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ABSTRACT

This paper presents GRAPE, a parallel GRAPh Engine for graph

computations. GRAPE differs from previous graph systems in

its ability to parallelize existing sequential graph algorithms as a

whole, without the need for recasting the entire algorithms into a

new model. Underlying GRAPE are a simple programming model,

and a principled approach based on fixpoint computation with par-

tial evaluation and incremental computation. Under a monotonic

condition, GRAPE guarantees to converge at correct answers as

long as the sequential algorithms are correct. We show how our fa-

miliar sequential graph algorithms can be parallelized by GRAPE.

In addition to the ease of programming, we experimentally verify

that GRAPE achieves comparable performance to the state-of-the-

art graph systems, using real-life and synthetic graphs.

1. INTRODUCTION
There has been increasing demand for graph computations, e.g.,

graph traversal, connectivity, pattern matching, and collaborative

filtering. Indeed, graph computations have found prevalent use in

mobile network analysis, pattern recognition, knowledge discov-

ery, transportation networks, social media marketing and fraud de-

tection, among other things. In addition, real-life graphs are typi-

cally big, easily having billions of nodes and trillions of edges [18].

With these comes the need for parallel graph computations. In re-

sponse to the need, several parallel graph systems have been devel-

oped, e.g., Pregel [25], GraphLab [16, 24], Trinity [29], GRACE

[35], Blogel [37], Giraph++ [31], and GraphX [17].

However, users often find it hard to write and debug paral-

lel graph programs using these systems. The most popular pro-

gramming model for parallel graph algorithms is the vertex-centric

model, pioneered by Pregel and GraphLab. For instance, to pro-

gram with Pregel, one needs to “think like a vertex", by writing

a user-defined function compute(msgs) to be executed at a vertex

v, where v communicates with other vertices by message pass-

ing (msgs). Although graph computations have been studied for

decades and a large number of sequential (single-machine) graph

algorithms are already in place, to use Pregel, one has to recast

the existing algorithms into vertex-centric programs. Trinity and
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System Category Time(s) Comm.(MB)

Giraph vertex-centric 434.0 1.13 × 105

GraphLab vertex-centric 41.7 1.07 × 105

Blogel block-centric 112.3 1.23 × 105

GRAPE think sequential 24.3 1.47 × 104

Table 1: Graph traversal on parallel systems

GRACE also support vertex-centric programming. While Blo-

gel and Giraph++ allow blocks to have their status as a “vertex”

and support block-level communication, they still adopt the vertex-

centric programming paradigm. GraphX also recasts graph compu-

tation into its distributed dataflow framework as a sequence of join

and group-by stages punctuated by map operations, on Spark plat-

form (see [36] for a survey). The recasting is nontrivial for users

who are not very familiar with the parallel models. Moreover, none

of the systems provides guarantee on the correctness or even termi-

nation of parallel programs developed in their models. These make

the existing systems a privilege for experienced users only.

Is it possible to simplify parallel programming for graph com-

putations, from “think parallel” to “think sequential”? That is, can

we have a system that parallelizes existing sequential graph algo-

rithms across a cluster of processors? Better yet, is there a general

condition under which the parallelization guarantees to converge at

correct answers as long as the sequential algorithms are correct?

After all, the human’s brain is not wired to think parallel.

To answer these questions, we develop GRAPE, a parallel

GRAPh Engine. It differs from prior systems in the following.

(1) Ease of programming. GRAPE supports a simple programming

model. For a class Q of graph queries, users only need to provide

three sequential (incremental) algorithms for Q, with no need to

recast them into a new model, or revise the logic of the algorithms.

This makes parallel computations accessible to users who know

conventional graph algorithms covered in college textbooks.

(2) Parallelization. GRAPE parallelizes the computation across a

cluster of processors, based on a fixpoint computation with partial

evaluation and incremental computation. Under a monotonic con-

dition, it guarantees to converge with correct answers as long as the

three sequential algorithms provided are correct.

(3) Optimization. GRAPE inherits all optimization strategies avail-

able for sequential graph algorithms, e.g., indexing, compression

and partitioning. These are hard to implement for vertex programs.

(4) Scale-up. The ease of programming does not imply perfor-

mance degradation compared with the state-of-the-art systems such

as vertex-centric Giraph [3] (Pregel) and GraphLab, and block-

centric Blogel. For instance, Table 1 shows the performance of

the systems for shortest-path queries over Friendster [2] with 192

workers. GRAPE outperforms Giraph, GraphLab and Blogel in

both response time and communication costs (see Section 4).



This paper presents the programming and parallel models of

GRAPE (Section 2), shows how it parallelizes sequential algo-

rithms (Section 3), and empirically evaluates GRAPE (Section 4).

2. GRAPE PARALLELIZATION
We present the programming paradigm and parallel model of

GRAPE. Interested readers are invited to see [14] for details.

2.1 Graph Partition
We start with basic notations. We consider directed or undirected

graphs G = (V,E, L), where (1) V is a finite set of nodes; (2)

E ⊆ V × V is a set of edges; and (3) each node v in V (resp. edge

e ∈ E) carries L(v) (resp. L(e)), indicating its content, as found

in social networks, knowledge bases and property graphs.

Partition strategy. Given a graph G and an integer m, a graph par-

tition strategy P partitions G into fragments F = (F1, . . . , Fm).
Each fragment Fi = (Vi, Ei, Li) is a subgraph of G that re-

sides at processor Pi, for i ∈ [1,m]; and E =
⋃

i∈[1,m] Ei,

V =
⋃

i∈[1,m] Vi. Under edge-cut partition [8, 9], denote by

• Fi.I the set of nodes v ∈ Vi such that there exists edge

(v′, v) from a node v′ in Fj ;

• Fi.O the set of nodes v′ in some Fj such that there exists an

edge (v, v′) from v ∈ Vi; and

• F .O =
⋃

i∈[1,m] Fi.O, and F .I =
⋃

i∈[1,m] Fi.I .

A cut edge from Fi to Fj has a copy in each of Fi and Fj (i 6= j).

We refer to nodes in Fi.I (or Fi.O) as border nodes of fragment

Fi w.r.t. partition strategy P . Note that F .I = F .O.

Under vertex-cut partition [22], F .O and F .I correspond to en-

try vertices and exit vertices, respectively.

2.2 Programming Paradigm
Consider a graph computation problem Q. Using our familiar

terms, we refer to an instance Q of Q as a query of Q. To answer

Q ∈ Q with GRAPE, a user only needs to specify three functions.

PEval: a sequential algorithm for Q that given a query Q ∈ Q and

a graph G, computes the answer Q(G) to Q in G.

IncEval: a sequential algorithm IncEval for Q that given Q, G,

Q(G) and updates ∆G to G, incrementally computes changes ∆O

to the old output Q(G) such that Q(G ⊕ ∆G) = Q(G) ⊕ ∆O,

where G⊕∆G denotes graph G updated by ∆G.

Assemble: a function Assemble that collects partial answers com-

puted locally at each worker by PEval and IncEval, and assembles

them into complete answer Q(G). It is typically straightforward.

Functions PEval, IncEval and Assemble are referred to as a PIE

program for Q. Here PEval and IncEval are existing sequential (in-

cremental) algorithms for Q, with the following additions to PEval.

Update parameters. PEval declares status variables x̄ for a set Ci

of nodes and edges in a fragment Fi, which store contents of Fi

or intermediate results of a computation. Here Ci is a set of nodes

and edges within d-hops of the border nodes in Fi, e.g., Fi.O, for

an integer d. When d = 0, one may define Ci as, e.g., Fi.O.

We denote by Ci.x̄ the set of update parameters of Fi, which

consists of status variables of the nodes and edges in Ci, i.e., vari-

ables in Ci.x̄ are the candidates to be updated.

Aggregate function. PEval also specifies a function faggr, e.g., min,

max, to resolve conflicts when multiple workers attempt to assign

different values to the same update parameter.

The update parameters and aggregate function are specified in

PEval and are shared by IncEval. As will be seen shortly, IncEval

only needs to deal with changes ∆G to update parameters.

master P0

!
Q(F1) Q(Fm)

PEval

!
Q(F1 ⊕M1) Q(Fm⊕Mm)

master P0

worker worker

workerworker

master P0

IncEval

Assemble

Q(G)

query Q

Figure 1: Workflow of GRAPE

2.3 Parallel Model
Given a partition strategy P and a PIE program ρ (PEval,

IncEval, Assemble) for Q, GRAPE parallelizes ρ as follows. It

first partitions G into (F1, . . . , Fm) with P , and distributes frag-

ments Fi’s across m shared-nothing virtual workers (P1, . . . , Pm).
It maps m virtual workers to n physical workers. When n < m,

multiple virtual workers mapped to the same worker share memory.

Graph G is partitioned once for all queries Q ∈ Q on G.

We start with basic ideas behind GRAPE parallelization.

Partial evaluation. Given a function f(s, d) and the s part of its in-

put, partial evaluation is to specialize f(s, d) w.r.t. the known input

s [21]. That is, it performs the part of f ’s computation that depends

only on s, and generates a partial answer, i.e., a residual function

f ′ that depends on the as yet unavailable input d. For each worker

Pi in GRAPE, its local fragment Fi is its known input s, while

the data residing at other workers accounts for the yet unavailable

input d. As will be seen shortly, given a query Q ∈ Q, GRAPE

computes Q(Fi) in parallel as partial evaluation.

Incremental evaluation. Workers exchange changed values of their

local update parameters with each other. Upon receiving message

Mi that consists of changes to the update parameters at fragment

Fi, worker Pi treats Mi as updates to Fi, and incrementally com-

putes changes ∆Oi to Q(Fi) such that Q(Fi ⊕ Mi) = Q(Fi) ⊕
∆Oi. This is often more efficient than recomputing Q(Fi ⊕Mi)
starting from scratch, since in practice Mi is often small. Better

still, the computation may be bounded: its cost can be expressed as

a function in |Mi| + |∆Oi|, i.e., the size of changes in the input

and output, instead of |Fi|, no matter how big Fi is [12, 28].

Parallelization. We use (BSP) (Bulk Synchronous Parallel model

[32]). Given a query Q ∈ Q at master P0, GRAPE answers Q in

the partitioned graph G. It posts the same Q to all the workers, and

computes Q(G) in three phases as follows, as shown in Fig. 1.

(1) Partial evaluation (PEval). In the first superstep, upon re-

ceiving query Q, each worker Pi applies function PEval to its

local fragment Fi, to compute partial results Q(Fi), in parallel

(i ∈ [1,m]). After Q(Fi) is computed, PEval generates a mes-

sage at each worker Pi and sends it to master P0. The message is

simply the set Ci.x̄ of update parameters at fragment Fi.

For each i ∈ [1,m], master P0 maintains update parameters

Ci.x̄. It deduces a message Mi to worker Pi based on the following

message grouping policy. (a) For each status variable x ∈ Ci.x̄, it

collects the group Sx of values for x from all messages, and com-

putes xaggr = faggr(Sx) by applying the aggregate function faggr.

(b) Message Mi includes only those xaggr’s such that xaggr 6= x,

i.e., only those changed values of the update parameters at Fi.

(2) Incremental computation (IncEval). GRAPE iterates the fol-

lowing supersteps until it terminates. Following BSP, each super-



Input: Fi(Vi, Ei, Li), source vertex s

Output: Q(Fi) consisting of current dist(s, v) for all v ∈ Vi

Declaration: /*candidate set Ci is Fi.O*/

for each node v ∈ Vi, an integer variable dist(s, v);

message Mi := {dist(s, v) | v ∈ Fi.O};

aggregate function faggr = min(dist(s, v));

/*sequential algorithm for SSSP (pseudo-code)*/

1. initialize priority queue Que;

2. dist(s, s) := 0;

3. for each v in Vi do

4. if v! = s then

5. dist(s, v) := ∞;

6. Que.addOrAdjust(s, dist(s, s));

7. while Que is not empty do

8. u := Que.pop() // pop vertex with minimal distance

9. for each child v of u do // only v that is still in Que
10. alt := dist(s, u) + Li(u, v);

11. if alt < dist(s, v) then

12. dist(s, v) := alt;

13. Que.addOrAdjust(v, dist(s, v));

14. Q(Fi) := {dist(s, v) | v ∈ Vi}

Figure 2: Parallel SSSP: Partial evaluation PEval

step starts after the master P0 receives messages (possibly empty)

from all workers Pi for i ∈ [1,m]. A superstep has two steps itself,

one at P0 and the other at the workers.

(a) Master P0 routes (nonempty) messages from the last super-

step to workers, if there exists any.

(b) Upon receiving message Mi, worker Pi incrementally com-

putes Q(Fi ⊕Mi) by applying IncEval, and by treating Mi

as updates to Ci.x̄, in parallel for i ∈ [1,m].

At the end of the process of IncEval, worker Pi sends a message

to P0 that encodes updated values of Ci.x̄, if any. Upon receiving

messages from all workers, master P0 deduces message Mi to each

worker Pi following the message grouping policy given above; it

sends message Mi to worker Pi in the next superstep.

(3) Termination (Assemble). At each superstep, master P0 checks

whether for all i ∈ [1,m], Pi is inactive, i.e., Pi is done with its lo-

cal computation, and there exists no more change to the update pa-

rameters of Fi. If so, GRAPE pulls partial results from all workers,

and applies Assemble to group them together and get the final re-

sult at P0, denoted by ρ(Q,G). It returns ρ(Q,G) and terminates.

Example 1: We show how GRAPE parallelizes the computation

of Single Source Shortest Path (SSSP), a common graph computa-

tion problem. Consider a directed graph G = (V,E, L) in which

for each edge e, L(e) is a positive number. The length of a path

(v0, . . . , vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For a

pair (s, v) of nodes, denote by dist(s, v) the distance from s to v,

i.e., the length of a shortest path from s to v. Given graph G and a

node s in V , SSSP computes dist(s, v) for all v ∈ V .

Under edge-cut partition [9], GRAPE takes the set Fi.O of “bor-

der nodes” as Ci at each Pi (with edges across distinct fragments).

The PIE program for SSSP consists of (1) our familiar Dijkstra’s

algorithm for SSSP [15] as PEval, (2) a sequential incremental al-

gorithm of [27] as IncEval, and (3) a straightforward Assemble.

(1) PEval. As shown in Fig. 2, PEval (lines 1-14) is verbally

identical to Dijsktra’s algorithm [15]. One only needs to declare

(a) status variable as an integer variable dist(s, v) for each node

v, initially ∞ (except dist(s, s) = 0); (b) update parameters as

Ci.x̄ = {dist(s, v) | v ∈ Fi.O}, i.e., the status variables associ-

ated with nodes in Fi.O at fragment Fi; and (c) min as an aggregate

function faggr. If there are multiple values for the same dist(s, v),
the smallest value is taken by the order on positive numbers.

At the end of its process, PEval sends Ci.x̄ to master P0. At

P0, GRAPE maintains dist(s, v) for all v ∈ F .O = F .I . Upon

receiving messages from all workers, it takes the smallest value for

Input: Fi(Vi, Ei, Li), partial result Q(Fi), message Mi

Output: Q(Fi ⊕ Mi)

Declaration: message Mi = {dist(s, v) | v ∈ Fi.O, dist(s, v) decreased};

1. initialize priority queue Que;

2. for each dist(s, v) in Mi do

3. Que.addOrAdjust(v, dist(s, v));

4. while Que is not empty do

5. u := Que.pop() /* pop vertex with minimum distance*/

6. for each children v of u do

7. alt := dist(s, u) + Li(u, v);

8. if alt < dist(s, v) then

9. dist(s, v) := alt;

10. Que.addOrAdjust(v, dist(s, v));

11. Q(Fi) := {dist(s, v) | v ∈ Vi}

Figure 3: Parallel SSSP: Incremental evaluation IncEval

each dist(s, v). It finds those variables with smaller dist(s, v) for

v ∈ Fj .O, groups them into message Mj , and sends Mj to Pj .

(2) IncEval. We give IncEval in Fig. 3. It is the sequential in-

cremental algorithm for SSSP in [28] that is mildly revised to

deal with changed dist(s, v) for v in Fi.I (deduced by leverag-

ing F .I = F .O). Using a queue Que, it starts with changes in

Mi, propagates the changes to affected area, and updates the dis-

tances (see [28]). The partial result now consists of the revised

distances (line 11). At the end of the process, it sends to master P0

the updated values of those status variables in Ci.x̄, as in PEval. It

applies the aggregate function min to resolve conflicts.

Following [28], one can show that IncEval is bounded: its cost

is determined by the sizes of “updates” |Mi| and the changes to the

output. This reduces the cost of iterative computation of SSSP.

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n] Q(Fi), the union of

the shortest distance for each node in each Fi.

The process converges at correct Q(G). Updates to Ci.x̄ are

“monotonic”: the value of dist(s, v) for each node v is computed

from the active domain of G and does not increase. Moreover,

dist(s, v) is the shortest distance from s to v as warranted by the

sequential algorithms [15, 28] (PEval and IncEval). ✷

Fixpoint. The GRAPE parallelization of the PIE program can be

modeled as a simultaneous fixpoint operator φ(R1, . . . , Rm) de-

fined on m fragments. It starts with PEval for partial evaluation,

and conducts incremental computation by taking with IncEval as

the intermediate consequence operator, as follows:

R
0
i = PEval(Q,F

0
i [x̄i]),

R
r+1
i = IncEval(Q,R

r
i , F

r
i [x̄i],Mi),

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial results

in step r at worker Pi, fragment F 0
i = Fi, F

r
i [x̄i] is fragment Fi at

the end of superstep r carrying update parameters Ci.x̄, and Mi is

a message indicating changes to Ci.x̄. More specifically, (1) in the

first superstep, PEval computes partial answers R0
i (i ∈ [1,m]).

(2) At step r + 1, the partial answers Rr+1
i are incrementally up-

dated by IncEval, taking Q, Rr
i and message Mi as input. (3) The

computation proceeds until R
r0+1
i = R

r0
i at a fixpoint r0 for all

i ∈ [1,m]. At this point function Assemble is invoked to combine

all partial answers R
r0
i and get the final answer ρ(Q,G).

Convergence. The correctness of the fixpoint computation is char-

acterized as follows. Given a graph computation problem Q, (a) the

sequential algorithm PEval for Q is correct if for all queries Q ∈ Q
and graphs G, it terminates and returns Q(G); (b) the sequential in-

cremental algorithm IncEval for Q is correct if it correctly updates

old output Q(G) to Q(G⊕M), by computing the changes ∆O to

be applied to Q(G), for changes (messages) M to update param-

eters; (c) Assemble is correct for Q w.r.t. partition strategy P if it

correctly computes Q(G) by assembling the partial answers from

all workers, when GRAPE with PEval, IncEval and P terminates.



We say that GRAPE correctly parallelizes a PIE program ρ with

partition strategy P if for all Q ∈ Q and graphs G, GRAPE guar-

antees to reach a fixpoint such that ρ(Q,G) = Q(G).

It is shown [14] that under BSP, GRAPE correctly parallelizes a

PIE program ρ for a graph computation problem Q with any par-

tition strategy P if (a) PEval and IncEval of ρ are correct sequen-

tial algorithms for Q, and (b) Assemble correctly combines par-

tial results, and (c) PEval and IncEval satisfy a monotonic condi-

tion. The condition is as follows: for all status variables x ∈ Ci.x̄,

i ∈ [1,m], (a) the values of x are from a finite set computed from

the active domain of G and (b) there exists a partial order px on the

values of x such that IncEval updates x in the order of px. That is,

x draws values from a finite domain (condition (a) above), and x is

updated “monotonically” following px (condition (b)).

Simulating other models. The simple parallel model of GRAPE

does not come with a price of degradation in the functionality. Fol-

lowing [33], we say that parallel model M1 can optimally simulate

model M2 if there is a compilation algorithm that transforms any

program with cost C on M2 to a program with cost O(C) on M1.

As shown in [14], GRAPE optimally simulates parallel mod-

els MapReduce [10], BSP [32] and PRAM (Parallel Random Ac-

cess Machine) [33]. That is, all algorithms in these models with

n workers can be simulated by GRAPE using n processors with

the same number of supersteps and the same complexity. (2) We

have shown that the simulation result above holds in the message-

passing model described above, referred to as the designated mes-

sage model in [14]. Hence, algorithms developed for graph systems

based on MapReduce or BSP, e.g., Pregel, GraphLab and Blogel,

can be migrated to GRAPE without extra complexity.

Features. GRAPE has the following unique features.

(1) As shown in Fig. 4, to program with GRAPE, one only needs to

provide a PIE program in the “plug” panel of GRAPE, which con-

sists of (existing) sequential algorithms with minor changes. Given

a partition strategy P , a graph G, a query Q and the number m of

processors in the “play” panel, GRAPE parallelizes the algorithms.

GRAPE aims to help users develop parallel programs, especially

those who are more familiar with conventional sequential program-

ming. This said, programming with GRAPE still requires to de-

clare update parameters and design an aggregate function.

(2) Under a monotone condition, GRAPE parallelization guaran-

tees to converge at the correct answer as long as the sequential al-

gorithms are correct. This works regardless of partitioning strategy

used, not limited to edge-cut and vertex-cut. Nonetheless, different

strategies may yield partitions with various degrees of skewness

and stragglers, which have an impact on the performance.

(3) GRAPE optimally simulates MapReduce, BSP and PRAM.

(4) GRAPE inherits existing optimization techniques developed for

sequential graph algorithms, since it executes sequential algorithms

on graph fragments, which are graphs themselves.

(5) GRAPE reduces the costs of iterative graph computations by

using IncEval, to minimize unnecessary recomputations. While the

speedup is more evident when IncEval is bounded [28], localizable

or relatively bounded [11], these properties are not necessary.

There have been methods for incrementalizing graph algorithms,

to get incremental algorithms from their batch counterparts [7].

3. PROGRAMMING WITH GRAPE
We next outline PIE programs for graph pattern matching (Sim),

connectivity (CC) and collaborative filtering (CF), under edge-cut.

PIE programs under vertex-cut can be developed similarly.

Figure 4: Programming Interface of GRAPE

Graph simulation (Sim). A graph pattern is a graph Q =
(VQ, EQ, LQ), in which (a) VQ is a set of query nodes, (b) EQ is a

set of query edges, and (c) each node u in VQ carries a label LQ(u).
A graph G matches a pattern Q via simulation if there is a binary

relation R ⊆ VQ × V such that (a) for each query node u ∈ VQ,

there exists a node v ∈ V such that (u, v) ∈ R, and (b) for each

pair (u, v) ∈ R, LQ(u) = L(v), and for each query edge (u, u′) in

EQ, there exists an edge (v, v′) in graph G such that (u′, v′) ∈ R.

It is known that if G matches Q, then there exists a unique max-

imum relation [20], referred to as Q(G). If G does not match Q,

Q(G) is the empty set. Given a directed graph G and a pattern Q,

graph simulation is to compute the maximum relation Q(G).
We show how GRAPE parallelizes graph simulation.

(1) PEval. GRAPE takes the sequential simulation algorithm of

[20] as PEval to compute Q(Fi) in parallel. PEval declares a

Boolean status variable x(u,v) for each node u in VQ and each node

v in fragment Fi, indicating whether v matches u, initialized true.

It takes Fi.I as candidate set Ci. For each node u ∈ VQ, PEval

computes a set sim(u) of candidate matches v in Fi, and iteratively

removes from sim(u) those nodes that violate the simulation con-

dition (see [20] for details). At the end of the process, PEval sends

Ci.x̄ = {x(u,v) | u ∈ VQ, v ∈ Fi.I} to master P0.

At master P0, GRAPE maintains x(u,v) for all v ∈ F .I . Upon

receiving messages from all workers, it changes x(u,v) to false if it

is false in one of the messages. This is specified by min as faggr,

taking the order false ≺ true. GRAPE finds those variables that

become false, groups them into messages Mj , and sends Mj to Pj .

(2) IncEval is the sequential incremental graph simulation algo-

rithm of [12] in response to edge deletions. If x(u,v) is changed

to false by message Mi, it is treated as deletion of “cross edges” to

v ∈ Fi.O. It starts with changed status variables in Mi, propa-

gates the changes to affected area, and removes from sim matches

that become invalid (see [12] for details). The partial result is now

the revised sim relation. At the end of the process, IncEval sends

to P0 updated values of status variables in Ci.x̄, as in PEval.

IncEval is semi-bounded [12]: its cost is decided by the sizes

of “updates” |Mi| and changes to the affected area necessarily

checked by all incremental algorithms for Sim, not by |Fi|.

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n] Q(Fi), the union of

all partial matches, i.e., relation sim at each fragment Fi.

(4) Correctness is warranted by the convergence condition of

GRAPE, as the sequential algorithms [12,20] (PEval and IncEval)



are correct, and updates to Ci.x̄ are monotonic: x(u,v) is initially

true for each border node v, and is changed at most once to false.

Graph connectivity (CC). Given an undirected graph G, CC com-

putes all connected components of G, referred to as CCs.

(1) PEval declares an integer variable v.cid for each node v in frag-

ment Fi, initialized as its node id. It uses a standard sequential

traversal (e.g., DFS) to compute the local CCs of Fi and determines

v.cid for each v ∈ Fi. For each local CC C, (a) PEval creates a

“root” node vc carrying the minimum node id in C as vc.cid, and

(b) links all the nodes in C to vc, and sets their cid as vc.cid. These

can be completed in one pass of the edges of Fi via DFS. At the

end of process, PEval sends {v.cid | v ∈ Fi.I} to master P0.

At master P0, GRAPE maintains v.cid for each all v ∈ F .I .

It updates v.cid by taking the smallest cid if multiple cids are re-

ceived, by taking min as faggr in PEval. It groups the border nodes

with updated cids into messages Mj , and sends Mj to Pj .

(2) IncEval incrementally updates the cids of the nodes in Fi upon

receiving Mi. The message Mi sent to Pi consists of v.cid with

updated (smaller) values of its border nodes v. For each v in Mi,

IncEval (a) finds the root vc of v, and (b) for vc and all the border

nodes linked to it, directly changes their cids to v.cid.

Note that IncEval is bounded: it takes O(|Mi|) time to identify

the root nodes, and O(|AFF|) time to update cids by following the

direct links from the root nodes, where AFF consists of only those

nodes with their cid changed, independent of |Fi|.

(3) Assemble first updates the cid of each node to the cid of its

linked root node. It then merges all the nodes having the same cids

in a single bucket, and returns all buckets as CCs.

(4) Correctness. It is easy to see that the process terminates since

the cids of the nodes are monotonically decreasing by aggregate

function faggr until no changes can be made. Moreover, it correctly

merges two local CCs by propagating smaller component ids.

Collaborative filtering (CF). CF takes as input a bipartite graph

G that includes users U and products P , and a set of weighted

edges E ⊆ U × P [23]. (1) Each user u ∈ U (resp. product

p ∈ P ) carries latent factor vector u.f (resp. p.f ). (2) Each edge

e = (u, p) in E carries a weight r(e), estimated as u.fT ∗ p.f

(∅ for “unknown”) that encodes a rating from user u to product p.

The training set ET refers to edge set {e | r(e) 6= ∅, e ∈ E}, i.e.,

all the known ratings. Given these, CF computes the missing fac-

tor vectors u.f and p.f to minimize an error function ǫ(f,ET ) =

min
∑

((u,p)∈ET )(r(u, p) − u.fT p.f)2 + λ(‖u.f‖2 + ‖p.f‖2).
This is typically carried out by the stochastic gradient descent

(SGD) algorithm [23], which iteratively (1) predicts error ǫ(u, p) =
r(u, p) − u.fT ∗ p.f , for each e = (u, p) ∈ ET , and (2) updates

u.f and p.f accordingly to minimize ǫ(f,ET ).

GRAPE parallelizes CF by adopting SGD [23] as PEval, and the

incremental algorithm ISGD of [34] as IncEval, using master P0 to

synchronize the shared factor vectors u.f and p.f .

(1) PEval. It sets Ci = Fi.I and declares status variable v.x =
(v.f, t) for v ∈ Ci, where v.f is the factor vector of v (initially ∅),

and t bookkeeps a timestamp at which v.f is lastly updated. PEval

is essentially the sequential SGD of [23]. It processes a “mini-

batch” of training examples independently of others, to compute

prediction error ǫ(u, p), and updates factor vectors f by a magni-

tude proportional to γ in the opposite direction of the gradient as:

u.f
t = u.f

t−1 + γ(ǫ(u, p) ∗ v.f t−1 − λ ∗ u.f t−1); (1)

p.f
t = p.f

t−1 + γ(ǫ(u, p) ∗ u.f t−1 − λ ∗ p.f t−1). (2)

At the end of its process, PEval sends messages Mi that consists

of updated v.x for each v ∈ Ci = Fi.O to master P0.

At P0, GRAPE maintains v.x = (v.f, t) for all border nodes

v ∈ F .I = F .O. Upon receiving updated values (v.f ′, t′) with

t′ > t, it changes v.f to v.f ′, i.e., it takes max as aggregate func-

tion faggr on timestamps. GRAPE then groups the updated vectors

into messages Mj , and sends Mj to Pj as usual.

(2) IncEval is the incremental algorithm ISGD of [34]. Upon re-

ceiving message Mi at worker Pi, it computes Fi ⊕Mi by treating

Mj as updates to factor vectors of nodes in Fi.I , and only modifies

affected factor vectors as in PEval based solely on new observa-

tions. It sends the updated vectors in Ci as in PEval.

(3) Assemble simply takes the union of all the factor vectors of

nodes from the workers (to be used for recommendation).

(4) Correctness. The convergence condition in a sequential SGD

algorithm [23, 34] is specified either as a predetermined maximum

number of supersteps (e.g.,GraphLab), or when ǫ(f,ET ) is smaller

than a threshold. In either case, GRAPE correctly infers CF models

guaranteed by the correctness of SGD and ISGD, and by monotonic

updates with the latest changes as in sequential SGD algorithms.

4. PERFORMANCE STUDY
We have implemented GRAPE [13]. We next empirically evalu-

ate its efficiency and communication cost, using real-life and syn-

thetic graphs. We compared the performance of GRAPE with three

systems: Giraph (an open-source version of Pregel), GraphLab,

and Blogel (the fastest block-centric system we are aware of).

Experimental setting. We used five real-life graphs of different

types, including (1) traffic [5], an (undirected) US road network

with 23 million nodes (locations) and 58 million edges; (2) UKWeb

[6], a large Web graph with 133 million nodes and 5 billion edges;

(3) Friendster [2], a social network with 65 million users and 1.8
billion relations; (4) DBpedia [1], a knowledge base with 5 mil-

lion entities and 54 million edges, and in total 411 distinct labels;

and (5) movieLens [4], a dense recommendation network (bipartite

graph) with 20 million movie ratings (as weighted edges) between

a set of 138000 users and 27000 movies. To test Sim with unla-

beled Friendster, we generated 100 random node labels. We also

randomly assigned weights to all graphs for testing SSSP.

Queries. We randomly generated the following queries. (a) We

sampled 10 source nodes in each graph, and constructed an SSSP

query for each node. (b) We generated 20 pattern queries for Sim,

controlled by |Q| = (|VQ|, |EQ|), the number of nodes and edges,

respectively, using labels drawn from the graphs.

We remark that GRAPE can process query load without reload-

ing the graph, but GraphLab, Giraph and Blogel need to reload the

graph each time a query is issued, which is costly over large graphs.

Algorithms. We implemented the PIE programs for those query

classes given in Sections 2 and 3. We used XtraPuLP [30] as the

default graph partition strategy. We adopted basic sequential algo-

rithms for all the systems without further optimization.

We also implemented algorithms for the queries for Giraph,

GraphLab and Blogel. We used “default” code provided by the

systems when available, and made our best efforts to develop “op-

timal” algorithms otherwise (see [14] for more details). We imple-

mented synchronized algorithms for both GraphLab and Giraph

for the ease of comparison. We expect the observed relative perfor-

mance trends to hold on other similar graph systems.

We deployed the systems on a cluster of up to 12 machines, each

with 16 threads of Intel Xeon 2.2GHz, and 128G memory. On

each thread, a worker is deployed (thus in total 192 workers). Each

experiment was run 5 times and the average is reported here.



Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency of GRAPE by

varying the number n of workers used, from 64 to 192. For SSSP

and CC, we experimented with UKWeb, traffic and Friendster. For

Sim, we used over Friendster and DBpedia. We used movieLens

for CF as its application in movie recommendation.

(1) SSSP. Figures 5a-5c report the performance of the four systems

for SSSP over traffic, UKWeb and Friendster, respectively. From

the results we can see the following.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 14842,

3992 and 756 times, respectively, over traffic with 192 workers

(Fig 5a). In the same setting, it is 556, 102 and 36 times faster over

UKWeb (Fig. 5b), and 18, 1.7 and 4.6 times faster over Friendster

(Fig. 5c). These tell us that by simply parallelizing sequential algo-

rithms without further optimization, GRAPE already outperforms

the state-of-the-art systems in response time.

The improvement of GRAPE over all the systems on traffic is

much larger than on Friendster and UKWeb. (i) For Giraph and

GraphLab, this is because synchronous vertex-centric algorithms

take more supersteps to converge on graphs with larger diameters,

e.g., traffic. With 192 workers, Giraph take 10749 supersteps over

traffic and 161 over UKWeb; similarly for GraphLab. In contrast,

GRAPE is not vertex-centric and it takes 31 supersteps on traffic

and 24 on UKWeb. (ii) Blogel also takes more (1690) supersteps

over traffic than over UKWeb (42) and Friendster (23). It gener-

ates more blocks over traffic (with larger diameter) than UKWeb

and Friendster. Since Blogel treats blocks as vertices, the benefit

of parallelism is degraded with more blocks. (iii) GRAPE reduces

redundant computation by the use of incremental IncEval.

(b) In all cases, GRAPE takes less time when n increases. On av-

erage, it is 1.4, 2.3 and 1.5 times faster for n from 64 to 192 over

traffic, UKWeb and Friendster, respectively. (i) Compared with

the results in [14] using less workers, this improvement degrades a

bit. This is mainly because the larger number of fragments leads to

more communication overhead. On the other hand, such impact is

significantly mitigated by IncEval that only ships changed update

parameters. (ii) In contrast, Blogel does not demonstrate such con-

sistency in scalability. It takes more time on traffic when n is larger.

When n varies from 160 to 192, it takes longer over Friendster. Its

communication cost dominates the parallel cost as n grows, “can-

celing out” the benefit of parallelism. (iii) GRAPE has scalability

comparable to GraphLab over Friendster and scales better over

UKWeb and traffic. Giraph has better improvement with larger n,

but with constantly higher cost (see (a)) than GRAPE.

(c) GRAPE significantly reduces supersteps. It takes on average

22 supersteps, while Giraph, GraphLab and Blogel take 3647,

3647 and 585 supersteps, respectively. This is because GRAPE

runs sequential algorithms over fragmented graphs with cross-

fragment communication only when necessary, and IncEval ships

only changes to status variables. In contrast, Giraph, GraphLab

and Blogel pass vertex-vertex (vertex-block) messages.

(2) CC. Figures 5d-5f report the performance for CC, and tell us the

following. (a) Both GRAPE and Blogel substantially outperform

Giraph and GraphLab. For instance, when n = 192, GRAPE is on

average 12094 and 1329 times faster than Giraph and GraphLab,

respectively. (b) Blogel is faster than GRAPE in some cases, e.g.,

3.5s vs. 17.9s over UKWeb when n = 192. This is because Blogel

embeds the computation of CC in its graph partition phase as pre-

computation, while this graph partition cost (on average 357 sec-

onds using its built-in Voronoi partition) is not included in its re-

sponse time. In other words, without taking advantage of precom-

putation, the performance of GRAPE is already comparable to the

near “optimal” case reported by Blogel.

(3) Sim. Fixing |Q| = (6, 10), i.e., patterns Q with 6 nodes

and 10 edges, we evaluated graph simulation over DBpedia and

Friendster. As shown in Figures 5g-5h, (a) GRAPE consistently

outperforms Giraph, GraphLab and Blogel over all queries. It is

109, 8.3 and 45.2 times faster over Friendster, and 136.7, 5.8
and 20.8 times faster over DBpedia on average, respectively, when

n = 192. (b) GRAPE scales better with the number n of work-

ers than the others. (c) GRAPE takes at most 21 supersteps, while

Giraph, GraphLab and Blogel take 38, 38 and 40 supersteps, re-

spectively. This empirically validates the convergence guarantee of

GRAPE under monotonic status-variable updates and its positive

effect on reducing parallel and communication cost.

(4) Collaborative filtering (CF). We used movieLens [4] with a

training set |ET | = 90%|E|. We compared GRAPE with the

built-in CF code in GraphLab, and with CF programs implemented

for Giraph and Blogel. Note that CF favors “vertex-centric” pro-

gramming since each node only needs to exchange data with their

neighbors, as indicated by that GraphLab and Giraph outperform

Blogel. Nonetheless, Figure 5i shows that GRAPE is on average

4.1, 2.6 and 12.4 times faster than Giraph, GraphLab and Blogel,

respectively. Moreover, it scales well with n.

(5) Scale-up of GRAPE. The speed-up of a system may degrade

over more workers [26]. We thus evaluate the scale-up of GRAPE,

which measures the ability to keep the same performance when

both the size of graph G (denoted as (|V |, |E|)) and the number

n of workers increase proportionally. We varied n from 64 to 192,

and for each n, deployed GRAPE over a synthetic graph. The graph

size varies from (50M, 500M) to (250M, 2.5B) (denoted as G5),

with fixed ratio between edge number and node number and pro-

portional to n . The scale up at e.g., (128, G3) is the ratio of the

time using 64 workers over G1 to its counterpart using 128 work-

ers over G3. As shown in Fig. 5j, GRAPE preserves a reasonable

scale-up (close to linear scale-up, the optimal scale-up).

Compared to single-threaded computation, GRAPE incurs extra

communication overhead, just like other parallel systems. How-

ever, large graphs such as UKWeb are beyond the capacity of a

single machine, and parallel computation is a must for such graphs.

Exp-2: Communication cost. The communication cost (in bytes)

reported by Giraph, GraphLab and Blogel depends on their own

implementation of message blocks and protocols [19]. For a fair

comparison, we tracked the total bytes sent by each machine during

a run, by monitoring the system file /proc/net/dev, following [19].

In the same setting as Exp-1, Figures 5l-5t report the communi-

cation costs of the systems. We observe that Giraph and GraphLab

ship roughly the same amount of messages. GRAPE ships much

less data than Giraph and GraphLab. On datasets excluding traffic,

with 192 workers, it ships on average 0.095%, 0.62%, 0.3%, and

26.2% of the data shipped for SSSP, Sim, CC and CF by Giraph

(GraphLab), respectively, and reduces cost up to 6 orders of magni-

tude on traffic! While it ships more data than Blogel for CC due to

the precomputation of Blogel, it only ships 1.9%, 6.2% and 4.8%
of the data shipped by Blogel for SSSP, Sim and CF, respectively.

(1) SSSP. Figures 5k-5m show that both GRAPE and Blogel incur

communication costs that are orders of magnitudes less than those

of GraphLab and Giraph. This is because vertex-centric program-

ming incurs a large number of inter-vertex messages. Both block-

centric programs (Blogel) and PIE programs (GRAPE) effectively
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(g) Varying n: Sim (Friendster)
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Figure 5: Efficiency and communication cost of GRAPE

reduce unnecessary messages, and trigger inter-block messages

only when necessary. Moreover, GRAPE ships 0.9% and 10% of

the data shipped by Blogel over UKWeb and Friendster, respec-

tively. Indeed, GRAPE ships only updated values. This signifi-

cantly reduces the amount of messages that need to be shipped.

(2) CC. Figures 5n-5p show similar improvement of GRAPE over

GraphLab and Giraph. It ships on average 0.17% of the data

shipped by Giraph and GraphLab. As Blogel precomputes CC

(see Exp-1(2)), it ships little data. This said, GRAPE is not far

worse than the near “optimal” case of Blogel, sometimes better.

(3) Sim. Figures 5q and 5r report the communication cost for

graph simulation over Friendster and DBpedia, respectively. One

can see that GRAPE ships substantially less data, e.g., on average

0.9%, 0.1% and 4.9% of the data shipped by Giraph, GraphLab

and Blogel, respectively. Observe that the communication cost of

Blogel is much higher than that of GRAPE, even though it adopts

inter-block communication. This shows that the extension of

vertex-centric to block-centric by Blogel has limited improvement

for more complex queries. GRAPE works better than these systems

by employing incremental IncEval to reduce excessive messages.

(4) CF. Figure 5s reports the result for CF over movieLens. On

average, GRAPE ships 5.6%, 43.3% and 3.2% of the data shipped

by Giraph, GraphLab and Blogel, respectively.

(5) Communication cost (synthetic). In the same setting as Fig-

ure 5j, Figure 5t reports the communication cost for SSSP over

large synthetic graphs. It takes higher cost over larger graphs and

more workers due to increased “border nodes”, as expected. The

results for other algorithms are consistent and hence not shown.

Summary. We find the following. (1) Over traffic [5], GRAPE

is on average 4, 3 and 2 orders of magnitude faster than Giraph,

GraphLab and Blogel for SSSP, respectively, with 192 processors,



due to the large diameter of the graph. On other real-life graphs ex-

cluding traffic, GRAPE is on average 484, 36 and 15 times faster

than the three systems for SSSP, 151, 6.8 and 16 times for Sim,

and 4.6, 2.6 and 12.4 times for CF, respectively, when the number

of workers ranges from 64 to 192. For CC, it is 1377 and 212 times

faster than Giraph and GraphLab, respectively, and is comparable

to the “optimal” case of Blogel. (2) In the same setting (excluding

traffic), GRAPE ships on average 0.07%, 0.12% and 1.7% of the

data shipped across machines by Giraph, GraphLab and Blogel for

SSSP, 0.89%, 0.14% and 4.9% for Sim, 5.6%, 43.3% and 3.2%
for CF, respectively. When traffic is also included, GRAPE out-

performs these systems by up to 6 orders of magnitude in commu-

nication cost for SSSP. For CC, it incurs 0.23% and 0.3% of data

shipment of Giraph and GraphLab, and is comparable with “op-

timized” Blogel. (3) GRAPE demonstrates good scale-up when

using more workers, since its incremental computation mitigates

the impact of more border nodes and fragments. Moreover, incre-

mental steps effectively reduce unnecessary recomputation.

5. CONCLUSION
The main objective of GRAPE is to simplify parallel program-

ming for graph computations, from “think parallel” to “think se-

quential”. For users who are used to conventional programming,

they can start with (existing) sequential algorithms, add declara-

tions for handling messages, and let GRAPE parallelize the compu-

tation across a cluster of machines. Moreover, GRAPE guarantees

to converge at correct answers under a general condition as long

as it is provided with correct sequential algorithms, and it inherits

optimization strategies developed for sequential graph algorithms.

As proof of concept (PoC), we have deployed and evaluated

GRAPE at three companies. At a large online payment company,

GRAPE serves as the graph computing infrastructure supporting

its financial risk control system. The company employs graphs

in which vertices denote customers, and edges represent transac-

tions and associations with other customers; it needs to evaluate

the customers and assign a credit. The company used to deploy its

system on Neo4j + Hive + Spark. However, none of the systems

can process the tasks alone; the workflow spans three systems and

takes 15 minutes on average for a single query. In contrast, GRAPE

provides a unified solution for this scenario. It supports real-time

ad-hoc queries without the need to couple with other systems. It

improves the performance of financial risk analyses: it is 9.0 times

faster in graph batch ingesting and streaming, 128.8 times faster in

association analysis, and is faster by up to 5 orders of magnitude in

batch processing of real-life business applications.

GRAPE works well for other applications. We have also carried

out PoC at a big-data service company and a telecommunication

service company. The results are consistent and very promising.

We are currently extending GRAPE to support a new parallel

model that adaptively switches between synchronous and asyn-

chronous models, to reduce stragglers and stale computations.
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