Technical Perspective: From Think Parallel
to Think Sequential

Zachary G. lves
University of Pennsylvania
zives@cis.upenn.edu

In recent years, the database and distributed sys-
tems communities have built a wide variety of run-
time systems and programming models for large-
scale computing over graphs. Such “big graph pro-
cessing systems” [1, 2, 4, 5, 7] o support highly scal-
able parallel execution of graph algorithms — e.g.,
computing shortest paths, graph centrality, connected
components, or perhaps even graph clusters. As de-
scribed in the excellent survey by Yan et al [6], most
big graph processing systems require the program-
mer to adopt a wertex-centric or block-centric pro-
gramming model. For the former, code only “sees”
the state at one vertex, receives messages from other
vertices, and can send messages to other vertices.
Under the latter, code manages a set of vertices
within a subgraph (“block”) and can communicate
with the code managing other blocks.

In “From think Parallel to Think Sequential,”
Fan and colleagues argue that vertex- and block-
centric programming models are not natural for pro-
grammers trained to think sequentially. Instead,
they argue that a more intuitive programming model
can be developed out of several very simple primi-
tives that can be composed to do incremental com-
putation (as has also been studied in more general
“big data” systems [4, 3]). The authors propose
four elegant building blocks: (1) a partial evalua-
tion function, (2) an incremental update handling
function, (3) mechanisms for updating and shar-
ing parameters in global fashion, and (4) an aggre-
gate function for when multiple workers are updat-
ing the same parameter. They build the GRAPE
GRAPH Engine system, which implements this pro-
gramming model, and they show that it provides
excellent performance for a variety of graph algo-
rithms.

The paper presents a compelling case that, at
least for certain classes of algorithms, the simple

primitives may be both more natural and more amenable

to optimization than standard vertex-centric ap-
proaches.

1. REFERENCES

[1] Yucheng Low, Joseph Gonzalez, Aapo Kyrola,
Danny Bickson, and Carlos Guestrin.
Graphlab: A distributed framework for
machine learning in the cloud. CoRR,
abs/1107.0922, 2011.

[2] Grzegorz Malewicz, Matthew H. Austern, Aart
J. C. Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a
system for large-scale graph processing. In
SIGMOD, pages 135-146, 2010.

[3] Svilen Mihaylov, Zachary G. Ives, and Sudipto
Guha. REX: Recursive, delta-based
data-centric computation. In PVLDB, 2012.

[4] Derek Gordon Murray, Frank McSherry,
Rebecca Isaacs, Michael Isard, Paul Barham,
and Martin Abadi. Naiad: a timely dataflow
system. In SOSP, pages 439-455, 2013.

[5] Reynold S Xin, Joseph E Gonzalez, Michael J
Franklin, and Ion Stoica. Graphx: A resilient
distributed graph system on spark. In First
International Workshop on Graph Data
Management Experiences and Systems, page 2.
ACM, 2013.

[6] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol
Deshpande. Big graph analytics platforms.
Foundations and Trends® in Databases,
7(1-2):1-195, 2017.

[7] Da Yan, James Cheng, Yi Lu, and Wilfred Ng.
Blogel: A block-centric framework for
distributed computation on real-world graphs.
Proceedings of the VLDB Endowment,
7(14):1981-1992, 2014.



