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In recent years, the database and distributed sys-
tems communities have built a wide variety of run-
time systems and programming models for large-
scale computing over graphs. Such “big graph pro-
cessing systems” [1, 2, 4, 5, 7] o support highly scal-
able parallel execution of graph algorithms — e.g.,
computing shortest paths, graph centrality, connected
components, or perhaps even graph clusters. As de-
scribed in the excellent survey by Yan et al [6], most
big graph processing systems require the program-
mer to adopt a wertex-centric or block-centric pro-
gramming model. For the former, code only “sees”
the state at one vertex, receives messages from other
vertices, and can send messages to other vertices.
Under the latter, code manages a set of vertices
within a subgraph (“block”) and can communicate
with the code managing other blocks.

In “From think Parallel to Think Sequential,”
Fan and colleagues argue that vertex- and block-
centric programming models are not natural for pro-
grammers trained to think sequentially. Instead,
they argue that a more intuitive programming model
can be developed out of several very simple primi-
tives that can be composed to do incremental com-
putation (as has also been studied in more general
“big data” systems [4, 3]). The authors propose
four elegant building blocks: (1) a partial evalua-
tion function, (2) an incremental update handling
function, (3) mechanisms for updating and shar-
ing parameters in global fashion, and (4) an aggre-
gate function for when multiple workers are updat-
ing the same parameter. They build the GRAPE
GRAPH Engine system, which implements this pro-
gramming model, and they show that it provides
excellent performance for a variety of graph algo-
rithms.

The paper presents a compelling case that, at
least for certain classes of algorithms, the simple

primitives may be both more natural and more amenable

to optimization than standard vertex-centric ap-
proaches.
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