
Natural Language Explanations for Query Results

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Nave Frost
Tel Aviv University

navefrost@mail.tau.ac.il

Amir Gilad
Tel Aviv University

amirgilad@mail.tau.ac.il

ABSTRACT
Multiple lines of research have developed Natural Language
(NL) interfaces for formulating database queries. We build
upon this work, but focus on presenting a highly detailed
form of the answers in NL. The answers that we present
are importantly based on the provenance of tuples in the
query result, detailing not only the results but also their
explanations. We develop a novel method for transforming
provenance information to NL, by leveraging the original NL
query structure. Furthermore, since provenance information
is typically large and complex, we present two solutions for
its effective presentation as NL text: one that is based on
provenance factorization, with novel desiderata relevant to
the NL case, and one that is based on summarization.

1. INTRODUCTION
Developing Natural Language (NL) interfaces to database

systems has been the focus of multiple lines of research (see
e.g. [17, 2, 21]). In this work we complement these ef-
forts by providing NL explanations to query answers. The
explanations that we provide elaborate upon answers with
additional important information, and are helpful for under-
standing why does each answer qualify to the query criteria.

As an example, consider the Microsoft Academic Search
database (http://academic.research.microsoft.com) and
consider the NL query in Figure 1a. A state-of-the-art NL
query engine, NaLIR [17], is able to transform this NL query
into the SQL query also shown (as a Conjunctive Query,
which is the fragment that we focus on in this paper) in Fig-
ure 1b. When evaluated using a standard database engine,
the query returns the expected list of organizations. How-
ever, the answers (organizations) in the query result lack
justification, which in this case would include the authors
affiliated with each organization and details of the papers
they have published (their titles, their publication venues
and publication years). Such additional information, corre-
sponding to the notion of provenance (e.g. [12, 14, 6]) can
lead to a richer answer than simply providing the names of
organizations: it allows users to also see relevant details of
the qualifying organizations. Provenance information is also
valuable for validation of answers: a user who sees an orga-
nization name as an answer is likely to have a harder time

c© VLDB Endowment 2017. This is a minor revision
of the paper entitled “Provenance for Natural Language
Queries”, published in the Proceedings of the VLDB En-
dowment, Vol. 10, No. 5, 2150-8097/17/01. DOI:
https://doi.org/10.14778/3055540.3055550

return the organization of authors who published papers
in database conferences after 2005

(a) NL Query

query(oname) :- org(oid, oname), conf(cid, cname),
pub(wid, cid, ptitle, pyear), author(aid, aname, oid),
domainConf(cid, did), domain(did, dname),
writes(aid, wid), dname = ’Databases’, pyear > 2005

(b) CQ Q

Figure 1: NL Query and CQ Q

TAU is the organization of Tova M. who published
’OASSIS...’ in SIGMOD in 2014

Figure 2: Answer For a Single Assignment

validating that this organization qualifies as an answer, than
if she was presented with the full details of publications.

We propose a novel approach of presenting provenance in-
formation for answers of NL queries, again as sentences in
Natural Language. Continuing our running example, Fig-
ure 2 shows one of the answers outputted by our system in
response to the NL query in Figure 1a.

Our solution consists of the following key contributions.

Provenance Tracking Based on the NL Query Structure.
A first key idea in our solution is to leverage the NL query
structure in constructing NL provenance. In particular, we
modify NaLIR so that we store exactly which parts of the NL
query translate to which parts of the formal query. Then,
we evaluate the formal query using a provenance-aware en-
gine (we use SelP [7]), further modified so that it stores
which parts of the query “contribute” to which parts of the
provenance. By composing these two “mappings” (text-to-
query-parts and query-parts-to-provenance) we infer which
parts of the NL query text are related to which provenance
parts. Finally, we use the latter information in an “inverse”
manner, to translate the provenance to NL text.

Factorization. A second key idea is related to the prove-
nance size. In typical scenarios, a single answer may have
multiple explanations (multiple authors, papers, venues and
years in our example). A näıve solution is to formulate and
present a separate sentence corresponding to each explana-

We are extremely grateful to Fei Li and H.V. Jagadish for
generously sharing with us the source code of NaLIR, and
providing invaluable support.

http://academic.research.microsoft.com

tion. The result will however be, in many cases, very long
and repetitive. As observed already in previous work [4,
18], different assignments (explanations) may have signifi-
cant parts in common, and this can be leveraged in a fac-
torization that groups together multiple occurrences. In our
example, we can e.g. factorize explanations based on author,
paper name, conference name or year. Importantly, we im-
pose a novel constraint on the factorizations that we look
for (which we call compatibility), intuitively capturing that
their structure is consistent with a partial order defined by
the parse tree of the question. This constraint is needed so
that we can translate the factorization back to an NL an-
swer whose structure is similar to that of the question. Even
with this constraint, there may still be exponentially many
(in the size of the provenance expression) compatible fac-
torizations, and we look for the factorization with minimal
size out of the compatible ones; for comparison, previous
work looks for the minimal factorization with no such “com-
patibility constraint”. The corresponding decision problem
remains coNP-hard (again in the provenance size), but we
devise an effective and simple greedy solution. We further
translate factorized representations to concise NL sentences,
again leveraging the structure of the NL query.

Summarization. We propose summarized explanations by
replacing details of different parts of the explanation by their
synopsis, e.g. presenting only the number of papers pub-
lished by each author, the number of authors, or the overall
number of papers published by authors of each organization.
Such summarizations incur by nature a loss of information
but are typically much more concise and easier for users
to follow. Here again, while provenance summarization has
been studied before (e.g. [1, 18]), the desiderata of a sum-
marization needed for NL sentence generation are different,
rendering previous solutions inapplicable here. We observe
a tight correspondence between factorization and summa-
rization: every factorization gives rise to multiple possible
summarizations, each obtained by counting the number of
sub-explanations that are “factorized together”. We provide
a robust solution, allowing to compute NL summarizations
of the provenance, of varying levels of granularity.

2. PRELIMINARIES
We provide here the necessary preliminaries on Natural

Language Processing, conjunctive queries and provenance.

2.1 From NL to Formal Queries
We start by recalling some basic notions from NLP, as they

pertain to the translation process of NL queries to a formal
query language. A key notion that we will use is that of the
syntactic dependency tree of NL queries. This is essentially a
node-labeled tree where labels consist of two components, as
follows: (1) Part of Speech (POS): the syntactic role of the
word; (2) Relationship (REL): the grammatical relationship
between the word and its parent in the dependency tree.

We focus on a sub-class of queries handled by NaLIR, namely
that of Conjunctive Queries, possibly with comparison oper-
ators (=, >,<) (NaLIR further supports nested queries and
aggregation). The corresponding NL queries in NaLIR fol-
low one of the two (very general) abstract forms described
in Figure 3: an object (noun) is sought for, that satisfies
some properties, possibly described through a complex sub-

return

object

verb mod

properties

nsubj

others

(a) Verb Mod.

return

object

non-verb mod

propertiesothers

(b) Non-Verb Mod.

Figure 3: Abstract Dependency Trees

sentence rooted by a modifier (which may or may not be
a verb, a distinction whose importance will be made clear
later).

(oname, TAU)

(aname, Tova M.)

(ptitle, OASSIS...)

(cname, SIGMOD)

(pyear, 2014)

return

organization
POS=NN, REL=dobj

of
POS=IN, REL=prep

authors
POS=NNS, REL=pobj

published
POS=VBD, REL=rcmod

in

conferences
POS=NNS, REL=pobj

database
POS=NN, REL=nn

after
POS=IN, REL=prep

2005
POS=CD, REL=pobj

paperswho

the

(a) Query Tree

organization

of

Tova M.

published

in

SIGMOD

in

2014

’OASSIS...’who

TAU (is the)

(b) Answer Tree

Figure 4: Question and Answer Trees

Example 2.1. Reconsider the NL query in Figure 1a; its
dependency tree is depicted in Figure 4a (ignore for now the
arrows). The part-of-speech (POS) tag of each node reflects
its syntactic role in the sentence – for instance, “organiza-
tion” is a noun (denoted “NN”), and “published” is a verb
in past tense (denoted “VBD”). The relation (REL) tag of
each node reflects the semantic relation of its sub-tree with
its parent. For instance, the REL of “of” is prep (“prepo-
sitional modifier”) meaning that the sub-tree rooted at “of”
describes a property of “organization” while forming a com-
plex sub-sentence. The tree in Figure 4a matches the abstract
tree in Figure 3b since “organization” is the object and “of”
is a non-verb modifier (its POS tag is IN, meaning “prepo-
sition or subordinating conjunction”) rooting a sub-sentence
describing “organization”.

The dependency tree is transformed by NaLIR, based also
on schema knowledge, to SQL. We focus in this work on NL
queries that are compiled into Conjunctive Queries (CQs).

Example 2.2. Reconsider our running example NL query
in Figure 1a; a counterpart Conjunctive Query is shown in
Figure 1b. Some words of the NL query have been mapped
by NaLIR to variables in the query, e.g., the word “orga-
nization” corresponds to the head variable (oname). Ad-
ditionally, some parts of the sentence have been complied

(oname,TAU)·(aname,Tova M.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,Querying...)·
(cname,VLDB)·(pyear,06’)+
(oname,TAU)·(aname,Tova M.)· (ptitle,Monitoring..)·
(cname,VLDB)·(pyear,07’)+
(oname,TAU)·(aname,Slava N.)·(ptitle,OASSIS...)·
(cname, SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,A sample...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,UPENN)·(aname,Susan D.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)

Figure 5: Value-level Provenance

to boolean conditions based on the MAS schema, e.g., the
part “in database conferences” was translated to dname =′

Databases′ in the CQ depicted in Figure 1b. Figure 4a shows
the mapping of some of the nodes in the NL query depen-
dency tree to variables of Q (ignore for now the values next
to these variables).

The translation performed by NaLIR from an NL query
to a formal one can be captured by a mapping from (some)
parts of the sentence to parts of the formal query. It can
also be defined as a partial function from the nodes of the
dependency tree to the variables of the query. We denote it
by dependency-to-query-mapping.

2.2 Provenance
After compiling a formal query corresponding to the user’s

NL query, we evaluate it and keep track of provenance, to
be used in explanations. To define provenance, we first ex-
emplify the standard notion of assignments for CQs.

Assignments allow for defining the semantics of CQs: a
tuple t is said to appear in the query output if there exists
an assignment α s.t. t = α(head(Q)). They will also be
useful in defining provenance below.

Example 2.3. Consider again the query Q in Figure 1b
and the database in Figure 6. The tuple (TAU) is an output
of Q when assigning the highlighted tuples to the atoms of Q.
As part of this assignment, the tuple (2, TAU) (the second
tuple in the org table) and (4, Tova M., 2) (the second tuple
of the author table) are assigned to the first and second atom
of Q, respectively. In addition to this assignment, there are
4 more assignments that produce the tuple (TAU) and one
assignment that produces the tuple (UPENN).

We next leverage assignments in defining provenance, in-
troducing a simple value-level model. The idea is that as-
signments capture the reasons for a tuple to appear in the
query result, with each assignment serving as an alternative
such reason (indeed, the existence of a single assignment
yielding the tuple suffices, according to the semantics, for its
inclusion in the query result). Within each assignment, we
keep record of the value assigned to each variable, and note
that the conjunction of these value assignments is required
for the assignment to hold. Capturing alternatives through
the symbolic “ + ” and conjunction through the symbolic
“ · ”, we arrive at the following definition of provenance as
sum of products.

Definition 2.4. Let A(Q,D) be the set of assignments
for a CQ Q and a database instance D. We define the value-

level provenance of Q w.r.t. D as∑
α∈A(Q,D)

Π{xi,ai|α(xi)=ai}(xi, ai)

.

Rel. org
oid oname
1 UPENN
2 TAU

Rel. author
aid aname oid
3 Susan D. 1
4 Tova M. 2
5 Slava N. 2

Rel. pub
wid cid ptitle pyear
6 10 “OASSIS...” 2014
7 10 “A sample...” 2014
8 11 “Monitoring...” 2007
9 11 “Querying...” 2006

Rel. writes
aid wid
4 6
3 6
5 6
4 7
4 8
4 9

Rel. conf
cid cname
10 SIGMOD
11 VLDB

Rel. domainConf
cid did
10 18
11 18

Rel. domain
did name
18 Databases

Figure 6: DB Instance

Example 2.5. Re-consider our running example query and
consider the database in Figure 6. The value-level prove-
nance is shown in Figure 5. Each of the 6 summands stands
for a different assignment (i.e. an alternative reason for the
tuple to appear in the result). Assignments are represented
as multiplication of pairs of the form (var, val) so that var
is assigned val in the particular assignment. We only show
here variables to which a query word was mapped; these will
be the relevant variables for formulating the answer.

By composing the dependency-to-query-mapping from the
NL query’s dependency tree to query variables, and the as-
signments of query variables to values from the database,
we associate different parts of the NL query with values. We
will use this composition of mappings throughout the paper
as a means of assembling the NL answer to the NL query.

Example 2.6. Continuing our running example, consider
the assignment represented by the first monomial of Figure
5. Further reconsider Figure 4a, and now note that each
node is associated with a pair (var, val) of the variable to
which the node was mapped, and the value that this variable
was assigned in this particular assignment. For instance, the
node “organization” was mapped to the variable oname which
was assigned the value “TAU”.

3. FIRST STEP: A SINGLE ASSIGNMENT
We start describing our transformation of provenance to

NL for a single assignment. The solution will serve as the
basis for the general case of multiple assignments.

3.1 Basic Solution
We follow the structure of the NL query dependency tree

and generate an answer tree with the same structure by re-
placing/modifying the words in the question with the val-
ues from the result and provenance that were mapped using
the dependency-to-query-mapping and the assignment. Yet,
note that simply replacing the values does not always result
in a coherent sentence, as shown in the following example.

Example 3.1. Re-consider the dependency tree depicted
in Figure 4a. If we were to replace the value in the organiza-
tion node to the value “TAU” mapped to it, the word “organi-
zation” will not appear in the answer although it is needed to
produce the coherent answer depicted in Figure 2. Without
this word, it is unclear how to deduce the information about
the connection between “Tova M.” and “TAU”.

We next account for these difficulties and exemplify our
approach that outputs the dependency tree of a detailed an-
swer; We do so by augmenting the query dependency tree
into an answer tree. we will further translate this tree to an
NL sentence.

Recall that the dependency tree of the NL query follows
one of the abstract forms in Figure 3. We distinguish be-
tween two cases based on nodes whose REL (relationship
with parent node) is modifier; in the first case, the clause
begins with a verb modifier (e.g., the node “published” in
Fig. 4a is a verb modifier) and in the second, the clause
begins with a non-verb modifier (e.g., the node “of” in Fig.
4a is a non-verb modifier). In short, the children of verb
modifier nodes are replaced with the value mapped to them
while the children of non-verb modifier nodes stay as part of
the tree and the value mapped to them is added to the tree.

Example 3.2. Re-consider Figure 4a, and note the map-
pings from the nodes to the variables and values as reflected
in the boxes next to the nodes. To generate an answer, we
follow the NL query structure, “plugging-in” mapped database
values. We start with “organization”, which is the first node
to be considered. Observe that “organization” has the child
“of” which is a non-verb modifier, so we add “TAU” as its
child. On the other hand, the node “authors” has the child
“published” which is a verb modifier, so we replace “authors”
with the value “Tova M.”, mapped to it. Another case is the
handling of the nodes “after” and “in” which are modifiers as
well. These nodes refer to times and locations, hence we re-
place the subtree rooted at these nodes with the node mapped
to their child (in the case of “after” it is “2014” and in the
case of “in” it is “SIGMOD”) and attach the node “in” as the
parent of the node, in both cases as it is the suitable word for
equality for years and locations.

So far we have augmented the NL query dependency tree
to obtain the dependency tree of the answer. The last step
is to translate this tree to a sentence. To this end, we re-
call that the original query, in the form of a sentence, was
translated by NaLIR to the NL query dependency tree. To
translate the dependency tree to a sentence, we essentially
“revert” this process, further using the mapping of NL query
dependency tree nodes to (sets of) nodes of the answer.

4. THE GENERAL CASE
In general, as illustrated in Section 2, the provenance may

include multiple assignments. We next generalize the con-
struction to account for this. Note that a näıve solution
in this respect is to generate a sentence for each individual
assignment and concatenate the resulting sentences. How-
ever, already for the small-scale example presented here, this
would result in a long and unreadable answer (recall Figure 5
consisting of six assignments). Instead, we propose two solu-
tions: the first based on the idea of provenance factorization
[18, 4], and the second leveraging factorization to provide a
summarized form.

[TAU] ·

A



([Tova M.] ·

B


([VLDB] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

 B

+ [Slava N.] · [OASSIS...] · [SIGMOD] · [2014])


A

+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(a) f1
[TAU] ·

([SIGMOD] · [2014] ·
([OASSIS...] ·

([Tova M.] + [Slava N.]))
+ [Tova M.] · [A Sample...])

+ [VLDB] · [Tova M.] ·
([2006] · [Querying...]

+ [2007] · [Monitoring...])
+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(b) f2
Figure 7: Provenance Factorizations

4.1 NL-Oriented Factorization
We start by defining the notion of factorization in a stan-

dard way (see e.g. [18, 8]).

Definition 4.1. Let P be a provenance expression. We
say that an expression f is a factorization of P if f may
be obtained from P through (repeated) use of some of the
following axioms: distributivity of summation over multipli-
cation, associativity and commutativity of both summation
and multiplication.

Example 4.2. Re-consider the provenance expression in
Figure 5. Two possible factorizations are shown in Figure 7,
keeping only the values and omitting the variable names for
brevity (ignore the A,B brackets for now). In both cases, the
idea is to avoid repetitions in the provenance expression, by
taking out a common factor that appears in multiple sum-
mands. Different choices of which common factor to take
out lead to different factorizations.

How do we measure whether a possible factorization is
suitable/preferable to others? Standard desiderata [18, 8]
are that it should be short or that the maximal number of
appearances of an atom is minimal. On the other hand, we
factorize here as a step towards generating an NL answer;
to this end, it will be highly useful if the (partial) order of
nesting of value annotations in the factorization is consistent
the (partial) order of corresponding words in the NL query.
We will next formalize this intuition as a constraint over
factorizations. We start by defining a partial order on nodes
in a dependency tree:

Definition 4.3. Given an dependency tree T , we define
≤T as the descendant partial order of nodes in T : for each
two nodes, x, y ∈ V (T), we say that x ≤T y if x is a descen-
dant of y in T .

Example 4.4. In our running example (Figure 4a) it holds
in particular that authors ≤ organization, 2005 ≤ authors,
conferences ≤ authors and papers ≤ authors, but papers,
2005 and conferences are incomparable.

Next we define a partial order over elements of a factoriza-
tion, intuitively based on their nesting depth. To this end,
we first consider the circuit form [3] of a given factorization:

Example 4.5. Consider the partial circuit of f1 in Figure
8. The root, ·, has two children; the left child is the leaf
“TAU” and the right is a + child whose subtree includes the
part that is “deeper” than “TAU”.

Given a factorization f and an element n in it, we denote
by levelf (n) the distance of the node n from the root of
the circuit induced by f multiplied by (−1). Intuitively,
levelf (n) is bigger for a node n closer to the circuit root.

·

+

·

sub-circuit

Tova M.

·

SIGMOD2014OASSISSlava N.

TAU

Figure 8: Sub-Circuit of f1

Our goal here is to define the correspondence between the
level of each node in the circuit and the level of its “source”
node in the NL query’s dependency tree (note that each
node in the query corresponds to possibly many nodes in
the circuit: all values assigned to the variable in the differ-
ent assignments). In the following definition we will omit the
database instance for brevity and denote the provenance ob-
tained for a query with dependency tree T by provT . Recall
that dependency-to-query-mapping maps the nodes of the
dependency tree to the query variables and the assignment
maps these variables to values from the database.

Definition 4.6. Let T be a query dependency tree, let
provT be a provenance expression, let f be a factorization
of provT , let τ be a dependency-to-query-mapping and let
{α1, ...αn} be the set of assignments to the query. For each
two nodes x, y in T we say that x ≤f y if
∀i ∈ [n] : levelf (αi(τ(x))) ≤ levelf (αi(τ(y))).

We say that f is T -compatible if each pair of nodes x 6=
y ∈ V (T) that satisfy x ≤T y also satisfy that x ≤f y.

Essentially, T -compatibility means that the partial order
of nesting between values, for each individual assignment,
must be consistent the partial order defined by the structure
of the question. Note that the compatibility requirement
imposes constraints on the factorization, but it is in general
far from dictating the factorization, since the order x ≤T y
is only partial – and there is no constraint on the order of
each two provenance nodes whose “origins” in the query are
unordered. Among the T -compatible factorizations, we will
prefer shorter ones.

Definition 4.7. Let T be an NL query dependency tree
and let provT be a provenance expression for the answer.
We say that a factorization f of provT is optimal if f is
T -compatible and there is no T -compatible factorization f ′

of provT such that | f ′ |<| f | (| f | is the length of f).

The following example shows that the T -compatibility con-
straint still allows much freedom in constructing the factor-
ization. In particular, different choices can (and sometimes
should, to achieve minimal size) be made for different sub-
expressions, including ones leading to different answers and
ones leading to the same answer through different assign-
ments.

Example 4.8. Recall the partial order ≤T imposed by our
running example query, shown in part in Example 4.4. It im-
plies that in every compatible factorization, the organization
name must reside at the highest level, and indeed TAU was
“pulled out” first in Figure 8; similarly the author name must
be pulled out next. In contrast, since the query nodes corre-
sponding to title, year and conference name are unordered,
we may, within a single factorization, factor out e.g. the year
in one part of the factorization and the conference name in
another one. As an example, Tova M. has two papers pub-
lished in VLDB (“Querying...” and “Monitoring”) so factor-
izing based on VLDB would be the best choice for that part.
On the other hand, suppose that Slava N. had two paper pub-
lished in 2014; then we could factorize them based on 2014.
The factorization could, in that case, look like the following
(where the parts taken out for Tova and Slava are shown in
bold):

[TAU] ·
([Tova M.] ·
([VLDB] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

+ ([Slava N.] ·
([2014] ·
([SIGMOD] · [OASSIS...]

+ [VLDB] · [Ontology...])))

The following example shows that in some cases, requiring
compatibility can come at the cost of compactness.

Example 4.9. Consider the query tree T depicted in Fig-
ure 4a and the factorizations provT (the identity factoriza-
tion) depicted in Figure 5, f1, f2 presented in Figure 7.
provT is of length 30 and is 5-readable, i.e., the maximal
number of appearances of a single variable is 5 (see [8]). f1
is of length 20, while the length of f2 is only 19. In addi-
tion, both f1 and f2 are 3-readable. Based on those mea-
surements f2 seems to be the best factorization, yet f1 is
T -compatible with the question and f2 is not. For exam-
ple, conferences ≤T authors but “SIGMOD” appears higher
than “Tova M.” in f2. Choosing a T -compatible factorization
in f1 will lead (as shown below) to an answer whose struc-
ture resembles that of the question, and thus translates to a
more coherent and fitting NL answer.

Note that the identity factorization is always T -compatible,
so we are guaranteed at least one optimal factorization (but
it is not necessarily unique). We next study the problem of
computing such a factorization.

4.2 Computing Factorizations
Recall that our notion of compatibility restricts the factor-

izations so that their structure resembles that of the ques-
tion. Without this constraint, finding shortest factorizations
is coNP-hard in the size of the provenance (i.e. a boolean
expression) [13]. The compatibility constraint does not re-
duce the complexity since it only restricts choices relevant
to part of the expression, while allowing freedom for arbi-
trarily many other elements of the provenance. Also recall
(Example 4.8) that the choice of which element to “pull-out”
needs in general to be done separately for each part of the
provenance so as to optimize its size (which is the reason for
the hardness in [13] as well). In general:

Proposition 4.10. Given a dependency tree T , a prove-
nance expression provT and an integer k, deciding whether
there exists a T -compatible factorization of provT of size ≤ k
is coNP-hard.

Greedy Algorithm. Despite the above result, the con-
straint of compatibility does help in practice, in that we can
avoid examining choices that violate it. For other choices, we
devise a simple algorithm that chooses greedily among them.
More concretely, the input to Algorithm 1 is the query tree
TQ (with its partial order ≤TQ), and the provenance provTQ .
The algorithm output is a TQ-compatible factorization f .
Starting from prov, the progress of the algorithm is made in
steps, where at each step, the algorithm traverses the circuit
induced by prov in a BFS manner from top to bottom and
takes out a variable that would lead to a minimal expression
out of the valid options that keep the current factorization
T -compatible. Naturally, the algorithm does not guarantee
an optimal factorization (in terms of length), but performs
well in practice.

In more detail, we start by choosing the largest nodes ac-
cording to ≤TQ which have not been processed yet (Line 2).
Afterwards, we sort the corresponding variables in a greedy
manner based on the number of appearances of each variable
in the expression using the procedure sortByFrequentV ars
(Line 3). In Lines 4–5, we iterate over the sorted variables
and extract them from their sub-expressions. This is done
while preserving the ≤TQ order with the larger nodes, thus
ensuring that the factorization will remain TQ-compatible.
We then add all the newly processed nodes to the set
Processed which contains all nodes that have already been
processed (Line 6). Lastly, we check whether there are no
more nodes to be processed, i.e., if the set Processed in-
cludes all the nodes of TQ (denoted V (TQ), see the condition
in Line 7). If the answer is “yes”, we return the factorization.
Otherwise, we make a recursive call. In each such call, the
set Processed becomes larger until the condition in Line 7
holds.

Algorithm 1: GreedyFactorization

input : TQ - the query tree, ≤TQ
- the query partial

order, prov - the provenance, τ, α -
dependency-to-query-mapping and assignment
from nodes in TQ to provenance variables,
Processed - subset of nodes from V (TQ) which
were already processed (initially, ∅)

output: f - TQ-compatible factorization of provTQ

1 f ← prov;
2 Frontier ← {x ∈ V (TQ)|∀(y ∈
V (TQ) \ Processed) s.t. x 6≤TQ

y};
3 vars← sortByFrequentV ars({α(τ(x))|x ∈
Frontier}, f);

4 foreach var ∈ vars do
5 Take out var from sub-expressions in f not including

variables from {x|∃y ∈ Processed : x = α(τ(y))};
6 Processed← Processed ∪ Frontier;
7 if |Processed| = |V (TQ)| then
8 return f ;

9 else
10 return GreedyFactorization(TQ, f, τ, α, Processed);

Example 4.11. Consider the query tree TQ depicted in
Figure 4a, and provenance prov in Figure 5. As explained

above, the largest node according to ≤TQ is organization,
hence “TAU” will be taken out from the brackets multiply-
ing all summands that contain it. Afterwards, the next node
according to the order relation will be author, therefore we
group by author, taking out “Tova M.”, “Slava N.” etc. The
following choice (between conference, year and paper name)
is then done greedily for each author, based on its num-
ber of occurrences. For instance, V LDB appears twice for
Tova.M. whereas each paper title and year appears only once;
so it will be pulled out. The polynomial [SlavaN.]·[OASSIS...]·
[SIGMOD]·[2014] will remain unfactorized as all values ap-
pear once. Eventually, the algorithm will return the factor-
ization f1 depicted in Figure 7, which is TQ-compatible and
much shorter than the initial provenance expression.

Proposition 4.12. Let f be the output of Algorithm 1 for
the input dependency tree TQ, then f is TQ-compatible.

Complexity. Denote the provenance size by n. The algo-
rithm complexity is O(n2 · logn): at each recursive call, we
sort all nodes in O(n · logn) (Line 3) and the we handle (in
Frontier) at least one node (in the case of a chain graph)
or more. Hence, in the worst case we would have n recursive
calls, each one costing O(n · logn).

4.3 Factorization to Answer Tree
The final step is to turn the obtained factorization into

an NL answer. Similarly to the case of a single assignment
(Section 3), we leverage the mappings and assignments to
convert the query dependency tree into an answer tree that
reflects the factorization. Intuitively, we follow the struc-
ture of a single answer, replacing each node there by either
a single node, standing for a single word of the factorized
expression, or by subtree, standing for some brackets (sub-
circuit) in the factorized expression.

Example 4.13. Consider the factorization f1 depicted in
Figure 7, and the structure of single assignment answer de-
picted in Figure 4b which was built based on an answer tree
for a single assignment. Given this input, we will generate
an answer tree corresponding to the following sentence:

TAU is the organization of
Tova M. who published

in VLDB
’Querying...’ in 2006 and
’Monitoring...’ in 2007

and in SIGMOD in 2014
’OASSIS...’ and ’A sample...’

and Slava N. who published
’OASSIS...’ in SIGMOD in 2014.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014.

Note that the query has two results: “TAU” and “UPENN”.
“UPENN” was produced with a single assignment, but there
are five different assignments producing “TAU”. Focusing
on the factorization part of the result “TAU”, notice that the
authors were pulled out first, then the conferences, and then
the years and papers, so this will be reflected in the factor-
ized answer tree. For example, we replace the node authors
with the values from the factorization that correspond to this
word, i.e., Tova M. and Slava N. The answer tree can also
be changed based on the hierarchy of the factorization. For
instance, although the node paper is closer to the root of
the tree then the nodes year and conference in the origi-
nal answer tree, the order of these nodes in the new answer

tree will be reversed since f1 extracted the values “VLDB”,
“SIGMOD” and “2014”.

Why require compatibility? We conclude this part
of the paper by revisiting our decision to require compati-
ble factorizations, highlighting difficulties in generating NL
answers using non-compatible factorizations.

Example 4.14. Consider factorization f2 from Figure 7.
“TAU” should be at the beginning of the sentence and followed
by the conference names “SIGMOD” and “VLDB”. The sec-
ond and third layers of f2 are composed of author names
(“Tova M.”, “Slava N.”), paper titles (“OASSIS”, “A sam-
ple...”, “Monitoring...”) and publication years (2007, 2014).
Changing the original order of the words such that the con-
ference name “SIGMOD” and the publication year “2014”
will appear before “Tova M.” breaks the sentence structure in
a sense. It is unclear how to algorithmically translate this
factorization into an NL answer, since we need to patch the
broken structure by adding connecting phrases. One hypo-
thetical option of patching f2 and transforming it into an
NL answer is depicted below. The bold parts of the sentence
are not part of the factorization and it is not clear how to
generate and incorporate them into the sentence algorithmi-
cally. Even if we could do so, it appears that the resulting
sentence would be quite convoluted:

TAU is the organization of authors who published in
SIGMOD 2014

’OASSIS...’ which was published by
Tova M. and Slava N.

and Tova M. published ’A sample...’
and Tova M. published in VLDB

’Querying...’ in 2014
and ’Monitoring...’ in 2007.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014

Observe that the resulting sentence is much less clear than
the one obtained through our approach, even though it was
obtained from a shorter factorization f2; the intuitive rea-
son is that since f2 is not T -compatible, it does not admit
a structure that is similar to that of the question, thus is
not guaranteed to admit a structure that is coherent in Nat-
ural Language. Interestingly, the sentence we would obtain
in such a way also has an edit distance from the question [9]
that is shorter than that of our answer, demonstrating that
edit distance is not an adequate measure here.

4.4 From Factorizations to Summarizations
When there are many assignments and/or the assignments

involve multiple distinct values, even an optimal factorized
representation may be too long and convoluted for users to
follow.

Example 4.15. Reconsider Example 4.13; if there are
many authors from TAU then even the compact representa-
tion of the result could be very long. In such cases we need
to summarize the provenance in some way that will preserve
the “essence” of all assignments without actually specifying
them, for instance by providing only the number of authors/-
papers for each institution.

To this end, we employ summarization, as follows. First,
we note that a key to summarization is understanding which
parts of the provenance may be grouped together. For that,
we use again the mapping from nodes to query variables:

(A) [TAU] · Size([Tova M.],[Slava N.]) · Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

(B) [TAU]·(
[Tova M.] ·
Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

[Slava N.] · [OASSIS...] · [SIGMOD] · [2014])
Figure 9: Summarized Factorizations

(A) TAU is the organization of 2 authors who published
4 papers in 2 conferences in 2006 - 2014.
(B) TAU is the organization of Tova M. who published
4 papers in 2 conferences in 2006 - 2014 and Slava N.
who published ’OASSIS...’ in SIGMOD in 2014.

Figure 10: Summarized Sentences

we say that two nodes are of the same type if both were
mapped to the same query variable. Now, let n be a node in
the circuit form of a given factorization f . A summarization
of the sub-circuit of n is obtained in two steps. First, we
group the descendants of n according to their type. Then,
we summarize each group separately. The latter is done in
our implementation simply by either counting the number
of distinct values in the group or by computing their range
if the values are numeric. In general, one can easily adapt
the solution to apply additional user-defined“summarization
functions” such as “greater / smaller than X” (for numerical
values) or “in continent Y” for countries.

Example 4.16. Re-consider the factorization f1 from Fig-
ure 7. We can summarize it in multiple levels: the highest
level of authors (summarization “A”), or the level of papers
for each particular author (summarization “B”), or the level
of conferences, etc. Note that if we choose to summarize at
some level, we must summarize its entire sub-circuit (e.g. if
we summarize for Tova. M. at the level of conferences, we
cannot specify the papers titles and publication years).

Figure 9 presents the summarizations of sub-trees for the
“TAU” answer, where “size” is a summarization operator that
counts the number of distinct values and “range” is an oper-
ator over numeric values, summarizing them as their range.
The summarized factorizations are further converted to NL
sentences which are shown in Figure 10. Summarizing at a
higher level results in a shorter but less detailed summariza-
tion.

5. RELATED WORK
Multiple lines of work (e.g. [2, 17, 21]) have proposed

NL interfaces to formulate database queries, and additional
works [10] have focused on presenting the answers in NL,
typically basing their translation on the schema of the out-
put relation. Among these, works such as [2, 17] also harness
the dependency tree in order to make the translation form
NL to SQL by employing mappings from the NL query to
formal terms. To our knowledge, no previous work has fo-
cused on formulating the provenance of output tuples in NL.
This requires fundamentally different techniques (e.g. that
of factorization and summarization, building the sentence
based on the input question structure, etc.) and leads to
answers of much greater detail.

The tracking, storage and presentation of provenance have
been the subject of extensive research (see e.g. [12, 14,
6]) while the field of provenance applications has also been

Table 1: Sample use-cases and results
Query Single Assignment Multiple Assignments - Summarized
Return the homepage of SIGMOD http://www.sigmod2011.org/ is

the homepage of SIGMOD
Return the authors who published
papers in SIGMOD before 2015 and
after 2005

Tova M. published “Auto-
completion...” in SIGMOD in
2012

Tova M. published 10 papers in SIGMOD in 2006-
2014

Return the authors from TAU who
published papers in VLDB

Tova M. from TAU published
“XML Repository...” in VLDB

Tova M. from TAU published 11 papers in VLDB

Return the authors who published
papers in database conferences

Tova M. “published Auto-
completion...” in SIGMOD

Tova M. published 96 papers in 18 conferences

Return the organization of authors
who published papers in database
conferences after 2005

TAU is the organization of Tova
M. who published ‘OASSIS...’ in
SIGMOD in 2014

TAU is the organization of 43 authors who pub-
lished 170 papers in 31 conferences in 2006 - 2015

broadly studied (e.g. [7, 19]). A longstanding challenge
in this context is the complexity of provenance expressions,
leading to difficulties in presenting them in a user compre-
hensible manner. Approaches in this respect include showing
the provenance in a graph form (see e.g. [20, 6]), allowing
user control over the level of granularity (“zooming” in and
out [5]), or otherwise presenting different ways of provenance
visualization [14]. Other works have studied allowing users
to query the provenance (e.g. [16, 15]) or to a-priori request
that only parts of the provenance are tracked (see for ex-
ample [7, 11]). Importantly, provenance factorization and
summarization have been studied (e.g., [1, 18, 4]) as means
for compact representation of the provenance. Usually, the
solutions proposed in these works aim at reducing the size of
the provenance but naturally do not account for its presenta-
tion in NL; we have highlighted the different considerations
in context of factorization/summarization in our setting.

6. CONCLUSION AND LIMITATIONS
We have studied in this paper, for the first time to our

knowledge, provenance for NL queries. We have devised
means for presenting the provenance information again in
Natural Language, in factorized or summarized form.

There are two main limitations to our work. First, a part
of our solution was designed to fit NaLIR, and will need to be
replaced if a different NL query engine is used. Specifically,
the “sentence generation” module will need to be adapted to
the way the query engine transforms NL queries into formal
ones; our notions of factorization and summarization are ex-
pected to be easier to adapt to a different engine. Second,
our solution is limited to Conjunctive Queries. One of the
important challenges in supporting NL provenance for fur-
ther constructs such as union and aggregates is the need to
construct a concise presentation of the provenance in NL.

Acknowledgments. This research was partially supported
by the Israeli Science Foundation (ISF, grant No. 1636/13),
and by ICRC - The Blavatnik Interdisciplinary Cyber Re-
search Center. The contribution of Amir Gilad is part of a
Ph.D. thesis research conducted at Tel Aviv University.

7. REFERENCES
[1] E. Ainy, P. Bourhis, S. B. Davidson, D. Deutch, and

T. Milo. Approximated summarization of data provenance.
In CIKM, pages 483–492, 2015.

[2] Y. Amsterdamer, A. Kukliansky, and T. Milo. A natural
language interface for querying general and individual
knowledge. VLDB, pages 1430–1441, 2015.

[3] P. Brgisser, M. Clausen, and M. A. Shokrollahi. Algebraic
Complexity Theory. Springer Publishing Company,
Incorporated, 2010.

[4] A. P. Chapman, H. V. Jagadish, and P. Ramanan. Efficient
provenance storage. In SIGMOD, pages 993–1006, 2008.

[5] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson.
Addressing the provenance challenge using zoom. Concurr.
Comput. : Pract. Exper., pages 497–506, 2008.

[6] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In SIGMOD,
pages 1345–1350, 2008.

[7] D. Deutch, A. Gilad, and Y. Moskovitch. Selective
provenance for datalog programs using top-k queries.
PVLDB, pages 1394–1405, 2015.

[8] K. Elbassioni, K. Makino, and I. Rauf. On the readability
of monotone boolean formulae. JoCO, pages 293–304, 2011.

[9] M. Emms. Variants of tree similarity in a question
answering task. In Proceedings of the Workshop on
Linguistic Distances, pages 100–108, 2006.

[10] E. Franconi, C. Gardent, X. I. Juarez-Castro, and
L. Perez-Beltrachini. Quelo Natural Language Interface:
Generating queries and answer descriptions. In Natural
Language Interfaces for Web of Data, 2014.

[11] B. Glavic. Big data provenance: Challenges and
implications for benchmarking. In Specifying Big Data
Benchmarks - First Workshop, WBDB, pages 72–80, 2012.

[12] T. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40, 2007.

[13] E. Hemaspaandra and H. Schnoor. Minimization for
generalized boolean formulas. In IJCAI, pages 566–571,
2011.

[14] M. Herschel and M. Hlawatsch. Provenance: On and behind
the screens. In SIGMOD, pages 2213–2217, 2016.

[15] Z. G. Ives, A. Haeberlen, T. Feng, and W. Gatterbauer.
Querying provenance for ranking and recommending. In
TaPP, pages 9–9, 2012.

[16] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying
data provenance. In SIGMOD, pages 951–962, 2010.

[17] F. Li and H. V. Jagadish. Constructing an interactive
natural language interface for relational databases. Proc.
VLDB Endow., pages 73–84, 2014.

[18] D. Olteanu and J. Závodný. Factorised representations of
query results: Size bounds and readability. In ICDT, pages
285–298, 2012.

[19] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. In SIGMOD, pages
1579–1590, 2014.

[20] Y. L. Simmhan, B. Plale, and D. Gannon. Karma2:
Provenance management for data-driven workflows. Int. J.
Web Service Res., pages 1–22, 2008.

[21] D. Song, F. Schilder, C. Smiley, C. Brew, T. Zielund,
H. Bretz, R. Martin, C. Dale, J. Duprey, T. Miller, and
J. Harrison. TR discover: A natural language interface for
querying and analyzing interlinked datasets. In ISWC,
pages 21–37, 2015.

	Introduction
	Preliminaries
	From NL to Formal Queries
	Provenance

	First step: A Single Assignment
	Basic Solution

	The General Case
	NL-Oriented Factorization
	Computing Factorizations
	Factorization to Answer Tree
	From Factorizations to Summarizations

	Related Work
	Conclusion and Limitations
	References

