON_EXI STS operates. The
keyword strict sdects the strict mode; the
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dternative is | ax. As its name implies, strict mode
expects that the JISON document conforms strictly to
the path expression, whereas lax mode relaxes some of
these expectations, as will be seen in later examples.
$. addr ess is the path expression that is applied to
the context item. In the path expression, $ is avariable
referencing the context item, the period is an operator
used to navigate to a key/value pair within a JSON
object, and addr ess is the name of the desired key.
The JSON_EXI STS predicate will be true if this path
expression successfully finds one or more such
key/value pairs. With the sample data, the query will
find the IDs 111 and 222 but not 333.

2.1.5 JSON_VALUE function

The JSON_VALUE function is used to extract a scalar
value from a given JSON value. For example, to find
the value of the "Name" key/value pair in each row,
one could use this query:

SELECT JSON_VALUE ( Jcol,
"lax $. Nane' ) AS Nane
FROM T

This example uses lax mode, which is more forgiving
than strict mode. For example, it is common to use a
singleton JSON value interchangeably with an array of
length one. To accommodate that convention, in lax
mode, if a path step requires an array but does not find
one, the data is implicitly wrapped in a JSON array.
Conversely, if a path step expects a non-array but
encounters an array, the array is unwrapped into a
sequence of items, and the path step operates on each
item in the sequence.

The following query might be used to find the first
phone number in each row.

SELECT 1d, JSON_VALUE ( Jcol,
"l ax $. phoneNurber[ 0] . nunber' )
AS Fi rst phone
FROM T
JSON arrays are O-relative, so the first element is
addressed [ 0] . The last row of sample data has no
such data; in that case, lax mode produces an empty
sequence (instead of an error) and JSON_VALUE will
return anull value. The result of the query is:
ID | FIRSTPHONE
111 | 212555-1234
222 | 408 555-9876

333

In the last row above, the FI RSTPHONE cell is blank,
indicating an SQL null value, a convention we will use
throughout this paper.
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Or suppose the task is to find al fax phone numbers.
The query to solve thisis

SELECT 1d, JSON_VALUE ( Jcol,
"l ax $. phoneNunmber
? ( @type == "fax" ).nunber' )
AS Fax
FROM T

This query illustrates a filter, introduced by a question
mark and enclosed within parentheses. The filter is
processed as follows: since the query is in lax mode,
the array $. phoneNunber is unwrapped into a
sequence of items. Each item is tested against the
predicate within the parentheses. In this predicate, the
at-sign @is a variable bound to the item being tested.
Thepredicate @t ype == "fax" istrueif the value
of the"t ype" member equals " f ax”. Theresult of
the filter is the sequence of just those items that
satisfied the predicate. Finally, the member accessor
. hunber is applied, to obtain the value of the
member whose key is " nunber " . The result of the

query is:
ID FAX
111 | 646 555-4567
222
333

All of these examples returned character string data,
the default return type of JSON_VALUE. Optional
syntax can be used to specify other return types, as
well as various options to handle empty or error
results.

2.1.6 JSON_QUERY function

JSON_VALUE can only extract scalars from a JSON
value. The JSON_QUERY function, on the other hand,
is used to extract a fragment (i.e., an SQL/JSON
object, array, or scalar, possibly wrapped in an
SQL/JSON array, if the user specifies this) from a
given JSON value. For example, to obtain the
complete value of the "address' key, this query might
be used:

SELECT 1d, JSON_QUERY ( Jcol,
"lax $.address' ) AS Address
FROM T

With the following results’:

6 The result shows some insignificant pretty-printing
whitespace. The SQL standard does not prescribe this. A
conforming implementation is alowed to either add or
omit insignificant whitespace. Here it is only shown for
readability.
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ID ADDRESS

111 | { "streetAddress': "21 2nd Street",
"city": "New York",

"state" : "NY",

"postal Code" : 10021 }

222 | { "streetAddress': "111 Main Street",
“city": "San Jose",

"state" : "CA",

"postalCode" : 95111 }

333

In the last row, ADDRESS is null because the data does
not match the path expression. There are options to
obtain other behaviors for empty and error conditions.

2.1.7 JSON_TABLE function

JSON_TABLE is atable function that isinvoked in the
FROM clause of a query to generate a relationa table
from a JSON value. As a simple example, to extract
the scalar values of name and ZIP code from each
JSON document, the following query can be used:

SELECT T.1d, Jt.Name, Jt.Zip
FROM T,
JSON TABLE ( T.Jcol, 'lax $'
COLUMWNS (
Name VARCHAR ( 30 )
PATH 'l ax $. Nane'
Zip VARCHAR ( 5 ) PATH
"l ax $.address. postal Code’
)

) AS Jt

In this example, the first path expression ' | ax $' is
the “row pattern” used to locate rows. The path
expression here is the simplest possible, just $,
meaning that there is no navigation within a JSON
document; however, if the row data were deeply nested
within a JSSON document, then the row pattern would
be more complicated.

The example defines two output columns, NAME and
ZIP. Each output column has its own PATH clause,
specifying the “column pattern” that is used to
navigate within arow to locate the data for a column.

The example has the following results on the sample
data:

ID NAME ZIP

111 | John Smith 10021
222 | Peter Walker 95111
333 | JamesLee

JSON_TABLE also alows unnesting of (even deeply)
nested JSON objects/arrays in one invocation by using
a nested COLUWMNS clause, as the next example
illustrates. This query will return the name and phone
number and type for each person:
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SELECT T.1d, Jt.Name, Jt.Type,
Jt . Nurrber
FROM T,
JSON_TABLE ( T.Jcol, 'lax $'
COLUMNS
( Name VARCHAR ( 30 )
PATH 'l ax $. Nane',
NESTED PATH
"lax $. phoneNunber[*]"
COLUMNS
( Type VARCHAR ( 10 )
PATH 'l ax $.type',
Number VARCHAR ( 12 )
PATH 'l ax $. nunber' )

)
) AS Jt

The preceding example has an outer row pattern ' | ax
$' and within that, a nested row pattern ' | ax
$. phoneNunber [ *] ' . The nested row pattern uses
the wildcard array element accessor [ *] to iterate over
al elements of the phoneNunber array. Thusit is
possible to flatten hierarchical data. The first column
Nane is found at the outer level of the hierarchy,
whereas the nested columns Type and Nunber are
found in the inner level of the hierarchy. The result on
the sample datais:

ID NAME TYPE | NUMBER
111 | John Smith home | 212555-1234
111 | John Smith fax 646 555-4567

222 | Peter Walker | home
222 | Peter Walker
333 James Lee

The last row has no phone number. If one wanted to
include only those JSON documents that have a
phoneNumber member, the following WHERE clause
could be appended to the previous query:

WHERE JSON_EXI STS ( T.Jcol ,
"lax $. phoneNunber' )

408 555-9876
650 555-2468

office

In the sample data, this WHERE clause would filter out
the row whose ID is 333.

2.1.8 Sructural-inspection methods

Because the structure of JSON data may not be known
a priori and/or vary from one JSON value to the next,
the SQL/JSON path language provides methods that
alow for the inspection of the structural aspects of a
JSON value. These methods are:

— keyval ue, which returns an SQL/JSON object
containing three members for the key, the bound value,
and an ID uniquely identifying the containing input
object for each member of the input SQL/JSON object.
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— type, which returns “object”, “array”, “string”,
“number”, etc. corresponding to the actual type of the
SQL/JSON item.

— si ze, which returns the number of elements, if
the input SQL/JSON item is an array; otherwise it
returns 1.

For example, to retain only arrays of size 2 or more,
one might use:

strict $.* ?2 ( @type() == "array"
&& @size() > 1)

2.2 SQL/JSON constructor functions
SQL/JSON constructor functions use values of SQL
types and produce JSON (either JSON objects or
JSON arrays) represented in SQL character or binary
string types.

The functions are: JSON_OBJECT, JSON_ARRAY,
JSON_OBJECTAGG, and JSON_ARRAYAGG. The
first two are scalar functions, whereas the latter two are
aggregate  functions. As  with other SQL
functiong/expressions, these can be arbitrarily nested.
This supports the construction of JSON data of
arbitrary complexity.

For example, given the well-known Enpl oyees and
Depart ments tables, one can construct a JSON
object for each department that contains all employees
and their salary, sorted by increasing salary using this
query:
SELECT JSON_OBJECT
( KEY 'departnent' VALUE D. Nane,
KEY ' enpl oyees'
VALUE JSON_ARRAYAGG
( JSON_OBJECT
( KEY 'enpl oyee'
VALUE E. Nane,
KEY ' sal ary'
VALUE E. Sal ary )
ORDER BY E. Sal ary ASC )
) AS Depart nment

FROM Departments D, Enpl oyees E
WHERE D. Dept _id = E. Dept_id
GROUP BY D. Nane
with results that might look like this:

DEPARTMENT

{ "department" : "Sales",
"employees' : [ { "employee" : "James’,
"salary" : 7000},
{ "employee" : "Rachel",
"salary" : 9000},
{ "employee" : "Logan",
"salary” : 10000} 1}
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3. POLYMORPHIC TABLE

FUNCTIONS

The SQL standard prior to the 2016 release had only
support for monomorphic table functions, i.e., the
definition of both the output table and the set of input
parameters were fixed at function creation time. With
the specification of polymorphic table functions
(PTFs), SQL:2016 includes a very powerful
enhancement to table functions. With this feature, the
RDBMS is able to evaluate custom functionality closer
to the data. For example, the MapReduce paradigm
could be implemented using PTFs.

A polymorphic table function is a function that may
have generic table input parameter(s) whose row
type(s) may be unknown at creation time. The PTF
may return a table whose row type aso may be
unknown when the function is created. The row type of
the result may depend on the function arguments or on
the row type(s) of the input table(s) in the invocation
of the PTF. When a PTF is invoked in a query, the
RDBMS and the PTF interact through a family of one
to four SQL-invoked procedures. These procedures are
called the PTF component procedures’.

In the next sections, we describe these four component
procedures and give two examples of user-defined
PTFs. Due to space restrictions, we cannot cover all
PTF features. For a detailed description of all aspects
of PTFs (including the different perspectives of query
author, PTF author, and RDBMS developer) the
interested reader isreferred to [16].

3.1 PTF Component Procedures
There are one to four PTF component procedures:

1. “describe’: The PTF describe component procedure
is caled once during compilation of the query that
invokes the PTF. The primary task of the PTF describe
component procedure is to determine the row type of
the output table. This component procedure receives a
description of the input tables and their ordering (if
any) as well as any scalar input arguments that are
compile-time constants. This component procedure is
optiona if al result columns are defined steticaly in
the CREATE FUNCTI ON statement or if the PTF has
only result columns that are passed through unchanged
from the input table(s); otherwise it is mandatory.

2. "start”: The PTF start component procedure is
caled at the start of the execution of the PTF to
alocate any resources that the RDBMS does not
provide. This procedureis optional.

7 SQL:2016 uses the four PTF component procedures as a
specification vehicle. A conforming implementation may
substitute this interface with an implementation-defined
API.
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3. “fulfill”: The PTF fulfill component procedure is
caled during the execution to deliver the output table
by “piping” rows to the RDBMS. This is the
component procedure that reads the contents of the
input table(s) and generates the output table. This
procedure is mandatory.

4. “finish”: The PTF finish component procedure is
called at the end of the execution to deallocate any
resources alocated by the PTF start component
procedure. This procedure is optional.

3.2 Execution model

The SQL standard defines the run-time execution of a
PTF using an abstraction called a virtual processor,
defined as a processing unit capable of executing a
sequential  algorithm. Using techniques such as
multiprocessing, a single physical processor might host
several virtual processors. Virtual processors may
execute independently and concurrently, either on a
single physical processor or distributed across multiple
physical processors. There is no communication
between virtual processors. The RDBMS isresponsible
for collecting the output on each virtual processor; the
union of the output from all virtual processors is the
result of the PTF. The virtual processor abstraction is
the standard’s way of permitting but not requiring
paralelization of PTF execution.

3.3 Examples

This section illustrates the value of PTFs using a
couple of examples. The first one is a ssimple example
introducing the polymorphic nature of a PTF. The
second one illustrates a variety of options including
multiple input tables with different input semantics.

3.3.1 CSV reader table function
Consider a file with a comma-separated list of values
(CsV file). The first line of the file contains a list of
column names, and subsequent lines of the file contain
the actual data. A PTF called CSVr eader was created
to read a CSV file and provide its data as a table in the
FROMclause of a query. The effective signature of the
PTFis.
FUNCTI ON CSVr eader (
Fil e VARCHAR ( 1000 ),
FI oat s DESCRI PTOR DEFAULT NULL,
Dat es DESCRI PTOR DEFAULT NULL )
RETURNS TABLE
NOT DETERM NI STI C
CONTAI NS sSQL

This signature has two parameter types that are
distinctive to PTFs. (a) DESCRI PTOR is a type that is
capable of describing a list of column names, and
optionally for each column name, a data type. (b)
TABLE denotes the generic table type, a type whose
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value is a table. The row type of the table is not
specified, and may vary depending on the invocation
of the PTF. Here, the TABLE specification specifies a
generic table output of CSVr eader . The row type is
unknown at creation time and this is characteristic of a
PTF.

A user reference guide accompanying a PTF will need
to describe the semantics of the input parameters and
what the output will be. For example, here Fi | e isthe
name of a file that contains the comma-separated
values which are to be converted to a table. The first
line of the file contains the names of the resulting
columns. Succeeding lines contain the data. Each line
after the first will result in one row of output, with
column names as determined by the first line of the
input. In the example above, FI oat s and Dat es are
PTF descriptor areas, which provide a list of the
column names that are to be interpreted numerically
and as dates, respectively; the data types of al other
columns will be VARCHAR. With that information a
query such as the following can be written:

SELECT *
FROM TABLE
( CSvreader (

File => "abc.csv',
Fl oats => DESCRI PTOR
( "principal", "interest" )
Dat es => DESCRI PTOR
( "due_date" ) ) ) AS S

In the FROMclause, the TABL E operator introduces the
invocation of a table function. A table function might
be either a conventional (monomorphic) table function
or a PTF. In this case, because CSVreader is
declared with return type TABLE, this is a PTF
invocation. This invocation says that CSVr eader
should open the file called abc.csv. The list of output
column names is found in the first line of the file.
Among these column names, there must be columns
named pri nci pal andi nt er est, which should be
interpreted as numeric values, and a column named
due_dat e which should be interpreted as a date.
During the compilation of this query, the RDBMS will
call the PTF describe component procedure and
provide this information to the component procedure.
In return, the component procedure will provide the
RDBM S with the row type of the result table.

The component procedures are SQL procedures that
are specified as a part of the definition of a PTF. For
example:

CREATE FUNCTI ON CSVr eader (
Fi |l e VARCHAR(1000),
Fl oat s DESCRI PTOR DEFAULT NULL,
Dat es DESCRI PTOR DEFAULT NULL )
RETURNS TABLE
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NOT DETERM NI STI C CONTAI NS SQL
PRI VATE DATA ( Fil eHandl e | NTECGER )
DESCRI BE W TH PROCEDURE
CSVr eader _descri be
START W TH PROCEDURE
CSVr eader _start
FULFI LL W TH PROCEDURE
CSVreader _fulfill
FI' Nl SH W TH PROCEDURE
CSVr eader _finish

The procedures CSVr eader _descri be,
CSVr eader _start, CSVreader _fulfill, and
CSVr eader _finish are SQL stored procedures
and can take advantage of the existing procedura
language, dynamic SQL, and other existing SQL
capabilities.

3.3.2 User Defined Join table function

The following example demonstrates a variety of
options that can be specified in a PTF. It is a function
that has input tables and also introduces options related
to input table semantics (row or set semantics, keep or
prune when empty) and the use of pass-through
columnsto flow data unaltered to the result table.

The PTF UDJoi n performs a custom user-defined
join. It takes two input tables, T1 and T2, and matches
rows according to some user defined join criterion that
may not be built into the database system. The PTF has
the following signature:

CREATE FUNCTI ON UDJoi n

( T1 TABLE PASS THROUGH
W TH SET SEMANTI CS
PRUNE WHEN EMPTY,

T2 TABLE PASS THROUGH

W TH SET SEMANTI CS
KEEP WHEN EMPTY

) RETURNS ONLY PASS THROUGH

The RETURNS ONLY PASS THROUGH syntax
declares that the PTF does not generate any columns of
its own; instead the only output columns are passed
through from input columns.

W TH SET SEMANTICS is specified when the
outcome of the function depends on how the data is
partitioned. A table should be given set semanticsif all
rows of a partition should be processed on the same
virtual processor. In this example, the entiretable T2 is
sent to the virtual processors.

W TH ROW SEMANTI CS specified on an input table
means that the result of the PTF is decided on a row-
by-row basis for thisinput table. Thisis specified if the
PTF does not care how rows are assigned to virtual
processors. Only tables with set semantics may be
partitioned and/or ordered.
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The KEEP WHEN EMPTY option implies that the PTF
could generate result rows even if the input table (in
this example, T2), is empty. The result rows are based
on rows from the other input table T1. T1 is specified
with PRUNE WHEN EMPTY, meaning that there is no
output when the input table is empty. This example is
analogous to a left outer join.

TheUDJoi n PTF can beinvoked in aquery like this:

SELECT E.*, D.*
FROM TABLE
( UDJoin (
Tl => TABLE (Enp) AS E
PARTI TI ON BY Dept no,
T2 => TABLE (Dept) AS D
PARTI TI ON BY Dept no
ORDER BY Tstanmp ) )

In this example, both input tables have set semantics,
which permits the use of PARTI TION BY and
ORDER BY clauses. PARTI TI ON BY says that the
input table is partitioned on a list of columns; each
partition must be processed on a separate virtual
processor. In this example, since there are two
partitioned tables, the RDBMS must in fact create the
cross product of the partitions of the two tables, with a
virtual processor for each combination of partitions.
(In the absence of PARTI TI ON BY, a table with set
semantics congtitutes a single partition.) The second
input table is also ordered; the RDBMS must sort the
rows of each partition prior to passing them to the
fulfill component procedure executing on any virtual
processor.

Consider the following variation of the same query:

SELECT E.*, D.*
FROM TABLE
( UDJoin
( T1 => TABLE (Enp) AS E
PARTI TI ON BY Dept no,
T2 => TABLE (Dept) AS D
PARTI TI ON BY Dept no
ORDER BY Tstanmp
COPARTI TI ON ( Enp, Dept)))

Here, the COPARTI TI ON clause alows each virtual
processor to avoid the cross product as in the earlier
example and collocates the corresponding values in the
Dept no columns from the two tables in the same
virtual processor.

4. ROW PATTERN RECOGNITION

Row Pattern Recognition (RPR) can be used to search
an ordered partition of rows for matches to a regular
expression. RPR can be supported in either the FROM
clause or the W NDOWCclause. This article will discuss
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RPR in the FROM clause; RPR in the W NDOWclause
uses much the same syntax and semantics.

RPR in the FROM clause uses the keyword
MATCH_RECOGNI ZE as a postfix operator on atable,
caled the row pattern input table.
MATCH_RECOGNI ZE operates on the row pattern
input table and produces the row pattern output table
describing the matches to the pattern that are
discovered in the row pattern input table. There are
two principal variants of MATCH _RECOGNI ZE:

— ONE ROW PER MATCH, which returns a single
summary row for each match of the pattern (the
default).

— ALL ROWS PER MATCH, which returns one row
for each row of each match.

The following example illustrates
MATCH RECOGNI ZE with the ONE ROW PER
MATCH option. Let Ti cker (Synbol, Tr adeday,
Pri ce) be a table with three columns representing
historical stock prices. Synmbol is a character column,
Tr adeday is adate column and Pri ce isanumeric
column. It is desired to partition the data by Symbol ,
sort it into increasing Tr adeday order, and then
detect maximal “V” patterns in Price: a strictly
falling price, followed by a strictly increasing price.
For each match to aV pattern, it is desired to report the
starting price, the price at the bottom of the V, the
ending price, and the average price across the entire
pattern. The following query may be used to perform
this pattern matching problem:

SELECT
M Synbol, /* ticker synbol */
M Mat chno, /* match nunber */
M Startp, [/* starting price */
M Bottonp, /* bottom price */

M Endp, /* ending price */
M Avgp /* average price */
FROM Ti cker

MATCH_RECOGNI ZE (
PARTI TI ON BY Synbol
ORDER BY Tr adeday

MEASURES
MATCH _NUMBER() AS Mat chno,
A Price AS Startp,

LAST (B.Price) AS Bottonp,
LAST (C. Price) AS Endp,
AVG (U. Price) AS Avgp
ONE ROW PER MATCH
AFTER MATCH SKI P PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, O
DEFI NE
/* A defaults to True,
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mat ches any row */
B AS B.Price < PREV (B.Price),
C AS C.Price > PREV (C. Price)
) AS M

In this example:
— Ti cker istherow pattern input table.

— MATCH_RECOGNI ZE introduces the syntax for
row pattern recognition.

— PARTI TI ON BY specifies how to partition the row
pattern input table. If omitted, the entire row pattern
input table constitutes a single partition.

— ORDER BY specifies how to order the rows within
partitions.

— MEASURES specifies measure columns, whose
values are calculated by evaluating expressions related
to the match. The first measure column uses the
nullary function MATCH_NUMBER( ) , whose value is
the sequential number of a match within a partition.
The third and fourth measure columns use the LAST
operation, which obtains the value of an expression in
the last row that is mapped by a row pattern match to a
row pattern variable. LAST is one of many row pattern
navigation operations, which may be used to navigate
to specific rows of interest within a match.

— ONE ROW PER MATCH specifies that the resullt,
the row pattern output table, will have a single row for
each match that is found in the row pattern input table;
each output row has one column for each partitioning
column and one column for each measure column.

— AFTER MATCH SKI P specifies where to resume
looking for the next row pattern match after
successfully finding a match. In this example, PAST
LAST ROW gpecifies that pattern matching will
resume after the last row of a successful match.

— PATTERN specifies the row pattern that is sought in
the row pattern input table. A row pattern is a regular
expression using primary row pattern variables. In this
example, the row pattern has three primary row pattern
variables (A, B, and C). The pattern is specified as ( A
B+ C+) which will match a single A followed by one
or more Bs followed by one or more Cs. An extensive
set of regular expression specifications are supported.

— SUBSET defines the union row pattern variable U
asthe union of A, B, and C.

— DEFI NE specifies the Boolean condition that
defines a primary row pattern variable; a row must
satisfy the Boolean condition in order to be mapped to
aparticular primary row pattern variable. This example
uses PREV, a row pattern navigation operation that
evaluates an expression in the previous row. In this
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example, the row pattern variable A is undefined, in
which case any row can be mapped to A.

— AS Madefines the range variable Mto associate with
the row pattern output table.

Here is some sample data for Ti cker, having one
match to the pattern in the example (the mapping of
rows to primary row pattern variables is shown in the
last column):

Symbol | Tradeday Price Mapped to
XYz 2009-06-08 50

XYZ 2009-06-09 60 A

XYz 2009-06-10 49 B

XYZ 2009-06-11 40 B

XYZ 2009-06-12 35 B

XYZ 2009-06-13 45 c

XYZ 2009-06-14 45

Here is the row of the row pattern output table
generated by the match shown above:

Symbol | Matchno | Startp
XYz 1 60 35 45 45.8

Bottomp | Endp | Avgp

Due to space restrictions, we cannot cover all RPR
features. For a detailed description of the RPR
functionality the interested reader is referred to [14].

5. ADDITIONAL FUNCTIONALITY

5.1 Default values and named arguments

for SQL-invoked functions

SQL:2011 allowed for a parameter of an SQL-invoked
procedure to have a default value and thus be optional
when invoking the procedure. A companion
enhancement is invoking a procedure using named
arguments [18]. SQL:2016 extends this functionality to
cover SQL-invoked functions as well. For example, a
function that computes the total compensation as the
sum of the base salary and the bonus (where the bonus
by default is 1000) can be defined like this:

CREATE FUNCTI ON Total _conp (
Base_sal DECI MAL(7, 2),
Bonus DECI MAL(7,2) DEFAULT 1000. 00
) RETURNS DECI MAL( 8, 2)
LANGUAGE SQL
RETURN Base_sal + Bonus;

Thisfunction can now be invoked in different ways:
— Passing all arguments by position:

Tot al _conmp(9000. 00, 1000. 00)
— Passing all non-defaulted arguments by position:;
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Tot al _conp(9000. 00)

— Passing all arguments by name (in this case the
order of the arguments does not need to match the
order of the parametersin the function signature):

Tot al _conp(Bonus=>1000. 00,
Base_sal =>9000. 00)

— Passing all non-defaulted arguments by name:
Tot al _conp(Base_sal =>9000. 00)

All of these invocations return the same result
(10000.00). It should be clear that the greatest benefit
of named and defaulted arguments can be realized
when the parameter list is long and many parameters
have useful defaults. Specifying some argument val ues
by position and other arguments by name within the
same invocation is not supported.

5.2 Additional built-in functions

SQL:2016 adds support for additional scalar
mathematical built-in functions including
trigonometric  and  logarithm  functions. The
trigonometric functions are sine, cosine, tangent, and
their hyperbolic and inverse counterparts. Besides the
existing natural logarithm function, SQL:2016 now
supports a genera logarithm function (where the user
can specify an arbitrary value for the base) and a
common logarithm function (with the base fixed at 10).

LI STAGG is a new aggregate function that alows
concatenating character strings over a group of rows.

6. FUTURES

The SQL standards committee is currently working on
additional expansions in three areas, support for multi-
dimensional arrays, support for streaming data, and
support for property graphs.

The work on multi-dimensional arrays (aka
SQL/MDA) is well under way and will be completed
by the end of 2018. This new incremental part adds a
multi-dimensional array type so that instances of a
multi-dimensional array can be stored in a column of a
table and operations can be executed close to the data
inthe RDBMS.

The SQL committee has begun investigating
requirements for streaming data and property graphsin
the context of SQL.
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ABSTRACT

The Complex FEvent Recognition (CER) group is a re-
search team, affiliated with the National Centre of Sci-
entific Research “Demokritos” in Greece. The CER
group works towards advanced and efficient methods
for the recognition of complex events in a multitude of
large, heterogeneous and interdependent data streams.
Its research covers multiple aspects of complex event
recognition, from efficient detection of patterns on event
streams to handling uncertainty and noise in streams,
and machine learning techniques for inferring interest-
ing patterns. Lately, it has expanded to methods for fore-
casting the occurrence of events. It was founded in 2009
and currently hosts eight senior and junior researchers,
working regularly with under-graduate students.

1. INTRODUCTION

The proliferation of devices that work in real-
time, constantly producing data streams, has led to
a paradigm shift with respect to what is expected
from a system working with massive amounts of
data. The dominant model for processing large-
scale data was one that assumed a relatively fixed
database/knowledge base, i.e., it assumed that the
operations of updating existing records/facts and
inserting new ones were infrequent. The user of such
a system would then pose queries to the database,
without very strict requirements in terms of latency.

While this model is far from being rendered ob-
solete (on the contrary), a system aiming to ex-
tract actionable knowledge from continuously evolv-
ing streams of data has to address a new set of chal-
lenges and satisfy a new set of requirements. The
basic idea behind such a system is that it is not
always possible, or even desirable, to store every
bit of the incoming data, so that it can be later
processed. Rather, the goal is to make sense out of
these streams of data, without having to store them.
This is done by defining a set of queries/patterns,
continuously applied to the data streams. Each
such pattern includes a set of temporal constraints
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and, possibly, a set of spatial constraints, expressing
a composite or complex event of special significance
for a given application. The system must then be
efficient enough so that instances of pattern satisfac-
tion can be reported to a user with minimal latency.
Such systems are called Complex Event Recognition
(CER) systems [6, 7, 2].

CER systems are widely adopted in contempo-
rary applications. Such applications are the recog-
nition of attacks in computer network nodes, hu-
man activities on video content, emerging stories
and trends on the Social Web, traffic and transport
incidents in smart cities, fraud in electronic market-
places, cardiac arrhythmias and epidemic spread.
Moreover, Big Data frameworks, such as Apache
Storm, Spark Streaming and Flink, have been ex-
tending their stream processing functionality by in-
cluding implementations for CER.

There are multiple issues that arise for a CER sys-
tem. As already mentioned, one issue is the require-
ment for minimal latency. Therefore, a CER sys-
tem has to employ highly efficient reasoning mecha-
nisms, scalable to high-velocity streams. Moreover,
pre-processing steps, like data cleaning, have to be
equally efficient, otherwise they constitute a luxury
that a CER system cannot afford. In this case, the
system must be able to handle noise. This may be a
requirement, even if perfectly clean input data is as-
sumed, since domain knowledge is often insufficient
or incomplete. Hence, the patterns defined by the
users may themselves carry a certain degree of un-
certainty. Moreover, it is quite often the case that
such patterns cannot be provided at all, even by
domain experts. This poses a further challenge of
how to apply machine learning techniques in order
to extract patterns from streams before a CER sys-
tem can actually run with them. Standard machine
learning techniques are not always directly applica-
ble, due to the size and variability of the training
set. As a result, machine learning techniques must
work in an online fashion. Finally, one often needs
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to move beyond detecting instances of pattern sat-
isfaction into forecasting when a pattern is likely to
be satisfied in the future.

Our CER group! at the National Centre for Sci-
entific Research (NCSR) “Demokritos”, in Athens,
Greece, has been conducting research on complex
event recognition for the past decade, and has devel-
oped a number of novel algorithms and open-source
software tools. NCSR “Demokritos” is the largest
multi-disciplinary research center in Greece, with
expertise and infrastructure in the fields of Infor-
matics and Telecommunications, Nanotechnology,
Energy & Environment, Biosciences, and Particle
and Nuclear Science. The Institute of Informat-
ics and Telecommunications, in particular, focuses
on research and development in the areas of Intel-
ligent Systems, Telecommunications, Networks and
Web Technologies. The CER group is one of the
six groups the Software & Knowledge Engineering
Lab of the Institute of Informatics & Telecommuni-
cations. In what follows, we sketch the approaches
that we have proposed as part of the CER group
and present some indicative results.

2. COMPLEX EVENT RECOGNITION

Numerous CER systems have been proposed in
the literature [6, 7]. Recognition systems with a
logic-based representation of complex event (CE)
patterns, in particular, have been attracting atten-
tion since they exhibit a formal, declarative seman-
tics [2]. We have been developing an efficient di-
alect of the Event Calculus, called ‘Event Calculus
for Run-Time reasoning’ (RTEC) [4]. The Event
Calculus is a logic programming formalism for rep-
resenting and reasoning about events and their ef-
fects [14]. CE patterns in RTEC identify the con-
ditions in which a CE is initiated and terminated.
Then, according to the law of inertia, a CE holds at
a time-point T if it has been initiated at some time-
point earlier than 7T, and has not been terminated
in the meantime.

RTEC has been optimised for CER, in order to
be scalable to high-velocity data streams. A form of
caching stores the results of subcomputations in the
computer memory to avoid unnecessary recomputa-
tions. A set of interval manipulation constructs sim-
plify CE patterns and improve reasoning efficiency.
A simple indexing mechanism makes RTEC robust
to events that are irrelevant to the patterns we want
to match and so RTEC can operate without data fil-
tering modules. Finally, a ‘windowing’ mechanism
supports real-time CER. One main motivation for
RTEC is that it should remain efficient and scalable

"mttp://cer.iit.demokritos.gr/
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in applications where events arrive with a (variable)
delay from, or are revised by, the underlying sen-
sors: RTEC can update the intervals of the already
recognised CEs, and recognise new CEs, when data
arrive with a delay or following revision.

RTEC has been analysed theoretically, through a
complexity analysis, and assessed experimentally in
several application domains, including city trans-
port and traffic management [5], activity recogni-
tion on video feeds [4], and maritime monitoring
[18]. In all of these applications, RTEC has proven
capable of performing real-time CER, scaling to large
data streams and highly complex event patterns.

3. UNCERTAINTY HANDLING

CER applications exhibit various types of uncer-
tainty, ranging from incomplete and erroneous data
streams to imperfect CE patterns [2]. We have been
developing techniques for handling uncertainty in
CER by extending the Event Calculus with proba-
bilistic reasoning. Prob-EC [20] is a logic program-
ming implementation of the Event Calculus using
the ProbLog engine [13], that incorporates proba-
bilistic semantics into logic programming. Prob-EC
is the first Event Calculus dialect able to deal with
uncertainty in the input data streams. For exam-
ple, Prob-EC is more resilient to spurious data than
the standard (crisp) Event Calculus.

MLN-EC [21] is an Event Calculus implementa-
tion based on Markov Logic Networks (MLN)s [19],
a framework that combines first-order logic with
graphical models, in order to enable probabilistic
inference and learning. CE patterns may be associ-
ated with weight values, indicating our confidence
in them. Inference can then be performed regard-
ing the time intervals during which CEs of inter-
est hold. Like Prob-EC, MLN-EC increases the
probability of a CE every time its initiating con-
ditions are satisfied, and decreases this probability
whenever its terminating conditions are satisfied,
as shown in Figure 1. Moreover, in MLN-EC the
domain-independent Event Calculus rules, express-
ing the law of inertia, may be associated with weight
values, introducing probabilistic inertia. This way,
the model is highly customisable, by tuning appro-
priately the weight values with the use of machine
learning techniques, and thus achieves high predic-
tive accuracy in a wide range applications.

The use of background knowledge about the task
and the domain, in terms of logic (the Event Cal-
culus), can make MLN-EC more robust to varia-
tions in the data. Such variations are very com-
mon in practice, particularly in dynamic environ-
ments, such as the ones encountered in CER. The
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Figure 2: CER under uncertainty. Fj-score of
MLN-EC and linear-chain CRFs for different CE
acceptance thresholds.

common assumption made in machine learning that
the training and test data share the same statisti-
cal properties is often violated in these situations.
Figure 2, for example, compares the performance of
MLN-EC against linear-chain Conditional Random
Fields on a benchmark activity recognition dataset,
where evidence is incomplete in the test set as com-
pared to the training set.

4. EVENT PATTERN LEARNING

The manual authoring of CE patterns is a te-
dious and error-prone process. Consequently, the
automated construction of such patterns from data
is highly desirable. We have been developing super-
vised, online learning learning tools for construct-
ing logical representations of CE patterns, from a
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single-pass over a relational data stream. 0SLo [16]
is such a learner for Markov Logic Networks (MLNs),
formulating CE patterns in the form of MLN-EC
theories. 0SLa extends OSL [9] by exploiting a
background knowledge in order to significantly con-
strain the search for patterns.

In each step ¢ of the online procedure, a set of
training examples D; arrives containing input data
along with CE annotation. D, is used together
with the already learnt hypothesis, if any, to pre-
dict the truth values of the CEs of interest. This
is achieved by MAP (maximum a posteriori) infer-
ence. Given Dy, 0SLa constructs a hypergraph that
represents the space of possible structures as graph
paths. Then, for all incorrectly predicted CEs, the
hypergraph is searched using relational pathfind-
ing, for clauses supporting the recognition of these
CEs. The paths discovered during the search are
generalised into first-order clauses. Subsequently,
the weights of the clauses that pass the evaluation
stage are optimised using off-the-shelf online weight
learners. Then, the weighted clauses are appended
to the hypothesis and the procedure is repeated for
the next set of training examples Dy, 1.

OLED [11] is an Inductive Logic Programming
system that learns CE patterns, in the form of Event
Calculus theories, in a supervised fashion and in a
single pass over a data stream. OLED constructs
patterns by first encoding a positive example from
the input stream into a so-called bottom rule, i.e.,
a most-specific rule o < d; A ... A, where « is
an initiation or termination atom, and di,...,9d,
are relational features expressing anything “inter-
esting” as defined by the language bias. To learn
a useful rule, OLED then searches within the space
of rules that #-subsume the bottom rule, i.e., rules
that involve some of the §;’s only. To that end,
OLED starts from the most-general rule and gradu-
ally specialises it by adding §;’s to its body, using a
rule evaluation function to assess the quality of each
generated specialisation. OLED’s single-pass strat-
egy is based on the Hoeffding bound [8], a statistical
tool that allows to approximate the quality of a rule
on the entire input using only a subset of the data.

We have evaluated OLED and O0SLa on real
datasets concerning activity recognition, maritime
monitoring, credit card fraud detection, and traf-
fic management in smart cities [11, 16, 3, 15, 12].
We have also compared OLED and 0SLa to OSL
[9], ‘batch’ structure learners requiring many passes
over the data, and to hand-curated Event Calculus
patterns (with optimised weight values). The re-
sults suggest that both OLED and OSLa can match
the predictive accuracy of batch learners as well
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as that of hand-crafted patterns. Moreover, OLED
and 0SLa have proven significantly faster than both
batch and online learners, making them more ap-
propriate for large data streams.

S. EVENT FORECASTING

Forecasting over time-evolving data streams is a
task that can be defined in multiple ways. There
is a conceptual difference between forecasting and
prediction, as the latter term is understood in ma-
chine learning, where the main goal is to “predict”
the output of a function on previously unseen in-
put data, even if there is no temporal dimension.
In forecasting, time is a crucial component and the
goal is to predict the temporally future output of
some function or the occurrence of an event. Time-
series forecasting is an example of the former case
and is a field with a significant history of contri-
butions. However, its methods cannot be directly
transferred to CER, since it handles streams of
(mostly) real-valued variables and focuses on fore-
casting relatively simple patterns. On the contrary,
in CER we are also interested in categorical val-
ues, related through complex patterns and involv-
ing multiple variables. Our group has developed
a method, where automata and Markov chains are
employed in order to provide (future) time intervals
during which a match is expected with a probability
above a confidence threshold [1].

We start with a given pattern of interest, defin-
ing relations between events, in the form of a regular
expression—i.e., using operators for sequence, dis-
junction and iteration. Our goal, besides detecting
occurrences of this pattern, is also to estimate, at
each new event arrival, the number of future events
that we will need to wait for until the expression is
satisfied, and thus a match be detected. A pattern
in the form of a regular expression is first converted
to a deterministic finite automaton (DFA) through
standard conversion algorithms. We then construct
a Markov chain that will be able to provide a proba-
bilistic description of the DFA’s run-time behavior,
by employing Pattern Markov Chains (PMC) [17].
The resulting PMC depends both on the initial pat-
tern and on the assumptions made about the sta-
tistical properties of the input stream—the order m
of the assumed Markov process.

After constructing a PMC, we can use it to calcu-
late the so-called waiting-time distributions, which
can give us the probability of reaching a final state
of the DFA in k transitions from now. To estimate
the final forecasts, another step is required, since
our aim is not to provide a single future point with
the highest probability, but an interval in the form
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Figure 3: Event Forecasting. The event pattern
requires that one event of type a is followed by three
events of type b. . = 0.5. For illustration, the x
axis stops at 12 future events.

of I=(start,end). The meaning of such an inter-
val is that the DFA is expected to reach a final
state sometime in the future between start and end
with probability at least some constant threshold
0f. (provided by the user). An example is shown
in Figure 3, where the DFA in Figure 3a is in state
1, the waiting-time distributions for all of its non-
final states are shown in Figure 3b, and the distri-
bution, along with the forecast interval, for state 1
are shown in green.

Figure 4 shows results of our implementation on
two real-world datasets from the financial and the
maritime domains. In the former case, the goal
was to forecast a specific case of credit card fraud,
whereas in the latter it was to forecast a specific
vessel manoeuver. Figures 4a and 4d show precision
results (the percentage of forecasts that were accu-
rate), where the y axes correspond to different val-
ues of the threshold 6., and the x axes correspond
to states of the PMC (more “advanced” states are
to the right of the axis), i.e., we measure precision
for the forecasts produced by each individual state.
Similarly, Figures 4b and 4e are per-state plots for
spread (the length of the forecast interval), and Fig-
ures 4c and 4f are per-state plots for distance (the
temporal distance between the time a forecast is
produced and the start of the forecast interval).

As expected, more “advanced” states produce fore-
casts with higher precision, smaller spread and dis-
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Figure 4: Event forecasting for credit card fraud management (top) and maritime monitoring (bottom). The
y axes correspond to different values of the threshold 6. The x axes correspond to states of the PMC.

tance. However, there are cases where we can get
earlier both high precision and low spread scores
(see Figures 4d and 4e). This may happen when
there exist strong probabilistic dependencies in the
stream, e.g., when one event type is very likely (or
very unlikely) to appear, given that the last event(s)
is of a different event type. Our system can take
advantage of such cases in order to produce high-
quality forecasts early.

6. PARTICIPATION IN RESEARCH & IN-

NOVATION PROJECTS

The CER group has been participating in several
research and innovation projects.

SPEEDD? (Scalable Proactive Event-Driven De-
cision Making) was an FP7 EU-funded project, co-
ordinated by the CER group, that developed tools
for proactive analytics in Big Data applications. In
SPEEDD, the CER group worked on credit card
fraud detection and traffic management [3, 15], de-
veloping formal tools for highly scalable CER [4],
and pattern learning [10, 16].

REVEAL? (REVEALing hidden concepts in so-
cial media) was an FP7 EU project that developed
techniques for real-time knowledge extraction from
social media. In REVEAL, the CER group devel-
oped a technique for online (single-pass) learning of

2http://speedd-project.eu/
3http://revealproject.eu/
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event patterns under uncertainty [11].

AMINESS* (Analysis of Marine Information for
Environmentally Safe Shipping) was a national
project that developed a framework for maritime
environmental safety and cost reduction.

Similarly, dat ACRON?® (Big Data Analytics for
Time Critical Mobility Forecasting) is an H2020 EU
project that introduces novel methods for detecting
threats and abnormal activity in very large fleets
of moving entities, such as vessels and aircrafts. In
datACRON, the CER group has been developing
algorithms for highly efficient spatio-temporal pat-
tern matching [18], complex event forecasting [1]
and parallel, online event pattern learning [12], as
well as user-friendly languages for manual pattern
construction [22].

Track & Know (Big Data for Mobility & Track-
ing Knowledge Extraction in Urban Areas) is an
H2020 EU-funded project that develops a new soft-
ware framework increasing the efficiency of Big Data
applications in the transport, mobility, motor insur-
ance and health sectors. The CER team is responsi-
ble for the complex event recognition and forecast-
ing technology of Track & Know.

7. COMMUNITY CONTRIBUTIONS
The CER group supports the research commu-

‘http://aminess.eu/
*http://www.datacron-project.eu/
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nity at different levels; notably, by making avail-
able the proposed research methods as open-source
solutions. The RTEC CER engine (see Section 2)
is available as a monolithic Prolog implementation®
and as a parallel Scala implementation”. The OLED
system for online learning of event patterns (see Sec-
tion 4) is also available as an open-source solution®,
both for single-core and parallel learning. OLED is
implemented in Scala; both OLED and RTEC use
the Akka actors library for parallel processing.

The 0SLa online learner (see Section 4), along
with MAP inference based on integer linear pro-
gramming, and various weight optimisation algo-
rithms (Max-Margin, CDA and AdaGrad), are con-
tributed to LoMRF?, an open-source implementa-
tion of Markov Logic Networks. LoMRF provides
predicate completion, clausal form transformation
and a parallel grounding algorithm which efficiently
constructs the minimal Markov Random Field.
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1. INTRODUCTION

The data management group at the Nanyang Tech-
nological University (DANTE) was founded in 2009
by the first author when the School of Computer
Science and Engineering hired two young faculty
members in this area. The group currently consists
of three faculty members and more than twenty
graduate students, research assistants, and post-
docs. Our alumni include faculty members at the
Chinese University of Hong Kong, National Univer-
sity of Singapore, University of New South Wales,
and several researchers and engineers at Facebook,
Google, eBay, Huawei, and other technology com-
panies. The group’s major funding is from the Min-
istry of Education in Singapore, National Research
Foundation, and companies such as Huawei.

In DANTE, we subscribe to the policy of conduct-
ing research mostly in small groups. Typically, one
or two faculty members work together with their
students, staffs, and collaborators (if any). Our
members bring in diverse strengths, some have pen-
chant for inventing efficient and scalable solutions
to existing data management problems whereas oth-
ers are more inclined toward inventing novel prob-
lems and efficient solutions to address them. Our
research is often multi-disciplinary in flavour, bridg-
ing data management and analytics with social sci-
ence and biology. In particular, our research have
been nominated as one of the best papers in venues
such as SIGMOD 2015, ICDE 2015, and ICDE 2010.
We have also received best paper award in ACM
BCB 2011. The common thread running through
our research is a focus on going beyond papers to
build usable novel prototypes. Specifically, we have
successfully demonstrated more than 20 novel re-
search prototypes in top-tier data and information
management conferences, which is the highest among
all data management research groups in Australa-
sia. In this article, we present a brief overview of

*The authors are the founding members of DANTE. The second
author is a faculty member of National University of Singapore
since January 2018.
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the key research themes in our group; more details
are available on our website at http://www3.ntu.
edu.sg/scse/dmal/dante/.

2. GRAPH DATA MANAGEMENT

Graphs are used to model data in a variety of do-
mains such as biology, chemistry, and social science.
Even we can model the relational data as a graph.
This prevalence of graph-structured data has led us
to pursue several research directions in this arena
as follows.

2.1 Graph Query Processing

Querying graphs has emerged as an important re-
search problem since the last decade. Our group has
invented a suite of efficient and scalable techniques
to support a variety of graph queries such as dis-
tance queries [15], subgraph enumeration [31], su-
pergraph search [16], personalized PageRank queries
[24, 51, 52], SimRank queries [38,48], and reacha-
bility queries [14,70]. In particular, our solutions
for personalized PageRank and SimRank queries
provide superior practical efficiency while provid-
ing strong theoretical guarantees in terms of accu-
racy and time complexity. In a different project,
we questioned the longstanding assumption that a
subgraph search query must be a connected graph.
Such assumption typically demands users to have
precise knowledge of the topological structure of
what they are seeking. Unfortunately, due to the
topological complexity of the underlying graph data,
it is often unrealistic to assume that an end user is
aware of the precise relationships between nodes in a
query graph. This led us to invent a novel subgraph
query processing framework called PANDA [59] that
can efficiently support formulation and processing
of partial topology queries. Such queries are discon-
nected query graphs comprising of two or more dis-
joint comnected query components. This framework
can also be used to address the problem of keyword
search for graphs as a keyword can be considered as
a single-node query component.
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2.2 Human Interaction with Graphs

In our HINT project!, we explore pioneering tech-
niques and paradigms for visually interacting with
graphs using queries. It is well-known that visual
query interfaces (i.e., GUI) enable interactive con-
struction of graph queries without demanding knowl-
edge of a graph query language from end users. In
a classical visual graph querying framework, the vi-
sual query interface is “loosely-coupled” with the
underlying query engine. Typically, a visual query
interface is designed and implemented by leverag-
ing principles from the human-computer interaction
(HCI) area to enhance its usability. On the other
hand, the query engine is realized using data man-
agement principles to ensure efficient and scalable
execution of graph queries. Seldom there is any
meaningful interactions between these two compo-
nents concurrently. Consequently, when an end user
is visually formulating a graph query, the under-
lying query engine remains idle as human interac-
tions at the GUI level are rarely communicated to
the query engine. The query engine is only invoked
when the complete query has been formulated and
the Run icon is clicked to execute it. We refer to
this loose coupling of these two key components as
shallow integration.

The visual graph query formulation process demon-
strates two key characteristics. First, a query is
gradually exposed to the underlying query engine
during its construction. Second, it gives rise to GUI
latency (i.e., the time spent by a human to complete
certain query formulation task such as construction
of an edge). In this research, we crystallize “tight
coupling” between visual graph query interface and
query engine components by exploiting these fea-
tures. Instead of the query engine being oblivious to
human interactions in the GUI during visual query
formulation, we “track” these interactions and pro-
cess them judiciously during query formulation by
exploiting the GUI latency. We refer to this tight
coupling of the visual query interface and the query
engine as deep integration.

In our group, we have explored a suite of novel
techniques to realize deep integration. Specifically,
in [63] we report a technique that leverages on par-
tially constructed query information during query
formulation to present opportune suggestions to end
users toward completion of the query. These efforts
realize deep integration between the visual query
interface and underlying query engine by generat-
ing data-driven suggestions while a graph query is
being visually formulated. In [26, 28, 29, 44], we

1http: //www.ntu.edu.sg/home/assourav/research/hint/index.

html
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realize deep integration by blending visual graph
query formulation with its processing to prune false
results and prefetch partial query results by ex-
ploiting the GUI latency, leading to superior system
response time. We investigate a variety of graph
queries (subgraph matching, subgraph similarity,
and homomorphic queries) in this paradigm. In
particular, these frameworks allow a user to exe-
cute a query fragment any time during query for-
mulation and not wait until the entire query is visu-
ally formulated. Consequently, this paradigm is ex-
ploited by PICASSO [25] to realize exploratory search
on graphs. Lastly, query performance study in a
deep integration-based graph querying framework
demands exhaustive user study due to tight cou-
pling between human interactions and the under-
lying query engine. However, such user study is
expensive and time-consuming. In [3], we present
a framework called VISUAL that draws upon the
literature in HCI and graph data management to
simulate visual subgraph query construction pro-
cess. This paves the way for automated perfor-
mance study without requiring users.

2.3 Graph Analytics

Lastly, we have contributed efficient and scalable
algorithms for addressing a variety of graph analyt-
ics problems. For instance, we have invented scal-
able algorithms for finding maximal cliques [11,12],
core and truss decomposition [13,49], triangle list-
ing [17], computation of maximum independent set
[39], attributed graph clustering [60], and discover-
ing frequent subgraph patterns using the MapRe-
duce framework [36].

In particular, some of our research in graph ana-
lytics is multi-disciplinary in nature. For instance,
we have explored the role of network analytics in
biology. It is increasingly attractive to model bio-
logical systems from a broader, “systems” perspec-
tive instead of modeling its components in an iso-
lated, reductionist manner [27]. The most well-
known method to model biological systems in this
manner is through biological networks. However,
due to the complexity of such networks, it is chal-
lenging to uncover key system-wide properties and
behaviors of a biological system from it. To this
end, we have developed scalable techniques for dis-
covering network motifs (i.e., interaction patterns
that recur throughout biological networks, much
more often than in random networks) by leveraging
modern hardware such as GPUs [37]. This work
was nominated as one of the best in ICDE 2015.
We have also developed novel techniques for sum-
marizing static and dynamic biological networks [1]
as well as predicting potential drug targets by ana-
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lyzing dynamics of signaling networks [18]. In par-
ticular, our work on functional summarization of
protein-protein interaction networks received the Best
Paper Award in ACM BCB 2011 (flagship confer-
ence of the SIGBio group) [43].

3. SOCIAL DATA MANAGEMENT

In the social data management arena, DANTE mem-
bers have primarily focused on two topics: social in-
fluence analysis in online social networks and social
image exploration.

3.1 Social Influence Analysis

Our group has made significant contributions in
social influence analysis especially in the context of
the influence maximization problem. Given a social
network G and a constant k, the influence maxi-
mization problem asks for k nodes in G that (di-
rectly and indirectly) influence the largest number
of nodes under a pre-defined diffusion model. This
problem originates from viral marketing, and it has
been extensively studied in the literature since 2003.
However, before 2014, there was a long-standing
tension between the efficiency and accuracy of influ-
ence maximization algorithms. In particular, there
exist a few methods that provide non-trivial approx-
imation guarantees, but they require days to pro-
cess even a small graph; meanwhile, methods with
reasonable practical efficiency all rely on heuristics,
due to which they fail to offer any worst-case ac-
curacy assurance. We are the first to ease the ten-
sion by proposing Two-phase Influence Maximiza-
tion (TIM) [46], an algorithm that runs in O((k +
I)(n + m)logn/e?) expected time, and returns a
(1—1/e—e)-approximate solution to influence max-
imization, with at least 11/n! probability. The time
complexity of TIM is near-optimal, and it is empir-
ically shown to be up to three orders of magnitude
lower than any existing solution with non-trivial ap-
proximation guarantees. Subsequently, we develop
an improvement of TIM [47] that retains its theo-
retical guarantees while improving its practical effi-
ciency by up to another order of magnitude.

We also extended our research on influence maxi-

mization to competitive networks where several groups

may simultaneously attempt to select seeds in the
same network [33]. We proposed a framework called
GETREAL that finds the best solution for each group,
who are maximizing their influences, based on game
theory. This work was one of the nominees for the
best paper award in SIGMOD 2015.

In a separate project, we took the first systematic
step to discover k influential event organizers from
online social networks (e.g., Meetup (www.meetup.
com) who are essential to the overall success of social
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events [20]. These event organizers comprise a small
group of people who not only have the relevant skills
or expertise that are required for an event but they
are also able to influence largest number of people
to actively contribute to it.

The aforementioned efforts as well as numerous
other social influence research in the data manage-
ment and data mining communities have largely
stripped off social psychology of users in their solu-
tion design. For example, these efforts ignore con-
formity of people, which refers to a person’s incli-
nation to be influenced by others. Consequently,
despite the great progress made in terms of algorith-
mic efficiency and scalability, existing techniques
may not necessarily produce high quality results in
practice. In our PAELLA project?, we investigate the
interplay between psychology and social influence in
online social networks and devise novel social influ-
ence solutions that are psychology-aware. Specifi-
cally, we are the first to explore techniques that in-
corporate conformity in computing social influence
and influence maximization solutions [34, 35].

3.2 Social Image Search Results Exploration

Due to increasing popularity of social image shar-
ing platforms (e.g., Flickr), techniques to support
Tag-based Social Image Retrieval (TAGIR) [32] for
finding relevant high-quality images using keyword
queries have generated tremendous research and com-
mercial interests. Many TAGIR studies attempt to
improve its search accuracy or diversify its search
results so as to maximize the probability of satisfy-
ing users’ search intentions. In our SIERRA project,
we go beyond retrieval and ranking of social images
by facilitating deeper understanding through expla-
nation and exploration of the result images.

Why-not questions on search results. Tra-
ditional TAGIR systems fail to provide a systematic
framework for end users to ask why certain images
are not in the result set of a given query and provide
an explanation for such missing results. However,
as humans, such why-not questions [7] are natural
when expected images are missing in the query re-
sults returned by a TAGIR system. This may be
due to the following reasons. First, the desired im-
ages may be ranked very low in the search results
because the same keyword query (e.g., “rock”) may
express very different search intentions for different
users. Second, the set of tags associated with im-
ages may be noisy and incomplete. Consequently,
not all keywords mentioned in the search query may
appear as tags in relevant images. Third, the query
formulated by the user maybe too restrictive due

2http://wwwmtu.edu.sg/home/assourav/research/paella/index.

html

69



to the user’s limited understanding of the data col-
lection. Indeed, it will be helpful to users if they
could simply pose a follow-up why-not question to
the retrieval engine to seek an explanation for de-
sired missing images and suggestions on how to re-
trieve them. Our group developed a novel system
called WINE [2] to address this challenge. Specifi-
cally, it leverages on three explanation models that
exploit Wikipedia to automatically generates expla-
nation to a why-not question posed by a user and
recommends refined query, if necessary, whose re-
sult may not only includes images related to the
search query but also to the why-not question.
Search results summarization. Social image
search engines often diversify the search results to
match all possible aspects of a query in order to
minimize the risk of completely missing out a user’s
search intent. An immediate aftermath of such re-
sults diversification strategy is that often the search
results are not semantically or visually coherent.
For example, the results of a search query “fly"
may contain a medley of visually and semantically
distinct objects and scenes (i.e., concepts) such as
parachutes, aeroplanes, insects, birds, and even the
act of jumping. Consequently, a thumbnail view of
query results fails to provide a bird eye view of dif-
ferent concepts present in it. Our PRISM [42] system
addresses this challenge by constructing high qual-
ity summary of top-k social image search results
based on concept-preserving and wvisually coherent
clusters which maximally cover the result set. Each
cluster is represented by minimal tag(s) shared by
all images in it. Due to the concept-preserving na-
ture, the images in a cluster form an equivalence
class with respect to the tags. Consequently, any
image in each cluster can be selected as an exem-
plar without loss of accuracy to facilitate generation
of high quality exemplar summary of the result set.

4. GEO-TEXTUAL DATA MANAGEMENT

The proliferation of GPs-equipped mobile devices
has given rise to massive volumes of geo-textual or
spatio-textual data (e.g., points of interest, tweets,
check-ins). Each geo-textual object is associated
with a geo-location and a text value. In this sec-
tion, we summarize the geo-textual data manage-

ment challenges that we have addressed in our group.

4.1 Query Processing

A variety of classical spatial database queries and
keyword queries have been revisited and rethought
in the context of querying geo-textual data. Our
research in this arena can be broadly classified into
two streams: spatial keyword queries and querying
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geo-textual streams. In the former, we combine spa-
tial functionality with keyword search (e.g., find
geo-tagged objects that best match the given lo-
cation and keywords). Specifically, we have con-
tributed to a variety of spatial keyword queries such
as m-closest keywords [23], collective keyword [5],
and keyword-aware route planning [4]. These queries
typically find an aggregation of several geo-textual
objects (ranked or otherwise) that are near each
other. Some of our work have extended spatial
queries on a spatial network that need to utilize
spatial distance, which is more computationally ex-
pensive than Euclidean distance [6,61,62].

For the latter category, we focus on devising ef-
ficient solutions for querying streaming geo-tagged
data (e.g., microblog posts). Specifically, we have
investigated techniques to support boolean subscrip-
tion [8, 10] and similarity-based subscription [9]
queries. These techniques aim to develop efficient
spatial-keyword subscription strategies. More re-
cently, we have looked into the problem of continu-
ous queries on a stream of geo-tagged object (e.g.,
detecting bursty region [22]).

4.2 Exploratory Search

We have also invented efficient techniques for ex-
ploring geo-tagged data. Our work can be broadly
categorized into two streams: region search and re-
gion exploration. In the former, we aim to find a
region for exploration that satisfies a user-defined
condition (e.g., size and shape of the region) and
maximizes some aggregate score of the geo-tagged
objects inside it [21]. In the latter category, we
address the problem of exploring and discovering
properties (e.g., topics) of user-specified region [69].

5. INFORMATION PRIVACY

The era of big data has witnessed the collection,
analysis, and sharing of individual data (e.g., user
behavioral records) at large scale. These data pro-
vide invaluable insights, but their usage often raises
significant concerns about individual privacy. To
address such concerns, a common practice is to
anonymize the data by removing personal identifiers
(such as names and IDs) and retaining all other in-
formation. This approach, however, has been shown
to be vastly insufficient for privacy protection, since
the information remained in the data may still be
exploited to re-identify an individual. This moti-
vated considerable research effort on systematic ap-
proaches for data privacy protection.

Our recent work on data privacy has focused on
differential privacy [19], which is a strong and rigor-
ous privacy model that has been adopted in Google
Chrome and Apple iOS. In particular, we have de-
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veloped techniques that improve the utility of differ-
entially private algorithms for a number of impor-
tant analytical tasks, including range count queries
[56,57,64], model fitting [68], frequent itemset min-
ing [50], histogram construction [55], and the syn-
thesization of spatial, sequence, and high-dimensional
data [30, 66,67]. Most recently, we have investi-
gated differentially private algorithms for collecting
data from users who do not trust the data collector,
and have devised solutions for collecting heavy hit-
ters [41] and graph statistics [40]. In particular, our
work in [56] was selected as one of the best papers
in ICDE 2010.

6. FAIRPEER REVIEW MANAGEMENT

A fair peer-review process is a key ingredient for
running a successful academic event. Fairness is
affected by many factors, such as the expertise of
reviewers, the quality of review comments, the de-
sign of the review form, etc. However, the most im-
portant factor is the relationships between authors
and reviewers. In this research, we explore design
and implementation of a novel reviewer suggestion
system that focuses on declaration and detection of
conflicts of interest (COIs) in the peer-review [53,
54], an issue that has received scant attention de-
spite its significance in upholding quality and fair-
ness of an academic event. This work is in collabo-
ration with University of Macau and the Northeast-
ern University, USA. Specifically, we extract rele-
vant information related to authors by exploiting
sources such as DBLP, ResearchGate, and Arnet-
Miner. Next, we mine relationships between the
authors based on various strategies such as meta-
path information [45]. Finally, we rank the cois
and display a recommended cOI list of a given set
of authors by utilizing a supervised ranking model
that can be iteratively refined from the data col-
lected from past COI declarations. A prototype of
our system called PISTIS? will be demonstrated in
SIGMOD 2018 [54].
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Updates to the TODS Editorial Board

Christian S. Jensen
csj@cs.aau.dk

It is of paramount importance for a scholarly journal
such as ACM Transactions on Database Systems to have
a strong editorial board of respected, world-class schol-
ars. The editorial board plays a fundamental role in at-
tracting the best submissions, in ensuring insightful and
timely handling of submissions, in maintaining the high
scientific standards of the journal, and in maintaining the
reputation of the journal. Indeed, the journal’s Associate
Editors, along with the reviewers and authors they work
with, are the primary reason that TODS is a world-class
journal.

As of January 1, 2018, five Associate Editors—Walid
Aref, Graham Cormode, Gautam Das, Sabrina De Cap-
itani di Vimercati, and Dirk Van Gucht—ended their
terms, each having served on the editorial board for six
years. In addition, they will stay on until they complete
their current assignments.

Walid, Graham, Gautam, Sabrina, and Dirk have pro-
vided very substantial, high-caliber service to the jour-
nal and the database community. Specifically, they have
lent their extensive experience, deep insight, and sound
technical judgment to the journal. I have never seen

them compromise on quality when handling submissions.

Surely, they have had many other demands on their time,
many of which are better paid, during these past six
years. We are all fortunate that they have donated their
time and unique expertise to the journal and our commu-
nity during half a dozen years. They deserve our recog-
nition for their commitment to the scientific enterprise.
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Also as of January 1, 2018, five Associate Editors
have joined the editorial board:

e Angela Bonifati, Université Claude Bernard Lyon 1
http://liris.cnrs.fr/
angela.bonifati

e Wolfgang Lehner, TU Dresden
https://wwwdb.inf.tu-dresden.de/
our—-group/team/wolfgang-lehner

e Dan Olteanu, University of Oxford
http://www.cs.ox.ac.uk/dan.olteanu

e Evaggelia Pitoura, University of loannina
http://www.cs.uol.gr/~pitoura

e Bernhard Seeger, University of Marburg
https://www.uni-marburg.de/
fbl2/arbeitsgruppen/dbs/team

All five are highly regarded scholars in database sys-
tems. We are very fortunate that these outstanding schol-
ars are willing to volunteer their valuable time and in-
dispensable expertise for handling manuscripts for the
benefit of our community. Indeed, I am gratified that
they have committed to help TODS continue to evolve
and improve, and I am looking forward to working with
them.
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