A Relational Framework for Classifier Engineering

Benny Kimelfeld
Technion — Israel Institute of Technology
Haifa 32000, Israel .
bennyk@cs.technion.ac.il

ABSTRACT

In the design of analytical procedures and machine-learning
solutions, a critical and time-consuming task is that of fea-
ture engineering, for which various recipes and tooling ap-
proaches have been developed. We embark on the estab-
lishment of database foundations for feature engineering.
Specifically, we propose a formal framework for classifica-
tion in the context of a relational database. The goal of this
framework is to open the way to research and techniques
to assist developers with the task of feature engineering by
utilizing the database’s modeling and understanding of data
and queries, and by deploying the well studied principles
of database management. We demonstrate the usefulness
of the framework by formally defining key algorithmic chal-
lenges and presenting preliminary complexity results.

1. INTRODUCTION

A critical and time-consuming task in the development of
analytics and machine-learning solutions is that of feature
engineering [21,35]. Given its importance, recipes and tool-
ing have been developed for practitioners [1,18]. With the
advent of frameworks like SAS, Cloudera’s IBIS and Oracle’s
ORE, feature engineering is often carried out over relational
data. Thus, a pressing challenge is to understand how to
merge these analytics with traditional database management
techniques. To this end, we propose a relational framework
for classification—a simple and popular analytic task.

The task of feature engineering is that of generating in-
puts (or signals) from available data, in order to improve
the performance of the underlying model in solving a target
problem. This target problem is typically classification (pre-
dicting an unknown category of a given entity), or regression
(predicting the value of an unknown function on a given en-
tity). The model makes its prediction based on various prop-
erties, called features, of the given entity. We focus here on
parametric models, where the model has a pre-determined
structure with numerical parameters that are tuned by fit-
ting to training examples, a process termed learning.

This article is a minor revision of the work published
in PODS 2017, May 14-19, 2017, Raleigh, NC, USA,
(©2017 ACM. ISBN978-1-4503-4198-1/17/05...$15.00 DOI:
http://dx.doi.org/10.1145/3034786.3034797

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Christopher Ré
Stanford University
Stanford, CA 94305, USA
chrismre@cs.stanford.edu

Naturally, the choice of features has a major impact on the
resulting model. A suboptimal set of features may lead to
overfitting (where the learned model does not well generalize
beyond the training examples), or to underfitting (the model
is incapable of capturing the target function due to lack of
information or expressiveness) [18]. Another consideration
is that of execution cost, as costly features may result in
an impractical model [35]. There are also legal and moral
considerations in cases where decision makers are required to
practice fairness and lack of discrimination; there, a central
challenge is to select appropriate features [10,34, 36].

Our running example is a scenario where the security
branch of a credit-card company aims to make an educated
guess on whether an incoming transaction is a fraudulent
purchase (e.g., made on a stolen card). To make such a
guess, the company uses information available in its database,
such as whether there were similar transactions in the past,
whether the purchase is made in the same state of the owner’s
mailing address, or in the same country, the amount be-
ing paid, and so on. An employed engineer then selects a
machine-learning library and learns a classifier, which can
be trained based on past data on fraudulent activity.

The classifier is simply a function that maps a vector of
numbers into a yes/no decision; in turn, these numbers,
called features, encode relevant pieces of information (e.g.,
f =+41/—1 depending on whether or not the transaction is
in the country of the owner). The machine-learning library
typically tunes parameters (or weights) of the classifier by
fitting them to the examples. In our scenario, high quality
is crucial: false positives disrupt legitimate business, and
false negatives cause financial losses and customer distress.
So, the engineer produces additional features to consider
by phrasing different questions (feature queries) about the
transaction at stake, until she is satisfied with the results.
This activity is referred to as feature engineering.

Analysts typically spend the bulk of their time on feature
engineering [17,21,35]. This process includes trial and error,
and stepwise addition or removal of features [18]. Involving
the database semantics in feature engineering has the poten-
tial to automate some important tasks, and thereby assist
the engineer. For instance, the engineer may ask whether
some class of simple feature queries (e.g., select-project-join)
suffices to achieve good classification based on the training
data, or otherwise more expressiveness is needed. This mo-
tivates the separability problem that we later discuss. She
may also ask the complementary question, which is whether
the current set of feature queries is too detailed and allows
the model to overfit the examples and poorly generalize to

future transactions. A traditional way to measure overfit-
ting potential is via the Vapnik-Chervonenkis (VC') dimen-
sion [31]. The features of choice may have impact on the VC
dimension, and we later refer to the problem of determining
this impact as VC' dimensionality.

The engineer may also encounter the common technical
challenge where the machine-learning library fails due to in-
compatible data, as it requires the matrix of training data
to be of a full (column) degree. Partial degree (column de-
pendence) may be an artifact of the training examples; but
it may also be an inherent error in the feature design. As an
example, for US owners the features “payment is in the US,”
“payment is in the owner’s state,” and “payment is in a dif-
ferent US state” have an inherent linear dependence among
them: the first minus the second equals the third. We could
use the database to detect such problems. This leads to the
problem that we later refer to as identifiability.

Contribution

Our goal is to establish the first steps in a database theory
that embeds the automation of core tasks in feature selec-
tion. More precisely, our framework aims to open the way
to novel research and techniques for utilizing the database’s
understanding of raw data and queries, in order to funda-
mentally assist with the process of feature engineering.

The framework is based on an entity schema, which is
a relational schema with a distinguished relation symbol
that represents entities. A database instance over an entity
schema represents a collection of entities, along with addi-
tional (direct or indirect) knowledge about these entities. A
feature query selects entities with a certain property, and a
statistic is a sequence of feature queries. The central goal in
classification is to train and apply a classifier (or a classifier
model), which is a function that takes as input the statis-
tic of an entity (i.e., the vector obtained by applying each
feature query) and outputs a +1/—1 decision. In training a
classifier, we are given a set of entities labeled with +1/—1,
and produce a classifier from a predefined model class. A lin-
ear classifier, for example, is encoded as a vector of weights
over the features in the statistic. In our framework, the
collection of training examples is represented simply by an
instance over the entity schema, along with a labeling func-
tion that maps each entity to +1/—1.

For illustration, Figure 1(a) shows an entity schema S
where entities are transactions (identified by numbers), and
Figure 1(b) shows a statistic II over S with two feature
queries 71 and m2. Figure 2 shows the training workflow
in our framework: an instance I over S with a labeling of
the entities (transactions) is transformed into a (4+1/—1)-
matrix, with a feature row per entity, and the matrix is
used for building a classifier h. This classifier predicts the
labels in a new instance, as illustrated in Figure 3.

The features, as defined above, are based on boolean prop-
erties of the entities: if the entity satisfies the property (i.e.,
it is “selected”), then the feature value is +1, and other-
wise —1. Boolean features are highly important in practice,
and in fact, we are aware of quite a few deployments where
numerical values are translated into boolean ones (e.g., by
means of bucketing, or binning, numbers into intervals). The
more general case is that in which the feature query asso-
ciates a numerical value with each entity, and we discuss this
generalization as a future direction later on.

Our framework enables to formalize relevant computa-

tional problems, analyze their complexity, and ultimately
design algorithmic solutions. Here, we formally define three
computational problems that capture tasks in the construc-
tion and evaluation of features: separability—whether a per-
fect separator exists for a training set; VC' dimensionality—
computing the fundamental measure of the complexity of a
classifier class; and identifiability—testing for a statistical
property guaranteeing that the classifier model is uniquely
defined given enough data.

Our analysis focuses on linear classifiers and features de-
finable as conjunctive queries. Specifically, we show a tight
relationship between the computational complexity of our
problems and that of query containment (and equivalence):
it is necessary, and often sufficient, to solve containment in
order to solve our problems. In this article, we present our
complexity results on the separability problem. Additional
results and proofs on all three problems can be found in the
conference version of this article [22].

2. PRELIMINARIES

In this section we give the basic definitions and terminol-
ogy that we use throughout the article.

Relational Databases

Our relational terminology is as follows. A schema is a col-
lection of relation symbols. Each relation symbol R has an
associated arity k. We assume an infinite set Const of con-
stants. An instance I over a schema S associates with every
Ek-ary relation symbol R € S a finite subset of Const®. We
denote by R’ the relation that I associates with the relation
symbol R. The active domain of an instance I, denoted
adom(I), is the set of all the constants in Const that are
mentioned in the tuples of I. A fact over a schema S is
an expression of the form R(ci,...,ck), where R is a k-ary
relation symbol and ci,...,cr are constants. We say that
the fact R(ci1,...,ck) belongs to an instance I over S if R’
contains the tuple (c1,...,ck). For convenience, we view an
instance as the set of its facts. In particular, by f € I we
denote that f belongs to I.

COMMENT 2.1. While schema constraints are important
in our framework, they are excluded from the basic frame-
work for simplicity sake. Moreover, the complexity results
we give later on (Section 5) are oblivious to such constraints.
We further discuss constraints in Section 7. [

Let I and J be two instances over the same schema S. A
homomorphism from I to J is a mapping u : adom(I) —
adom(J) such that for every fact f € I we have p(f) € J;
here, u(f) is the fact that is obtained from f by replacing
each constant a with the constant p(a).

Queries

A query over a schema S is a function ¢ that is associated
with an arity k, and that maps every instance I over S into
a finite subset ¢(I) of Const®. A query ¢’ contains a query g,
in notation q C ¢/, if ¢(I) C ¢’(I) for all instances I over S.
If ¢ C ¢ and ¢’ C q then ¢ and ¢’ are said to be equivalent.
We have a special interest in unary queries ¢ (i.e., where
k = 1); then, by a slight abuse the notation, we view ¢(I)
as a set of constants a rather than a set of tuples (a).

We consider conjunctive queries without constants. For-
mally, a Conjunctive Query (CQ) over a schema S is a logical

Table 1: Main symbols

h hypothesis/classifier {—1,1}" — {—1,1}
H hypothesis class

Lin the class of linear classifiers
S relational/entity schema
1, Ns | entity relation (unary)
I, J | database instance
n’, n& | entity set of the instance T
e entity in ng
QL query language
CQ | the class of CQs (without constants)
T feature query (unary)
nl(e) | +1ife € n(I) and —1 if e ¢ 7(I)
I statistic (m1,...,mn)
A labeling function n§ — {—1,1}

formula g(x) of the form

HY[¢1(X7 y) JARERWAN ¢m(x, y)]

where x and y are disjoint sequences of variables and each
¢: is an atomic query over S (i.e., a formula that consists of
a single relation symbol and no logical operators) without
constants. Observe that in this article CQs do not contain
built-in relations such as x > y; we use this assumption in
our analysis. The atomic formula ¢; is called an atom of q.
We use the conventional notation

q(x) < ¢1(%,¥), , Im(%X,y)

to denote a CQ. The left side g(x) is called the head and
the right side ¢1(X,y), -, ¢m(x,y) is called the body. We
require each variable in the head to occur at least once in
the body. We may refer to a CQ by mentioning only its
head ¢(x) or even just q. We denote by CQ the class of CQs
(as defined here, i.e., without constants).

Let S be a schema, let ¢ be a CQ over S, and let I be an
instance over S. A homomorphism from ¢ to I is a mapping
from the variables of ¢ to adom(I), such that for every atom
¢ of g, the fact u(¢) belongs to I; here, pu(¢) is the fact
that is obtained from ¢ by replacing each variable z with
the constant u(z). The result of applying the CQ ¢(x) to
the instance [is the relation that consists of all the tuples
wu(x), where p is a homomorphism from ¢ to I and u(x) is
obtained from x by replacing every variable x; with p(z;).
We denote this relation by ¢(I).

Classifiers and Learning

In this work, a classifier is a function of the form
h:{-1,1}" = {-1,1}

where n is a natural number that we call the arity of h. A
hypothesis class is a (possibly infinite) family H of classifiers,
and a classifier in H is referred to as a hypothesis. We denote
by H,, the restriction of H to the n-ary hypotheses in H.
An n-ary training collection is a multiset T' of pairs (x,y)
where x € {—1,1}" and y € {—1,1}. We denote by T, the
class of all n-ary training collections. A cost function for a
hypothesis class H is a function of the form

¢t (Un (Hp x Ty)) — Rxo

where R is the set of nonnegative numbers. Given a train-
ing collection T and two hypotheses h1 and hs, the inequal-
ity ¢(h1,T) > c(he,T) implies that hy is preferred to hq
according to c. In the context of a fixed hypothesis class
H and a cost function ¢, learning a classifier is the task of
finding a hypothesis h € H,, that minimizes c(h,T), given
a training collection T € T,.

It is importnat to allow T" to be a multiset in order to en-
able the scoring function to account for the frequency (rather
than pure existence) of examples. For the scope of this ar-
ticle, though, being a multiset does not play any role, and
the reader may view T simply as a set.

We illustrate our definitions on the important class of lin-
ear classifiers. An n-ary linear classifier is parameterized
by a vector w = (wo, ..., w,) € R denoted by Aw, and
defined as follows for all a € {—1,1}".

1 ifa-w > wo;
Aw(a) & -
w(@) {—1 otherwise.

where w' = (w1,...,w,) and “” denotes the operation of
dot product. By Lin we denote the class of linear classifiers.
An example of a cost function is the least square cost that
is given by

BT S (o — w0 —9)°

(x,y)€T

for the arguments Ay € Lin, and T' € T,,.

More background on the basic theory of machine-learning
classifiers, as well as the relevant linear algebra discussed in
the next section, can be found in standard machine-learning
textbooks, such as Shalev-Shwartz and Ben-David [28].

Matrix independence. We denote by 0™ the vector of
n zeroes, and by 1™ the vector of n ones. Let M be an
n X m real matrix (consisting of n rows and m columns).
A linear column dependence in M is a vector w € R™ such
that w # 0™ and M -w = 0". A linear column dependence
w in M is an affine dependence in M if w-1™ = 0 (i.e.,
the components of w sum up to 0). If M does not have any
linear column dependence, then we say that M is linearly
column independent. Similarly, if M does not have any affine
column dependence, then we say that M is affinely column
independent. Note that linear independence implies affine
independence, but the other direction is not necessarily true.

3. FRAMEWORK

We now present our formal framework. A basic notion in
this framework is that of an entity schema, which is simply
an ordinary relational schema with a distinguished relation
symbol for representing entities. For simplicity, we assume
that an entity is represented by a single constant (an iden-
tifier), hence the corresponding relation is unary. Formally,
an entity schema is a pair (S, 7), where S is a schema and n
is a unary relation symbol in S. An instance over an entity
schema (S, n) is simply an instance over S. In the remainder
of this article all the schemas we consider are entity schemas.
So, to simplify the presentation we refer to the entity schema
(S, n) simply as S, and refer to n as 7s.

Let I be an instance over an entity schema S. An entity
of I is a constant a such that ns(a) € I. Hence, I rep-
resents a set of entities along with information about the
entities. This information is contained in the remaining re-

Txnlnfo
| | txn | card | country | state |

Card
[card | ssn | country | state |

Txn =ns
| trn

(a) An entity schema S

m1(t) < Txnlnfo(t,n, ¢, s), Card(n, 1, c, s)

ma(t) < Txnlnfo(t,n, c,s), Card(n, i, c,s’)

(b) A statistic II = (71, 72) over S

Figure 1: An entity schema and a statistic

lations, which can be joined with ns. Again, by a slight
abuse of notation, we treat n& as the set of all entities of I.
For example, e € ng means that e is an entity of I. A feature
query (over S) is a unary query 7 over the schema S. When
the feature query 7 is represented in a query language QL
(e.g., CQ), we say that 7 is in QL.

ExAMPLE 3.1. We use a running example that instanti-
ates the credit-card scenario from the Introduction. Fig-
ure 1(a) depicts the entity schema S with a unary relation
Txn, which is ns, and two quaternary relations TxnInfo and
Card. The box on the top of Figure 3 depicts an instance
I’. The entities are the transaction identifiers 5, 6 and 7,
and these are the members of né/ = {s5,6,7}. Figure 1(b)
shows two feature queries in CQ: the feature m; selects all
transactions that took place in the same country and state
of the owner’s maling address, and the feature query w2 se-
lects all the ones that took place in the same country (but
not necessarily the same state) of the owner. Indeed, in m
the two atoms use the same variable, s, for the state, while
in o the first atom uses s and the second uses s’. [J

Let I be an instance over an entity schema S, and let 7 be
a feature query. We define the function 7’ : n§ — {—1,1}
as follows.

1 if I);
7TI(€) — Hee 71"()a
—1 otherwise.

Let S be an entity schema. A statistic (over S) is a se-
quence II = (m1,...,m,) of feature queries. We say that II
is in a query language QL if each 7; is in QL. Given an in-
stance I over S, we denote by II' the function ({,...,7l)
from ng to {—1,1}" that maps every entity e € ng to the
sequence (71 (e), ..., 75 (e)).

EXAMPLE 3.2. Figure 1(b) describes the statistic II =
(1, m2) over the schema S of Figure 1(a). The middle layer
of Figure 3 contains (on its left) the tuples HI/(e) for the
entities e in the instance I’ of the top box in this figure. For
example, the top row corresponds to HI/(S) = (1,1), which
is due to the fact Transaction 5 took place in the same coun-
try and state of the card holder. [

Let S be an entity schema. A labeling of an instance I
over S is a function

Ning —{-1,1}

that partitions the entities into negative examples (i.e., enti-
ties e where A(e) = —1) and positive ezamples (i.e., entities
e where A(e) = 1). A training instance over S is a pair
(I, \), where I is an instance over S and A\ is a labeling of I.
Taken together, a statistic II and a training instance define
a training collection, namely, the one that consists of the
tuple (I’ (), A(e)) for every entity e € ng.

ExAMPLE 3.3. Continuing our running example, Figure 2
depicts a training instance (I, \) over the entity schema S of
Figure 1(a), where X is represented in the Txn relation. With
the statistic I of Figure 1(b) we get the training collection in
the left bottom part of Figure 2. From this training instance
a classifier h is learned, and is applied for prediction on
future instances, as illustrated in Figure 3 for the instance
I’ that we referred to in the previous examples. [

4. COMPUTATIONAL PROBLEMS

We now define three computational problems that are mo-
tivated by the design of machine-learning solutions, and fea-
ture engineering in particular.

4.1 Separability

Separability is perhaps the most basic notion of learning.
The traditional presentation of learning theory typically be-
gins with the “noise free” case where the labeled examples
are required to be perfectly separated by the features. In our
framework, separability refers to the following task: given a
training instance over an entity schema, determine whether
there exists a statistic and a classifier that agree with (i.e.,
classify precisely as) the example labels. Separability is a
simplification of the more general problem, where some noise
is allowed (and say, 99% of the examples are required to be
correctly satisfied). We adopt the simplified (textbook) task
as a first step, and show that it already leads to nontrivial
insights within our framework.

The problem is parameterized by two important compo-
nents: the family of classifiers in consideration, and the
query language used for phrasing feature queries. The for-
mal defintion of the problem is as follows.

Let S be a schema, II a statistic over S, and H a hypoth-
esis class. A training instance (I,) is H-separable with
respect to (w.r.t.) II if there exists a hypothesis h € H that
fully agrees with A, that is, h and IT have the same arity and
h(IT*(e)) = A(e) for every e € nd.

PROBLEM 1 (SEPARABILITY). For a hypothesis class H
and a query language QL, the problem (H, QL)-separability
is the following. Given an entity schema S and a train-
ing instance (I, X) over S, determine whether there exists a
statistic IT in QL such that (I,) is H-separable w.r.t. II.

ExaMpPLE 4.1. We continue with our running example,
and consider the training instance (I, \) of Figure 2. Sup-
pose that H is the class Lin of linear classifiers, and that QL
is the class CQ. Then (I, \) is a “yes” instance of the sepa-
rability problem, and a witness is the statistic II = (1, m2)
of Figure 1(b) with the classifier 7o — 71 > 1. Now suppose
that we add an entity 5, the tuple (5,102, US, AL) to Txnlnfo,
and the labeling A(5) = —1. The new training instance then
becomes a “no” instance of the separability problem since,
intuitively, there is no way to distinguish between 4 and 5
using QL over I, and yet, A labels 4 and 5 differently. []

Txn Txnlnfo
txn A tezn | card | country | state
1 -1 1 100 Us GA
2 1 2 100 us NY
3 1 3 101 BR RJ
4 1 4 102 us CA
Card
card | ssn | country | state
100 200 Us GA
101 201 Us FL
102 202 BR SP
Training instance (I, A)
'(e) Xe)
1 1 -1
-101 1
= 11 1 =
- 1 Classifier (model)

Training collection T h:{-1,1}> = {-1,1}

Figure 2: The training process

4.2 VC Dimensionality

The Vapnik-Chervonenkis (VC') dimension [31] is a mea-
sure of complexity of a hypothesis class, and is a de facto
complexity measure for learnability. Bounds for general-
ization (how well a learned classifier does on unseen data)
typically depend on the VC dimension. It measures the ca-
pacity of the classifier class, and is a key indicator of how
much data one needs to reliably train the classifier: if this
amount is low with respect to the VC dimension, then the
classifier may overfit. If the amount of training data is high
with respect to the VC dimension, we may be missing op-
portunities to devise a more accurate classifier.

As an example, the class of polynomial classifiers is more
expressive than that of the linear classifiers, so there is a
higher capability of a polynomial-classifier learner to over-
fit, that is, exploit properties that are exhibited scarcely
in the training examples but are not representative of the
general population. Similarly, a deep decision tree might
be constructed to handle every individual example, while
a shallow one will have to utilize common properties, and
hence, intuitively, to better generalize. VC dimension is a
mathematical measure that aims to capture this expressive
power in a manner that is uniform across model classes.
Higher VC dimension implies a more complicated classifier
space with higher ability to overfit training data, and so,
more training data is required for effective learning.

In our framework, VC dimension is a function of not only
the hypothesis class, but also the statistic that translates
entities into feature vectors. The formal definition follows.

Let S be a schema, II a statistic over S, and H a hypoth-
esis class. An instance I over S is shattered by H w.r.t. 11
if for every labeling A of I there exists a hypothesis h € H
that fully agrees with A\. The VC dimension of H w.r.t. II is
the maximal number m such that there is an instance I over
S where I has m entities and [is shattered by H w.r.t. II.

PROBLEM 2 (DIMENSIONALITY). Let H be a hypothesis
class and QL a query language. The computational problem

Txn Txnlnfo
txn tzn | card | country | state
5 5 105 Us AK
6 6 105 us NY
7 7 110 BR RJ
Card
card | ssn | country | state
105 205 Us AK
110 202 BR SP

Instance I’ over S

11 (e)

S g
101 1
-1 1

Txn

tzn | prediction
= 5 -1

6 1

7 1

Figure 3: The prediction process

(H, QL)-dimensionality is the following. Given an entity
schema S and a statistic I1 in QL, compute the VC dimen-
sion of H w.r.t. II.

ExAMPLE 4.2. Recall S and II of our running example
(Figure 1). Computing the VC dimension of Lin w.r.t. IT is
an instance of (Lin, CQ)-dimensionality. Our results [22] im-
ply that this dimension is 3. Hence, there exists an instance
I with three entities, such that we can find a perfect linear
classifier for every labeling A for I. Yet, no such instance
exists with four or more entities. In this example, then,
modeling of the features as CQs does not reduce the VC
dimension compared to traditional machine learning where
one can freely set the feature values. [

4.3 Statistic Identifiability

Identifiability asks whether it is possible for one to learn
the parameters of the given classifier model unambiguously
from some data set. Here, the question refers to a given
statistic, and we consider the case where training is done by
means of optimization via linear algebra; we ask whether the
space of solutions is bounded. More formally, this problem
boils down to deciding, given a statistic, whether there exists
any training instance such that the resulting feature matrix
is of full column dimension (i.e., the columns are linearly
independent). We also consider the variant where linear
independence is relaxed to affine independence (as defined
in Section 2.) For additional background on identifiability,
we refer the reader to Wainwright and Jordan’s survey [32].
Next, we give the formal definition.

Let S be an entity schema, II a statistic over S, and I an
instance over S. We fix an arbitrary order over the entities
of I, and denote by [II'] the matrix that consists of the rows
I’ (e) for every e € n& in order. We say that II is linearly
identifiable if there exists an instance I over S such that the
matrix [IT'] is linearly column independent. We say that TT
is affinely identifiable if there exists an instance I over S such

that the matrix [II'] is affinely column independent. Note
that whenever II is linearly identifiable, it is also affinely
identifiable; the other direction is not necessarily true.
Both types of identifiability are important properties in
the design of machine-learning solutions [24]. Particularly,
in the case of the hypothesis class Lin and the cost function
Isq (as defined in Section 2), linear independence implies
that there is a single optimal hypothesis, whereas its absence
implies that the space of optimal solutions is unbounded.
Affine independence likewise arises in different cost func-
tions such as mazimum entropy [32]. The corresponding
computational problem is formally defined as follows.

PROBLEM 3 (IDENTIFIABILITY). Let QL be a query lan-
guage. The computational problem of linear (respectively,
affine) QL-identifiability is that of testing, given an entity
schema S and a statistic I1 over S, whether 11 is linearly
(respectively, affinely) identifiable.

ExAaMPLE 4.3. Consider again S and II of our running
example (Figure 1). Then S and II form a “yes” instance of
linear (and affine) CQ-identifiability. Indeed, II is linearly
(and affinely) identifiable, and a witness instance is I of
Figure 2 with Txn restricted to the entities 1 and 2 (or 3
and 2, but not 1 and 3). We have shown that under certain
conditions (that hold in our case), a statistic that consists of
CQ feature queries is always identifiable, unless two or more
of the feature queries are equivalent [22]. Hence, in the case
of CQs, identifiability “comes for free” up to redundancy. [

4.4 Complexity Analysis

Complexity analysis of the three problems can be found
in the conference version of this article [22], and will be
presented in more detail in the full version of the paper.
In the next section, we give complexity results on the first
problem, namely separability.

S. COMPLEXITY OF SEPARABILITY

In this section, we discuss the complexity of separability
in the case where feature queries are from the class of CQs
and the hypothesis class is that of linear classifiers. The first
result states coNP-completeness.

THEOREM 5.1. (Lin, CQ)-separability is a coNP-complete
problem. Moreover, there exists a fized entity schema S such
that (Lin, CQ)-separability is coNP-hard over S.

The proof of Theorem 5.1 consists of two parts. In the first
part, we show that a given (I, \) is Lin-separable w.r.t. a
given statistic II if and only if every two entities with differ-
ent labels (i.e., one is +1 and the other —1) can be distin-
guished by a CQ, that is, there is a CQ feature query that
returns one entity and not the other. The second part shows
that this distinguishability test is coNP-complete. This proof
highlights a connection to the problems of query-by-example
and definability [7,30,33], and we are currently exploring
these connections in more depth.

In the above proof of hardness we construct CQs over a
fixed schema, but self joins are allowed. Next, we consider
the case of self-join-free CQs. Formally, a CQ gq is self-join
free if it does not have two distinct atoms with the same
relation symbol. We denote by CQg the class of CQs with-
out self joins. Interestingly, disallowing self joins (hence,

restricting the space of statistics to simpler CQs) does not
make the problem easier. In fact, under conventional com-
plexity assumptions, it becomes harder!

THEOREM 5.2. (Lin, QLg)-separability is YF -complete.

Intuitively, the reason for the increased complexity is that
self joins allow us to (efficiently) formulate a single statistic
IT of representative (“canonical”) feature CQs that captures
the entire space of statistics; that is, if any statistic provides
separation, then so does II. In particular, with self joins the
problem boils down to deciding on the existence of a homo-
morphism. Yet, without self joins it appears that we cannot
do better than to inspect an exponential space of statistics,
and solve the homomorphism problem in each. Finally, we
remark that fixing the schema S in the case of QL would
make the separability problem solvable in polynomial time,
since the number of possible statistics (without equivalent
feature queries) is bounded by a fixed constant, and each
feature query can be evaluated in polynomial time.

COMMENT 5.3. For CQs with constants, separability is
trivial, since the positive examples can be hardcoded into
the statistic. In Figure 2, for instance, we could encode each
of the first, second, and third tuples of TxnlInfo (and even
their join with Card) in a CQ that selects precisely the cor-
responding transactions. It would, however, be interesting
to enforce restrictions on the usage of constants (e.g., limit
their number). An elegant way to formalize such restric-
tions was taken by Grohe and Ritzert [16] that separate the
variables into ordinary variables and parameters that can be
set fixed by the learning algorithm. We plan to explore this
approach in future work. [J

6. ADDITIONAL RELATED WORK

The task of feature engineering has been widely studied
for decades [9,17—20]. Our approach borrows heavily from
the feature-engineering process identified in Guyon’s seminal
book [18] and those we have observed in practice. Feature
engineering has received some attention from the database
community [2,3,23,29,35]. That work has made algorithmic
or tooling contributions to better support feature engineer-
ing, while it has not addressed the fundamental questions
that our framework targets.

Frameworks and query languages that fuse logic with prob-
abilistic semantics, to simplify the design of machine-learning
models, have been proposed and developed in past decades.
Examples of these include Probabilistic Relation Models pio-
neered by Koller and Friedman [14], PRISM [27], BLOG [25],
Markov Logic Networks [26], and the recent Probabilistic-
Programming Datalog [6]. However, these approaches focus
on orthogonal formal questions: the semantics of the mod-
els and the complexity of the associated inference tasks. In
contrast, we consider the interplay of the logical rules and
learning properties. In particular, to the best of our knowl-
edge this work is the first to consider separability, identifi-
ability, and dimensionality in machine-learning models that
are defined over database queries. Our formal framework
draws inspiration from previous approaches to combining
logical reasoning to probabilistic reasoning, which is a clas-
sic topic [5,11], but is distinct in its goal.

There has been a lot of work in the Machine Learning com-
munity on learnability aspects of First Order formulas. For

instance, Arias and Khardon [4] considered such aspects (in-
cluding VC dimension) in the context of Horn clauses, where
they establish bounds that are based on syntactic properties
of the clauses (e.g., number of variables, literals, clauses,
etc.). Similarly, Grohe and Ritzert [16] explored PAC learn-
ing of first-order formulas over a “background structure,”
namely a database. Such setups are quite different from
ours, since their goal is to classify a whole interpretation
(database) based on a single formula (to be learned), while
we consider classification of entities within a single database
and focus on feature engineering rather than the engineer-
ing of the classifier. More technically, in our framework the
goal is not necessarily to learn queries, but rather to reason
about queries as features of machine-learning models that
are not necessarily database queries (e.g., linear models).

7. CONCLUSIONS AND DIRECTIONS

We described a framework for feature engineering towards
programming machine-learning solutions over a database,
while focusing on the important task of classification. Our
framework is based on simple additions to the relational data
and query model, where an entity schema allows to repre-
sent entities along with their associated information, and
where feature engineering is the task of designing a statis-
tic when given a training instance over the entity schema.
This framework enables us to formalize relevant computa-
tional problems, conduct nontrivial analyses, and reach in-
sights and solutions. In particular, we have formalized three
important computational problems within the framework:
separability, identifiability, and VC dimensionality. These
problems are parameterized by the hypothesis class in use
and the query language deployed for feature extraction.

Focusing on features definable as conjunctive queries and
on linear hypotheses, we have drawn connections between
the studied computational problems and those of query con-
tainment and equivalence. These connections have several
interesting consequences. For one, there is a tight relation-
ship between the computational complexity of our problems
and that of query containment: it is necessary, and often
sufficient, to solve C(Q containment in order to solve our
problems. Moreover, the fact that identifiability “comes for
free” (up to redundancy) gives a formal indication of the
suitability of CQs as a language for feature engineering. It
also motivates the challenge of finding other natural query
languages that are likewise suitable. We conclude with a
number of directions and extensions for future research.

Logical Analysis

Further expressiveness. We have focused on the simple
class of conjunctive queries for defining statistics, and on the
classifier class of linear hypotheses. An immediate future
direction would be to consider more expressive classes. For
features, these can be unions of conjunctive queries, queries
with additional logical operators, non-monotonic features,
and aggregate functions. For the hypotheses, future direc-
tions can consider any standard class, such as decision trees.

Schema constraints. The complexity of some of the tasks
we have considered would be impacted by the presence of
schema constraints. In particular, in the identifiability prob-
lem column independence would need to be realized by an

instance that satisfies the constraints, and not by any in-
stance of the signature. The problem of VC dimensionality
would be similarly impacted. We view this direction as an
important opportunity of incorporating the database’s rich
modeling of data into the task of feature engineering.

Text analysis. An area where machine-learning classifica-
tion is crucial for even simple tasks is that of text analysis,
and in particular when the text is in natural language from
open domains such as Web and social media [29]. Conse-
quently, we belive that a direction of a high potential im-
pact is that of applying our framework to formalisms that
involve queries over text, such as the document spanners of
Fagin et al. [12,13] that construct and manipulate relations
over text spans (intervals) using extractors (e.g., regular ex-
pressions). In particular, the computational challenges will
involve queries with both relational and textual operations.

Statistical Questions

Generalized learning tasks. Our features in this work
were all Boolean (+1), and it is desirable to study the natu-
ral extension of the framework to numerical features, where
numbers are either directly copied from the database or in-
directly computed via queries. Numerical values will likely
complicate the basic model, as they entail arguing about
schema constraints to ensure that a feature query associates
a unique value with each entity. Orthogonally, the frame-
work can be generalized to other prediction tasks, such as
multi-label classification (e.g., predict the age group of a per-
son) and numerical regression (e.g., predict the actual age
of the person). It is important to understand how the chal-
lenges we considered are affected by such generalizations.

Separability relaxation. The separability problem, as
defined in this article, can be extended by allowing for an
approzimate agreement with the training examples (e.g., the
hypothesis h should agree with the labeling A on at least
(1—e€) of the entities, or at most k entities should be misclas-
sified). This is a practical and crucial relaxation in practical
scenarios. For one, the training data may be noisy. More-
over, our hypothesis class may be too simple to precisely
cover the examples, but can do so with only a small error.

Model complexity. While extending the expressiveness
of queries, it is of high importance to find the proper restric-
tions on the engineered statistics (a.k.a. regularization), in
order to (a) reduce the model complexity and, consequently,
reduce the risk of overfitting to the training samples, and (b)
gain more efficient machine-leaning solutions. The common
regularization limits the length of the statistic; in our frame-
work, we can consider restrictions on the feature queries,
such as size, structure, number of constants/variables, and
so on. The ultimate goal is to find settings that properly
balance between overfitting, underfitting, inference (classifi-
cation) complexity and learning (training) complexity.

The vast literature on machine learning gives rise to many
more directions for our framework to extend, such as no-
tions of capacity beyond VC dimension (e.g., Rademacher
and Gaussian complexities [8]) and the implications of the
“transductive” learning environments, where we know to be-
gin with what entities we will need to predict upon [15]. We
believe that our framework can contribute to many of these
directions the important angle of data and query modelling.

Acknowledgments

The authors are grateful to Stephen Bach and Alex Ratner
for insightful input on this work, and for Jared Alexander
Dunnmon for valuable suggestions on this article.

8.
[

2]

[16]

[17]

REFERENCES

SAS Report on Analytics.
sas.com/reg/wp/corp/23876.

M. Anderson, D. Antenucci, V. Bittorf, M. Burgess,
M. Cafarella, A. Kumar, F. Niu, Y. Park, C. Ré, and
C. Zhang. Brainwash: A Data System for Feature
Engineering. In CIDR, 2013.

M. R. Anderson, M. J. Cafarella, Y. Jiang, G. Wang,
and B. Zhang. An integrated development
environment for faster feature engineering. PVLDB,
7(13):1657-1660, 2014.

M. Arias and R. Khardon. Complexity parameters for
first order classes. Machine Learning, 64(1-3):121-144,
2006.

F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller.
From statistical knowledge bases to degrees of belief.
CoRR, cs.A1/0307056, 2003.

V. Bérany, B. ten Cate, B. Kimelfeld, D. Olteanu, and
Z. Vagena. Declarative probabilistic programming
with datalog. In ICDT, volume 48 of LIPIcs, pages
7:1-7:19. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

P. Barcelé and M. Romero. The complexity of reverse
engineering problems for conjunctive queries. In
ICDT, volume 68 of LIPIcs, pages 7:1-7:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

P. L. Bartlett and S. Mendelson. Rademacher and
gaussian complexities: Risk bounds and structural
results. In COLT, pages 224-240, 2001.

D. E. Boyce. Optimal Subset Selection: Multiple
Regression, Interdependence, and Optimal Network
Algorithms . Springer-Verlag, 1974.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and

R. S. Zemel. Fairness through awareness. In ITCS,
pages 214-226. ACM, 2012.

R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for
reasoning about probabilities. Inf. Comput.,
87(1/2):78-128, 1990.

R. Fagin, B. Kimelfeld, F. Reiss, and

S. Vansummeren. Spanners: a formal framework for
information extraction. In PODS, pages 3748, 2013.
R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren.
Document spanners: A formal approach to
information extraction. J. ACM, 62(2):12, 2015.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In IJCAI,
pages 1300-1309, 1999.

A. Gammerman, K. S. Azoury, and V. Vapnik.
Learning by transduction. In UAI pages 148-155.
Morgan Kaufmann, 1998.

M. Grohe and M. Ritzert. Learning first-order
definable concepts over structures of small degree. In
LICS, pages 1-12. IEEE Computer Society, 2017.

I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157-1182, 2003.

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

27]

(28]

29]

30]

(31]

(32]

33]

(34]

(35]

(36]

I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh.
Feature Extraction: Foundations and Applications
(Studies in Fuzziness and Soft Computing).
Springer-Verlag New York, Inc., 2006.

T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data mining,
inference, and prediction. Springer, 2001.

G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In Machine
Learning, pages 121-129, 1994.

S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
Enterprise data analysis and visualization: An
interview study. IEFEE Trans. Vis. Comput. Graph.,
18(12):2917-2926, 2012.

B. Kimelfeld and C. Ré. A relational framework for
classifier engineering. In PODS, pages 5-20. ACM,
2017.

A. Kumar, J. F. Naughton, J. M. Patel, and X. Zhu.
To join or not to join?: Thinking twice about joins
before feature selection. In SIGMOD Conference,
pages 19-34. ACM, 2016.

E. L. Lehmann and G. Casella. Theory of point
estimation, volume 31. Springer, 1998.

B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L.
Ong, and A. Kolobov. Blog: Probabilistic models with
unknown objects. In IJCAI pages 1352—-1359, 2005.
M. Richardson and P. Domingos. Markov logic
networks. Mach. Learn., 62(1-2):107-136, 2006.

T. Sato and Y. Kameya. PRISM: A language for
symbolic-statistical modeling. In IJCAI, pages
1330-1339, 1997.

S. Shalev-Shwartz and S. Ben-David. Understanding
Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014.

J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and

C. Ré. Incremental knowledge base construction using
DeepDive. PVLDB, 8(11):1310-1321, 2015.

B. ten Cate and V. Dalmau. The product
homomorphism problem and applications. In ICDT,
volume 31 of LIPIcs, pages 161-176. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its
Applications, 16(2):264-280, 1971.

M. J. Wainwright and M. 1. Jordan. Graphical models,
exponential families, and variational inference.
Foundations and Trends in Machine Learning,
1(1-2):1-305, 2008.

R. Willard. Testing expressibility is hard. In CP,
volume 6308 of Lecture Notes in Computer Science,
pages 9-23. Springer, 2010.

R. S. Zemel, Y. Wu, K. Swersky, T. Pitassi, and

C. Dwork. Learning fair representations. In ICML,
volume 28 of JMLR Proceedings, pages 325-333.
JMLR.org, 2013.

C. Zhang, A. Kumar, and C. Ré. Materialization
optimizations for feature selection workloads. In
SIGMOD Conference, pages 265276, 2014.

I. Zliobaite. A survey on measuring indirect
discrimination in machine learning. CoRR,
abs/1511.00148, 2015.

