
SIGMOD Officers, Committees, and Awardees
	
	
	

Chair	 Vice-Chair	 Secretary/Treasurer	
Juliana	Freire	 Ihab	Francis	Ilyas	 Fatma	Ozcan	

Computer	Science	&	Engineering	 Cheriton	School	of	Computer	Science	 IBM	Research	
New	York	University	 University	of	Waterloo	 Almaden	Research	Center	
Brooklyn,	New	York	 Waterloo,	Ontario	 San	Jose,	California	

USA	 CANADA	 USA	
+1	646	997	4128	 +1	519	888	4567	ext.	33145	 +1	408	927	2737	

juliana.freire	<at>	nyu.edu	 ilyas	<at>	uwaterloo.ca	 fozcan	<at>	us.ibm.com	
	
	
SIGMOD	Executive	Committee:			

Juliana	Freire	(Chair),	Ihab	Francis	Ilyas	(Vice-Chair),	Fatma	Ozcan	(Treasurer),	K.	Selçuk	Candan,	
Yanlei	Diao,	Curtis	Dyreson,	Yannis	Ioannidis,	Christian	Jensen,	and	Jan Van den Bussche.
	

Advisory	Board:		
Yannis	Ioannidis	(Chair),	Phil	Bernstein,	Surajit	Chaudhuri,	Rakesh	Agrawal,	Joe	Hellerstein,	Mike	
Franklin,	Laura	Haas,	Renee	Miller,	John	Wilkes,	Chris	Olsten,	AnHai	Doan,	Tamer	Özsu,	Gerhard	
Weikum,	Stefano	Ceri,		Beng	Chin	Ooi,	Timos	Sellis,	Sunita	Sarawagi,	Stratos	Idreos,	Tim	Kraska	

	
SIGMOD	Information	Director:			
	 Curtis	Dyreson,	Utah	State	University		
	
Associate	Information	Directors:			
	 Huiping	Cao,	Manfred	Jeusfeld,		Asterios	Katsifodimos,	Georgia	Koutrika,	Wim	Martens	
	
SIGMOD	Record	Editor-in-Chief:			
	 Yanlei	Diao,	University	of	Massachusetts	Amherst		
	
SIGMOD	Record	Associate	Editors:			
	 Vanessa	Braganholo,	Marco	Brambilla,		Chee	Yong	Chan,	Rada	Chirkova,	Zachary	Ives,		Anastasios		
	 Kementsietsidis,	Jeffrey	Naughton,	Frank	Neven,	Olga	Papaemmanouil,		 Aditya	Parameswaran,		
	 Alkis	Simitsis,	Wang-Chiew	Tan,	Pinar	Tözün,	Marianne	Winslett,	and	Jun	Yang	
	
SIGMOD	Conference	Coordinator:			

K.	Selçuk	Candan,	Arizona	State	University		
	

PODS	Executive	Committee:		
	 Jan	Van	den	Bussche	(Chair),	Tova	Milo,	Diego	Calvanse,	Wang-Chiew	Tan,	Rick	Hull,	Floris	Geerts	
	
Sister	Society	Liaisons:			
	 Raghu	Ramakhrishnan	(SIGKDD),	Yannis	Ioannidis	(EDBT	Endowment),	Christian	Jensen	(IEEE	TKDE).	
	
Awards	Committee:		

Surajit	Chaudhuri	(Chair),	David	Dewitt,	Martin	Kersten,	Maurizio	Lenzerini,	Jennifer	Widom	
	
Jim	Gray	Doctoral	Dissertation	Award	Committee:			

Ashraf	Aboulnaga	(co-Chair),	Chris	Jermaine	(co-Chair),	Paris	Koutris,	Feifei	Li,	Qiong	Luo,	Ioana	
Manolescu,	Lucian	Popa,	Renée	Miller	

	
SIGMOD	Systems	Award	Committee:			

Mike	Stonebraker	(Chair),	Make	Cafarella,	Mike	Carey,	Yanlei	Diao,	Paul	Larson	
	

SIGMOD Record, March 2018 (Vol. 47, No. 1) 1

SIGMOD	Edgar	F.	Codd	Innovations	Award		
For	innovative	and	highly	significant	contributions	of	enduring	value	to	the	development,	understanding,	or	use	
of	database	systems	and	databases.	Recipients	of	the	award	are	the	following:		
	
Michael	Stonebraker	(1992)	 	 Jim	Gray	(1993)	 	 	 	 Philip	Bernstein	(1994)		
David	DeWitt	(1995)	 	 	 C.	Mohan	(1996)	 	 																		 David	Maier	(1997)		
Serge	Abiteboul	(1998)	 	 	 Hector	Garcia-Molina	(1999)	 						 Rakesh	Agrawal	(2000)		
Rudolf	Bayer	(2001)	 	 	 Patricia	Selinger	(2002)	 										 	 Don	Chamberlin	(2003)		
Ronald	Fagin	(2004)	 	 	 Michael	Carey	(2005)	 	 						 Jeffrey	D.	Ullman	(2006)		
Jennifer	Widom	(2007)	 	 	 Moshe	Y.	Vardi	(2008)	 	 						 Masaru	Kitsuregawa	(2009)		
Umeshwar	Dayal	(2010)		 	 Surajit	Chaudhuri	(2011)	 						 Bruce	Lindsay	(2012)	
Stefano	Ceri	(2013)	 	 	 Martin	Kersten	(2014)	 	 						 Laura	Haas	(2015)	
Gerhard	Weikum	(2016)		 	 Goetz	Graefe	(2017)	
	
SIGMOD	Systems	Award		
For technical contributions that have had significant impact on the theory or practice of large-scale data
management systems.
	
Michael	Stonebraker	and	Lawrence	Rowe	(2015)	 	 	 	 Martin	Kersten	(2016)	 	
Richard	Hipp	(2017)	
	
SIGMOD	Contributions	Award		
For	 significant	 contributions	 to	 the	 field	 of	 database	 systems	 through	 research	 funding,	 education,	 and	
professional	services.	Recipients	of	the	award	are	the	following:		
	
Maria	Zemankova	(1992)	 	 Gio	Wiederhold	(1995)	 	 	 Yahiko	Kambayashi	(1995)		
Jeffrey	Ullman	(1996)	 	 	 Avi	Silberschatz	(1997)	 	 	 Won	Kim	(1998)		
Raghu	Ramakrishnan	(1999)	 	 Michael	Carey	(2000)	 	 	 Laura	Haas	(2000)		
Daniel	Rosenkrantz	(2001)	 	 Richard	Snodgrass	(2002)	 	 Michael	Ley	(2003)		
Surajit	Chaudhuri	(2004)		 	 Hongjun	Lu	(2005)	 	 	 Tamer	Özsu	(2006)		
Hans-Jörg	Schek	(2007)	 	 	 Klaus	R.	Dittrich	(2008)	 													 Beng	Chin	Ooi	(2009)		
David	Lomet	(2010)																											 Gerhard	Weikum	(2011)		 	 Marianne	Winslett	(2012)	
H.V.	Jagadish	(2013)	 	 	 Kyu-Young	Whang	(2014)	 	 Curtis	Dyreson	(2015)	
Samuel	Madden	(2016)	 	 	 Yannis	E.	Ioannidis	(2017)	
		
SIGMOD	Jim	Gray	Doctoral	Dissertation	Award		
SIGMOD	has	established	the	annual	SIGMOD	Jim	Gray	Doctoral	Dissertation	Award	to	recognize	excellent	
research	by	doctoral	candidates	in	the	database	field.		Recipients	of	the	award	are	the	following:		
	
§ 2006	Winner:	Gerome	Miklau.	Honorable	Mentions:	Marcelo	Arenas	and	Yanlei	Diao.		
§ 2007	Winner:	Boon	Thau	Loo.	Honorable	Mentions:	Xifeng	Yan	and	Martin	Theobald.		
§ 2008	Winner:	Ariel	Fuxman.	Honorable	Mentions:	Cong	Yu	and		Nilesh	Dalvi.		
§ 2009	Winner:	Daniel	Abadi.		Honorable	Mentions:	Bee-Chung	Chen	and	Ashwin	Machanavajjhala.	
§ 2010	Winner:	Christopher	Ré.	Honorable	Mentions:	Soumyadeb	Mitra	and	Fabian	Suchanek.	
§ 2011	Winner:	Stratos	Idreos.	Honorable	Mentions:	Todd	Green	and	Karl	Schnaitterz.	
§ 2012	Winner:	Ryan	Johnson.	Honorable	Mention:	Bogdan	Alexe.	
§ 2013	Winner:	Sudipto	Das,	Honorable	Mention:	Herodotos	Herodotou	and	Wenchao	Zhou.	
§ 2014	Winners:	Aditya	Parameswaran	and	Andy	Pavlo.		
§ 2015	Winner:	Alexander	Thomson.	Honorable	Mentions:	Marina	Drosou	and	Karthik	Ramachandra	
§ 2016	Winner:	Paris Koutris.	Honorable	Mentions:	Pinar Tozun	and	Alvin Cheung	
§ 2017	Winner:	Peter	Bailis.	Honorable	Mention:	Immanuel	Trummer	
	
A	complete	list	of	all	SIGMOD	Awards	is	available	at:	https://sigmod.org/sigmod-awards/		
	

[Last	updated	:	June	30,	2017]	

2 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Editor’s Notes
	

Welcome	to	the	March	2018	issue	of	the	ACM	SIGMOD	Record!		
	
The	new	year	of	2018	begins	with	a	special	issue	on	the	2017	ACM	SIGMOD	Research	Highlight	
Award.	This	 is	an	award	 for	 the	database	community	to	showcase	a	set	of	 research	projects	 that	
exemplify	core	database	research.	In	particular,	these	projects	address	an	important	problem,	rep-
resent	a	definitive	milestone	 in	solving	the	problem,	and	have	 the	potential	of	significant	 impact.	
This	award	also	aims	to	make	the	selected	works	widely	known	in	the	database	community,	to	our	
industry	partners,	and	to	the	broader	ACM	community.		
	
The	award	committee	and	editorial	board	included	Zack	Ives,	Jeff	Naughton,	Wang-Chiew	Tan,	and	
Yanlei	Diao.	 	We	solicited	articles	 from	PODS	2017,	SIGMOD	2017,	VLDB	2017,	 ICDE	2017,	EDBT	
2017,	and	ICDT	2017,	as	well	as	from	community	nominations.	Through	a	careful	review	process	
five	articles	were	finally	selected	as	2017	Research	Highlights.	The	authors	of	each	article	worked	
closely	with	an	associate	editor	to	rewrite	the	article	into	a	compact	8-page	format,	and	improved	it	
to	appeal	to	the	broad	data	management	community.	In	addition,	each	research	highlight	is	accom-
panied	by	a	one-page	technical	perspective	written	by	our	associate	editor	or	an	external	expert	on	
the	topic	presented	in	the	article.		The	technical	perspective	provides	the	reader	with	an	overview	
of	the	background,	the	motivation,	and	the	key	innovation	of	the	featured	research	highlight,	as	well	
as	its	scientific	and	practical	significance.		
	
The	2017	research	highlights	cover	a	broad	set	of	topics,	including	(a)	a	new	theoretical	framework	
for	feature	engineering	for	programming	machine-learning	solutions	over	a	database	(“A	Relational	
Framework	for	Classifier	Engineering”);	(b)	a	parallel	graph	processing	system	that	employs	a	sim-
ple,	intuitive	programming	model	and	a	principled	approach	based	on	fixpoint	computation	which	
enables	database-style	optimization	(“From	Think	Parallel	to	Think	Sequential”);	(c)	a	scalable	line-
ar	algebra	system	built	on	top	of	a	parallel	relational	database	system	(“Scalable	Linear	Algebra	on	
a	Relational	Database	System”);	(d)	an	entity	matching	system	that	overcomes		limitations	of	exist-
ing	solutions	by	considering	the	requirements	for	building	an	end-to-end	system	(“Magellan:	To-
ward	Building	Entity	Matching	Management	Systems”);	(e)	a	new	approach	to	helping	the	user	un-
derstand	answers	of	natural	language	queries,	i.e.,	giving	an	explanation	of	how	and	why	each	an-
swer	exists	(“Natural	Language	Explanations	for	Query	Results”).		

On	behalf	 of	 the	 SIGMOD	Record	Editorial	Board,	 I	 hope	 that	 you	 enjoy	 reading	 the	March	2018	
issue	of	the	SIGMOD	Record!		
	
Your	submissions	to	the	SIGMOD	Record	are	welcome	via	the	submission	site:	

http://sigmod.hosting.acm.org/record	
	
Prior	to	submission,	please	read	the	Editorial	Policy	on	the	website	of	the	SIGMOD	Record:		

http://sigmod.org/sigmodrecord/authors/	
	
	

Yanlei	Diao	

March	2018	

	

SIGMOD Record, March 2018 (Vol. 47, No. 1) 3

	
Past	SIGMOD	Record	Editors:	

	
Ioana	Manolescu	(2009-2013)	 Alexandros	Labrinidis	(2007–2009)	 Mario	Nascimento	(2005–2007)		
Ling	Liu	(2000–2004)	 	 Michael	Franklin	(1996–2000)		 	 Jennifer	Widom	(1995–1996)		
Arie	Segev	(1989–1995)		 Margaret	H.	Dunham	(1986–1988)		 Jon	D.	Clark	(1984–1985)		
Thomas	J.	Cook	(1981–1983)		 Douglas	S.	Kerr	(1976-1978)		 	 Randall	Rustin	(1974-1975)		
Daniel	O’Connell	(1971–1973)		 Harrison	R.	Morse	(1969)	

4 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Technical Perspective:
A Relational Framework for Classifier Engineering

Wang-Chiew Tan
Recruit Institute of Technology

wangchiew@recruit.ai

A fundamental step in developing machine-learning so-
lutions is that of feature engineering. Feature engineering
refers to the process of generating a representation from
data (called features) that can be fed as inputs to machine-
learning models. The results of feature engineering thus
have direct impact on the performance of machine-learning
models. In developing machine-learning solutions, a large
amount of time is typically devoted to feature engineering,
which determines the right features to capture for improving
the performance of the models.

In this paper, the authors describe a framework for feature
engineering for programming machine-learning solutions over
a database, assuming the model inputs numerical paramaters
that may be tuned by fitting to training examples. The fo-
cus of the paper is on a widely used class of machine-learning
models, called classifiers, which are used to predict an un-
known category of a given entity based on the properties of
that entity.

The running example of the paper considers the problem
where a credit card company wishes to identify whether an
incoming credit card transaction is a legitimate or fraudulent
transaction (e.g., made with a stolen credit card). The credit
card company may leverage historical transactions with both
legitimate and fraudulent transactions as training data to
train a classifier. The features that are extracted from the
data may include properties that concern the state and coun-
try where a transaction was made compared to the state and
country of billing address of the owner, the amount billed in
the transaction, the history of transactions and so on.

Their framework assumes an underlying entity schema,
which is a relation schema with a distinguished relation sym-
bol. The distinguished relation represents the set real-world
objects where the classifier makes predications upon. For
the credit card example, since the classifier will ultimately
be applied on transactions to determine the legitimacy of
transactions, a natural candidate for the distinguished en-
tity relation in the credit card example is the transaction
relation which stores all transactions that occurred. The
remaining relation schema will include additional informa-
tion about the transaction, such as the country and state
where each transaction took place, the card and amount
involved, and information about the billing address of the
credit card. Feature engineering is modeled as the process
where an analyst specifies a sequence of feature queries in
some language. For example, a feature query may select all

transactions that took place in the same country and state
of the owner’s billing address, and another feature query
may select all the ones that took place in the same coun-
try (but not necessarily the same state) of the owner. In
their framework, a classifier is a function that maps a vector
of numbers, where the numbers encode the features, into a
boolean answer. To train a classifer, it is therefore neces-
sary to convert the results of feature queries into numbers.
This is done as follows. For every feature query and every
entity in the set of entities (in this case, transactions), a vec-
tor of 1 or -1 can be obtained based on whether the feature
query produces an answer for that entity. If an answer is
produced (resp. not produced), then the feature query for
that transaction is a positive example which will be given
a label 1 (resp. negative example labeled -1). Based on the
input vectors obtained this way, a classifier is learnt and can
then be applied to future inputs.

After formalizing a relational framework for feature en-
gineering, the authors further describe three fundamental
problems. The separabiity problem essentially asks the ques-
tion that for a given language of the framework and a given
category of classifiers, whether it is sufficient to achieve good
classification (i.e., separation of the positive from the neg-
atives) based on the training data. More precisely, given a
training instance over an entity schema, determine whether
or not there exists a sequence of feature queries and a clas-
sifier that completely agrees with the training labels. An-
other problem, called the Vapnik-Chervonenkis dimension-
ality (VC dimensionality) problem, essentially asks what is
the complexity of learnability. More precisely, the VC dime-
nion measures the complexity of a class of classifiers (e.g.,
linear or polynomial classifiers) for feature queries specified
in some language. The last problem posed by the authors
is the identifiability problem. This problem asks to decide,
given a sequence of feature queries, whether there exists a
training instance such that the resulting feature matrix is of
full column dimension. In other words, the columns of the
matrix are linearly independent.

The paper presents complexity results on these three prob-
lems with attention on linear classifiers and where feature
queries are conjunctive queries. Perhaps more importantly,
the paper presents a novel formal framework for classifier
engineering, describes an initial set of results based on the
framework, and leaves several open challenges for the inter-
ested reader.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 5

A Relational Framework for Classifier Engineering

Benny Kimelfeld
Technion – Israel Institute of Technology

Haifa 32000, Israel
bennyk@cs.technion.ac.il

Christopher Ré
Stanford University

Stanford, CA 94305, USA
chrismre@cs.stanford.edu

ABSTRACT
In the design of analytical procedures and machine-learning
solutions, a critical and time-consuming task is that of fea-
ture engineering, for which various recipes and tooling ap-
proaches have been developed. We embark on the estab-
lishment of database foundations for feature engineering.
Specifically, we propose a formal framework for classifica-
tion in the context of a relational database. The goal of this
framework is to open the way to research and techniques
to assist developers with the task of feature engineering by
utilizing the database’s modeling and understanding of data
and queries, and by deploying the well studied principles
of database management. We demonstrate the usefulness
of the framework by formally defining key algorithmic chal-
lenges and presenting preliminary complexity results.

1. INTRODUCTION
A critical and time-consuming task in the development of

analytics and machine-learning solutions is that of feature
engineering [21,35]. Given its importance, recipes and tool-
ing have been developed for practitioners [1, 18]. With the
advent of frameworks like SAS, Cloudera’s IBIS and Oracle’s
ORE, feature engineering is often carried out over relational
data. Thus, a pressing challenge is to understand how to
merge these analytics with traditional database management
techniques. To this end, we propose a relational framework
for classification—a simple and popular analytic task.

The task of feature engineering is that of generating in-
puts (or signals) from available data, in order to improve
the performance of the underlying model in solving a target
problem. This target problem is typically classification (pre-
dicting an unknown category of a given entity), or regression
(predicting the value of an unknown function on a given en-
tity). The model makes its prediction based on various prop-
erties, called features, of the given entity. We focus here on
parametric models, where the model has a pre-determined
structure with numerical parameters that are tuned by fit-
ting to training examples, a process termed learning.

This article is a minor revision of the work published
in PODS 2017, May 14-19, 2017, Raleigh, NC, USA,
c©2017 ACM. ISBN978-1-4503-4198-1/17/05...$15.00 DOI:

http://dx.doi.org/10.1145/3034786.3034797

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Naturally, the choice of features has a major impact on the
resulting model. A suboptimal set of features may lead to
overfitting (where the learned model does not well generalize
beyond the training examples), or to underfitting (the model
is incapable of capturing the target function due to lack of
information or expressiveness) [18]. Another consideration
is that of execution cost, as costly features may result in
an impractical model [35]. There are also legal and moral
considerations in cases where decision makers are required to
practice fairness and lack of discrimination; there, a central
challenge is to select appropriate features [10,34,36].

Our running example is a scenario where the security
branch of a credit-card company aims to make an educated
guess on whether an incoming transaction is a fraudulent
purchase (e.g., made on a stolen card). To make such a
guess, the company uses information available in its database,
such as whether there were similar transactions in the past,
whether the purchase is made in the same state of the owner’s
mailing address, or in the same country, the amount be-
ing paid, and so on. An employed engineer then selects a
machine-learning library and learns a classifier, which can
be trained based on past data on fraudulent activity.

The classifier is simply a function that maps a vector of
numbers into a yes/no decision; in turn, these numbers,
called features, encode relevant pieces of information (e.g.,
f = +1/−1 depending on whether or not the transaction is
in the country of the owner). The machine-learning library
typically tunes parameters (or weights) of the classifier by
fitting them to the examples. In our scenario, high quality
is crucial: false positives disrupt legitimate business, and
false negatives cause financial losses and customer distress.
So, the engineer produces additional features to consider
by phrasing different questions (feature queries) about the
transaction at stake, until she is satisfied with the results.
This activity is referred to as feature engineering.

Analysts typically spend the bulk of their time on feature
engineering [17,21,35]. This process includes trial and error,
and stepwise addition or removal of features [18]. Involving
the database semantics in feature engineering has the poten-
tial to automate some important tasks, and thereby assist
the engineer. For instance, the engineer may ask whether
some class of simple feature queries (e.g., select-project-join)
suffices to achieve good classification based on the training
data, or otherwise more expressiveness is needed. This mo-
tivates the separability problem that we later discuss. She
may also ask the complementary question, which is whether
the current set of feature queries is too detailed and allows
the model to overfit the examples and poorly generalize to

6 SIGMOD Record, March 2018 (Vol. 47, No. 1)

future transactions. A traditional way to measure overfit-
ting potential is via the Vapnik-Chervonenkis (VC) dimen-
sion [31]. The features of choice may have impact on the VC
dimension, and we later refer to the problem of determining
this impact as VC dimensionality.

The engineer may also encounter the common technical
challenge where the machine-learning library fails due to in-
compatible data, as it requires the matrix of training data
to be of a full (column) degree. Partial degree (column de-
pendence) may be an artifact of the training examples; but
it may also be an inherent error in the feature design. As an
example, for US owners the features “payment is in the US,”
“payment is in the owner’s state,” and “payment is in a dif-
ferent US state” have an inherent linear dependence among
them: the first minus the second equals the third. We could
use the database to detect such problems. This leads to the
problem that we later refer to as identifiability.

Contribution
Our goal is to establish the first steps in a database theory
that embeds the automation of core tasks in feature selec-
tion. More precisely, our framework aims to open the way
to novel research and techniques for utilizing the database’s
understanding of raw data and queries, in order to funda-
mentally assist with the process of feature engineering.

The framework is based on an entity schema, which is
a relational schema with a distinguished relation symbol
that represents entities. A database instance over an entity
schema represents a collection of entities, along with addi-
tional (direct or indirect) knowledge about these entities. A
feature query selects entities with a certain property, and a
statistic is a sequence of feature queries. The central goal in
classification is to train and apply a classifier (or a classifier
model), which is a function that takes as input the statis-
tic of an entity (i.e., the vector obtained by applying each
feature query) and outputs a +1/−1 decision. In training a
classifier, we are given a set of entities labeled with +1/−1,
and produce a classifier from a predefined model class. A lin-
ear classifier, for example, is encoded as a vector of weights
over the features in the statistic. In our framework, the
collection of training examples is represented simply by an
instance over the entity schema, along with a labeling func-
tion that maps each entity to +1/−1.

For illustration, Figure 1(a) shows an entity schema S
where entities are transactions (identified by numbers), and
Figure 1(b) shows a statistic Π over S with two feature
queries π1 and π2. Figure 2 shows the training workflow
in our framework: an instance I over S with a labeling of
the entities (transactions) is transformed into a (+1/−1)-
matrix, with a feature row per entity, and the matrix is
used for building a classifier h. This classifier predicts the
labels in a new instance, as illustrated in Figure 3.

The features, as defined above, are based on boolean prop-
erties of the entities: if the entity satisfies the property (i.e.,
it is “selected”), then the feature value is +1, and other-
wise −1. Boolean features are highly important in practice,
and in fact, we are aware of quite a few deployments where
numerical values are translated into boolean ones (e.g., by
means of bucketing, or binning, numbers into intervals). The
more general case is that in which the feature query asso-
ciates a numerical value with each entity, and we discuss this
generalization as a future direction later on.

Our framework enables to formalize relevant computa-

tional problems, analyze their complexity, and ultimately
design algorithmic solutions. Here, we formally define three
computational problems that capture tasks in the construc-
tion and evaluation of features: separability—whether a per-
fect separator exists for a training set; VC dimensionality—
computing the fundamental measure of the complexity of a
classifier class; and identifiability—testing for a statistical
property guaranteeing that the classifier model is uniquely
defined given enough data.

Our analysis focuses on linear classifiers and features de-
finable as conjunctive queries. Specifically, we show a tight
relationship between the computational complexity of our
problems and that of query containment (and equivalence):
it is necessary, and often sufficient, to solve containment in
order to solve our problems. In this article, we present our
complexity results on the separability problem. Additional
results and proofs on all three problems can be found in the
conference version of this article [22].

2. PRELIMINARIES
In this section we give the basic definitions and terminol-

ogy that we use throughout the article.

Relational Databases
Our relational terminology is as follows. A schema is a col-
lection of relation symbols. Each relation symbol R has an
associated arity k. We assume an infinite set Const of con-
stants. An instance I over a schema S associates with every
k-ary relation symbol R ∈ S a finite subset of Constk. We
denote by RI the relation that I associates with the relation
symbol R. The active domain of an instance I, denoted
adom(I), is the set of all the constants in Const that are
mentioned in the tuples of I. A fact over a schema S is
an expression of the form R(c1, . . . , ck), where R is a k-ary
relation symbol and c1, . . . , ck are constants. We say that
the fact R(c1, . . . , ck) belongs to an instance I over S if RI

contains the tuple (c1, . . . , ck). For convenience, we view an
instance as the set of its facts. In particular, by f ∈ I we
denote that f belongs to I.

Comment 2.1. While schema constraints are important
in our framework, they are excluded from the basic frame-
work for simplicity sake. Moreover, the complexity results
we give later on (Section 5) are oblivious to such constraints.
We further discuss constraints in Section 7.

Let I and J be two instances over the same schema S. A
homomorphism from I to J is a mapping µ : adom(I) →
adom(J) such that for every fact f ∈ I we have µ(f) ∈ J ;
here, µ(f) is the fact that is obtained from f by replacing
each constant a with the constant µ(a).

Queries
A query over a schema S is a function q that is associated
with an arity k, and that maps every instance I over S into
a finite subset q(I) of Constk. A query q′ contains a query q,
in notation q ⊆ q′, if q(I) ⊆ q′(I) for all instances I over S.
If q ⊆ q′ and q′ ⊆ q then q and q′ are said to be equivalent.
We have a special interest in unary queries q (i.e., where
k = 1); then, by a slight abuse the notation, we view q(I)
as a set of constants a rather than a set of tuples (a).

We consider conjunctive queries without constants. For-
mally, a Conjunctive Query (CQ) over a schema S is a logical

SIGMOD Record, March 2018 (Vol. 47, No. 1) 7

Table 1: Main symbols

h hypothesis/classifier {−1, 1}n → {−1, 1}
H hypothesis class

Lin the class of linear classifiers

S relational/entity schema

η, ηS entity relation (unary)

I, J database instance

ηI , ηIS entity set of the instance I

e entity in ηIS
QL query language

CQ the class of CQs (without constants)

π feature query (unary)

πI(e) +1 if e ∈ π(I) and −1 if e /∈ π(I)

Π statistic (π1, . . . , πn)

λ labeling function ηIS → {−1, 1}

formula q(x) of the form

∃y[φ1(x,y) ∧ · · · ∧ φm(x,y)]

where x and y are disjoint sequences of variables and each
φi is an atomic query over S (i.e., a formula that consists of
a single relation symbol and no logical operators) without
constants. Observe that in this article CQs do not contain
built-in relations such as x > y; we use this assumption in
our analysis. The atomic formula φi is called an atom of q.
We use the conventional notation

q(x)← φ1(x,y), · · · , φm(x,y)

to denote a CQ. The left side q(x) is called the head and
the right side φ1(x,y), · · · , φm(x,y) is called the body. We
require each variable in the head to occur at least once in
the body. We may refer to a CQ by mentioning only its
head q(x) or even just q. We denote by CQ the class of CQs
(as defined here, i.e., without constants).

Let S be a schema, let q be a CQ over S, and let I be an
instance over S. A homomorphism from q to I is a mapping
from the variables of q to adom(I), such that for every atom
φ of q, the fact µ(φ) belongs to I; here, µ(φ) is the fact
that is obtained from φ by replacing each variable z with
the constant µ(z). The result of applying the CQ q(x) to
the instance I is the relation that consists of all the tuples
µ(x), where µ is a homomorphism from q to I and µ(x) is
obtained from x by replacing every variable xi with µ(xi).
We denote this relation by q(I).

Classifiers and Learning
In this work, a classifier is a function of the form

h : {−1, 1}n → {−1, 1}
where n is a natural number that we call the arity of h. A
hypothesis class is a (possibly infinite) family H of classifiers,
and a classifier in H is referred to as a hypothesis. We denote
by Hn the restriction of H to the n-ary hypotheses in H.
An n-ary training collection is a multiset T of pairs 〈x, y〉
where x ∈ {−1, 1}n and y ∈ {−1, 1}. We denote by Tn the
class of all n-ary training collections. A cost function for a
hypothesis class H is a function of the form

c :
(
∪n (Hn ×Tn)

)
→ R≥0

where R≥0 is the set of nonnegative numbers. Given a train-
ing collection T and two hypotheses h1 and h2, the inequal-
ity c(h1, T) > c(h2, T) implies that h2 is preferred to h1

according to c. In the context of a fixed hypothesis class
H and a cost function c, learning a classifier is the task of
finding a hypothesis h ∈ Hn that minimizes c(h, T), given
a training collection T ∈ Tn.

It is importnat to allow T to be a multiset in order to en-
able the scoring function to account for the frequency (rather
than pure existence) of examples. For the scope of this ar-
ticle, though, being a multiset does not play any role, and
the reader may view T simply as a set.

We illustrate our definitions on the important class of lin-
ear classifiers. An n-ary linear classifier is parameterized
by a vector w = (w0, . . . , wn) ∈ Rn+1, denoted by Λw, and
defined as follows for all a ∈ {−1, 1}n.

Λw(a)
def
=

{
1 if a ·w′ ≥ w0;

−1 otherwise.

where w′ = (w1, . . . , wn) and “·” denotes the operation of
dot product. By Lin we denote the class of linear classifiers.
An example of a cost function is the least square cost that
is given by

lsq(Λw, T)
def
=

∑

〈x,y〉∈T

(
x ·w′ − w0 − y

)2

for the arguments Λw ∈ Linn and T ∈ Tn.
More background on the basic theory of machine-learning

classifiers, as well as the relevant linear algebra discussed in
the next section, can be found in standard machine-learning
textbooks, such as Shalev-Shwartz and Ben-David [28].

Matrix independence. We denote by 0n the vector of
n zeroes, and by 1n the vector of n ones. Let M be an
n × m real matrix (consisting of n rows and m columns).
A linear column dependence in M is a vector w ∈ Rm such
that w 6= 0m and M ·w = 0n. A linear column dependence
w in M is an affine dependence in M if w · 1m = 0 (i.e.,
the components of w sum up to 0). If M does not have any
linear column dependence, then we say that M is linearly
column independent. Similarly, if M does not have any affine
column dependence, then we say that M is affinely column
independent. Note that linear independence implies affine
independence, but the other direction is not necessarily true.

3. FRAMEWORK
We now present our formal framework. A basic notion in

this framework is that of an entity schema, which is simply
an ordinary relational schema with a distinguished relation
symbol for representing entities. For simplicity, we assume
that an entity is represented by a single constant (an iden-
tifier), hence the corresponding relation is unary. Formally,
an entity schema is a pair (S, η), where S is a schema and η
is a unary relation symbol in S. An instance over an entity
schema (S, η) is simply an instance over S. In the remainder
of this article all the schemas we consider are entity schemas.
So, to simplify the presentation we refer to the entity schema
(S, η) simply as S, and refer to η as ηS.

Let I be an instance over an entity schema S. An entity
of I is a constant a such that ηS(a) ∈ I. Hence, I rep-
resents a set of entities along with information about the
entities. This information is contained in the remaining re-

8 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Txn = ηS
txn

TxnInfo
txn card country state

Card
card ssn country state

(a) An entity schema S

π1(t)← TxnInfo(t, n, c, s),Card(n, i, c, s)

π2(t)← TxnInfo(t, n, c, s),Card(n, i, c, s′)

(b) A statistic Π = (π1, π2) over S

Figure 1: An entity schema and a statistic

lations, which can be joined with ηS. Again, by a slight
abuse of notation, we treat ηIS as the set of all entities of I.
For example, e ∈ ηIS means that e is an entity of I. A feature
query (over S) is a unary query π over the schema S. When
the feature query π is represented in a query language QL
(e.g., CQ), we say that π is in QL.

Example 3.1. We use a running example that instanti-
ates the credit-card scenario from the Introduction. Fig-
ure 1(a) depicts the entity schema S with a unary relation
Txn, which is ηS, and two quaternary relations TxnInfo and
Card. The box on the top of Figure 3 depicts an instance
I ′. The entities are the transaction identifiers 5, 6 and 7,

and these are the members of ηI
′

S = {5, 6, 7}. Figure 1(b)
shows two feature queries in CQ: the feature π1 selects all
transactions that took place in the same country and state
of the owner’s maling address, and the feature query π2 se-
lects all the ones that took place in the same country (but
not necessarily the same state) of the owner. Indeed, in π1

the two atoms use the same variable, s, for the state, while
in π2 the first atom uses s and the second uses s′.

Let I be an instance over an entity schema S, and let π be
a feature query. We define the function πI : ηIS → {−1, 1}
as follows.

πI(e) =

{
1 if e ∈ π(I);

−1 otherwise.

Let S be an entity schema. A statistic (over S) is a se-
quence Π = (π1, . . . , πn) of feature queries. We say that Π
is in a query language QL if each πi is in QL. Given an in-
stance I over S, we denote by ΠI the function (πI

1 , . . . , π
I
n)

from ηIS to {−1, 1}n that maps every entity e ∈ ηIS to the
sequence (πI

1(e), . . . , πI
n(e)).

Example 3.2. Figure 1(b) describes the statistic Π =
(π1, π2) over the schema S of Figure 1(a). The middle layer

of Figure 3 contains (on its left) the tuples ΠI′(e) for the
entities e in the instance I ′ of the top box in this figure. For

example, the top row corresponds to ΠI′(5) = (1, 1), which
is due to the fact Transaction 5 took place in the same coun-
try and state of the card holder.

Let S be an entity schema. A labeling of an instance I
over S is a function

λ : ηIS → {−1, 1}

that partitions the entities into negative examples (i.e., enti-
ties e where λ(e) = −1) and positive examples (i.e., entities
e where λ(e) = 1). A training instance over S is a pair
(I, λ), where I is an instance over S and λ is a labeling of I.
Taken together, a statistic Π and a training instance define
a training collection, namely, the one that consists of the
tuple 〈ΠI(e), λ(e)〉 for every entity e ∈ ηIS.

Example 3.3. Continuing our running example, Figure 2
depicts a training instance (I, λ) over the entity schema S of
Figure 1(a), where λ is represented in the Txn relation. With
the statistic Π of Figure 1(b) we get the training collection in
the left bottom part of Figure 2. From this training instance
a classifier h is learned, and is applied for prediction on
future instances, as illustrated in Figure 3 for the instance
I ′ that we referred to in the previous examples.

4. COMPUTATIONAL PROBLEMS
We now define three computational problems that are mo-

tivated by the design of machine-learning solutions, and fea-
ture engineering in particular.

4.1 Separability
Separability is perhaps the most basic notion of learning.

The traditional presentation of learning theory typically be-
gins with the “noise free” case where the labeled examples
are required to be perfectly separated by the features. In our
framework, separability refers to the following task: given a
training instance over an entity schema, determine whether
there exists a statistic and a classifier that agree with (i.e.,
classify precisely as) the example labels. Separability is a
simplification of the more general problem, where some noise
is allowed (and say, 99% of the examples are required to be
correctly satisfied). We adopt the simplified (textbook) task
as a first step, and show that it already leads to nontrivial
insights within our framework.

The problem is parameterized by two important compo-
nents: the family of classifiers in consideration, and the
query language used for phrasing feature queries. The for-
mal defintion of the problem is as follows.

Let S be a schema, Π a statistic over S, and H a hypoth-
esis class. A training instance (I, λ) is H-separable with
respect to (w.r.t.) Π if there exists a hypothesis h ∈ H that
fully agrees with λ, that is, h and Π have the same arity and
h(ΠI(e)) = λ(e) for every e ∈ ηIS.

Problem 1 (Separability). For a hypothesis class H
and a query language QL, the problem (H,QL)-separability
is the following. Given an entity schema S and a train-
ing instance (I, λ) over S, determine whether there exists a
statistic Π in QL such that (I, λ) is H-separable w.r.t. Π.

Example 4.1. We continue with our running example,
and consider the training instance (I, λ) of Figure 2. Sup-
pose that H is the class Lin of linear classifiers, and that QL
is the class CQ. Then (I, λ) is a “yes” instance of the sepa-
rability problem, and a witness is the statistic Π = (π1, π2)
of Figure 1(b) with the classifier π2 − π1 ≥ 1. Now suppose
that we add an entity 5, the tuple (5, 102, US, AL) to TxnInfo,
and the labeling λ(5) = −1. The new training instance then
becomes a “no” instance of the separability problem since,
intuitively, there is no way to distinguish between 4 and 5

using QL over I, and yet, λ labels 4 and 5 differently.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 9

Txn
txn λ
1 -1
2 1
3 1
4 1

TxnInfo
txn card country state
1 100 US GA

2 100 US NY

3 101 BR RJ

4 102 US CA

Card
card ssn country state
100 200 US GA

101 201 US FL

102 202 BR SP

Training instance (I, λ)

⇒

ΠI(e) λ(e)
1 1 -1

-1 1 1
-1 -1 1
-1 -1 1

Training collection T

⇒
h

Classifier (model)
h : {−1, 1}2 → {−1, 1}

Figure 2: The training process

4.2 VC Dimensionality
The Vapnik-Chervonenkis (VC) dimension [31] is a mea-

sure of complexity of a hypothesis class, and is a de facto
complexity measure for learnability. Bounds for general-
ization (how well a learned classifier does on unseen data)
typically depend on the VC dimension. It measures the ca-
pacity of the classifier class, and is a key indicator of how
much data one needs to reliably train the classifier: if this
amount is low with respect to the VC dimension, then the
classifier may overfit. If the amount of training data is high
with respect to the VC dimension, we may be missing op-
portunities to devise a more accurate classifier.

As an example, the class of polynomial classifiers is more
expressive than that of the linear classifiers, so there is a
higher capability of a polynomial-classifier learner to over-
fit, that is, exploit properties that are exhibited scarcely
in the training examples but are not representative of the
general population. Similarly, a deep decision tree might
be constructed to handle every individual example, while
a shallow one will have to utilize common properties, and
hence, intuitively, to better generalize. VC dimension is a
mathematical measure that aims to capture this expressive
power in a manner that is uniform across model classes.
Higher VC dimension implies a more complicated classifier
space with higher ability to overfit training data, and so,
more training data is required for effective learning.

In our framework, VC dimension is a function of not only
the hypothesis class, but also the statistic that translates
entities into feature vectors. The formal definition follows.

Let S be a schema, Π a statistic over S, and H a hypoth-
esis class. An instance I over S is shattered by H w.r.t. Π
if for every labeling λ of I there exists a hypothesis h ∈ H
that fully agrees with λ. The VC dimension of H w.r.t. Π is
the maximal number m such that there is an instance I over
S where I has m entities and I is shattered by H w.r.t. Π.

Problem 2 (Dimensionality). Let H be a hypothesis
class and QL a query language. The computational problem

Txn
txn
5

6

7

TxnInfo
txn card country state
5 105 US AK

6 105 US NY

7 110 BR RJ

Card
card ssn country state
105 205 US AK

110 202 BR SP

Instance I ′ over S

⇒
ΠI′(e)
1 1

-1 1
-1 1

→ h → -1
1
1

⇒

Txn
txn prediction
5 -1
6 1
7 1

Figure 3: The prediction process

(H,QL)-dimensionality is the following. Given an entity
schema S and a statistic Π in QL, compute the VC dimen-
sion of H w.r.t. Π.

Example 4.2. Recall S and Π of our running example
(Figure 1). Computing the VC dimension of Lin w.r.t. Π is
an instance of (Lin,CQ)-dimensionality. Our results [22] im-
ply that this dimension is 3. Hence, there exists an instance
I with three entities, such that we can find a perfect linear
classifier for every labeling λ for I. Yet, no such instance
exists with four or more entities. In this example, then,
modeling of the features as CQs does not reduce the VC
dimension compared to traditional machine learning where
one can freely set the feature values.

4.3 Statistic Identifiability
Identifiability asks whether it is possible for one to learn

the parameters of the given classifier model unambiguously
from some data set. Here, the question refers to a given
statistic, and we consider the case where training is done by
means of optimization via linear algebra; we ask whether the
space of solutions is bounded. More formally, this problem
boils down to deciding, given a statistic, whether there exists
any training instance such that the resulting feature matrix
is of full column dimension (i.e., the columns are linearly
independent). We also consider the variant where linear
independence is relaxed to affine independence (as defined
in Section 2.) For additional background on identifiability,
we refer the reader to Wainwright and Jordan’s survey [32].
Next, we give the formal definition.

Let S be an entity schema, Π a statistic over S, and I an
instance over S. We fix an arbitrary order over the entities
of I, and denote by JΠIK the matrix that consists of the rows
ΠI(e) for every e ∈ ηIS in order. We say that Π is linearly
identifiable if there exists an instance I over S such that the
matrix JΠIK is linearly column independent. We say that Π
is affinely identifiable if there exists an instance I over S such

10 SIGMOD Record, March 2018 (Vol. 47, No. 1)

that the matrix JΠIK is affinely column independent. Note
that whenever Π is linearly identifiable, it is also affinely
identifiable; the other direction is not necessarily true.

Both types of identifiability are important properties in
the design of machine-learning solutions [24]. Particularly,
in the case of the hypothesis class Lin and the cost function
lsq (as defined in Section 2), linear independence implies
that there is a single optimal hypothesis, whereas its absence
implies that the space of optimal solutions is unbounded.
Affine independence likewise arises in different cost func-
tions such as maximum entropy [32]. The corresponding
computational problem is formally defined as follows.

Problem 3 (Identifiability). Let QL be a query lan-
guage. The computational problem of linear (respectively,
affine) QL-identifiability is that of testing, given an entity
schema S and a statistic Π over S, whether Π is linearly
(respectively, affinely) identifiable.

Example 4.3. Consider again S and Π of our running
example (Figure 1). Then S and Π form a “yes” instance of
linear (and affine) CQ-identifiability. Indeed, Π is linearly
(and affinely) identifiable, and a witness instance is I of
Figure 2 with Txn restricted to the entities 1 and 2 (or 3

and 2, but not 1 and 3). We have shown that under certain
conditions (that hold in our case), a statistic that consists of
CQ feature queries is always identifiable, unless two or more
of the feature queries are equivalent [22]. Hence, in the case
of CQs, identifiability“comes for free”up to redundancy.

4.4 Complexity Analysis
Complexity analysis of the three problems can be found

in the conference version of this article [22], and will be
presented in more detail in the full version of the paper.
In the next section, we give complexity results on the first
problem, namely separability.

5. COMPLEXITY OF SEPARABILITY
In this section, we discuss the complexity of separability

in the case where feature queries are from the class of CQs
and the hypothesis class is that of linear classifiers. The first
result states coNP-completeness.

Theorem 5.1. (Lin,CQ)-separability is a coNP-complete
problem. Moreover, there exists a fixed entity schema S such
that (Lin,CQ)-separability is coNP-hard over S.

The proof of Theorem 5.1 consists of two parts. In the first
part, we show that a given (I, λ) is Lin-separable w.r.t. a
given statistic Π if and only if every two entities with differ-
ent labels (i.e., one is +1 and the other −1) can be distin-
guished by a CQ, that is, there is a CQ feature query that
returns one entity and not the other. The second part shows
that this distinguishability test is coNP-complete. This proof
highlights a connection to the problems of query-by-example
and definability [7, 30, 33], and we are currently exploring
these connections in more depth.

In the above proof of hardness we construct CQs over a
fixed schema, but self joins are allowed. Next, we consider
the case of self-join-free CQs. Formally, a CQ q is self-join
free if it does not have two distinct atoms with the same
relation symbol. We denote by CQsjf the class of CQs with-
out self joins. Interestingly, disallowing self joins (hence,

restricting the space of statistics to simpler CQs) does not
make the problem easier. In fact, under conventional com-
plexity assumptions, it becomes harder!

Theorem 5.2. (Lin,QLsjf)-separability is ΣP
2 -complete.

Intuitively, the reason for the increased complexity is that
self joins allow us to (efficiently) formulate a single statistic
Π of representative (“canonical”) feature CQs that captures
the entire space of statistics; that is, if any statistic provides
separation, then so does Π. In particular, with self joins the
problem boils down to deciding on the existence of a homo-
morphism. Yet, without self joins it appears that we cannot
do better than to inspect an exponential space of statistics,
and solve the homomorphism problem in each. Finally, we
remark that fixing the schema S in the case of QLsjf would
make the separability problem solvable in polynomial time,
since the number of possible statistics (without equivalent
feature queries) is bounded by a fixed constant, and each
feature query can be evaluated in polynomial time.

Comment 5.3. For CQs with constants, separability is
trivial, since the positive examples can be hardcoded into
the statistic. In Figure 2, for instance, we could encode each
of the first, second, and third tuples of TxnInfo (and even
their join with Card) in a CQ that selects precisely the cor-
responding transactions. It would, however, be interesting
to enforce restrictions on the usage of constants (e.g., limit
their number). An elegant way to formalize such restric-
tions was taken by Grohe and Ritzert [16] that separate the
variables into ordinary variables and parameters that can be
set fixed by the learning algorithm. We plan to explore this
approach in future work.

6. ADDITIONAL RELATED WORK
The task of feature engineering has been widely studied

for decades [9, 17–20]. Our approach borrows heavily from
the feature-engineering process identified in Guyon’s seminal
book [18] and those we have observed in practice. Feature
engineering has received some attention from the database
community [2,3,23,29,35]. That work has made algorithmic
or tooling contributions to better support feature engineer-
ing, while it has not addressed the fundamental questions
that our framework targets.

Frameworks and query languages that fuse logic with prob-
abilistic semantics, to simplify the design of machine-learning
models, have been proposed and developed in past decades.
Examples of these include Probabilistic Relation Models pio-
neered by Koller and Friedman [14], PRISM [27], BLOG [25],
Markov Logic Networks [26], and the recent Probabilistic-
Programming Datalog [6]. However, these approaches focus
on orthogonal formal questions: the semantics of the mod-
els and the complexity of the associated inference tasks. In
contrast, we consider the interplay of the logical rules and
learning properties. In particular, to the best of our knowl-
edge this work is the first to consider separability, identifi-
ability, and dimensionality in machine-learning models that
are defined over database queries. Our formal framework
draws inspiration from previous approaches to combining
logical reasoning to probabilistic reasoning, which is a clas-
sic topic [5, 11], but is distinct in its goal.

There has been a lot of work in the Machine Learning com-
munity on learnability aspects of First Order formulas. For

SIGMOD Record, March 2018 (Vol. 47, No. 1) 11

instance, Arias and Khardon [4] considered such aspects (in-
cluding VC dimension) in the context of Horn clauses, where
they establish bounds that are based on syntactic properties
of the clauses (e.g., number of variables, literals, clauses,
etc.). Similarly, Grohe and Ritzert [16] explored PAC learn-
ing of first-order formulas over a “background structure,”
namely a database. Such setups are quite different from
ours, since their goal is to classify a whole interpretation
(database) based on a single formula (to be learned), while
we consider classification of entities within a single database
and focus on feature engineering rather than the engineer-
ing of the classifier. More technically, in our framework the
goal is not necessarily to learn queries, but rather to reason
about queries as features of machine-learning models that
are not necessarily database queries (e.g., linear models).

7. CONCLUSIONS AND DIRECTIONS
We described a framework for feature engineering towards

programming machine-learning solutions over a database,
while focusing on the important task of classification. Our
framework is based on simple additions to the relational data
and query model, where an entity schema allows to repre-
sent entities along with their associated information, and
where feature engineering is the task of designing a statis-
tic when given a training instance over the entity schema.
This framework enables us to formalize relevant computa-
tional problems, conduct nontrivial analyses, and reach in-
sights and solutions. In particular, we have formalized three
important computational problems within the framework:
separability, identifiability, and VC dimensionality. These
problems are parameterized by the hypothesis class in use
and the query language deployed for feature extraction.

Focusing on features definable as conjunctive queries and
on linear hypotheses, we have drawn connections between
the studied computational problems and those of query con-
tainment and equivalence. These connections have several
interesting consequences. For one, there is a tight relation-
ship between the computational complexity of our problems
and that of query containment: it is necessary, and often
sufficient, to solve CQ containment in order to solve our
problems. Moreover, the fact that identifiability “comes for
free” (up to redundancy) gives a formal indication of the
suitability of CQs as a language for feature engineering. It
also motivates the challenge of finding other natural query
languages that are likewise suitable. We conclude with a
number of directions and extensions for future research.

Logical Analysis
Further expressiveness. We have focused on the simple
class of conjunctive queries for defining statistics, and on the
classifier class of linear hypotheses. An immediate future
direction would be to consider more expressive classes. For
features, these can be unions of conjunctive queries, queries
with additional logical operators, non-monotonic features,
and aggregate functions. For the hypotheses, future direc-
tions can consider any standard class, such as decision trees.

Schema constraints. The complexity of some of the tasks
we have considered would be impacted by the presence of
schema constraints. In particular, in the identifiability prob-
lem column independence would need to be realized by an

instance that satisfies the constraints, and not by any in-
stance of the signature. The problem of VC dimensionality
would be similarly impacted. We view this direction as an
important opportunity of incorporating the database’s rich
modeling of data into the task of feature engineering.

Text analysis. An area where machine-learning classifica-
tion is crucial for even simple tasks is that of text analysis,
and in particular when the text is in natural language from
open domains such as Web and social media [29]. Conse-
quently, we belive that a direction of a high potential im-
pact is that of applying our framework to formalisms that
involve queries over text, such as the document spanners of
Fagin et al. [12,13] that construct and manipulate relations
over text spans (intervals) using extractors (e.g., regular ex-
pressions). In particular, the computational challenges will
involve queries with both relational and textual operations.

Statistical Questions
Generalized learning tasks. Our features in this work
were all Boolean (±1), and it is desirable to study the natu-
ral extension of the framework to numerical features, where
numbers are either directly copied from the database or in-
directly computed via queries. Numerical values will likely
complicate the basic model, as they entail arguing about
schema constraints to ensure that a feature query associates
a unique value with each entity. Orthogonally, the frame-
work can be generalized to other prediction tasks, such as
multi-label classification (e.g., predict the age group of a per-
son) and numerical regression (e.g., predict the actual age
of the person). It is important to understand how the chal-
lenges we considered are affected by such generalizations.

Separability relaxation. The separability problem, as
defined in this article, can be extended by allowing for an
approximate agreement with the training examples (e.g., the
hypothesis h should agree with the labeling λ on at least
(1−ε) of the entities, or at most k entities should be misclas-
sified). This is a practical and crucial relaxation in practical
scenarios. For one, the training data may be noisy. More-
over, our hypothesis class may be too simple to precisely
cover the examples, but can do so with only a small error.

Model complexity. While extending the expressiveness
of queries, it is of high importance to find the proper restric-
tions on the engineered statistics (a.k.a. regularization), in
order to (a) reduce the model complexity and, consequently,
reduce the risk of overfitting to the training samples, and (b)
gain more efficient machine-leaning solutions. The common
regularization limits the length of the statistic; in our frame-
work, we can consider restrictions on the feature queries,
such as size, structure, number of constants/variables, and
so on. The ultimate goal is to find settings that properly
balance between overfitting, underfitting, inference (classifi-
cation) complexity and learning (training) complexity.

The vast literature on machine learning gives rise to many
more directions for our framework to extend, such as no-
tions of capacity beyond VC dimension (e.g., Rademacher
and Gaussian complexities [8]) and the implications of the
“transductive” learning environments, where we know to be-
gin with what entities we will need to predict upon [15]. We
believe that our framework can contribute to many of these
directions the important angle of data and query modelling.

12 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Acknowledgments
The authors are grateful to Stephen Bach and Alex Ratner
for insightful input on this work, and for Jared Alexander
Dunnmon for valuable suggestions on this article.

8. REFERENCES
[1] SAS Report on Analytics.

sas.com/reg/wp/corp/23876.

[2] M. Anderson, D. Antenucci, V. Bittorf, M. Burgess,
M. Cafarella, A. Kumar, F. Niu, Y. Park, C. Ré, and
C. Zhang. Brainwash: A Data System for Feature
Engineering. In CIDR, 2013.

[3] M. R. Anderson, M. J. Cafarella, Y. Jiang, G. Wang,
and B. Zhang. An integrated development
environment for faster feature engineering. PVLDB,
7(13):1657–1660, 2014.

[4] M. Arias and R. Khardon. Complexity parameters for
first order classes. Machine Learning, 64(1-3):121–144,
2006.

[5] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller.
From statistical knowledge bases to degrees of belief.
CoRR, cs.AI/0307056, 2003.

[6] V. Bárány, B. ten Cate, B. Kimelfeld, D. Olteanu, and
Z. Vagena. Declarative probabilistic programming
with datalog. In ICDT, volume 48 of LIPIcs, pages
7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[7] P. Barceló and M. Romero. The complexity of reverse
engineering problems for conjunctive queries. In
ICDT, volume 68 of LIPIcs, pages 7:1–7:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[8] P. L. Bartlett and S. Mendelson. Rademacher and
gaussian complexities: Risk bounds and structural
results. In COLT, pages 224–240, 2001.

[9] D. E. Boyce. Optimal Subset Selection: Multiple
Regression, Interdependence, and Optimal Network
Algorithms . Springer-Verlag, 1974.

[10] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and
R. S. Zemel. Fairness through awareness. In ITCS,
pages 214–226. ACM, 2012.

[11] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for
reasoning about probabilities. Inf. Comput.,
87(1/2):78–128, 1990.

[12] R. Fagin, B. Kimelfeld, F. Reiss, and
S. Vansummeren. Spanners: a formal framework for
information extraction. In PODS, pages 37–48, 2013.

[13] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren.
Document spanners: A formal approach to
information extraction. J. ACM, 62(2):12, 2015.

[14] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In IJCAI,
pages 1300–1309, 1999.

[15] A. Gammerman, K. S. Azoury, and V. Vapnik.
Learning by transduction. In UAI, pages 148–155.
Morgan Kaufmann, 1998.

[16] M. Grohe and M. Ritzert. Learning first-order
definable concepts over structures of small degree. In
LICS, pages 1–12. IEEE Computer Society, 2017.

[17] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003.

[18] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh.
Feature Extraction: Foundations and Applications
(Studies in Fuzziness and Soft Computing).
Springer-Verlag New York, Inc., 2006.

[19] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data mining,
inference, and prediction. Springer, 2001.

[20] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In Machine
Learning, pages 121–129, 1994.

[21] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
Enterprise data analysis and visualization: An
interview study. IEEE Trans. Vis. Comput. Graph.,
18(12):2917–2926, 2012.

[22] B. Kimelfeld and C. Ré. A relational framework for
classifier engineering. In PODS, pages 5–20. ACM,
2017.

[23] A. Kumar, J. F. Naughton, J. M. Patel, and X. Zhu.
To join or not to join?: Thinking twice about joins
before feature selection. In SIGMOD Conference,
pages 19–34. ACM, 2016.

[24] E. L. Lehmann and G. Casella. Theory of point
estimation, volume 31. Springer, 1998.

[25] B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L.
Ong, and A. Kolobov. Blog: Probabilistic models with
unknown objects. In IJCAI, pages 1352–1359, 2005.

[26] M. Richardson and P. Domingos. Markov logic
networks. Mach. Learn., 62(1-2):107–136, 2006.

[27] T. Sato and Y. Kameya. PRISM: A language for
symbolic-statistical modeling. In IJCAI, pages
1330–1339, 1997.

[28] S. Shalev-Shwartz and S. Ben-David. Understanding
Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014.

[29] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and
C. Ré. Incremental knowledge base construction using
DeepDive. PVLDB, 8(11):1310–1321, 2015.

[30] B. ten Cate and V. Dalmau. The product
homomorphism problem and applications. In ICDT,
volume 31 of LIPIcs, pages 161–176. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

[31] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its
Applications, 16(2):264–280, 1971.

[32] M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference.
Foundations and Trends in Machine Learning,
1(1-2):1–305, 2008.

[33] R. Willard. Testing expressibility is hard. In CP,
volume 6308 of Lecture Notes in Computer Science,
pages 9–23. Springer, 2010.

[34] R. S. Zemel, Y. Wu, K. Swersky, T. Pitassi, and
C. Dwork. Learning fair representations. In ICML,
volume 28 of JMLR Proceedings, pages 325–333.
JMLR.org, 2013.

[35] C. Zhang, A. Kumar, and C. Ré. Materialization
optimizations for feature selection workloads. In
SIGMOD Conference, pages 265–276, 2014.

[36] I. Zliobaite. A survey on measuring indirect
discrimination in machine learning. CoRR,
abs/1511.00148, 2015.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 13

Technical Perspective: From Think Parallel
to Think Sequential

Zachary G. Ives
University of Pennsylvania

zives@cis.upenn.edu

In recent years, the database and distributed sys-
tems communities have built a wide variety of run-
time systems and programming models for large-
scale computing over graphs. Such “big graph pro-
cessing systems” [1, 2, 4, 5, 7] o support highly scal-
able parallel execution of graph algorithms — e.g.,
computing shortest paths, graph centrality, connected
components, or perhaps even graph clusters. As de-
scribed in the excellent survey by Yan et al [6], most
big graph processing systems require the program-
mer to adopt a vertex-centric or block-centric pro-
gramming model. For the former, code only “sees”
the state at one vertex, receives messages from other
vertices, and can send messages to other vertices.
Under the latter, code manages a set of vertices
within a subgraph (“block”) and can communicate
with the code managing other blocks.

In “From think Parallel to Think Sequential,”
Fan and colleagues argue that vertex- and block-
centric programming models are not natural for pro-
grammers trained to think sequentially. Instead,
they argue that a more intuitive programming model
can be developed out of several very simple primi-
tives that can be composed to do incremental com-
putation (as has also been studied in more general
“big data” systems [4, 3]). The authors propose
four elegant building blocks: (1) a partial evalua-
tion function, (2) an incremental update handling
function, (3) mechanisms for updating and shar-
ing parameters in global fashion, and (4) an aggre-
gate function for when multiple workers are updat-
ing the same parameter. They build the GRAPE
GRAPh Engine system, which implements this pro-
gramming model, and they show that it provides
excellent performance for a variety of graph algo-
rithms.

The paper presents a compelling case that, at
least for certain classes of algorithms, the simple

primitives may be both more natural and more amenable
to optimization than standard vertex-centric ap-
proaches.

1. REFERENCES
[1] Yucheng Low, Joseph Gonzalez, Aapo Kyrola,

Danny Bickson, and Carlos Guestrin.
Graphlab: A distributed framework for
machine learning in the cloud. CoRR,
abs/1107.0922, 2011.

[2] Grzegorz Malewicz, Matthew H. Austern, Aart
J. C. Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a
system for large-scale graph processing. In
SIGMOD, pages 135–146, 2010.

[3] Svilen Mihaylov, Zachary G. Ives, and Sudipto
Guha. REX: Recursive, delta-based
data-centric computation. In PVLDB, 2012.

[4] Derek Gordon Murray, Frank McSherry,
Rebecca Isaacs, Michael Isard, Paul Barham,
and Mart́ın Abadi. Naiad: a timely dataflow
system. In SOSP, pages 439–455, 2013.

[5] Reynold S Xin, Joseph E Gonzalez, Michael J
Franklin, and Ion Stoica. Graphx: A resilient
distributed graph system on spark. In First
International Workshop on Graph Data
Management Experiences and Systems, page 2.
ACM, 2013.

[6] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol
Deshpande. Big graph analytics platforms.
Foundations and Trends R© in Databases,
7(1-2):1–195, 2017.

[7] Da Yan, James Cheng, Yi Lu, and Wilfred Ng.
Blogel: A block-centric framework for
distributed computation on real-world graphs.
Proceedings of the VLDB Endowment,
7(14):1981–1992, 2014.

14 SIGMOD Record, March 2018 (Vol. 47, No. 1)

From Think Parallel to Think Sequential

Wenfei Fan1,2, Yang Cao1, Jingbo Xu2, Wenyuan Yu2, Yinghui Wu3,
Chao Tian1,2, Jiaxin Jiang4, Bohan Zhang5

1Univ. of Edinburgh 2Beihang Univ. 3Washington State Univ. 4Hong Kong Baptist Univ. 5Peking Univ.
{wenfei@inf, yang.cao@, chao.tian@}ed.ac.uk, {xujb, yuwenyuan}@act.buaa.edu.cn, yinghui@eecs.wsu.edu,

jxjian@comp.hkbu.edu.hk, bohan@pku.edu.cn

ABSTRACT
This paper presents GRAPE, a parallel GRAPh Engine for graph
computations. GRAPE differs from previous graph systems in
its ability to parallelize existing sequential graph algorithms as a
whole, without the need for recasting the entire algorithms into a
new model. Underlying GRAPE are a simple programming model,
and a principled approach based on fixpoint computation with par-
tial evaluation and incremental computation. Under a monotonic
condition, GRAPE guarantees to converge at correct answers as
long as the sequential algorithms are correct. We show how our fa-
miliar sequential graph algorithms can be parallelized by GRAPE.
In addition to the ease of programming, we experimentally verify
that GRAPE achieves comparable performance to the state-of-the-
art graph systems, using real-life and synthetic graphs.

1. INTRODUCTION
There has been increasing demand for graph computations, e.g.,

graph traversal, connectivity, pattern matching, and collaborative
filtering. Indeed, graph computations have found prevalent use in
mobile network analysis, pattern recognition, knowledge discov-
ery, transportation networks, social media marketing and fraud de-
tection, among other things. In addition, real-life graphs are typi-
cally big, easily having billions of nodes and trillions of edges [18].
With these comes the need for parallel graph computations. In re-
sponse to the need, several parallel graph systems have been devel-
oped, e.g., Pregel [25], GraphLab [16, 24], Trinity [29], GRACE
[35], Blogel [37], Giraph++ [31], and GraphX [17].

However, users often find it hard to write and debug paral-
lel graph programs using these systems. The most popular pro-
gramming model for parallel graph algorithms is the vertex-centric
model, pioneered by Pregel and GraphLab. For instance, to pro-
gram with Pregel, one needs to “think like a vertex", by writing
a user-defined function compute(msgs) to be executed at a vertex
v, where v communicates with other vertices by message pass-
ing (msgs). Although graph computations have been studied for
decades and a large number of sequential (single-machine) graph
algorithms are already in place, to use Pregel, one has to recast
the existing algorithms into vertex-centric programs. Trinity and

c©ACM 2017. This is a minor revision of the paper entitled Paralleliz-
ing Sequential Graph Computations, published in SIGMOD’17, ISBN978-
1-4503-4197-4/17/05, May 14-19, 2017, Chicago, Illinois, USA. DOI:
http://dx.doi.org/10.1145/3035918.3035942. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

System Category Time(s) Comm.(MB)

Giraph vertex-centric 434.0 1.13 × 105

GraphLab vertex-centric 41.7 1.07 × 105

Blogel block-centric 112.3 1.23 × 105

GRAPE think sequential 24.3 1.47 × 104

Table 1: Graph traversal on parallel systems

GRACE also support vertex-centric programming. While Blo-
gel and Giraph++ allow blocks to have their status as a “vertex”
and support block-level communication, they still adopt the vertex-
centric programming paradigm. GraphX also recasts graph compu-
tation into its distributed dataflow framework as a sequence of join
and group-by stages punctuated by map operations, on Spark plat-
form (see [36] for a survey). The recasting is nontrivial for users
who are not very familiar with the parallel models. Moreover, none
of the systems provides guarantee on the correctness or even termi-
nation of parallel programs developed in their models. These make
the existing systems a privilege for experienced users only.

Is it possible to simplify parallel programming for graph com-
putations, from “think parallel” to “think sequential”? That is, can
we have a system that parallelizes existing sequential graph algo-
rithms across a cluster of processors? Better yet, is there a general
condition under which the parallelization guarantees to converge at
correct answers as long as the sequential algorithms are correct?
After all, the human’s brain is not wired to think parallel.

To answer these questions, we develop GRAPE, a parallel
GRAPh Engine. It differs from prior systems in the following.

(1) Ease of programming. GRAPE supports a simple programming
model. For a class Q of graph queries, users only need to provide
three sequential (incremental) algorithms for Q, with no need to
recast them into a new model, or revise the logic of the algorithms.
This makes parallel computations accessible to users who know
conventional graph algorithms covered in college textbooks.

(2) Parallelization. GRAPE parallelizes the computation across a
cluster of processors, based on a fixpoint computation with partial
evaluation and incremental computation. Under a monotonic con-
dition, it guarantees to converge with correct answers as long as the
three sequential algorithms provided are correct.

(3) Optimization. GRAPE inherits all optimization strategies avail-
able for sequential graph algorithms, e.g., indexing, compression
and partitioning. These are hard to implement for vertex programs.

(4) Scale-up. The ease of programming does not imply perfor-
mance degradation compared with the state-of-the-art systems such
as vertex-centric Giraph [3] (Pregel) and GraphLab, and block-
centric Blogel. For instance, Table 1 shows the performance of
the systems for shortest-path queries over Friendster [2] with 192
workers. GRAPE outperforms Giraph, GraphLab and Blogel in
both response time and communication costs (see Section 4).

SIGMOD Record, March 2018 (Vol. 47, No. 1) 15

This paper presents the programming and parallel models of
GRAPE (Section 2), shows how it parallelizes sequential algo-
rithms (Section 3), and empirically evaluates GRAPE (Section 4).

2. GRAPE PARALLELIZATION
We present the programming paradigm and parallel model of

GRAPE. Interested readers are invited to see [14] for details.

2.1 Graph Partition
We start with basic notations. We consider directed or undirected

graphs G = (V,E, L), where (1) V is a finite set of nodes; (2)
E ⊆ V × V is a set of edges; and (3) each node v in V (resp. edge
e ∈ E) carries L(v) (resp. L(e)), indicating its content, as found
in social networks, knowledge bases and property graphs.

Partition strategy. Given a graph G and an integer m, a graph par-
tition strategy P partitions G into fragments F = (F1, . . . , Fm).
Each fragment Fi = (Vi, Ei, Li) is a subgraph of G that re-
sides at processor Pi, for i ∈ [1,m]; and E =

⋃
i∈[1,m] Ei,

V =
⋃

i∈[1,m] Vi. Under edge-cut partition [8, 9], denote by
• Fi.I the set of nodes v ∈ Vi such that there exists edge

(v′, v) from a node v′ in Fj ;
• Fi.O the set of nodes v′ in some Fj such that there exists an

edge (v, v′) from v ∈ Vi; and
• F .O =

⋃
i∈[1,m] Fi.O, and F .I =

⋃
i∈[1,m] Fi.I .

A cut edge from Fi to Fj has a copy in each of Fi and Fj (i 6= j).
We refer to nodes in Fi.I (or Fi.O) as border nodes of fragment
Fi w.r.t. partition strategy P . Note that F .I = F .O.

Under vertex-cut partition [22], F .O and F .I correspond to en-
try vertices and exit vertices, respectively.

2.2 Programming Paradigm
Consider a graph computation problem Q. Using our familiar

terms, we refer to an instance Q of Q as a query of Q. To answer
Q ∈ Q with GRAPE, a user only needs to specify three functions.

PEval: a sequential algorithm for Q that given a query Q ∈ Q and
a graph G, computes the answer Q(G) to Q in G.

IncEval: a sequential algorithm IncEval for Q that given Q, G,
Q(G) and updates ∆G to G, incrementally computes changes ∆O
to the old output Q(G) such that Q(G ⊕ ∆G) = Q(G) ⊕ ∆O,
where G⊕∆G denotes graph G updated by ∆G.

Assemble: a function Assemble that collects partial answers com-
puted locally at each worker by PEval and IncEval, and assembles
them into complete answer Q(G). It is typically straightforward.

Functions PEval, IncEval and Assemble are referred to as a PIE
program for Q. Here PEval and IncEval are existing sequential (in-
cremental) algorithms for Q, with the following additions to PEval.

Update parameters. PEval declares status variables x̄ for a set Ci

of nodes and edges in a fragment Fi, which store contents of Fi

or intermediate results of a computation. Here Ci is a set of nodes
and edges within d-hops of the border nodes in Fi, e.g., Fi.O, for
an integer d. When d = 0, one may define Ci as, e.g., Fi.O.

We denote by Ci.x̄ the set of update parameters of Fi, which
consists of status variables of the nodes and edges in Ci, i.e., vari-
ables in Ci.x̄ are the candidates to be updated.
Aggregate function. PEval also specifies a function faggr, e.g., min,
max, to resolve conflicts when multiple workers attempt to assign
different values to the same update parameter.

The update parameters and aggregate function are specified in
PEval and are shared by IncEval. As will be seen shortly, IncEval
only needs to deal with changes ∆G to update parameters.

master P0

!
Q(F1) Q(Fm)

PEval

!
Q(F1 ⊕M1) Q(Fm⊕Mm)

master P0

worker worker

workerworker

master P0

IncEval

Assemble

Q(G)

query Q

Figure 1: Workflow of GRAPE

2.3 Parallel Model
Given a partition strategy P and a PIE program ρ (PEval,

IncEval, Assemble) for Q, GRAPE parallelizes ρ as follows. It
first partitions G into (F1, . . . , Fm) with P , and distributes frag-
ments Fi’s across m shared-nothing virtual workers (P1, . . . , Pm).
It maps m virtual workers to n physical workers. When n < m,
multiple virtual workers mapped to the same worker share memory.
Graph G is partitioned once for all queries Q ∈ Q on G.

We start with basic ideas behind GRAPE parallelization.

Partial evaluation. Given a function f(s, d) and the s part of its in-
put, partial evaluation is to specialize f(s, d) w.r.t. the known input
s [21]. That is, it performs the part of f ’s computation that depends
only on s, and generates a partial answer, i.e., a residual function
f ′ that depends on the as yet unavailable input d. For each worker
Pi in GRAPE, its local fragment Fi is its known input s, while
the data residing at other workers accounts for the yet unavailable
input d. As will be seen shortly, given a query Q ∈ Q, GRAPE
computes Q(Fi) in parallel as partial evaluation.

Incremental evaluation. Workers exchange changed values of their
local update parameters with each other. Upon receiving message
Mi that consists of changes to the update parameters at fragment
Fi, worker Pi treats Mi as updates to Fi, and incrementally com-
putes changes ∆Oi to Q(Fi) such that Q(Fi ⊕ Mi) = Q(Fi) ⊕
∆Oi. This is often more efficient than recomputing Q(Fi ⊕Mi)
starting from scratch, since in practice Mi is often small. Better
still, the computation may be bounded: its cost can be expressed as
a function in |Mi| + |∆Oi|, i.e., the size of changes in the input
and output, instead of |Fi|, no matter how big Fi is [12, 28].

Parallelization. We use (BSP) (Bulk Synchronous Parallel model
[32]). Given a query Q ∈ Q at master P0, GRAPE answers Q in
the partitioned graph G. It posts the same Q to all the workers, and
computes Q(G) in three phases as follows, as shown in Fig. 1.

(1) Partial evaluation (PEval). In the first superstep, upon re-
ceiving query Q, each worker Pi applies function PEval to its
local fragment Fi, to compute partial results Q(Fi), in parallel
(i ∈ [1,m]). After Q(Fi) is computed, PEval generates a mes-
sage at each worker Pi and sends it to master P0. The message is
simply the set Ci.x̄ of update parameters at fragment Fi.

For each i ∈ [1,m], master P0 maintains update parameters
Ci.x̄. It deduces a message Mi to worker Pi based on the following
message grouping policy. (a) For each status variable x ∈ Ci.x̄, it
collects the group Sx of values for x from all messages, and com-
putes xaggr = faggr(Sx) by applying the aggregate function faggr.
(b) Message Mi includes only those xaggr’s such that xaggr 6= x,
i.e., only those changed values of the update parameters at Fi.

(2) Incremental computation (IncEval). GRAPE iterates the fol-
lowing supersteps until it terminates. Following BSP, each super-

16 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Input: Fi(Vi, Ei, Li), source vertex s
Output: Q(Fi) consisting of current dist(s, v) for all v ∈ Vi

Declaration: /*candidate set Ci is Fi.O*/
for each node v ∈ Vi, an integer variable dist(s, v);
message Mi := {dist(s, v) | v ∈ Fi.O};
aggregate function faggr = min(dist(s, v));

/*sequential algorithm for SSSP (pseudo-code)*/
1. initialize priority queue Que;
2. dist(s, s) := 0;
3. for each v in Vi do
4. if v! = s then
5. dist(s, v) := ∞;
6. Que.addOrAdjust(s, dist(s, s));
7. while Que is not empty do
8. u := Que.pop() // pop vertex with minimal distance
9. for each child v of u do // only v that is still in Que
10. alt := dist(s, u) + Li(u, v);
11. if alt < dist(s, v) then
12. dist(s, v) := alt;
13. Que.addOrAdjust(v, dist(s, v));
14. Q(Fi) := {dist(s, v) | v ∈ Vi}

Figure 2: Parallel SSSP: Partial evaluation PEval

step starts after the master P0 receives messages (possibly empty)
from all workers Pi for i ∈ [1,m]. A superstep has two steps itself,
one at P0 and the other at the workers.

(a) Master P0 routes (nonempty) messages from the last super-
step to workers, if there exists any.

(b) Upon receiving message Mi, worker Pi incrementally com-
putes Q(Fi ⊕Mi) by applying IncEval, and by treating Mi

as updates to Ci.x̄, in parallel for i ∈ [1,m].

At the end of the process of IncEval, worker Pi sends a message
to P0 that encodes updated values of Ci.x̄, if any. Upon receiving
messages from all workers, master P0 deduces message Mi to each
worker Pi following the message grouping policy given above; it
sends message Mi to worker Pi in the next superstep.

(3) Termination (Assemble). At each superstep, master P0 checks
whether for all i ∈ [1,m], Pi is inactive, i.e., Pi is done with its lo-
cal computation, and there exists no more change to the update pa-
rameters of Fi. If so, GRAPE pulls partial results from all workers,
and applies Assemble to group them together and get the final re-
sult at P0, denoted by ρ(Q,G). It returns ρ(Q,G) and terminates.

Example 1: We show how GRAPE parallelizes the computation
of Single Source Shortest Path (SSSP), a common graph computa-
tion problem. Consider a directed graph G = (V,E, L) in which
for each edge e, L(e) is a positive number. The length of a path
(v0, . . . , vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For a
pair (s, v) of nodes, denote by dist(s, v) the distance from s to v,
i.e., the length of a shortest path from s to v. Given graph G and a
node s in V , SSSP computes dist(s, v) for all v ∈ V .

Under edge-cut partition [9], GRAPE takes the set Fi.O of “bor-
der nodes” as Ci at each Pi (with edges across distinct fragments).
The PIE program for SSSP consists of (1) our familiar Dijkstra’s
algorithm for SSSP [15] as PEval, (2) a sequential incremental al-
gorithm of [27] as IncEval, and (3) a straightforward Assemble.

(1) PEval. As shown in Fig. 2, PEval (lines 1-14) is verbally
identical to Dijsktra’s algorithm [15]. One only needs to declare
(a) status variable as an integer variable dist(s, v) for each node
v, initially ∞ (except dist(s, s) = 0); (b) update parameters as
Ci.x̄ = {dist(s, v) | v ∈ Fi.O}, i.e., the status variables associ-
ated with nodes in Fi.O at fragment Fi; and (c) min as an aggregate
function faggr. If there are multiple values for the same dist(s, v),
the smallest value is taken by the order on positive numbers.

At the end of its process, PEval sends Ci.x̄ to master P0. At
P0, GRAPE maintains dist(s, v) for all v ∈ F .O = F .I . Upon
receiving messages from all workers, it takes the smallest value for

Input: Fi(Vi, Ei, Li), partial result Q(Fi), message Mi

Output: Q(Fi ⊕ Mi)

Declaration: message Mi = {dist(s, v) | v ∈ Fi.O, dist(s, v) decreased};

1. initialize priority queue Que;
2. for each dist(s, v) in Mi do
3. Que.addOrAdjust(v, dist(s, v));
4. while Que is not empty do
5. u := Que.pop() /* pop vertex with minimum distance*/
6. for each children v of u do
7. alt := dist(s, u) + Li(u, v);
8. if alt < dist(s, v) then
9. dist(s, v) := alt;
10. Que.addOrAdjust(v, dist(s, v));
11. Q(Fi) := {dist(s, v) | v ∈ Vi}

Figure 3: Parallel SSSP: Incremental evaluation IncEval

each dist(s, v). It finds those variables with smaller dist(s, v) for
v ∈ Fj .O, groups them into message Mj , and sends Mj to Pj .

(2) IncEval. We give IncEval in Fig. 3. It is the sequential in-
cremental algorithm for SSSP in [28] that is mildly revised to
deal with changed dist(s, v) for v in Fi.I (deduced by leverag-
ing F .I = F .O). Using a queue Que, it starts with changes in
Mi, propagates the changes to affected area, and updates the dis-
tances (see [28]). The partial result now consists of the revised
distances (line 11). At the end of the process, it sends to master P0

the updated values of those status variables in Ci.x̄, as in PEval. It
applies the aggregate function min to resolve conflicts.

Following [28], one can show that IncEval is bounded: its cost
is determined by the sizes of “updates” |Mi| and the changes to the
output. This reduces the cost of iterative computation of SSSP.

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n] Q(Fi), the union of
the shortest distance for each node in each Fi.

The process converges at correct Q(G). Updates to Ci.x̄ are
“monotonic”: the value of dist(s, v) for each node v is computed
from the active domain of G and does not increase. Moreover,
dist(s, v) is the shortest distance from s to v as warranted by the
sequential algorithms [15, 28] (PEval and IncEval). ✷

Fixpoint. The GRAPE parallelization of the PIE program can be
modeled as a simultaneous fixpoint operator φ(R1, . . . , Rm) de-
fined on m fragments. It starts with PEval for partial evaluation,
and conducts incremental computation by taking with IncEval as
the intermediate consequence operator, as follows:

R0
i = PEval(Q,F 0

i [x̄i]),

Rr+1
i = IncEval(Q,Rr

i , F
r
i [x̄i],Mi),

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial results

in step r at worker Pi, fragment F 0
i = Fi, F r

i [x̄i] is fragment Fi at
the end of superstep r carrying update parameters Ci.x̄, and Mi is
a message indicating changes to Ci.x̄. More specifically, (1) in the
first superstep, PEval computes partial answers R0

i (i ∈ [1,m]).
(2) At step r + 1, the partial answers Rr+1

i are incrementally up-
dated by IncEval, taking Q, Rr

i and message Mi as input. (3) The
computation proceeds until Rr0+1

i = Rr0
i at a fixpoint r0 for all

i ∈ [1,m]. At this point function Assemble is invoked to combine
all partial answers Rr0

i and get the final answer ρ(Q,G).

Convergence. The correctness of the fixpoint computation is char-
acterized as follows. Given a graph computation problem Q, (a) the
sequential algorithm PEval for Q is correct if for all queries Q ∈ Q
and graphs G, it terminates and returns Q(G); (b) the sequential in-
cremental algorithm IncEval for Q is correct if it correctly updates
old output Q(G) to Q(G⊕M), by computing the changes ∆O to
be applied to Q(G), for changes (messages) M to update param-
eters; (c) Assemble is correct for Q w.r.t. partition strategy P if it
correctly computes Q(G) by assembling the partial answers from
all workers, when GRAPE with PEval, IncEval and P terminates.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 17

We say that GRAPE correctly parallelizes a PIE program ρ with
partition strategy P if for all Q ∈ Q and graphs G, GRAPE guar-
antees to reach a fixpoint such that ρ(Q,G) = Q(G).

It is shown [14] that under BSP, GRAPE correctly parallelizes a
PIE program ρ for a graph computation problem Q with any par-
tition strategy P if (a) PEval and IncEval of ρ are correct sequen-
tial algorithms for Q, and (b) Assemble correctly combines par-
tial results, and (c) PEval and IncEval satisfy a monotonic condi-
tion. The condition is as follows: for all status variables x ∈ Ci.x̄,
i ∈ [1,m], (a) the values of x are from a finite set computed from
the active domain of G and (b) there exists a partial order px on the
values of x such that IncEval updates x in the order of px. That is,
x draws values from a finite domain (condition (a) above), and x is
updated “monotonically” following px (condition (b)).

Simulating other models. The simple parallel model of GRAPE
does not come with a price of degradation in the functionality. Fol-
lowing [33], we say that parallel model M1 can optimally simulate
model M2 if there is a compilation algorithm that transforms any
program with cost C on M2 to a program with cost O(C) on M1.

As shown in [14], GRAPE optimally simulates parallel mod-
els MapReduce [10], BSP [32] and PRAM (Parallel Random Ac-
cess Machine) [33]. That is, all algorithms in these models with
n workers can be simulated by GRAPE using n processors with
the same number of supersteps and the same complexity. (2) We
have shown that the simulation result above holds in the message-
passing model described above, referred to as the designated mes-
sage model in [14]. Hence, algorithms developed for graph systems
based on MapReduce or BSP, e.g., Pregel, GraphLab and Blogel,
can be migrated to GRAPE without extra complexity.

Features. GRAPE has the following unique features.

(1) As shown in Fig. 4, to program with GRAPE, one only needs to
provide a PIE program in the “plug” panel of GRAPE, which con-
sists of (existing) sequential algorithms with minor changes. Given
a partition strategy P , a graph G, a query Q and the number m of
processors in the “play” panel, GRAPE parallelizes the algorithms.
GRAPE aims to help users develop parallel programs, especially

those who are more familiar with conventional sequential program-
ming. This said, programming with GRAPE still requires to de-
clare update parameters and design an aggregate function.

(2) Under a monotone condition, GRAPE parallelization guaran-
tees to converge at the correct answer as long as the sequential al-
gorithms are correct. This works regardless of partitioning strategy
used, not limited to edge-cut and vertex-cut. Nonetheless, different
strategies may yield partitions with various degrees of skewness
and stragglers, which have an impact on the performance.

(3) GRAPE optimally simulates MapReduce, BSP and PRAM.

(4) GRAPE inherits existing optimization techniques developed for
sequential graph algorithms, since it executes sequential algorithms
on graph fragments, which are graphs themselves.

(5) GRAPE reduces the costs of iterative graph computations by
using IncEval, to minimize unnecessary recomputations. While the
speedup is more evident when IncEval is bounded [28], localizable
or relatively bounded [11], these properties are not necessary.

There have been methods for incrementalizing graph algorithms,
to get incremental algorithms from their batch counterparts [7].

3. PROGRAMMING WITH GRAPE
We next outline PIE programs for graph pattern matching (Sim),

connectivity (CC) and collaborative filtering (CF), under edge-cut.
PIE programs under vertex-cut can be developed similarly.

Figure 4: Programming Interface of GRAPE

Graph simulation (Sim). A graph pattern is a graph Q =
(VQ, EQ, LQ), in which (a) VQ is a set of query nodes, (b) EQ is a
set of query edges, and (c) each node u in VQ carries a label LQ(u).

A graph G matches a pattern Q via simulation if there is a binary
relation R ⊆ VQ × V such that (a) for each query node u ∈ VQ,
there exists a node v ∈ V such that (u, v) ∈ R, and (b) for each
pair (u, v) ∈ R, LQ(u) = L(v), and for each query edge (u, u′) in
EQ, there exists an edge (v, v′) in graph G such that (u′, v′) ∈ R.

It is known that if G matches Q, then there exists a unique max-
imum relation [20], referred to as Q(G). If G does not match Q,
Q(G) is the empty set. Given a directed graph G and a pattern Q,
graph simulation is to compute the maximum relation Q(G).

We show how GRAPE parallelizes graph simulation.

(1) PEval. GRAPE takes the sequential simulation algorithm of
[20] as PEval to compute Q(Fi) in parallel. PEval declares a
Boolean status variable x(u,v) for each node u in VQ and each node
v in fragment Fi, indicating whether v matches u, initialized true.
It takes Fi.I as candidate set Ci. For each node u ∈ VQ, PEval
computes a set sim(u) of candidate matches v in Fi, and iteratively
removes from sim(u) those nodes that violate the simulation con-
dition (see [20] for details). At the end of the process, PEval sends
Ci.x̄ = {x(u,v) | u ∈ VQ, v ∈ Fi.I} to master P0.

At master P0, GRAPE maintains x(u,v) for all v ∈ F .I . Upon
receiving messages from all workers, it changes x(u,v) to false if it
is false in one of the messages. This is specified by min as faggr,
taking the order false ≺ true. GRAPE finds those variables that
become false, groups them into messages Mj , and sends Mj to Pj .

(2) IncEval is the sequential incremental graph simulation algo-
rithm of [12] in response to edge deletions. If x(u,v) is changed
to false by message Mi, it is treated as deletion of “cross edges” to
v ∈ Fi.O. It starts with changed status variables in Mi, propa-
gates the changes to affected area, and removes from sim matches
that become invalid (see [12] for details). The partial result is now
the revised sim relation. At the end of the process, IncEval sends
to P0 updated values of status variables in Ci.x̄, as in PEval.

IncEval is semi-bounded [12]: its cost is decided by the sizes
of “updates” |Mi| and changes to the affected area necessarily
checked by all incremental algorithms for Sim, not by |Fi|.
(3) Assemble simply takes Q(G) =

⋃
i∈[1,n] Q(Fi), the union of

all partial matches, i.e., relation sim at each fragment Fi.

(4) Correctness is warranted by the convergence condition of
GRAPE, as the sequential algorithms [12,20] (PEval and IncEval)

18 SIGMOD Record, March 2018 (Vol. 47, No. 1)

are correct, and updates to Ci.x̄ are monotonic: x(u,v) is initially
true for each border node v, and is changed at most once to false.

Graph connectivity (CC). Given an undirected graph G, CC com-
putes all connected components of G, referred to as CCs.

(1) PEval declares an integer variable v.cid for each node v in frag-
ment Fi, initialized as its node id. It uses a standard sequential
traversal (e.g., DFS) to compute the local CCs of Fi and determines
v.cid for each v ∈ Fi. For each local CC C, (a) PEval creates a
“root” node vc carrying the minimum node id in C as vc.cid, and
(b) links all the nodes in C to vc, and sets their cid as vc.cid. These
can be completed in one pass of the edges of Fi via DFS. At the
end of process, PEval sends {v.cid | v ∈ Fi.I} to master P0.

At master P0, GRAPE maintains v.cid for each all v ∈ F .I .
It updates v.cid by taking the smallest cid if multiple cids are re-
ceived, by taking min as faggr in PEval. It groups the border nodes
with updated cids into messages Mj , and sends Mj to Pj .

(2) IncEval incrementally updates the cids of the nodes in Fi upon
receiving Mi. The message Mi sent to Pi consists of v.cid with
updated (smaller) values of its border nodes v. For each v in Mi,
IncEval (a) finds the root vc of v, and (b) for vc and all the border
nodes linked to it, directly changes their cids to v.cid.

Note that IncEval is bounded: it takes O(|Mi|) time to identify
the root nodes, and O(|AFF|) time to update cids by following the
direct links from the root nodes, where AFF consists of only those
nodes with their cid changed, independent of |Fi|.
(3) Assemble first updates the cid of each node to the cid of its
linked root node. It then merges all the nodes having the same cids
in a single bucket, and returns all buckets as CCs.

(4) Correctness. It is easy to see that the process terminates since
the cids of the nodes are monotonically decreasing by aggregate
function faggr until no changes can be made. Moreover, it correctly
merges two local CCs by propagating smaller component ids.

Collaborative filtering (CF). CF takes as input a bipartite graph
G that includes users U and products P , and a set of weighted
edges E ⊆ U × P [23]. (1) Each user u ∈ U (resp. product
p ∈ P) carries latent factor vector u.f (resp. p.f). (2) Each edge
e = (u, p) in E carries a weight r(e), estimated as u.fT ∗ p.f
(∅ for “unknown”) that encodes a rating from user u to product p.
The training set ET refers to edge set {e | r(e) 6= ∅, e ∈ E}, i.e.,
all the known ratings. Given these, CF computes the missing fac-
tor vectors u.f and p.f to minimize an error function ǫ(f,ET) =
min

∑
((u,p)∈ET)(r(u, p) − u.fT p.f)2 + λ(‖u.f‖2 + ‖p.f‖2).

This is typically carried out by the stochastic gradient descent
(SGD) algorithm [23], which iteratively (1) predicts error ǫ(u, p) =
r(u, p) − u.fT ∗ p.f , for each e = (u, p) ∈ ET , and (2) updates
u.f and p.f accordingly to minimize ǫ(f,ET).
GRAPE parallelizes CF by adopting SGD [23] as PEval, and the

incremental algorithm ISGD of [34] as IncEval, using master P0 to
synchronize the shared factor vectors u.f and p.f .

(1) PEval. It sets Ci = Fi.I and declares status variable v.x =
(v.f, t) for v ∈ Ci, where v.f is the factor vector of v (initially ∅),
and t bookkeeps a timestamp at which v.f is lastly updated. PEval
is essentially the sequential SGD of [23]. It processes a “mini-
batch” of training examples independently of others, to compute
prediction error ǫ(u, p), and updates factor vectors f by a magni-
tude proportional to γ in the opposite direction of the gradient as:

u.f t = u.f t−1 + γ(ǫ(u, p) ∗ v.f t−1 − λ ∗ u.f t−1); (1)

p.f t = p.f t−1 + γ(ǫ(u, p) ∗ u.f t−1 − λ ∗ p.f t−1). (2)
At the end of its process, PEval sends messages Mi that consists

of updated v.x for each v ∈ Ci = Fi.O to master P0.
At P0, GRAPE maintains v.x = (v.f, t) for all border nodes

v ∈ F .I = F .O. Upon receiving updated values (v.f ′, t′) with
t′ > t, it changes v.f to v.f ′, i.e., it takes max as aggregate func-
tion faggr on timestamps. GRAPE then groups the updated vectors
into messages Mj , and sends Mj to Pj as usual.

(2) IncEval is the incremental algorithm ISGD of [34]. Upon re-
ceiving message Mi at worker Pi, it computes Fi ⊕Mi by treating
Mj as updates to factor vectors of nodes in Fi.I , and only modifies
affected factor vectors as in PEval based solely on new observa-
tions. It sends the updated vectors in Ci as in PEval.

(3) Assemble simply takes the union of all the factor vectors of
nodes from the workers (to be used for recommendation).

(4) Correctness. The convergence condition in a sequential SGD
algorithm [23, 34] is specified either as a predetermined maximum
number of supersteps (e.g.,GraphLab), or when ǫ(f,ET) is smaller
than a threshold. In either case, GRAPE correctly infers CF models
guaranteed by the correctness of SGD and ISGD, and by monotonic
updates with the latest changes as in sequential SGD algorithms.

4. PERFORMANCE STUDY
We have implemented GRAPE [13]. We next empirically evalu-

ate its efficiency and communication cost, using real-life and syn-
thetic graphs. We compared the performance of GRAPE with three
systems: Giraph (an open-source version of Pregel), GraphLab,
and Blogel (the fastest block-centric system we are aware of).

Experimental setting. We used five real-life graphs of different
types, including (1) traffic [5], an (undirected) US road network
with 23 million nodes (locations) and 58 million edges; (2) UKWeb
[6], a large Web graph with 133 million nodes and 5 billion edges;
(3) Friendster [2], a social network with 65 million users and 1.8
billion relations; (4) DBpedia [1], a knowledge base with 5 mil-
lion entities and 54 million edges, and in total 411 distinct labels;
and (5) movieLens [4], a dense recommendation network (bipartite
graph) with 20 million movie ratings (as weighted edges) between
a set of 138000 users and 27000 movies. To test Sim with unla-
beled Friendster, we generated 100 random node labels. We also
randomly assigned weights to all graphs for testing SSSP.

Queries. We randomly generated the following queries. (a) We
sampled 10 source nodes in each graph, and constructed an SSSP
query for each node. (b) We generated 20 pattern queries for Sim,
controlled by |Q| = (|VQ|, |EQ|), the number of nodes and edges,
respectively, using labels drawn from the graphs.

We remark that GRAPE can process query load without reload-
ing the graph, but GraphLab, Giraph and Blogel need to reload the
graph each time a query is issued, which is costly over large graphs.

Algorithms. We implemented the PIE programs for those query
classes given in Sections 2 and 3. We used XtraPuLP [30] as the
default graph partition strategy. We adopted basic sequential algo-
rithms for all the systems without further optimization.

We also implemented algorithms for the queries for Giraph,
GraphLab and Blogel. We used “default” code provided by the
systems when available, and made our best efforts to develop “op-
timal” algorithms otherwise (see [14] for more details). We imple-
mented synchronized algorithms for both GraphLab and Giraph
for the ease of comparison. We expect the observed relative perfor-
mance trends to hold on other similar graph systems.

We deployed the systems on a cluster of up to 12 machines, each
with 16 threads of Intel Xeon 2.2GHz, and 128G memory. On
each thread, a worker is deployed (thus in total 192 workers). Each
experiment was run 5 times and the average is reported here.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 19

Experimental results. We next report our findings.
Exp-1: Efficiency. We first evaluated the efficiency of GRAPE by
varying the number n of workers used, from 64 to 192. For SSSP
and CC, we experimented with UKWeb, traffic and Friendster. For
Sim, we used over Friendster and DBpedia. We used movieLens
for CF as its application in movie recommendation.

(1) SSSP. Figures 5a-5c report the performance of the four systems
for SSSP over traffic, UKWeb and Friendster, respectively. From
the results we can see the following.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 14842,
3992 and 756 times, respectively, over traffic with 192 workers
(Fig 5a). In the same setting, it is 556, 102 and 36 times faster over
UKWeb (Fig. 5b), and 18, 1.7 and 4.6 times faster over Friendster
(Fig. 5c). These tell us that by simply parallelizing sequential algo-
rithms without further optimization, GRAPE already outperforms
the state-of-the-art systems in response time.

The improvement of GRAPE over all the systems on traffic is
much larger than on Friendster and UKWeb. (i) For Giraph and
GraphLab, this is because synchronous vertex-centric algorithms
take more supersteps to converge on graphs with larger diameters,
e.g., traffic. With 192 workers, Giraph take 10749 supersteps over
traffic and 161 over UKWeb; similarly for GraphLab. In contrast,
GRAPE is not vertex-centric and it takes 31 supersteps on traffic
and 24 on UKWeb. (ii) Blogel also takes more (1690) supersteps
over traffic than over UKWeb (42) and Friendster (23). It gener-
ates more blocks over traffic (with larger diameter) than UKWeb
and Friendster. Since Blogel treats blocks as vertices, the benefit
of parallelism is degraded with more blocks. (iii) GRAPE reduces
redundant computation by the use of incremental IncEval.

(b) In all cases, GRAPE takes less time when n increases. On av-
erage, it is 1.4, 2.3 and 1.5 times faster for n from 64 to 192 over
traffic, UKWeb and Friendster, respectively. (i) Compared with
the results in [14] using less workers, this improvement degrades a
bit. This is mainly because the larger number of fragments leads to
more communication overhead. On the other hand, such impact is
significantly mitigated by IncEval that only ships changed update
parameters. (ii) In contrast, Blogel does not demonstrate such con-
sistency in scalability. It takes more time on traffic when n is larger.
When n varies from 160 to 192, it takes longer over Friendster. Its
communication cost dominates the parallel cost as n grows, “can-
celing out” the benefit of parallelism. (iii) GRAPE has scalability
comparable to GraphLab over Friendster and scales better over
UKWeb and traffic. Giraph has better improvement with larger n,
but with constantly higher cost (see (a)) than GRAPE.

(c) GRAPE significantly reduces supersteps. It takes on average
22 supersteps, while Giraph, GraphLab and Blogel take 3647,
3647 and 585 supersteps, respectively. This is because GRAPE
runs sequential algorithms over fragmented graphs with cross-
fragment communication only when necessary, and IncEval ships
only changes to status variables. In contrast, Giraph, GraphLab
and Blogel pass vertex-vertex (vertex-block) messages.

(2) CC. Figures 5d-5f report the performance for CC, and tell us the
following. (a) Both GRAPE and Blogel substantially outperform
Giraph and GraphLab. For instance, when n = 192, GRAPE is on
average 12094 and 1329 times faster than Giraph and GraphLab,
respectively. (b) Blogel is faster than GRAPE in some cases, e.g.,
3.5s vs. 17.9s over UKWeb when n = 192. This is because Blogel
embeds the computation of CC in its graph partition phase as pre-
computation, while this graph partition cost (on average 357 sec-
onds using its built-in Voronoi partition) is not included in its re-

sponse time. In other words, without taking advantage of precom-
putation, the performance of GRAPE is already comparable to the
near “optimal” case reported by Blogel.

(3) Sim. Fixing |Q| = (6, 10), i.e., patterns Q with 6 nodes
and 10 edges, we evaluated graph simulation over DBpedia and
Friendster. As shown in Figures 5g-5h, (a) GRAPE consistently
outperforms Giraph, GraphLab and Blogel over all queries. It is
109, 8.3 and 45.2 times faster over Friendster, and 136.7, 5.8
and 20.8 times faster over DBpedia on average, respectively, when
n = 192. (b) GRAPE scales better with the number n of work-
ers than the others. (c) GRAPE takes at most 21 supersteps, while
Giraph, GraphLab and Blogel take 38, 38 and 40 supersteps, re-
spectively. This empirically validates the convergence guarantee of
GRAPE under monotonic status-variable updates and its positive
effect on reducing parallel and communication cost.

(4) Collaborative filtering (CF). We used movieLens [4] with a
training set |ET | = 90%|E|. We compared GRAPE with the
built-in CF code in GraphLab, and with CF programs implemented
for Giraph and Blogel. Note that CF favors “vertex-centric” pro-
gramming since each node only needs to exchange data with their
neighbors, as indicated by that GraphLab and Giraph outperform
Blogel. Nonetheless, Figure 5i shows that GRAPE is on average
4.1, 2.6 and 12.4 times faster than Giraph, GraphLab and Blogel,
respectively. Moreover, it scales well with n.

(5) Scale-up of GRAPE. The speed-up of a system may degrade
over more workers [26]. We thus evaluate the scale-up of GRAPE,
which measures the ability to keep the same performance when
both the size of graph G (denoted as (|V |, |E|)) and the number
n of workers increase proportionally. We varied n from 64 to 192,
and for each n, deployed GRAPE over a synthetic graph. The graph
size varies from (50M, 500M) to (250M, 2.5B) (denoted as G5),
with fixed ratio between edge number and node number and pro-
portional to n . The scale up at e.g., (128, G3) is the ratio of the
time using 64 workers over G1 to its counterpart using 128 work-
ers over G3. As shown in Fig. 5j, GRAPE preserves a reasonable
scale-up (close to linear scale-up, the optimal scale-up).

Compared to single-threaded computation, GRAPE incurs extra
communication overhead, just like other parallel systems. How-
ever, large graphs such as UKWeb are beyond the capacity of a
single machine, and parallel computation is a must for such graphs.

Exp-2: Communication cost. The communication cost (in bytes)
reported by Giraph, GraphLab and Blogel depends on their own
implementation of message blocks and protocols [19]. For a fair
comparison, we tracked the total bytes sent by each machine during
a run, by monitoring the system file /proc/net/dev, following [19].

In the same setting as Exp-1, Figures 5l-5t report the communi-
cation costs of the systems. We observe that Giraph and GraphLab
ship roughly the same amount of messages. GRAPE ships much
less data than Giraph and GraphLab. On datasets excluding traffic,
with 192 workers, it ships on average 0.095%, 0.62%, 0.3%, and
26.2% of the data shipped for SSSP, Sim, CC and CF by Giraph
(GraphLab), respectively, and reduces cost up to 6 orders of magni-
tude on traffic! While it ships more data than Blogel for CC due to
the precomputation of Blogel, it only ships 1.9%, 6.2% and 4.8%
of the data shipped by Blogel for SSSP, Sim and CF, respectively.

(1) SSSP. Figures 5k-5m show that both GRAPE and Blogel incur
communication costs that are orders of magnitudes less than those
of GraphLab and Giraph. This is because vertex-centric program-
ming incurs a large number of inter-vertex messages. Both block-
centric programs (Blogel) and PIE programs (GRAPE) effectively

20 SIGMOD Record, March 2018 (Vol. 47, No. 1)

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(a) Varying n: SSSP (traffic)

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(b) Varying n: SSSP (UKWeb)

 10

 100

 1000

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(c) Varying n: SSSP (Friendster)

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(d) Varying n: CC (traffic)

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(e) Varying n: CC (UKWeb)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(f) Varying n: CC (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(g) Varying n: Sim (Friendster)

 0.25

 1

 4

 16

 64

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s) GRAPE

GraphLab
Giraph
Blogel

(h) Varying n: Sim (DBpedia)

 128

 256

 512

 1024

 2048

 4096

64 96 128 160 192

T
im

e
(S

ec
o
n

d
s)

GRAPE
GraphLab

Giraph
Blogel

(i) Varying n: CF (movieLens)

 0

 0.2

 0.4

 0.6

 0.8

 1

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

T
im

e
(S

ec
o
n

d
s)

GRAPE

(j) Scale-up of GRAPE (Synthetic)

 1

 20

 400

 8000

 160000

 3.2x10
6

64 96 128 160 192
C

o
m

m
u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(k) Varying n: SSSP (traffic)

 100

 1000

 10000

 100000

64 96 128 160 192

C
o
m

m
u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(l) Varying n:SSSP (UKWeb)

 1000

 10000

 100000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(m) Varying n: SSSP (Friendster)

 0.1

 1

 10

 100

 1000

 10000

 100000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(n) Varying n: CC (traffic)

 1

 10

 100

 1000

 10000

 100000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(o) Varying n: CC (UKWeb)

 10

 100

 1000

 10000

 100000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(p) Varying n: CC (Friendster)

 100

 1000

 10000

 100000

64 96 128 160 192

C
o
m

m
u
n
ic

at
io

n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(q) Varying n: Sim (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

C
o
m

m
u
n
ic

at
io

n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(r) Varying n: Sim (DBpedia)

 10000

 100000

 1x10
6

64 96 128 160 192

C
o
m

m
u
n
ic

at
io

n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(s) Varying n: CF (movieLens)

 0

 2000

 4000

 6000

 8000

 10000

 12000

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

C
o
m

m
u
n
ic

at
io

n
 (

M
) GRAPE

(t) SSSP (Synthetic)

Figure 5: Efficiency and communication cost of GRAPE

reduce unnecessary messages, and trigger inter-block messages
only when necessary. Moreover, GRAPE ships 0.9% and 10% of
the data shipped by Blogel over UKWeb and Friendster, respec-
tively. Indeed, GRAPE ships only updated values. This signifi-
cantly reduces the amount of messages that need to be shipped.

(2) CC. Figures 5n-5p show similar improvement of GRAPE over
GraphLab and Giraph. It ships on average 0.17% of the data
shipped by Giraph and GraphLab. As Blogel precomputes CC
(see Exp-1(2)), it ships little data. This said, GRAPE is not far
worse than the near “optimal” case of Blogel, sometimes better.

(3) Sim. Figures 5q and 5r report the communication cost for
graph simulation over Friendster and DBpedia, respectively. One
can see that GRAPE ships substantially less data, e.g., on average
0.9%, 0.1% and 4.9% of the data shipped by Giraph, GraphLab
and Blogel, respectively. Observe that the communication cost of
Blogel is much higher than that of GRAPE, even though it adopts

inter-block communication. This shows that the extension of
vertex-centric to block-centric by Blogel has limited improvement
for more complex queries. GRAPE works better than these systems
by employing incremental IncEval to reduce excessive messages.

(4) CF. Figure 5s reports the result for CF over movieLens. On
average, GRAPE ships 5.6%, 43.3% and 3.2% of the data shipped
by Giraph, GraphLab and Blogel, respectively.

(5) Communication cost (synthetic). In the same setting as Fig-
ure 5j, Figure 5t reports the communication cost for SSSP over
large synthetic graphs. It takes higher cost over larger graphs and
more workers due to increased “border nodes”, as expected. The
results for other algorithms are consistent and hence not shown.

Summary. We find the following. (1) Over traffic [5], GRAPE
is on average 4, 3 and 2 orders of magnitude faster than Giraph,
GraphLab and Blogel for SSSP, respectively, with 192 processors,

SIGMOD Record, March 2018 (Vol. 47, No. 1) 21

due to the large diameter of the graph. On other real-life graphs ex-
cluding traffic, GRAPE is on average 484, 36 and 15 times faster
than the three systems for SSSP, 151, 6.8 and 16 times for Sim,
and 4.6, 2.6 and 12.4 times for CF, respectively, when the number
of workers ranges from 64 to 192. For CC, it is 1377 and 212 times
faster than Giraph and GraphLab, respectively, and is comparable
to the “optimal” case of Blogel. (2) In the same setting (excluding
traffic), GRAPE ships on average 0.07%, 0.12% and 1.7% of the
data shipped across machines by Giraph, GraphLab and Blogel for
SSSP, 0.89%, 0.14% and 4.9% for Sim, 5.6%, 43.3% and 3.2%
for CF, respectively. When traffic is also included, GRAPE out-
performs these systems by up to 6 orders of magnitude in commu-
nication cost for SSSP. For CC, it incurs 0.23% and 0.3% of data
shipment of Giraph and GraphLab, and is comparable with “op-
timized” Blogel. (3) GRAPE demonstrates good scale-up when
using more workers, since its incremental computation mitigates
the impact of more border nodes and fragments. Moreover, incre-
mental steps effectively reduce unnecessary recomputation.

5. CONCLUSION
The main objective of GRAPE is to simplify parallel program-

ming for graph computations, from “think parallel” to “think se-
quential”. For users who are used to conventional programming,
they can start with (existing) sequential algorithms, add declara-
tions for handling messages, and let GRAPE parallelize the compu-
tation across a cluster of machines. Moreover, GRAPE guarantees
to converge at correct answers under a general condition as long
as it is provided with correct sequential algorithms, and it inherits
optimization strategies developed for sequential graph algorithms.

As proof of concept (PoC), we have deployed and evaluated
GRAPE at three companies. At a large online payment company,
GRAPE serves as the graph computing infrastructure supporting
its financial risk control system. The company employs graphs
in which vertices denote customers, and edges represent transac-
tions and associations with other customers; it needs to evaluate
the customers and assign a credit. The company used to deploy its
system on Neo4j + Hive + Spark. However, none of the systems
can process the tasks alone; the workflow spans three systems and
takes 15 minutes on average for a single query. In contrast, GRAPE
provides a unified solution for this scenario. It supports real-time
ad-hoc queries without the need to couple with other systems. It
improves the performance of financial risk analyses: it is 9.0 times
faster in graph batch ingesting and streaming, 128.8 times faster in
association analysis, and is faster by up to 5 orders of magnitude in
batch processing of real-life business applications.
GRAPE works well for other applications. We have also carried

out PoC at a big-data service company and a telecommunication
service company. The results are consistent and very promising.

We are currently extending GRAPE to support a new parallel
model that adaptively switches between synchronous and asyn-
chronous models, to reduce stragglers and stale computations.

Acknowledgments. Fan, Cao, Xu and Yu are supported in
part by 973 Program 2014CB340302, ERC 652976, EPSRC
EP/M025268/1, NSFC 61421003 and 61602023, and Beijing Ad-
vanced Innovation Center for Big Data and Brain Computing. Wu
is supported in part by NSF IIS-1633629.

6. REFERENCES
[1] DBpedia. http://wiki.dbpedia.org/Datasets.
[2] Friendster. https://snap.stanford.edu/data/com-Friendster.html.
[3] Giraph. http://giraph.apache.org/.
[4] Movielens. http://grouplens.org/datasets/movielens/.
[5] Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml.

[6] UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/,
2006.

[7] U. A. Acar. Self-Adjusting Computation. PhD thesis, CMU, 2005.
[8] K. Andreev and H. Racke. Balanced graph partitioning. Theory of

Computing Systems, 39(6):929–939, 2006.
[9] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced graph edge

partition. In SIGKDD, pages 1456–1465, 2014.
[10] J. Dean and S. Ghemawat. MapReduce: Simplified data processing

on large clusters. Commun. ACM, 51(1), 2008.
[11] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable

and undoable. In SIGMOD, 2017.
[12] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching.

TODS, 38(3), 2013.
[13] W. Fan, J. Xu, Y. Wu, W. Yu, and J. Jiang. GRAPE: Parallelizing

sequential graph computations. PVLDB, 10(12):1889–1892, 2017.
[14] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, B. Zhang, Z. Zheng, Y. Cao,

and C. Tian. Parallelizing sequential graph computations. In
SIGMOD, 2017.

[15] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. JACM, 34(3), 1987.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on natural
graphs. In USENIX, 2012.

[17] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. GraphX: Graph processing in a distributed dataflow
framework. In OSDI, 2014.

[18] I. Grujic, S. Bogdanovic-Dinic, and L. Stoimenov. Collecting and
analyzing data from E-Government Facebook pages. In ICT
Innovations, 2014.

[19] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, and T. Jin.
An experimental comparison of Pregel-like graph processing
systems. VLDB, 7(12), 2014.

[20] M. R. Henzinger, T. Henzinger, and P. Kopke. Computing
simulations on finite and infinite graphs. In FOCS, 1995.

[21] N. D. Jones. An introduction to partial evaluation. ACM Computing
Surveys, 28(3), 1996.

[22] M. Kim and K. S. Candan. SBV-Cut: Vertex-cut based graph
partitioning using structural balance vertices. Data & Knowledge
Engineering, 72:285–303, 2012.

[23] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques
for recommender systems. IEEE Computer, 42(8):30–37, 2009.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Distributed GraphLab: A framework for machine
learning in the cloud. PVLDB, 5(8), 2012.

[25] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale graph
processing. In SIGMOD, 2010.

[26] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what
cost? In HotOS, 2015.

[27] G. Ramalingam and T. Reps. An incremental algorithm for a
generalization of the shortest-path problem. J. Algorithms,
21(2):267–305, 1996.

[28] G. Ramalingam and T. Reps. On the computational complexity of
dynamic graph problems. TCS, 158(1-2), 1996.

[29] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on a
memory cloud. In SIGMOD, 2013.

[30] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri.
Partitioning trillion-edge graphs in minutes. In IPDPS, 2017.

[31] Y. Tian, A. Balmin, S. A. Corsten, and J. M. Shirish Tatikonda. From
"think like a vertex" to "think like a graph". PVLDB, 7(7), 2013.

[32] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990.

[33] L. G. Valiant. General purpose parallel architectures. In Handbook of
Theoretical Computer Science, Vol A. 1990.

[34] J. Vinagre, A. M. Jorge, and J. Gama. Fast incremental matrix
factorization for recommendation with positive-only feedback. In
UMAP, 2014.

[35] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asynchronous
large-scale graph processing made easy. In CIDR, 2013.

[36] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph analytics
platforms. Foundations and Trends in Databases, 7(1-2), 2017.

[37] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric
framework for distributed computation on real-world graphs.
PVLDB, 7(14):1981–1992, 2014.

22 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Technical Perspective: Supporting Linear Algebra
Operations in SQL

Yannis Papakonstantinou
Computer Science and Engineering Department

University of California, San Diego
yannis@cs.ucsd.edu

Linear algebra operations are at the core of Machine
Learning. Multiple specialized systems have emerged
for the scalable, distributed execution of matrix and
vector operations. The relationship of such computa-
tions to data management and databases however brings
frictions. It is well known that a great deal of hu-
man time and machine time is being spent nowadays
on fetching data out of the database and performing a
computation on a specialized system. One answer to
the issue is that we truly need a new kind of non-SQL
database that is tuned to these computations.

The creators of SimSQL opted for the decidedly in-
cremental approach. Can we make a very small set of
changes to the relational model and RDBMS software
to render them suitable for executing linear algebra in
the database?

We have come across the "brand new system" ver-
sus "incremental to relational" question many times in
the database field. E.g., do we need brand new query
languages and query processors for data cubes? Or do
we need to have our query processors pay attention to
specific cases that are especially common in data ana-
lytics queries over stars and snowflakes? Do semistruc-
tured query languages need to depart from SQL or it is
enough to be incremental to SQL? Same for query pro-
cessors. Repeat the questions to graph data and RDF
data. In many cases, new custom systems emerged

only to figure out later that we could/should have tack-
led the problem incrementally. That’s the trap that the
authors of this paper avoid.

This is not to say that radical changes and extensions
should be forbidden. Rather it says that we should
closely scrutinize the necessity of the changes, do them
when needed and keep them minimal. The authors
identify the right opportunities. Here is a non-exhaustive
list:

(a) Writing matrix and vector operations as a join over
the index can be syntactically tedious. They solve
the problem by introducing special syntactic fea-
tures.

(b) They notice a connection between signatures and
size estimation and exploit it.

(c) They allow their query user to move across differ-
ent denormalizations to find the one that makes
sense from expressiveness and performance point
of view. The point where types relate to perfor-
mance is whether the right level of granularity
for distribution in a shared-nothing architecture is
specified.

Overall, the extensions of the paper follow a thought-
ful and minimal approach that is worth studying in the
particular field of linear algebra operations, as well as
generally in the design of systems for analytics.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 23

Scalable Linear Algebra on a Relational Database System

Shangyu Luo
Rice University

sl45@rice.edu

Zekai J. Gao
Rice University

jacobgao@rice.edu

Michael Gubanov
U. of Texas, San Antonio

mikhail.gubanov@utsa.edu

Luis L. Perez
Rice University

lperezp@gmail.com

Christopher Jermaine
Rice University

cmj4@rice.edu

ABSTRACT
Scalable linear algebra is important for analytics and machine learn-
ing (including deep learning). In this paper, we argue that a paral-
lel or distributed database system is actually an excellent platform
upon which to build such functionality. Most relational systems al-
ready have support for cost-based optimization—which is vital to
scaling linear algebra computations—and it is well-known how to
make relational systems scale. We show that by making just a few
changes to a parallel/distributed relational database system, such
a system can be a competitive platform for scalable linear alge-
bra. Our results suggest that brand new systems supporting scalable
linear algebra are not absolutely necessary, and that such systems
could instead be built on top of existing relational technology.

1. INTRODUCTION
To support machine learning and large-scale statistical process-

ing, a new category of data processing system has appeared: the
scalable linear algebra system. Unlike established, long-lived ef-
forts aimed at building scalable linear algebra APIs (such as ScaLA-
PACK [7]), these newer efforts are targeted more towards building
complete data management systems that support storage/retrieval
of data to/from disk, buffering/caching of data, and automatic log-
ical/physical optimizations of computations (automatic re-writing
of queries, pipelining, etc.). Such systems may also offer some
form of recovery, as well as offering a special-purpose domain-
specific language. For example, SystemML, developed at IBM
[16], as well as RIOT [25] and Cumulon [18] provide scalable lin-
ear algebra capabilities as well as many features borrowed from
data management systems. Big Data systems typically provide lin-
ear algebra APIs (such as Spark’s mllib.linalg [1]). Modern
array database systems such as SciDB [11] also offer direct support
for linear algebra.

Is a New Type of System Actually Necessary? While supporting
scalable linear algebra in the context of a full-fledged data manage-
ment system is clearly a desirable goal, the hypothesis underlying
this paper is that with just a few changes, a classical, parallel re-
lational database is actually an excellent platform for building a
scalable linear algebra system.

In practice, many (or even most) distributed linear algebra com-
putations have closely corresponding, distributed relational alge-
bra computations. Given this, we believe that it is natural to build

c©IEEE 2017. This is a minor revision of the paper entitled “Scal-
able Linear Algebra on a Relational Database System”, published
in the Proceedings of the 2017 ICDE Conference, 2375-026X/17.
DOI: 10.1109/ICDE.2017.108.

distributed linear algebra functionality on top of a distributed rela-
tional database system. Such systems are highly performant, reap-
ing the benefits of decades of research and engineering effort tar-
geted at building efficient systems. Further, relational systems al-
ready have software components such as a cost-based query opti-
mizer to aid in performing efficient computations. In fact, much of
the work that goes into developing a scalable linear algebra system
from the ground up [9] requires implementing functionality that
looks a lot like a database query optimizer [14].

Given that much of the world’s data currently sits in relational
databases, and that dataflow systems increasingly provide at least
some support for relational processing [5, 23], building linear al-
gebra support into relational systems would mean that much of
the world’s data would be sitting in systems capable of performing
scalable linear algebra. This would have several obvious benefits:

1. It would eliminate the “extract-transform-reload nightmare”,
particularly if the goal is performing analytics on data al-
ready stored in a relational system.

2. It would obviate the need for practitioners to adopt yet an-
other type of data processing system in order to perform
mathematical computations.

3. The design and implementation of high-performance distribu-
ted and parallel relational systems is well-understood. If it is
possible to adapt such a system to the task of scalable linear
algebra, most or all of the science and engineering performed
over decades, aimed at determining how to build a distributed
relational system, is directly applicable.

Towards in-database linear algebra. We ask the question:

Can we make a very small set of changes to the relational model
and a RDBMS software to render them suitable for in-database
linear algebra?

The approach we examine is actually simple: we consider adding
new LABELED_SCALAR, VECTOR, and MATRIX data types to an
SQL-based relational system. This facilitates efficient, distributed
linear algebra operations in SQL. Technically, this seems to be a
rather minor change. After all, array has been available as a data
type in most modern DBMSs—arrays can clearly be used to en-
code vectors and matrices—and some database systems (such as
Oracle) offer a form of integration between arrays and linear alge-
bra libraries such as BLAS [8] and LAPACK [4]. However, these
previous, ad-hoc approaches do not offer complete integration with
the database system. The query optimizer, for example, does not
understand the semantics of calls to linear algebra operations, and
this results in lost opportunities for optimization. Thus, we also

24 SIGMOD Record, March 2018 (Vol. 47, No. 1)

consider a small set of changes to a relational query optimizer that
can render it somewhat “linear algebra aware”.

There are clearly drawbacks to our minimalist approach. Com-
pared to systems such as SystemML and Riot, which offer higher-
level, non-SQL programming abstractions, a programmer’s intent
may be obfuscated by using an extended SQL. For example, an op-
timizer implemented by our approach may be unable to optimize
the order of a chain of distributed matrix multiplies expressed in
SQL. Further, a programmer using our extensions to implement
distributed matrix operations must make key choices regarding the
blocking or chunking of the matrices.

Still, we believe that there is utility in the approach. Making
a small set of changes should virtually turn any performant SQL
database into a performant execution engine for linear algebra. If
one desires higher-level programming abstractions, it would be pos-
sible to implement a math-like domain specific language (such as
MATLAB or SystemML’s Python-like language) or API (such as
a TensorFlow-like Python binding [3]) on top of our proposed ex-
tensions. That domain specific language or API could itself exploit
high-level linear algebra transformations, and translate the compu-
tation to a database computation—with the key benefit provided by
a relational backend, there is no need to implement a distributed,
linear algebra execution engine from scratch.

Our contributions. We propose a very small set of changes to SQL
that make it easy for a programmer to specify even complicated
computations over vectors and matrices, and we implement our
ideas in the context of the SimSQL parallel database system [13].
We show experimentally that the resulting system has performance
that is comparable to a special-purpose array system (SciDB), a
special-purpose scalable linear algebra system (SystemML), and
a linear algebra library built directly on top of a dataflow platform
(Spark’s mllib.linalg). Our results prove the suitability of ex-
isting, relational systems for scalable linear algebra computations.

2. LA ON TOP OF RA
We now discuss how a relational database system might make an

excellent platform for distributed linear algebra.

2.1 Linear and Relational Algebra
Development of distributed algorithms for linear algebra has been

an active area of scientific investigation for decades, and many al-
gorithms have become standard. Matrices to be manipulated in a
distributed system are typically “blocked” or “chunked”; that is,
they are divided into smaller matrices. Imagine that we want to
multiply two large, dense matrices on a distributed cluster, to com-
pute O ← L × R. We assume that the blocks of L are randomly
located around the cluster, while the blocks from R are round-robin
partitioned, based upon each block’s row identifier.

As a first step to perform this distributed multiplication, we would
shuffle the blocks from L so that all of the blocks from L, col-
umn i are co-located with all of the blocks from R, row i. Then,
at each node, a local join (in this case, a cross product) is per-
formed to iterate through all (Lj.i, Ri.k) pairs that can be formed
at the node. For each pair, a matrix multiply is performed, so that
Ii.j.k ← Lj.i×Ri.k. Finally, all of the Ii.j.k blocks are again
shuffled so that they are co-located based upon their (j, k) values—
these blocks are then summed, so that the output block is computed
as Oj.k ←∑

iIi.j.k.
Note that this is really just a relational algebra computation over

the blocks making up L and R. The first two steps of the computa-
tion are a distributed join that computes all (Lj.i, Ri.k) pairs, fol-
lowed by a projection that performs the matrix multiply. The next

two steps—the shuffle and summation—are nothing more than a
distributed grouping with aggregation.

The matrix multiplication example shows that distributed linear
algebra computations are often nothing more than distributed rela-
tional algebra computations. This fact underlies our assertion that
a relational database system makes an excellent platform for dis-
tributed linear algebra. Database researchers have spent decades
studying efficient algorithms for distributed joins and aggregations,
and relational systems are mature and performant. Using a dis-
tributed database means that there is no need to reinvent the wheel.

A further benefit of using a distributed database system as a lin-
ear algebra engine is that decades of work in query optimization
is directly applicable. In our example, we decided to shuffle L
because R was already partitioned on the join key. Had L been pre-
partitioned and not R, it would have been better to shuffle R. This
is exactly the sort of decision that a modern query optimizer makes
with total transparency. Using a database as the basis for a linear
algebra engine gives us the benefit of query optimization for free.

2.2 The Challenges
However, there are two main concerns associated with imple-

menting linear algebra directly on top of an existing relational sys-
tem, without modification. First is the complexity of writing linear
algebra computations on top of SQL. Consider a data set consist-
ing of the vectors {x1, x2, ..., xn}, and imagine that our goal is to
compute the distance

d2A(xi, x′) = (xi − x′)T A(xi − x′)

for a Riemannian metric [19] encoded by the matrix A. We might
wish to compute this distance between a particular data point xi

and every other point x′. This would be required, for example, in a
kNN-based classification in the metric space defined by A.

This can be implemented in SQL as follows. Assume the set of
vectors is encoded as a table:
data (pointID, dimID, value)

with the matrix A encoded as another table:
matrixA (rowID, colID, value)

Then, the desired computation is expressed in SQL as:

CREATE VIEW xDiff (pointID, dimID, value) AS
SELECT x2.pointID, x2.dimID, x1.value - x2.value
FROM data AS x1, data AS x2
WHERE x1.pointID = i and x1.dimID = x2.dimID

SELECT x.pointID, SUM (firstPart.value * x.value)
FROM (SELECT x.pointID AS pointID, a.colID AS

colID, SUM (a.value * x.value) AS value
FROM xDiff AS x, matrixA AS a
WHERE x.dimID = a.rowID
GROUP BY x.pointID, a.colID)
AS firstPart, xDiff AS x

WHERE firstPart.colID = x.dimID
AND firstPart.pointID = x.pointID

GROUP BY x.pointID

While it is clearly possible to write such a code, it is not neces-
sarily a good idea. The first problem is that this is a very intricate
specification, requiring a nested subquery and a view—without the
view it is even more intricate—and it bears little resemblance to the
original, simple mathematics.

The second problem is perhaps less obvious from looking at the
code, but just as severe: performance. This code is likely to be
inefficient to execute, requiring three or four joins and two group-
ings. Even more concerning in practice is the fact that if the data are
dense and the number of data dimensions is large (that is, there are a
lot of dimID values for each pointID), then the execution of this

SIGMOD Record, March 2018 (Vol. 47, No. 1) 25

query will move a huge number of small tuples through the system,
since a million, thousand-dimensional vectors are encoded as a bil-
lion tuples. In the classical, iterator-based execution model, there
is a fixed cost incurred per tuple, which will translate to a very high
execution cost. Vector-based processing can alleviate this some-
what, but the fact remains that satisfactory performance is unlikely.
This fixed-cost-per-tuple problem was often cited as the impetus for
designing new systems, specifically for vector- and matrix-based
processing, or for processing of more general-purpose arrays.

2.3 The Solution
As a solution, we propose a very small set of changes to a typi-

cal relational database system that include adding new LABELED_-
SCALAR, VECTOR, and MATRIX data types to the relational model.
Because these non-normalized data types cause the contents of vec-
tors and matrices to be manipulated as a single unit during query
processing, the simple act of adding these new types brings signifi-
cant performance improvements. It becomes easy to implement lin-
ear algebra computations on top of a database with these changes.

Further, we propose a very small number of SQL language exten-
sions for manipulating these data types and moving between them.
This alleviates the complicated-code problem. In our Riemannian
metric example, the two input tables data and matrixA become
data (pointID, val) and matrixA (val) respectively,
where data.val is a vector, and matrixA.val is a matrix.
The SQL code to compute the pairwise distances becomes:

SELECT x2.pointID,
inner_product (

matrix_vector_multiply (
a.val, x1.val - x2.val),
x1.val - x2.val) AS value

FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID = i

3. OVERVIEW OF EXTENSIONS

3.1 New Types
At the very highest level, we propose adding VECTOR, MATRIX,

and LABELED_SCALAR column types to SQL and the relational
model, as well as a useful set of operations over those types (diag
to extract the diagonal of a matrix, matrix_vector_multiply
to multiply a matrix and a vector, matrix_multiply to multi-
ply two matrices, and so on). Overall, 22 different built-in functions
over LABELED_SCALAR, VECTOR and MATRIX types are present
in our implementation. Each element of a VECTOR or a MATRIX
is a double.

For a simple example of the use of VECTOR and MATRIX types,
consider the following table:

CREATE TABLE m (mat MATRIX[10][10],
vec VECTOR[100]);

This code specifies a relational table, where each tuple in the ta-
ble has two attributes, mat and vec, of types MATRIX and VECTOR
respectively. In our language extensions, VECTORs and MATRIXes
(as above) can have specified sizes, in which case operations such
as matrix_vector_multiply are automatically type-checked
for size mismatches. For example, the following query:

SELECT matrix_vector_multiply (m.mat, m.vec)
AS res

FROM m

will not compile because the number of columns in m.mat does
not match the number of entries in m.vec. However, if the original
table declaration had been:

CREATE TABLE m (mat MATRIX[10][10],
vec VECTOR[10]);

then the aforementioned SQL query would compile and execute,
and the output would be a database table with a single attribute
(called res) of type VECTOR[10].

Note that in our extensions, there is no distinction between row
and column vectors; whether or not a vector is a row or a col-
umn vector is up to the interpretation of each individual opera-
tion. matrix_vector_multiply interprets a vector as be-
ing a column vector, for example. To perform a matrix-vector
multiplication treating the vector as a row vector, a programmer
would first transform the vector into a one-row matrix (this trans-
formation is described in the subsequent subsection) and then call
matrix_multiply. Or, a programmer could transform the ma-
trix first, then apply the matrix_vector_multiply function.

It is possible to create MATRIX and VECTOR types where the
sizes are unspecified:

CREATE TABLE m (mat MATRIX[10][10],
vec VECTOR[]);

In this case, the aforementioned matrix_vector_multiply
SQL query would compile, but there could possibly be a runtime
error if one or more of the tuples in m contained a vec attribute that
did not have 10 entries.

It is also possible to have a MATRIX declaration where only one
of the dimensionalities is given; for example, MATRIX[10][] is
acceptable. However, if dimensions are known, it can help the op-
timization process because the optimizer is aware of the sizes of
intermediate results.

3.2 Built-In Operations
In addition to a long list of standard linear algebra operations,

the standard arithmetic operations +, -, * and / (element-wise) are
also defined over MATRIX and VECTOR types. For example:

CREATE TABLE m (mat MATRIX[100][10]);

SELECT mat * mat
FROM m

returns a database table which stores the Hadamard product of each
matrix in m with itself.

Since the standard arithmetic operations are all overloaded to
work with MATRIX and VECTOR types, it means that the standard
SQL aggregate operations all work as expected automatically. The
SUM aggregate over MATRIX type attribute, for example, performs
a + (entry-by-entry addition) over each MATRIX in a relation. This
can be very convenient for implementing mathematical computa-
tions. For example, imagine that we have a matrix stored as a re-
lational table of vectors, and we wish to perform a standard Gram
matrix computation (if the matrix X is stored as a set of columns
X = {x1, x2, ..., xn}, then the gram matrix of X is

∑n
i=1 xixT

i).
This computation can be implemented simply as:

CREATE TABLE v (vec VECTOR[]);

SELECT SUM (outer_product (vec, vec))
FROM v

Arithmetic between a scalar value and a MATRIX or VECTOR
type performs the arithmetic operation between the scalar and ev-
ery entry in the MATRIX or VECTOR. In this way, it becomes
very easy to specify linear algebra computations of significant com-
plexity using just a few lines of code. For example, consider the
problem of learning a linear regression model. Given a matrix
X = {x1, x2, ..., xn} and a set of outcomes {y1, y2, ..., yn}, the
goal is to estimate a vector β̂ββ where for each i, xiβ̂ββ ≈ yi. In prac-

26 SIGMOD Record, March 2018 (Vol. 47, No. 1)

tice, β̂ββ is typically computed so as to minimize the squared loss∑
i(xiβ̂ββ − yi)2. In this case, the formula for β̂ββ is given as:

β̂ββ =

(∑

i

xixT
i

)−1(∑

i

xiyi

)

This can be coded as follows. If we have:
CREATE TABLE X (i INTEGER, x_i VECTOR []);
CREATE TABLE y (i INTEGER, y_i DOUBLE);

then the SQL code to compute β̂ββ is:

SELECT matrix_vector_multiply (
matrix_inverse (

SUM (outer_product (X.x_i, X.x_i))),
SUM (X.x_i * y_i))

FROM X, y
WHERE X.i = y.i

Note the multiplication X.x_i * y_i between the vector X.x_i
and the scalar y_i, which multiplies y_i by each entry in X.x_i.

3.3 Moving Between Types
By introducing MATRIX and VECTOR types, we then have new,

de-normalized alternatives for storing data. For example, a matrix
can be stored as a traditional triple-entry relation:

mat (row INTEGER, col INTEGER, value DOUBLE)

or as a relation containing a set of row vectors, or as a set of column
vectors using

row_mat (row INTEGER, vec_value VECTOR[])

or
col_mat (col INTEGER, vec_value VECTOR[])

Or, the matrix can be stored as a relation with a single tuple having
the whole matrix:
mat (value MATRIX [][])

It is of fundamental importance to be able to move around be-
tween these various representations, for several reasons. Most im-
portantly, each has its own performance characteristics and ease-
of-use for various tasks; depending upon a particular computation,
one may be preferred over another.

Reconsider the linear regression example. Had we stored the
data as:
CREATE TABLE X (mat MATRIX [][]);
CREATE TABLE y (vec VECTOR []);

then the SQL code to compute β̂ββ would have been:

SELECT matrix_vector_multiply (
matrix_inverse (
matrix_multiply (trans_matrix (mat), mat)),

matrix_vector_multiply (
trans_matrix (mat), vec))

FROM X, y

Arguably, this is a more straightforward translation of the mathe-
matics compared to the code that stores X as a set of vectors. How-
ever, it may not perform as well because it may be more difficult
to parallelize on a shared-nothing cluster of machines. In compar-
ison to the vector-based implementation, the matrix multiply XT X
is implicit in the relational algebra.

Since different representations are going to have their own mer-
its, it may be necessary to construct (or deconstruct) MATRIX and
VECTOR types using SQL. To facilitate this, we introduce the no-
tion of a label. In our extension, each VECTOR attribute implic-
itly or explicitly has an integer label value attached to it (if the
label is never explicitly set for a particular vector, then its value

is −1 by default). In addition, we introduce a new type called
LABELED_SCALAR, which is essentially a DOUBLE with a la-
bel. Using those labels along with three special aggregate functions
(ROWMATRIX, COLMATRIX, and VECTORIZE), it is possible to
write SQL code that creates MATRIX types and VECTOR types,
respectively, from normalized data.

For example, reconsider the table:

CREATE TABLE y (i INTEGER, y_i DOUBLE);

Imagine that we want to create a table with a single vector tuple
from the table y. To do this, we simply write:

SELECT VECTORIZE (label_scalar (y_i, i))
FROM y

Here, the label_scalar function creates an attribute of type
LABELED_SCALAR, attaching the label i to the DOUBLE y_i.
Then, the VECTORIZE operation aggregates the resulting values
into a vector, adding each LABELED_SCALAR value to the vector
at the position indicated by the label. Any “holes” (or entries in
the vector for which no LABELED_SCALAR were found) in the
resulting vector are set to zero. The number of entries in the vector
is set to be equal to the largest label of any entry in the vector.

As stated above, VECTOR attributes implicitly have labels, but
they can be set explicitly as well, and those labels can be used to
construct matrices. For example, imagine that we want to create a
single tuple with a single matrix from the table:

mat (row INTEGER, col INTEGER, value DOUBLE)

We can do this with the following SQL code:

CREATE VIEW vecs AS
SELECT VECTORIZE (label_scalar (val, col))

AS vec, row
FROM mat
GROUP BY row

followed by:

SELECT ROWMATRIX (label_vector (vec, row))
FROM vecs

The first bit of code creates one vector for each row, and the
second bit of code aggregates those vectors into a matrix, using
each vector as a row. It would have been possible to create a col-
umn matrix by first using a GROUP BY col and then SELECT
COLMATRIX.

So far we have discussed how to de-normalize relations into vec-
tors and matrices. It is equally easy to normalize MATRIX and
VECTOR types. Assuming the existence of a table label (id)
which simply lists the values 1, 2, 3, and so on, then one can move
from the vectorized representation to a purely-relational represen-
tation using a join of the form:

SELECT label.id, get_scalar (vecs.vec, label.id)
FROM vecs, label

Code to normalize a matrix is written similarly.

3.4 Local Matrix vs. Distributed Matrix
In keeping with a traditional RDBMS design, our system en-

forces that all vectors and matrices should be small enough to fit
into the RAM of an individual machine. Since our mantra is “in-
cremental, not revolutionary,” and distributing individual tuples or
attributes across machines is generally not supported by modern
database systems, it seems reasonable not to support distributed
vector/matrix data types in our system.

Of course, one might ask, What if one has a matrix that is too
large to fit into the RAM of an individual machine? Fortunately, it
turns out that our extension can handle this easily and efficiently.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 27

For example, a large, dense matrix with 100,000 rows and 100,000
columns can be stored as one hundred tuples in the table:

bigMatrix (tileRow INTEGER, tileCol INTEGER,
mat MATRIX[10000][10000])

Efficient, distributed matrix operations are then easily possible via
SQL. For example, to multiply bigMatrixwith anotherBigMat
(tileRow, tileCol, mat), we would use:
SELECT lhs.tileRow, rhs.tileCol,
SUM (matrix_multiply (lhs.mat, rhs.mat))

FROM bigMatrix AS lhs, anotherBigMat AS rhs
WHERE lhs.tileCol = rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol

4. TYPING AND OPTIMIZATION

4.1 Vector and Matrix Sizes
In practical applications, the individual matrices stored in a database

table can range from a few bytes in size to many gigabytes in
size. Hence, knowing the size of an individual linear algebra object
stored in a database is going to be of fundamental importance dur-
ing query optimization. Unfortunately, linear algebra objects are
typically manipulated via a large set of user-defined and system-
provided functions that change the sizes of the objects being ma-
nipulated in ways that are regular, but opaque to the system. This
can easily result in the choice of a query plan that is far from opti-
mal.

The problem can be illustrated by a simple example. Assume we
have three tables defined as below:
R (r_rid INTEGER, r_matrix MATRIX[10][100000])
S (s_sid INTEGER, s_matrix MATRIX[100000][100])
T (t_rid INTEGER, t_sid INTEGER)

Imagine that the sizes of the tables R, S, and T are 100 tuples, 100
tuples, and 1,000 tuples, respectively. Now, suppose we want to
calculate the product of a number of pairs of matrices from the
relations R and S, where the pairs for which we need to obtain are
indicated by T:

SELECT matrix_multiply (r_matrix, s_matrix)
FROM R, S, T
WHERE r_rid = t_rid AND s_sid = t_sid

A rule-based optimizer, or a cost-based optimizer without access
to good information about the size of the linear algebra object be-
ing pushed through the system is almost assuredly going to choose
a plan such as π((S 1 T) 1 R) where the projection π contains
the matrix multiply. It will not join R and S first because no join
predicate links them. In this plan, the join between tables S and T
produces about 1,000 tuples (estimated as 1000×100

100
), each contain-

ing an 80MB matrix (estimated as 8× 100000× 100 bytes). Thus,
the total data produced in this join is about 80 GB.

However, this is clearly not the optimal query plan. It is possible
to do a lot better using the plan (π(S× R)) 1 T, where the projec-
tion π again contains the matrix multiply. While the cross product
between the tables S and R produces 10,000 tuples, the early pro-
jection allows the optimizer to produce a plan that performs the
matrix_multiply (r_matrix, s_matrix) early, to ef-
fectively remove all of the large matrices from the plan; the result
of each matrix multiply is only 8KB (estimated as 8 × 10 × 100
bytes). Thus, the total data produced in this join and projection is
about 80 MB, and it is likely far superior.

4.2 Type Signatures
To make sure that the database optimizer has the information

necessary to choose the correct plan, the type signature for any

function that includes vectors and matrices is templated. The type
signature takes (as an argument) the size and shape of the input, and
returns the size and shape of the output. For example, the function
signature of the built-in function diag (computing the diagonal of
a matrix) is:
diag(MATRIX[a][a]) -> VECTOR[a]

This signature constrains the input matrix to be square, and it in-
dicates that the output vector has a number of entries identical to
the number of rows/columns of the input matrix. The signature for
matrix_multiply is:
matrix_multiply(MATRIX[a][b], MATRIX[b][c]) ->

MATRIX[a][c]

In this signature, the arguments a, b, and c effectively parameter-
ize the function signature. This information is then used by the
optimizer to infer the exact dimensions of the output object. For
example, consider the schema:

U (u_matrix MATRIX[1000][100])
V (v_matrix MATRIX[100][10000])

And the query:

SELECT matrix_multiply(u_matrix, v_matrix)
FROM U, V

The optimizer obtains the dimensions of the u_matrix and v_mat-
rix objects by looking in the catalog. When the dimensions of
u_matrix are retrieved from the catalog, the type parameter a is
bound to 1000, and b is bound to 100. When the dimensions of
v_matrix are retrieved, b is bound a second time to 100 (a dif-
ferent value for bwould cause a compile-time error) and c is bound
to 10000. Hence, the output of the matrix multiply is a 1000-by-
10000 matrix of approximately 80 MB in size; this information can
subsequently be used by the optimizer.

5. EXPERIMENTS
We have implemented all of the capabilities described in the pa-

per on top of SimSQL [13], a prototype Java- and Hadoop-based
database designed for scalable analytics. In this section, we exper-
imentally evaluate the utility of the new capabilities by comparing
SimSQL to a number of alternative platforms.

Platforms Tested. The platforms we evaluated are:

(1) SimSQL. We tested several different SimSQL implementations:
Without vector/matrix support (the original SimSQL implementa-
tion, without the improvements proposed in this paper), with data
stored as vectors, and with data stored as vectors, then converted
into blocks.

(2) SystemML. This is SystemML V0.9, which provides the option
to run on top of Hadoop. All computations are written in Sys-
temML’s DML programming language.

(3) SciDB. This is SciDB V14.8. All computations are written in
SciDB’s AQL language which is similar to SQL.

(4) Spark mllib.linalg. This is run on Spark V1.6 in stan-
dalone mode. All computations are written in Scala.

Computations Performed. In our experiments, we performed three
different representative computations.

(1) Gram matrix computation. A Gram matrix is the inner products
of a set of vectors. It is a common computational pattern in machine
learning, and is often used to compute the kernel functions and
covariance matrices. If we use a matrix X to store the input vectors,
then the Gram matrix G can be calculated as G = XT X.

28 SIGMOD Record, March 2018 (Vol. 47, No. 1)

(2) Least squares linear regression. Given a paired data set {yi, xi},
i = 1, . . . , n, we wish to model each yi as a linear combination of
the values in xi. Let yi ≈ xT

i βββ + εi, where βββ is the vector of re-
gression coefficients. The most common estimator forβββ is the least
squares estimator: β̂ββ = (XT X)−1XT y.

(3) Distance computation. We first compute the distance between
each data point pair xi and x′: d2A(xi, x′) = xT

i Ax′. Then, for each
data point xi, we compute the minimum d2A(xi, x′) value over all
x′ 6= xi. Lastly, we select the data points which have the max value
among those minimums.

Implementation Details. We now describe in some detail how
we performed each of these three computations over the various
platforms.

(1) SimSQL. A SimSQL programmer uses queries and built-in func-
tions to conduct computations. In SimSQL, we implemented each
model using three different SQL codes. First, we wrote a pure-
tuple based code (as on an existing, standard SQL-based platform).
Second, we wrote an SQL code where each data point is stored as
an individual vector, in the schema:
x_vm (id INTEGER, value VECTOR[])

Third, we wrote an SQL code where data points are grouped to-
gether in blocks of 1000 data points, and stored as a matrix with
1000 rows, so that they can be manipulated as a group.

The Gram matrix computation is written over tuples as:

SELECT x1.col_index, x2.col_index,
SUM(x1.value * x2.value)

FROM x AS x1, x AS x2
WHERE x1.row_index = x2.row_index
GROUP BY x1.col_index, x2.col_index;

The Gram matrix is computed over vectors as:

SELECT SUM(outer_product(x.value, x.value))
FROM x_vm AS x;

For a block-based computation, the rows are first grouped into blocks
(the table block_index (mi INTEGER) stores the indices for
blocks):
CREATE VIEW MLX (m) AS
SELECT ROWMATRIX(label_vector(

x.value, x.id - ind.mi*1000))
FROM x_vm AS x, block_index AS ind
WHERE x.id/1000 = ind.mi
GROUP BY ind.mi;

Note that this grouping step is not necessary if the data are already
stored as blocks; in our experiments, we count the blocking time as
part of the computation.

Then, the result is a sum of a series of matrix multiplies:

SELECT SUM(matrix_multiply(
trans_matrix(mlx.m), mlx.m))

FROM mlx;

The calculation of linear regression is similar to Gram matrix
computation. We omit the code for brevity. We also omit the code
for tuple-based distance computation.

The key codes of vector-based and block-based distance com-
putation are given below. For the vector-based computation, we
calculate the minimum d2A(xi, x′) for each data point xi as (the table
MX stores the distances computed by another query):

CREATE VIEW DISTANCESM (id, dist) AS
SELECT a.dataID,

MIN (inner_product (mxx.mx_data, a.data))
FROM X_m AS a, MX AS mxx
WHERE a.dataID <> mxx.id
GROUP BY a.dataID;

And in the block-based computation, we first conduct the compu-
tation xT

i Ax′ via a set of matrix multiplies:

CREATE VIEW DISTANCES (id1, id2, dm) AS
SELECT mxx.id, mx.id, matrix_multiply(
mxx.m, matrix_multiply(mp.mapping,
trans_matrix(mx.m)))

FROM MLX AS mx, MLX AS mxx, MM AS mp;

Then, the minimum values of those computations for each data
point is calculated via a series of operations on matrices.

(2) SystemML. Physically, the data in SystemML are stored and
processed as blocks, which are square matrices.

Gram matrix computation in SystemML is:

result = t(X) %*% X

Linear regression is omitted. The code of distance computation is:

all_dist = X %*% m %*% X_t
all_dist = all_dist + diag(diag_inf)
min_dist = rowMins(all_dist)
result = rowIndexMax(t(min_dist))

(3) Spark mllib.linalg. A Spark mllib.linalg program-
mer must decide: should the input data be stored/processed as vec-
tors, or as matrices? And, if a matrix is used, should it be a local
matrix, or a distributed one? In our experiments, we tried differ-
ent vector/local matrix/distributed matrix implementations, and se-
lected the most efficient ones.

For Gram matrix computation, vector-based is the fastest:

val result = parsedData.map(
x => x.transpose.multiply(

x.asInstanceOf[DenseMatrix]
).toArray

).reduce((a, b) => (a, b).zipped.map(_+_))

For linear regression, vector-based is also the most efficient. We
omit the code for brevity.

The distance computation was challenging. After a lot of exper-
imentation, we found that the distributed BlockMatrix was the
best. The code is as follows:
val dist_matrix = block_matrix_x.

multiply(block_matrix_m).
multiply(block_matrix_x.transpose)

val result =
dist_matrix.toIndexedRowMatrix.rows.map(
x => (x.index, x.vector.toArray)).
map{ case(i, a) =>

{if (i==0) a(0)=a(1)
else a(i.toInt)=a(0); (i, a.min);}

}.max()(
new Ordering[Tuple2[Long, Double]]() {
override def compare(
x: (Long, Double), y: (Long, Double)

): Int =
Ordering[Double].compare(x._2, y._2)})

(4) SciDB. Data in SciDB are partitioned as chunks. We use 1000
as the chunk size for all arrays in our code.

The SciDB code of Gram matrix computation is:

SELECT * FROM gemm(transpose(x), x,
build(<val:double>[t1=0:9,1000,0,

t2=0:9,1000,0], 0));

Linear regression is similar. The implementation of the distance
computation is:

SIGMOD Record, March 2018 (Vol. 47, No. 1) 29

Gram Matrix Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 00:01:28 00:03:19 05:04:45
Vector SimSQL 00:00:37 00:00:43 00:05:43
Block SimSQL 00:01:18 00:01:23 00:02:53

SystemML 00:00:05∗ 00:00:51 00:02:34
Spark mllib 00:00:20 00:00:54 00:17:31

SciDB 00:00:03 00:00:17 00:03:20

Figure 1: Gram matrix results. Format is HH:MM:SS. A star (∗)
indicates running in local mode.

SELECT * INTO mxt
FROM gemm(m, transpose(x),

build(<val:double>[t1=0:999,1000,0,
t2=0:99999,1000,0], 0));

SELECT * INTO all_distance
FROM filter(gemm(x, mxt,

build(<val:double>[t1=0:99999,1000,0,
t2=0:99999,1000,0], 0)), t1<>t2);

SELECT min(gemm) INTO distance
FROM all_distance
GROUP BY t1;

SELECT * INTO max_dist
FROM (SELECT max(min) FROM distance);

SELECT t1
FROM distance JOIN max_dist ON

distance.min = max_dist.max;

Experiment Setup. We ran all experiments on 10 Amazon EC2
m2.4xlarge machines (as workers), each having eight CPU cores.
For Gram matrix computation and linear regression, the number of
data points per machine was 105. For the distance computation,
the number of data points per machine was 104. All data sets were
dense, and all data were synthetic—since we are only interested in
running time; there is likely no practical difference between syn-
thetic and real data. For each computational task, we considered
three data dimensionalities: 10, 100, and 1000.

Experiment Results and Discussion. The results are shown in
Figures 1, 2, and 3.

Vector- and block-based SimSQL clearly dominate the tuple-
based implementation for each of the three computations. To exam-
ine this further, we re-ran the tuple-based and vector-based Gram
matrix computations over 1000-dimensional data on a five machine
cluster, and timed the individual operations that made up the com-
putation (shown in Figure 4). Note that in the 1000-dimensional
computation, in the tuple-based computation, each tuple joins with
the other 1000 values making up the same data point, and all of
those tuples need to be aggregated. Since 5 × 105 data points are
stored as 5 × 108 tuples, this results in 5 × 1011 tuples that need
to be aggregated. Even though these operations are pipelined, they
dominate the running time, as shown in Figure 4. Here we see—
perhaps surprisingly—that the the dominant cost is not the join
in the tuple-based computation, but the aggregation. This il-
lustrates the problem with tuple-based linear algebra: even a tiny
fixed cost associated with each tuple is magnified when we must
push 5× 1011 tuples through the system.

Interestingly, we see that the vector-based computation was faster
than block-based for 10- and 100-dimensional computations. This
is because our experiments counted the time of grouping vectors
into blocked matrices. This additional computation was not worth-
while for less computationally expensive problems. But for the

Linear Regression
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL 00:03:42 00:05:46 05:05:22
Vector SimSQL 00:00:45 00:00:49 00:06:35
Block SimSQL 00:02:23 00:02:22 00:04:22

SystemML 00:00:06∗ 00:00:53 00:02:38
Spark mllib 00:00:35 00:01:01 00:17:42

SciDB 00:00:15 00:00:33 00:06:04

Figure 2: Linear regression results. Format is HH:MM:SS. A star
(∗) indicates running in local mode.

Distance Computation
Platform 10 dims 100 dims 1000 dims

Tuple SimSQL Fail Fail Fail
Vector SimSQL 00:10:14 00:11:49 00:13:53
Block SimSQL 00:03:14 00:04:43 00:10:36

SystemML 00:13:29 00:22:38 00:33:22
Spark mllib 01:22:59 01:15:06 01:13:06

SciDB 00:03:46 00:04:54 00:05:06

Figure 3: Distance computation results. Format is HH:MM:SS.

1000-dimensional computations, additional time savings could be
realized via blocking.

For the higher-dimensional computations, there was no clear win-
ner among SystemML, SciDB, and SimSQL. SimSQL was a bit
slower for the lower-dimensional problems, because, as a prototype
system, it is not engineered for high throughput. Spark mllib was
not competitive on the higher-dimensional data. Over the three,
1000-dimensional computations, SimSQL, SystemML, and SciDB
had geometric mean running times of 5 minutes 7 seconds, 6 min-
utes 5 seconds, and 4 minutes 41 seconds, respectively.

We spent a lot of time trying to tune both SimSQL and Sys-
temML for the distance computation. In the case of SimSQL, the
problem appears to be that there are only 105 data points in all;
when grouped into blocks of 1000 vectors, this results in only 100
matrices in all. This meant that each of our 80 compute cores had
an average of 1.25 matrices mapped to it. Since SimSQL uses a
randomized, hash-based partitioning, it is easily possible for one
core to receive four or five of the 100 matrices. We did observe that
most cores would finish in a short time, while just a few, overloaded
cores would be left to finish the computation in a much longer pe-
riod. Better load balancing would likely have solved this problem.

Finally, we ask the question: do these experiments support the
hypothesis at the core of the paper, that a relational engine can be
used with little modification to support efficient linear algebra pro-
cessing? In terms of performance, they seem to. Enhancing a rel-
atively slow, Java-based system (SimSQL) resulted in a relational
algebra system with very reasonable performance for linear algebra
computations.

6. RELATED WORK
There has been some recent interest in combining distributed/-

parallel data management systems and linear algebra to support an-
alytics. One approach is the construction of a special purpose data
management system for scalable linear algebra; SystemML [16] is
the best example of this. Another good example of this is the Cu-
mulon system [18], which has the notable capability of optimizing
its own hardware settings in the cloud. MadLINQ [21], built on top
of Microsoft’s LINQ framework, can also be seen as an example of
this. Other work aims at scaling statistical/numerical programming
languages such as R. Ricardo [15] aims to support R programming
on top of Hadoop. Riot [25] attempts to plug an I/O efficient back-

30 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Figure 4: Comparison of Gram matrix computation for tuple-based
and vector-based SimSQL.
end into R to bring scalability.

A second (and not completely distinct) approach is building scal-
able linear algebra libraries on top of a dataflow platform. In this
paper, we have experimentally considered mllib.linalg [1].
Apache Hama [22] is another example of such a package. So is
SciHadoop [12].

The idea of moving past relations onto arrays as a database data
model, particularly for scientific and/or numerical applications, has
been around for a long time. One of the most notable efforts is
Baumann and his colleague’s work on Rasdaman [6]. In this paper,
we have compared with SciDB [11], an array database for which
linear algebra is a primary use case.

An array-based approach that is somewhat related to what we
have proposed is SciQL [24], which is a system supporting an ex-
tended SQL that is implemented on top of the MonetDB system
[10]. SciQL adds arrays (in addition to tables) as a second data
storage abstraction. Our proposed approach is much more modest;
rather than allowing arrays as a fundamental data abstraction, we
simply add vectors and matrices as new attribute types.

There is some support for linear algebra in modern, commercial
relational database systems, but it is not well-integrated into the
declarative (SELECT-FROM-WHERE) portion of SQL, and gener-
ally challenging to use. For example, Oracle provides the UTL_NLA
[2] package to support BLAS and LAPACK operations. To multi-
ply two matrices using this package, and assuming two input matri-
ces m1 and m2 declared as type utl_nla_array_dbl (and an
output matrix res defined similarly), a programmer would write:

utl nla.blas_gemm(
transa => ’N’, transb => ’N’, m => 3, n => 3,
k => 3, alpha => 1.0, a => m1, lda => 3,
b => m2, ldb => 2, beta => 0.0, c => res,
ldc => 3, pack => R);

There have been efforts [17, 20] aimed at building analytics li-
braries, including linear algebra functionality, on top of a database
system. However, these efforts use (external) tools such as user de-
fined functions to build linear algebra on top of a database system.

7. CONCLUSIONS
We have proposed a small set of changes to SQL that can ren-

der any distributed, relational database engine a high-performance
platform for distributed linear algebra. We have shown that making
these changes to a distributed relational database (SimSQL) results
in a system for distributed linear algebra whose performance meets
or exceeds special-purpose systems. Given that SimSQL is a proto-
type system written mostly in Java, it is not unreasonable to spec-
ulate that a commercial, high-performance database system with
similar extensions could do even better. We believe that our results

call into question the need to build yet another special-purpose data
management system for linear-algebra-based analytics.

Acknowledgments. Material in this paper has been supported by
the NSF under grant nos. 1355998 and 1409543, and by the DARPA
MUSE program.

8. REFERENCES
[1] Apache spark mllib: http://spark.apache.org/docs/lat-

est/mllib-data-types.html.
[2] Oracle corporation:

https://docs.oracle.com/cd/B19306_01/index.htm.
[3] M. Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.
[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ guide, volume 9. Siam, 1999.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data
processing in spark. In SIGMOD, pages 1383–1394. ACM, 2015.

[6] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The
multidimensional database system rasdaman. In SIGMOD Record, volume 27,
pages 575–577. ACM, 1998.

[7] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, et al. ScaLAPACK users’
guide, volume 4. siam, 1997.

[8] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel,
J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al. An updated set of basic
linear algebra subprograms (blas). ACM TOMS, 28(2):135–151, 2002.

[9] M. Boehm, D. R. Burdick, A. V. Evfimievski, B. Reinwald, F. R. Reiss, P. Sen,
S. Tatikonda, and Y. Tian. Systemml’s optimizer: Plan generation for large-scale
machine learning programs. IEEE Data Eng. Bull., 37(3):52–62, 2014.

[10] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-pipelining query
execution. In CIDR, volume 5, pages 225–237, 2005.

[11] P. G. Brown. Overview of SciDB: large scale array storage, processing and
analysis. In SIGMOD, pages 963–968, 2010.

[12] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis,
and S. Brandt. SciHadoop: Array-based query processing in Hadoop. In ACM
SC, page 66, 2011.

[13] Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. Jermaine.
Simulation of database-valued Markov chains using SimSQL. In SIGMOD,
pages 637–648, 2013.

[14] S. Chaudhuri. An overview of query optimization in relational systems. In
PODS, pages 34–43. ACM, 1998.

[15] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J. McPherson.
Ricardo: integrating R and Hadoop. In SIGMOD, pages 987–998, 2010.

[16] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML: Declarative machine
learning on mapreduce. In ICDE, pages 231–242, 2011.

[17] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek,
K. S. Ng, C. Welton, X. Feng, K. Li, et al. The MADlib analytics library: or
MAD skills, the SQL. VLDB, 5(12):1700–1711, 2012.

[18] B. Huang, S. Babu, and J. Yang. Cumulon: Optimizing statistical data analysis
in the cloud. In SIGMOD, pages 1–12, 2013.

[19] G. Lebanon. Metric learning for text documents. IEEE PAMI, 28(4):497–508,
2006.

[20] C. Ordonez. Statistical model computation with udfs. IEEE TKDE,
22(12):1752–1765, 2010.

[21] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, and Z. Zhang.
Madlinq: large-scale distributed matrix computation for the cloud. In EuroSys,
pages 197–210. ACM, 2012.

[22] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. Hama: An efficient
matrix computation with the mapreduce framework. In CloudCom, pages
721–726. IEEE, 2010.

[23] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-reduce
framework. VLDB, 2(2):1626–1629, 2009.

[24] Y. Zhang, M. Kersten, and S. Manegold. Sciql: array data processing inside an
rdbms. In SIGMOD, pages 1049–1052. ACM, 2013.

[25] Y. Zhang, W. Zhang, and J. Yang. I/o-efficient statistical computing with riot. In
ICDE, pages 1157–1160. IEEE, 2010.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 31

Technical Perspective:
Toward Building Entity Matching Management Systems

Wang-Chiew Tan
Recruit Institute of Technology

wangchiew@recruit.ai

Entity matching, also known as entity resolution or refer-
ence reconciliation, is to identify when two (different) repre-
sentations refer to the same real-world entity. Overcoming
the entity matching problem is often a key step in today’s
data preparation and integration pipeline before useful data
can be produced for analysis. For example, to understand
how many potential new customers there may be, a company
may wish to integrate an internal repository of customer pro-
files to an externally sourced dataset that contains profiles
of users (e.g., Twitter data). A successful entity matching
process would need to discern when two heterogeneous cus-
tomer profiles may actually refer to the same customer and
also for the opposite, when two seemingly identical customer
profiles may actually not be the same customer. For exam-
ple, it is not obvious whether or not the these two records:

(D. Smith, IBM Yorktown, . . .)
(S., David, International Business Machine, . . .)

refer to the same person and one may need to understand
the remaining values in the customer profiles before a fi-
nal decision can be made. An entity matching outcome is
largely dependent on the features that are selected by the
user or learned (if training data is available) for determin-
ing whether a match is successful. Different features and
measures may lead to different outcomes for the two records
above. Similarly, a different training data used for training
the entity matching model may lead to a different outcome.
On top of this, for an entity matching workflow to be useful,
more often than not, it has to scale to large datasets.

Magellan is a fairly recent entity matching system devel-
oped at the University of Wisconsin that overcomes several
limitations of existing solutions to entity matching. There
are two important attributes of Magellan that make it par-
ticularly useful and “easy” for end users to develop entity
matching solutions and this paper describes how Magellan
has been successfully used by several such end-user groups.

First, Magellan has a rich set of libraries for users to carry
out the entire entity matching pipeline which may involve
several substeps such as data cleaning, visualization, in addi-
tion to blocking, and matching. For example, Magellan pro-
vides libraries for different types of string matching functions
(a basic building block in entity matching). And because
Magellan is developed in Python, it can also leverage pub-
licly available Python libaries (more than 130,000 libraries
are available for data science, see pypi.python.org) for other
tasks such as exploration, visualization, and cleaning.

Second, Magellan provides how-to guides that describe
how to approach the development of entity matching work-
flows. The how-to guides are useful because they describe
step-by-step instructions with examples that illustrate the
example methodology and functionalities available in Mag-
ellan. In addition, they illustrate critical substeps that are
sometimes overlooked by users in designing an entity match-
ing workflow. For example, during the design of an entity
matching workflow for large datasets, one often downsam-
ples the dataset so that the resulting dataset is smaller and
allows for faster testing. However, care has to be taken to
ensure that the downsampled dataset is representative of the
original dataset and Magellan provides supporting tools to
help with the downsampling process.

The user works in the development stage with the down-
sampled dataset. When ready, the user moves the final en-
tity matching workflow to the production stage where it will
be executed on the original dataset with supporting software
libraries for scaling the operation such as running MapRe-
duce/Spark jobs in a parallel and distributed setting.

The paper largely describes the development stage by de-
lineating a few main steps in the development of entity
matching workflows that uses supervised learning. Magellan
provides a tool for downsampling which samples data intel-
ligently to ensure a reasonable number of matches exists
in the downsampled dataset. After this, the downsampled
data is blocked to remove tuples that are highly unlikely to
match. Blocking helps further reduce the number of can-
didate matches to consider and can considerably speed up
the overall entity matching process. Magellan provides a
debugger tool for users to examine the tuples that are elim-
inated by the blocker. A general rule of thumb is that if
there are only a few matches among the eliminated tuples,
then the blocker has achieved a sufficiently high reall. From
the remaining tuples, the next step samples a set of can-
didate matching tuples and the user labels the candidates
as match/no-match. Magellan provides tools to ensure that
there are sufficiently many true matches in the sampled data.
After this, Magellan automatically generates a set of features
from the labeled data and converts each candidate pair of tu-
ples into a feature vector. By training and cross validation,
it selects a matcher with the the highest estimated accuracy
from among those supplied by Magellan. A debugging step
then follows to examine the mistakes of the matcher and
improve upon it as needed and the process can be repeated.

32 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Magellan: Toward Building
Entity Matching Management Systems

Pradap Konda1, Sanjib Das1, Paul Suganthan G.C.1, Philip Martinkus1, AnHai Doan1,
Adel Ardalan1, Jeffrey R. Ballard1, Yash Govind1, Han Li1,

Fatemah Panahi2, Haojun Zhang1, Jeff Naughton2,
Shishir Prasad3, Ganesh Krishnan3, Rohit Deep3, Vijay Raghavendra3

1University of Wisconsin-Madison, 2Google, 3@WalmartLabs

ABSTRACT
Entity matching (EM) has been a long-standing challenge
in data management. Most current EM works focus only
on developing matching algorithms. We argue that far more
efforts should be devoted to building EM systems. We dis-
cuss the limitations of current EM systems, then describe
Magellan, a new kind of EM system. Magellan is novel in
four important aspects. (1) It provides how-to guides that
tell users what to do in each EM scenario, step by step.
(2) It provides tools to help users execute these steps; the
tools seek to cover the entire EM pipeline, not just block-
ing and matching as current EM systems do. (3) Tools are
built into the Python open-source data science ecosystem,
allowing Magellan to borrow a rich set of capabilities in data
cleaning, IE, visualization, learning, etc. (4) Magellan pro-
vides a powerful scripting environment to facilitate inter-
active experimentation and quick “patching” of the system.
We describe research challenges and present extensive ex-
periments that show the promise of the Magellan approach.

1. INTRODUCTION
Entity matching (EM) identifies data instances that refer

to the same real-world entity, such as (David Smith, UW-
Madison) and (D. M. Smith, UWM). This problem has been
a long-standing challenge in data management [13, 22]. Most
current EM works however have focused only on developing
matching algorithms [13, 22].

Going forward, we believe that building EM systems is
truly critical for advancing the field. EM is engineering
by nature. We cannot just keep developing matching al-
gorithms in a vacuum. This is akin to continuing to develop
ever-more-complex join algorithms without having the rest
of the RDBMS. At some point we must build end-to-end
systems to evaluate matching algorithms, to integrate R&D
efforts, to educate our students in EM, and to make practical
impacts.

In this aspect, EM can take inspiration from RDBMSs and
Big Data systems. Pioneering systems such as System R,
Ingres, and Hadoop have drastically helped push these fields
forward, by helping to evaluate research ideas, providing an

c©VLDB Endowment 2016. This is a minor revision of the paper enti-
tled Magellan: Toward Building Entity Matching Management Systems,
published in the Proceedings of the VLDB Endowment, Vol. 9, No. 12,
2150-8097/16/08.
DOI: https://doi.org/10.14778/2994509.2994535.
.

architectural blueprint for the entire community to focus on,
facilitating more advanced systems, and making widespread
real-world impacts.

The question then is what kinds of EM systems we should
build, and how? In this paper we begin by showing that
current EM systems suffer from four limitations that prevent
them from being used extensively in practice.

First, when performing EM users often must execute many
steps. Current systems however do not cover the entire EM
pipeline, providing support for only a few steps (e.g., block-
ing, matching), while ignoring less well-known yet equally
critical steps (e.g., debugging, sampling, cleaning).

Second, EM steps often must exploit many techniques,
e.g., learning, mining, visualization, outlier detection, infor-
mation extraction (IE), crowdsourcing, etc. Current EM
systems (most of which are stand-alone monoliths that are
not designed from scratch to “play well” with other systems)
do not provide enough support for these techniques.

Third, users often have to write code to “patch” the sys-
tem (e.g., to implement a lacking functionality or combine
system components), ideally using a scripting environment,
to enable rapid prototyping and iteration. Most current EM
systems however do not provide such facilities.

Finally, in many EM scenarios users often do not know
how to proceed end to end. Suppose a user wants to perform
EM with at least 95% precision and 80% recall. Should he
or she start out using a learning or rule-based EM approach?
If learning-based, then which technique to select among the
many existing ones? How to debug? What to do if after
many tries the user still cannot reach 80% recall? Current
EM systems provide no answers to such questions.

The Magellan Solution: To address these limitations,
we describe Magellan, a new kind of EM systems currently
being developed at UW-Madison, in collaboration with sev-
eral industrial partners. Magellan (named after Ferdinand
Magellan, the first end-to-end explorer of the globe) is novel
in several important aspects.

First, Magellan focuses on helping power users (those who
know how to code) execute a set of EM scenarios (e.g., us-
ing supervised learning to match two tables with a target
accuracy). For each EM scenario, Magellan provides a com-
prehensive how-to guide that tells users what to do, step by
step, end to end.

Second, Magellan identifies “pain points” in each guide,
i.e., steps that require a lot of user effort, then provides tools
to address those pain points. As we will see, these tools cover

SIGMOD Record, March 2018 (Vol. 47, No. 1) 33

the entire EM pipeline (e.g., debugging, sampling), not just
the blocking and matching steps.

Third, the tools are being built within the Python data
science ecosystem, allowing users to easily exploit a wide
range of techniques in learning, visualization, cleaning, etc.
(as captured in numerous Python packages in this ecosys-
tem, such as pandas, scikit-learn, matplotlib, pytorch, pys-
park, etc.).

Finally, an added benefit of integration with the Python
ecosystem is that Magellan is situated in a powerful scripting
environment that users can use to prototype code to “patch”
the system.

As described, Magellan assumes that the EM process can-
not be automated. Instead it must involve the human user.
So Magellan provides a detailed how-to guide that spells out
where the human user must be involved and how, and where
a tool can be used to reduce the user effort. Thus, Magellan
is an example of “human-in-the-loop” data management sys-
tems, which have received significant recent attention [19].

Challenges: Realizing the above novelties raises major
challenges. First, it turns out that developing effective how-
to guides, even for very simple EM scenarios such as apply-
ing supervised learning to match, is already quite difficult,
as we will show in Section 3.3.

Second, developing tools to support these guides is equally
difficult. In particular, current EM work may have dismissed
many steps in the EM pipeline as engineering. But here we
show that many such steps (e.g., sampling, labeling, debug-
ging, etc.) do raise difficult research challenges.

Finally, while most current EM systems are stand-alone
monoliths, Magellan is designed to be placed within an“ecosys-
tem” and is expected to “play well” with others (e.g., other
Python packages). We say that Magellan is an “open-world
system”, because it relies on many other systems in the
ecosystem in order to provide the fullest amount of support
to the user doing EM. It turns out that building open-world
systems raises non-trivial challenges, such as designing the
right data structures and managing metadata.

Current Status: In the past three years we have started
to address the above challenges. Specifically, we have open
sourced Magellan [3]. As far as we can tell, Magellan is the
most comprehensive open-source EM system today, in terms
of the number of features it supports.

Magellan has been successfully used in five domain science
projects at UW-Madison (in economics, biomedicine, envi-
ronmental science [32, 33, 37, 9]), and at several companies
(e.g., Johnson Control, Marshfield Clinic, Recruit Holdings
[1], WalmartLabs). For example, at WalmartLabs it im-
proved the recall of a deployed EM solution by 34%, while
reducing precision slightly by 0.65%. It has also been used
by 400+ students to match real-world data in five data sci-
ence classes at UW-Madison (e.g., [2]).

Applying Magellan to the above real-world applications
raised many research challenges. Examples include helping
users finalize their matching definition [32, 19], debugging
blocking [34], debugging rule-based EM [36], human-in-the-
loop EM [19], applying deep learning to match textual data
[35], hands-off string matching, data cleaning, and more. We
have started to address some of these research challenges [34,
35, 36, 19], describe case studies [32], and summarize the
lessons learned [19, 32]. Magellan and the data generated in
this project have also been used by other research groups

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1

a2

a3

b1

b2

Matches

(a1, b1)

(a3, b2)

Table A Table B

Figure 1: An example of matching two tables.

(e.g., [21, 25]).

CloudMatcher and BigGorilla: In terms of broader
impacts, Magellan is an on-premise EM solution for power
users. In a related project, we have been developing Cloud-
Matcher, a hands-off cloud/crowd EM service for lay users
(to be deployed soon at cloudmatcher.io) [27, 17, 26]. Our
Magellan work has significantly influenced the development
of CloudMatcher, by suggesting desired functionalities and
pointing out possible limitations of such EM services [27].

The ideas underlying Magellan can potentially be applied
to other types of data integration problems (e.g., schema
matching, information extraction, data cleaning, etc.). We
have started to flesh out a similar system-building agenda
for data integration [20, 18]. We have also been partnering
with Recruit Institute of Technology to encourage a commu-
nity around BigGorilla, a repository of data preparation and
integration tools [41]. The goal of BigGorilla is to foster an
ecosystem of such tools, as a part of the Python data science
ecosystem, for research, education, and practical purposes.

The rest of this paper motivates Magellan then discusses
the solution architecture, empirical evaluation, lessons learned,
and ongoing research directions. This paper is a condensed
version of [29]. More details can be found in that paper and
in [30, 31], and on the Magellan project’s homepage [3].

2. LIMITATIONS OF CURRENT
ENTITY MATCHING SYSTEMS

Entity matching (EM) has received much attention [13,
22]. A common EM scenario finds all tuple pairs that match,
i.e., refer to the same real-world entity, between two tables A
and B (see Figure 1). Other EM scenarios include matching
tuples within a single table, matching into a knowledge base,
matching XML data, etc. [13].

Most EM works have developed matching algorithms that
exploit rules, learning, clustering, crowdsourcing, among oth-
ers [13, 22]. The focus is on improving the matching accu-
racy and reducing costs (e.g., run time). Trying to match
all pairs in A×B often takes very long. So users often em-
ploy heuristics to remove obviously non-matched pairs (e.g.,
products with different colors), in a step called blocking, be-
fore matching the remaining pairs. Several works have stud-
ied this step, focusing on scaling it up to large amounts of
data (see Section 5).

In contrast to the extensive effort on matching algorithms,
there has been relatively little work on building EM systems.
As of 2016 we counted 18 major non-commercial systems
(e.g., D-Dupe, DuDe, Febrl, Dedoop, Nadeef [13]), and 15
major commercial ones (e.g., Tamr, Data Ladder, IBM In-
foSphere, IBM Midas [28, 38]). Our examination of these
systems (see [30]) reveals the following four major problems:

1. Systems Do Not Cover the Entire EM Pipeline:
When performing EM users often must execute many steps,
e.g., blocking, matching, exploration, cleaning, extraction
(IE), debugging, sampling, labeling, etc. Current systems
provide support for only a few steps in this pipeline, while

34 SIGMOD Record, March 2018 (Vol. 47, No. 1)

ignoring less well-known yet equally critical steps.
For example, all 33 systems that we have examined pro-

vide support for blocking and matching. Twenty systems
provide limited support for data exploration and cleaning.
There is no meaningful support for any other steps (e.g.,
debugging, sampling, etc.). Even for blocking the systems
merely provide a set of blockers that users can call; there
is no support for selecting and debugging blockers, and for
combining multiple blockers.

2. Difficult to Exploit a Wide Range of Techniques:
Practical EM often requires a wide range of techniques,
e.g., learning, mining, visualization, data cleaning, IE, SQL
querying, crowdsourcing, keyword search, etc. For example,
to improve matching accuracy, a user may want to clean the
values of attribute “Publisher” in a table, or extract brand
names from“Product Title”, or build a histogram for“Price”.
The user may also want to build a matcher that uses learn-
ing, crowdsourcing, or some statistical techniques.

Current EM systems do not provide enough support for
these techniques, and there is no easy way to do so. Incorpo-
rating all such techniques into a single system is extremely
difficult. But the alternate solution of just moving data
among a current EM system and systems that do cleaning,
IE, visualization, etc. is also difficult and time consuming.
A fundamental reason is that most current EM systems are
stand-alone monoliths that are not designed from the scratch
to “play well” with other systems. For example, many cur-
rent EM systems were written in C, C++, C#, and Java,
using proprietary data structures. Since EM is often iter-
ative, we need to repeatedly move data among these EM
systems and cleaning/IE/etc systems. But this requires re-
peated reading/writing of data to disk followed by compli-
cated data conversion.

3. Difficult to Write Code to“Patch”the System: In
practice users often have to write code, either to implement a
lacking functionality (e.g., to extract product weights, or to
clean the dates), or to tie together system components. It is
difficult to write such code correctly in “one shot”. Thus ide-
ally such coding should be done using an interactive script-
ing environment, to enable rapid prototyping and iteration.
This code often needs access to the rest of the system, so
ideally the system should be in such an environment too.
Unfortunately only 5 out of 33 systems provide such set-
tings (using Python and R).

4. Little Guidance for Users on How to Match: In
our experience this is by far the most serious problem with
current EM systems. In many EM scenarios users simply
do not know what to do: how to start, what to do next?
Interestingly, even the simple task of taking a sample and
labeling it (to train a learning-based matcher) can be quite
complicated in practice, as we show in Section 3.3. Thus,
it is not enough to just build a system consisting of a set
of tools. It is also critical to provide step-by-step guidance
to users on how to use the tools to handle a particular EM
scenario and what to do when no tool is available. No EM
system that we have examined provides such guidance.

3. THE MAGELLAN SOLUTION
We now describe Magellan and discuss how it addresses the

above limitations. Figure 2 shows the Magellan architecture.
The system targets a set of EM scenarios. For each EM

Data Analysis Stack

pandas, scikit-learn, matplotlib,
…

Python Interactive Environment
 Script Language

Development Stage

Supporting tools

(as Python commands)

Data samples

EM
Workflow

Production Stage

Supporting tools

(as Python commands)

Original data

Big Data Stack

PySpark, mrjob, Pydoop,
 …

Facilities for Lay Users

GUIs, wizards, …

EM
Scenarios

How-to
Guides

Power Users

Figure 2: The Magellan architecture.

scenario it provides a how-to guide. The guide proposes
that the user solve the scenario in two stages: development
and production.

In the development stage, the user develops a good EM
workflow (e.g., one with high matching accuracy). The guide
tells the user what to do, step by step. For each step which
is a “pain point”, the user can use a set of supporting tools
(each of which is a set of Python commands). This stage is
typically done using data samples. In the production stage,
the guide tells the user how to implement and execute the
EM workflow on the entirety of data, again using a set of
tools.

Both stages have access to the Python interactive script-
ing environment (e.g., Jupyter Notebook). Further, tools
are built into the Python data science ecosystem. Thus,
Magellan is an “open-world” system, as it often has to bor-
row functionalities (e.g., cleaning, extraction, visualization)
from other Python packages in the ecosystem.

Finally, the current Magellan is geared toward power users
(who can program). In the future facilities for lay users (e.g.,
GUIs, wizards) can be laid on top (see Figure 2), and lay
user actions can be translated into sequences of commands
in the underlying Magellan. In what follows we elaborate on
the Magellan architecture.

3.1 EM Scenarios and Workflows
We classify EM scenarios along four dimensions: (1) Prob-

lems: Matching two tables; matching within a table; match-
ing a table into a knowledge base; etc. (2) Solutions: Using
learning; using learning and rules; performing data clean-
ing, blocking, then matching; performing IE, then cleaning,
blocking, and matching; etc. (3) Domains: Matching two
tables of biomedical data; matching e-commerce products
given a large product taxonomy as background knowledge;
etc. (4) Performance: Precision must be at least 92%, while
maximizing recall as much as possible; both precision and
recall must be at least 80%, and run time under four hours;
etc.

An EM scenario can constrain multiple dimensions, e.g.,
matching two tables of e-commerce products using a rule-
based approach with desired precision of at least 95%. Clearly
there is a wide variety of EM scenarios. So we build Mag-
ellan to handle a few common scenarios, and then extend it
to more scenarios over time. Specifically, for now we will
consider the three scenarios that match two given relational
tables A and B using (1) supervised learning, (2) rules, and

SIGMOD Record, March 2018 (Vol. 47, No. 1) 35

(3) learning plus rules, respectively. These scenarios are very
common. In practice, users often try Scenario 1 or 2, and if
neither works, then a combination of them (Scenario 3).

As discussed earlier, to handle an EM scenario, a user of-
ten has to execute many steps, such as cleaning, IE, block-
ing, matching, etc. The combination of these steps form an
EM workflow. Figure 4 shows a sample workflow (which we
explain in Section 3.3).

3.2 Development Stage vs. Production Stage
From our experience with real-world users doing EM, we

propose that the how-to guide tell the user to solve the EM
scenario in two stages: development and production. In the
development stage the user finds a good EM workflow, typ-
ically using data samples. In the production stage the user
applies the workflow to the entirety of data. Since this data
is often large, a major concern here is to scale up the work-
flow. Other concerns include quality monitoring, logging,
crash recovery, etc. The following example illustrates these
two stages.

Example 1. Consider matching two tables A and B each
having 1M tuples. Working with such large tables will be very
time consuming in the development stage, especially given
the iterative nature of this stage. Thus, in the development
stage the user U starts by sampling two smaller tables A′ and
B′ from A and B, respectively. Next, U performs blocking
on A′ and B′. The goal is to remove as many obviously non-
matched tuple pairs as possible, while minimizing the number
of matching pairs accidentally removed. U may need to try
various blocking strategies to come up with what he or she
judges to be the best.

The blocking step can be viewed as removing tuple pairs
from A′×B′. Let C be the set of remaining tuple pairs. Next,
U may take a sample S from C, examine S, and manually
write matching rules, e.g., “If titles match and the numbers
of pages match then the two books match”. U may need to try
out these rules on S and adjust them as necessary. The goal
is to develop matching rules that are as accurate as possible.

Once U has been satisfied with the accuracy of the match-
ing rules, the production stage begins. In this stage, U exe-
cutes the EM workflow that consists of the developed blocking
strategy and matching rules on the original tables A and B.
To scale, U may need to rewrite the code for blocking and
matching to use Hadoop or Spark. 2

As described, these two stages are very different in nature:
one goes for accuracy and the other goes for scaling (among
others). Consequently, they will require very different sets
of tools. We now discuss developing tools for these stages.

Development Stage on a Data Analysis Stack: We
observe that what users try to do in the development stage
is very similar in nature to data analysis tasks, which an-
alyze data to discover insights. Indeed, creating EM rules
can be viewed as analyzing (or mining) the data to discover
accurate EM rules. Conversely, to create EM rules, users
also often have to perform many data analysis tasks, e.g.,
cleaning, visualizing, finding outliers, IE, etc.

As a result, if we are to develop tools for the development
stage in isolation, within a stand-alone monolithic system, as
current work has done, we would need to somehow provide a
powerful data analysis environment, in order for these tools
to be effective. This is clearly very difficult to do.

So instead, we propose that tools for the development

stage be developed on top of an open-source data analy-
sis stack, so that they can take full advantage of all the data
analysis tools already (or will be) available in that stack.
In particular, two major data analysis stacks have recently
been developed, based on R and Python. The Python stack
for example includes the Python language, numpy and scipy
packages for numerical/array computing, pandas for rela-
tional data management, scikit-learn for machine learning,
among others. More tools are being added all the time. As
of March 2018, there were 536 Python packages available in
the popular Anaconda distribution. There is a vibrant com-
munity of contributors to continuously improve this stack.

For Magellan, since our initial target audience is the IT
community, where we believe Python is more familiar, we
have been developing tools for the development stage on the
Python data analysis stack.

Production Stage on a Big Data Stack: In a sim-
ilar vein, we propose that tools for the production stage,
where scaling is a major focus, be developed on top of a
Big Data stack. Magellan uses the Python Big Data stack,
which consists of many software packages to run MapReduce
(e.g., Pydoop, mrjob), Spark (e.g., PySpark), and parallel
and distributed computing in general (e.g., pp, dispy).

In the rest of this paper we will focus on the development
stage, leaving the production stage for subsequent papers.

3.3 How-to Guides and Tools
We now discuss developing how-to guides and tools to

support these guides. First, we show that even for relatively
simple EM scenarios (e.g., matching using supervised learn-
ing), a good guide can already be quite complex. Thus de-
veloping how-to guides is a major challenge, but such guides
are critical in order to successfully guide the user through
the EM process. Second, we show that each step of the
guide, including those that prior work may have viewed as
trivial (e.g., sampling, labeling), can raise many interesting
research challenges.

Recall that Magellan currently targets three EM scenar-
ios (Section 3.1). For space reasons, we will focus on the
scenario of matching using supervised learning, and on de-
veloping a guide for the development stage of this scenario.
Figure 3 shows the current version of this guide, listing only
the top six steps. While each step may sound fairly infor-
mal (e.g., “create a set of features”), the full guide (available
with Magellan’s release) is far more complex and spells out
in detail what to do (e.g., run a Magellan command to au-
tomatically create the features). We developed this guide
based on observing how real-world users (e.g., at Walmart-
Labs and Johnson Control) as well as students in several
UW-Madison classes handled this scenario.

The guide states that to match two tables A and B, the
user should load the tables into Magellan (Step 1), do block-
ing (Step 2), label a sample of tuple pairs (Step 3), use
the sample to iteratively find and debug a learning-based
matcher (Steps 4-5), then return this matcher and its esti-
mated matching accuracy (Step 6). We now briefly discuss
these steps (see [30] for more details). For ease of exposition,
we will assume that tables A and B share the same schema.

Downsampling Tables: We begin by loading the two
tables A and B into memory. If these tables are large (e.g.,
each having 100K+ tuples), we should sample smaller tables
A′ and B′ from A and B respectively, then do the develop-

36 SIGMOD Record, March 2018 (Vol. 47, No. 1)

1. Load tables A and B into Magellan. Downsample if necessary.

2. Perform blocking on the tables to obtain a set of
candidate tuple pairs C.

3. Take a random sample S from C and label pairs in S as
matched / non-matched.

4. Create a set of features then convert S into a set of feature vectors H.
Split H into a development set I and an evaluation set J.

5. Repeat until out of debugging ideas or out of time:

(a) Perform cross validation on I to select the best matcher.
Let this matcher be X.

(b) Debug X using I. This may change the matcher X, the data, labels,
and the set of features, thus changing I and J.

6. Let Y be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.

Figure 3: The top-level steps of the guide for the
EM scenario of matching using supervised learning.

ment stage with these smaller tables. Since this stage is iter-
ative by nature, working with large tables can be very time
consuming. Random sampling however does not work, be-
cause tables A′ and B′ may end up sharing very few matches.
Thus we need a tool that samples more intelligently, to en-
sure a reasonable number of matches between A′ and B′.
We have developed such a tool, which proved quite effective
in our experiments (see [30]).

This tool however has a limitation: it may not get all
important matching categories into A′ and B′. If so, the
EM workflow created using A′ and B′ may not work well on
the original tables A and B. For example, consider match-
ing companies. Tables A and B may contain two match-
ing categories: (1) tuples with similar company names and
addresses match because they refer to the same company,
and (2) tuples with similar company names but different
addresses may still match because they refer to different
branches of the same company. Using the current tool, ta-
bles A′ and B′ may contain many tuple pairs of Case 1, but
no or very few pairs of Case 2.

To address this problem, we are working on a better“down-
sampler”. Our idea is to use clustering to create groups of
matching tuples, then analyze these groups to infer match-
ing categories, then sample from the categories. Major chal-
lenges here include how to effectively cluster tuples from the
large tables A and B, and how to define and infer matching
categories accurately.

Blocking to Create Candidate Tuple Pairs: Next,
we apply blocking to the tables A′ and B′ to generate a set
C of tuple pairs (a ∈ A′, b ∈ B′). Many blocking solutions
have been developed [13]. In practice, however, users often
have three questions which current work has not addressed:
(1) how to select the best blocker, (2) how to debug a given
blocker, and (3) how to know when to stop?

Selecting the Best Blocker: There is no satisfactory solution
yet to this problem. For now, based on our experience,
we recommend that the user try successively more complex
blockers. Specifically, the user can try overlap blocking first
(e.g., “matching tuples must share at least k tokens in an at-
tribute x”), then attribute equivalence blocking (AE) (e.g.,
“matching tuples must share the same value for an attribute
y”). These blockers are very fast, and can significantly cut
down on the number of candidate tuple pairs. Next, the
user can try other well-known blocking methods (e.g., sorted

neighborhood, hash) if appropriate. Finally, the user can try
rule-based blocking. This means the user can use multiple
blockers and combine them in a flexible fashion (e.g., apply-
ing AE to the output of overlap blocking).

Debugging Blockers: Given a blocker L, how do we know if
it does not remove too many matches? We have developed a
debugger to answer this question [34]. Suppose applying L
to A′ and B′ produces a set C of tuple pairs (a ∈ A′, b ∈ B′).
Then D = A′ × B′ \ C is the set of all tuple pairs removed
by L. The debugger examines D to return a list of k tuple
pairs in D that are most likely to match. If the user U finds
many matches in the list, then that means blocker L has re-
moved too many matches. U would need to modify L to be
less “aggressive”, then apply the debugger again. Eventually
if U finds no or very few matches in the list, U can assume
that L has removed no or very few matches, and thus is good
enough.

Knowing When to Stop Modifying the Blockers: How do we
know when to stop tuning a blocker L? Suppose applying L
to A′ and B′ produces the set of tuple pairs block(L,A′, B′).
The conventional wisdom is to stop when block(L,A′, B′) fits
into memory or is already small enough so that the matching
step can process it efficiently.

In practice, however, this often does not work. For exam-
ple, since we work with A′ and B′, samples from the original
tables, monitoring |block(L,A′, B′)| does not make sense.
Instead, we want to monitor |block(L,A,B)|. But applying
L to the large tables A and B can be very time consuming,
making the iterative process of tuning L impractical.

As a result, users often want blockers that have (1) high
pruning power, i.e., maximizing 1− |block(L,A′, B′)|/|A′ ×
B′|, and (2) high recall, i.e., maximizing the ratio of the
number of matches in block(L,A′, B′) divided by the number
of matches in A′×B′. Users can measure the pruning power,
but so far they have had no way to estimate recall. This
is where our debugger comes in. In our experiments (see
Section 4) users reported they had used our debugger to
find matches that the blocker L had removed, and when
they found no or only a few matches, they concluded that
L had achieved high recall and stopped tuning the blocker.

Sampling and Labeling Tuple Pairs: Let L be the
blocker we have created. Suppose applying L to tables A′

and B′ produces a set of tuple pairs C. In the next step,
user U should take a sample S from C, then label the pairs
in S as matched / no-matched, to be used later for training
matchers, among others.

At a first glance, this step seems simple: why not just take
a random sample and label it? Unfortunately in practice this
is far more complicated. For example, suppose C contains
relatively few matches (either because there are few matches
between A′ and B′, or because blocking was too liberal,
resulting in a large C). Then a random sample S from C
may contain no or few matches. But the user U often does
not recognize this until U has labeled most of the pairs in
S. This is a waste of U ’s time and can be quite serious in
cases where labeling is time consuming or requires expensive
domain experts (e.g., labeling drug pairs when we worked
with Marshfield Clinic). We have developed a solution to
address this problem, building on the work in [26] (see [30]).

Selecting a Matcher: Once user U has labeled a sample
S, U uses S to select a good initial learning-based matcher.
Our guide provides a tool to address this problem. The tool

SIGMOD Record, March 2018 (Vol. 47, No. 1) 37

first automatically generates a set of features, uses them to
convert each pair in S into a feature vector, then performs
cross validation over a subset of the feature vectors to se-
lect the matcher with the highest estimated accuracy from
among those supplied by Magellan.

Debugging a Matcher: Let the selected matcher be
X. Next, user U debugs X to improve its accuracy. Such
debugging is critical in practice, yet has received little atten-
tion. Our guide suggests that user U debug in three steps:
(1) identify and understand the matching mistakes made by
X, (2) categorize these mistakes, and (3) take actions to fix
common categories of mistakes.

Identifying and Understanding Matching Mistakes: Given a
labeled set I for debugging purpose, U should split I into
two sets P and Q, train X on P then apply it to Q to identify
the matching mistakes made by X in Q (this process can be
repeated many times, using different P and Q). These are
false positives (non-matching pairs predicted matching) and
false negatives (matching pairs predicted not). Addressing
them helps improve precision and recall, respectively.

Next U should try to understand why X makes each mis-
take, using a match debugger where available. There are
four major categories of mistakes. (1) The data can be dirty,
e.g., the price value is incorrect. (2) The label can be wrong,
e.g., a pair should have been labeled “not matched”. (3) The
feature set is problematic. A feature is misleading, or a new
feature is desired, e.g., we need a new feature that extracts
and compares the publishers. (4) The learning algorithm
employed by X is problematic, e.g., a parameter such as
“maximal depth to be searched” is set to be too small. Cur-
rently Magellan has debuggers for a set of learning-based
matchers, e.g., decision tree, random forest. We are work-
ing on improving these debuggers and developing debuggers
for more learning algorithms.

Categorizing Matching Mistakes: After U has examined all
or a large number of matching mistakes, he or she can cat-
egorize them, based on problems with data, label, feature,
and the learning algorithm. Examining all or most mistakes
is very time consuming. Thus a consistent feedback we have
received from real-world users is that they would love a tool
that can automatically examine and give a preliminary cat-
egorization of the types of the matching mistakes. As far as
we can tell, no such tool exists today.

Handling Common Categories of Mistakes: Next U should
try to fix common categories of mistakes by modifying the
data, labels, set of features, and the learning algorithm. This
part often involves data cleaning and extraction (IE), e.g.,
normalizing all values of attribute “affiliation”, or extracting
publishers from attribute “desc” then creating a new feature
comparing the publishers.

This part is often also very time consuming. Real-world
users have consistently indicated needing support in at least
two areas. First, they want to know exactly what kinds
of data cleaning and IE operations they need to do to fix
the mistakes. Naturally they want to do as minimally as
possible. Second, re-executing the entire EM process after
each tiny change to see if it “fixes” the mistakes is very time
consuming. Hence, users want an “what-if” tool that can
quickly show the effect of a hypothetical change.

The Resulting EM Workflow: After executing the
above steps, user U has in effect created an EM workflow,

A

B

clean,
extract, transform

block
clean,

extract, transform

Candidate
Set C match

Figure 4: The EM workflow for the learning-based
matching scenario.

as shown in Figure 4. Since this workflow will be used in
the production stage, it takes as input the two original ta-
bles A and B. Next, it performs a set of data cleaning, IE,
and transformation operations on these tables. These op-
erations are derived from the debugging step discussed in
Section 3.3. Next, the workflow applies the blockers cre-
ated in Section 3.3 to obtain a set of candidate tuple pairs
C. Finally, the workflow applies the learning-based matcher
created in Section 3.3 to the pairs in C.

Note that the steps of sampling and labeling a sample S
do not appear in this workflow, because we need them only
in the development stage, in order to create, debug, and
train matchers. Once we have found a good learning-based
matcher (and have trained it using S), we do not have to
execute those steps again in the production stage.

4. EMPIRICAL EVALUATION
As of March 2018, Magellan [3] consists of 6 Python pack-

ages, 37K lines of code, and 231 commands. It has been
developed over 3 years by 13 developers. We now describe
using Magellan in data science classes, with domain scientists
at UW-Madison, and at companies.

4.1 Using Magellan in Data Science Classes
So far 400+ students (including 90+ undergraduates) have

used Magellan in 5 data science classes at UW-Madison.
These students can be considered the equivalents of power
users at organizations. They know Python but are not ex-
perts in EM. We asked them to form team of 2-3 students,
then asked each team to find two data-rich Web sites, ex-
tract and convert data from them into two relational tables,
then apply Magellan to match tuples across the tables [16].
We typically asked each team to do the EM scenario of su-
pervised learning followed by rules, and aim for precision of
at least 90% with recall as high as possible (a very common
scenario in practice).

We now describe in more details our experience with a
Fall 2015 class, which consisted of 44 students divided into
24 teams (see [30] for details). These teams extracted tables
in 12 domains (e.g., Vehicles, Movies, Restaurants, Music,
etc.). The tables have 7,313 tuples on average, with 5-17
attributes. On these tables, the best learning-based matcher
(after cross validation) achieved accuracy P = 56-100%, R
= 37.5-100%, F1 = 56-99.5%, suggesting that many of these
tables are not easy to match. Using Magellan, however, the
teams were able to significantly improve these accuracies,
achieving P = 91.3-100%, R = 64.7-100%, F1 = 78.6-100%.
All 24 teams achieved precision exceeding 90%, and 20 teams
also achieved recall exceeding 90%. (Four teams had recall
below 90% because their data were quite dirty, with many
missing values.) All teams reported being able to follow the
how-to guide. Together with qualitative feedback from the
teams, this suggests that users can follow Magellan’s how-
to guide to achieve high matching accuracy on diverse data
sets.

38 SIGMOD Record, March 2018 (Vol. 47, No. 1)

All teams used 1-5 blockers (e.g., attribute equivalence,
overlap, rule-based), for an average of 3. On average 3 dif-
ferent types of blockers were used per team. This suggests
that it is relatively easy to create a blocking pipeline with
diverse blocker types. All teams debugged their blockers,
in 1-10 iterations, for an average of 5. 18 out of 24 teams
used our debugger [34], and reported that it helped in four
ways: cleaning data, finding the correct blocker types and
attributes, tuning blocker parameters, and knowing when
to stop (see [30]). Teams reported spending 4-32 hours on
blocking (including reading documentations). Overall, 21
out of 24 teams were able to prune away more than 95% of
|A×B|, with an average reduction of 97.3%, suggesting that
they were able to construct blocking with high pruning rate.

Recall from Section 3.3 that after cross validation to se-
lect the best learning-based matcher X, user U iteratively
debugged X to improve its accuracy. Teams performed 1-5
debugging iterations, for an average of 3. They added and
deleted features, cleaned data based on the debugging result,
and tuned the parameters of the learning algorithm. These
actions helped improve accuracies from 56-100% to 73.3-
100% precision, and 37.5-100% to 61-100% recall. Adding
rules further improves accuracy: precision from 73.3-100%
to 91.3-100% and recall from 61-100% to 64.7-100%.

4.2 Domain Sciences and Companies
So far Magellan has been applied to five projects in three

domain sciences at UW-Madison. First, a team of applied
economists used Magellan to match two tables of 1,832 and
1,916 grant descriptions, respectively [32]. Magellan achieved
significantly better accuracy, improving recall by 23% while
achieving comparable precision, compared to a rule-based
EM solution deployed at [32]. The same team also used
Magellan to match two tables of 1,851 and 13.5M organiza-
tion descriptions, respectively.

A team in biomedicine used Magellan to match two tables
of 453K and 451K of drug descriptions, achieving 99.1% pre-
cision and 95.2% recall [33, 37]. Another team in biomedicine
used Magellan to match attribute names within a commu-
nity data repository [9]. Finally, a team in environmental
sciences also used Magellan to match attribute names within
a community data repository. These last two examples show
how Magellan can also be used to match schema elements,
not just data instances.

Magellan has also been used for EM at several companies,
including WalmartLabs, Johnson Control, Marshfield Clinic,
and Recruit Holdings. At WalmartLabs, Magellan was able
to help improve the recall of a deployed EM solution by 34%
while reducing precision slightly by 0.65%. Johnson Control
has used Magellan to match addresses (between tables of size
90K vs. 231K) and vendors (within a single table of size
50K). Marshfield Clinic was involved in the drug matching
project described earlier [33, 37]. Recruit Holdings used
Magellan to match stores, companies, and properties (e.g.,
de-duplicating 10K store names with 98.9% accuracy) [1].

4.3 Discussion
Our experience with Magellan suggest that users can suc-

cessfully follow the how-to guide to achieve high EM accu-
racy on diverse data sets. In fact, we consider the how-to
guide to be the single most important component of the
system. Without it, users are lost: they do not even know
where to start, when to use what tools, and how.

Our experience further suggests that the various tools de-

veloped for Magellan (e.g., debuggers) can be highly effective
in helping the users. It also clearly shows that practical EM
requires a wide range of capabilities, e.g., cleaning, extrac-
tion, visualization, underscoring the importance of placing
Magellan in an ecosystem that provides such capabilities.
(In fact, Magellan currently uses 11 packages in the Python
ecosystem to provide such capabilities.)

At the same time, our experience also raises many inter-
esting challenges. First, it turns out that at the start of
an EM project, users often do not know what it means to
match, i.e., there are often many alternative match defini-
tions, and users often are not even aware of these, let alone
selecting the right one [19, 32]. This can significantly com-
plicate the EM process. Thus, it is highly desirable to have
a step in the how-to guide (together with some tools) to
help users explore and finalize the match definition. Sec-
ond, some users want to play around with multiple match
definitions, just to see how sensitive to these definitions the
inferences based on the matches are. Third, a portion of the
data may turn out to be so dirty for EM that it should be
removed before continuing with the EM process, but how
can we detect such portions? Fourth, an EM team is of-
ten geographically distributed. How can they use Magellan
in such settings. Finally, Magellan is an “open-world sys-
tem”, in that it relies on many other packages in the Python
ecosystem in order to provide the fullest amount of support
to the user doing EM. It turns out that building open-world
systems raises non-trivial challenges, such as designing the
right data structures and managing metadata [30]. There
are many other challenges (e.g., how to debug and serve
learning models, how to visualize the matches, etc.). In re-
cent papers we have tried to summarize some of these case
studies, lessons learned, and challenges [32, 19, 29, 27, 35].
We have also started to address some of these challenges [34,
35, 36, 19]. But much more remains to be done.

5. RELATED WORK
Numerous EM algorithms have been proposed [13, 22].

But far fewer EM systems have been developed. We dis-
cussed these systems in Section 2 (see also [13]). For match-
ing using supervised learning (Section 3.3), some of these
systems provide only a set of matchers. None provides sup-
port for sampling, labeling, selecting and debugging blockers
and matchers, as Magellan does.

Some recent works have discussed desirable properties for
EM systems, e.g., being extensible and easy-to-deploy [15],
being flexible and open source [12], and the ability to con-
struct complex EM workflow consisting of distinct phases,
each requiring a specific technique depending on the given
application and data requirements [23]. The IBM Midas
project has also proposed a language for helping users tackle
the different stages of the EM pipeline [28, 38]. These works
however do not discuss covering the entire EM pipeline, how-
to guides, building on top of data analysis and Big Data
stacks, and open-world systems, as we do in this paper.

Several works have addressed scaling up blocking, learning
blockers, and using crowdsourcing for blocking (see [14] for
a survey). As far as we know, there has been no work on
debugging blocking, as we do in Magellan (see [34]).

On sampling and labeling, several works have studied ac-
tive sampling [39, 6, 8]. These methods however are not
directly applicable in our context, where we need a repre-
sentative sample in order to estimate the matching accuracy

SIGMOD Record, March 2018 (Vol. 47, No. 1) 39

(see Step 6 in Figure 3). For this purpose our work is closest
to [26], which uses crowdsourcing to sample and label.

Debugging learning models has received relatively little
attention, even though it is critical in practice, as this paper
has demonstrated. Prior works help users build, inspect and
visualize specific ML models (e.g., decision trees [5], Naive
Bayes [7], SVM [11], ensemble model [40]). But they do not
allow users to examine errors and inspect raw data. In this
aspect, the work closest to ours is [4], which addresses iter-
ative building and debugging of supervised learning models.
The system proposed in [4] can potentially be implemented
as a Magellan’s tool for debugging learning-based matchers.

Finally, the notion of “open world” has been discussed in
[24], but in the context of crowd workers’ manipulating data
inside an RDBMS. Here we discuss a related but different
notion of open-world systems that often interact with and
manipulate each other’s data. In this vein, the work [10] is
related in that it discusses the API design of the scikit-learn
package and its design choices to seamlessly tie in with other
packages in Python.

6. CONCLUSIONS & ONGOING WORK
We have argued that significantly more attention should

be paid to building EM systems. We described Magellan,
a new kind of EM systems, which is novel in several im-
portant aspects: how-to guides, tools to support the entire
EM pipeline, tight integration with the PyData ecosystem,
open world vs. closed world systems, and easy access to an
interactive script environment.

We are conducting more real-world evaluation of Mag-
ellan, further examining the research challenges raised in
this paper, and extending Magellan with more capabilities
(e.g., crowdsourcing). Building on Magellan, we have also
been working on two other projects. CloudMatcher is a
cloud/crowd EM service for lay users [27, 17, 26]. The how-
to guide of Magellan helps us determine which capabilities
to add to CloudMatcher, to make it useful in performing
EM end to end [27]. BigGorilla is a joint effort led by UW-
Madison and Recruit Institute of Technology to encourage a
community around an open-source ecosystem of data prepa-
ration and integration tools [41]. Currently, BigGorilla cu-
rates tools for schema matching, information extraction, and
entity matching (including Magellan), among others.

Acknowledgment: We thank the SIGMOD Record’s associate edi-

tors for shepherding this paper. This work is generously supported by

WalmartLabs, Google, Johnson Control, American Family Insurance,

UW-Madison UW2020 grant, NIH BD2K grant U54 AI117924, and

NSF Medium grant IIS-1564282.

7. REFERENCES
[1] BigGorilla: An Open-source Data Integration and Data

Preparation Ecosystem: https://recruit-holdings.com/news_
data/release/2017/0630_7890.html.

[2] CS 838: Data Science: Principles, Algorithms, and Applications
https://sites.google.com/site/anhaidgroup/courses/
cs-838-spring-2017/project-description/stage-3.

[3] Magellan home page
https://sites.google.com/site/anhaidgroup/projects/magellan.

[4] S. Amershi et al. Modeltracker: Redesigning performance
analysis tools for machine learning. CHI, 2015.

[5] M. Ankerst et al. Visual classification: An interactive approach
to decision tree construction. KDD, 1999.

[6] A. Arasu, M. Götz, and R. Kaushik. On active learning of
record matching packages. SIGMOD, 2010.

[7] B. Becker, R. Kohavi, and D. Sommerfield. Visualizing the
simple Bayesian classifier. In Information Visualization in

Data Mining and Knowledge Discovery, 2002.

[8] K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi.
Active sampling for entity matching. KDD, 2012.

[9] M. Bernstein et al. MetaSRA: normalized human
sample-specific metadata for the sequence read archive.
Bioinformatics, 33(18):2914–2923, 2017.

[10] L. Buitinck et al. API design for machine learning software:
experiences from the scikit-learn project. arXiv preprint
arXiv:1309.0238, 2013.

[11] D. Caragea, D. Cook, and V. Honavar. Gaining insights into
support vector machine pattern classifiers using
projection-based tour methods. KDD, 2001.

[12] P. Christen. Febrl: A freely available record linkage system
with a graphical user interface. HDKM, 2008.

[13] P. Christen. Data Matching. Springer, 2012.

[14] P. Christen. A survey of indexing techniques for scalable record
linkage and deduplication. TKDE, 24(9):1537–1555, 2012.

[15] M. Dallachiesa et al. Nadeef: A commodity data cleaning
system. SIGMOD, 2013.

[16] S. Das et al. The Magellan data repository.
https://sites.google.com/site/anhaidgroup/projects/data.

[17] S. Das et al. Falcon: Scaling up hands-off crowdsourced entity
matching to build cloud services. In SIGMOD, 2017.

[18] A. Doan. What is our agenda for data science? In CIDR, 2017.

[19] A. Doan et al. Human-in-the-loop challenges for entity
matching: A midterm report. In HILDA, 2017.

[20] A. Doan et al. Toward a system building agenda for data
integration and cleaning. In IEEE Data Engineering Bulletin,
Special Issue on Data Integration (to appear), 2018.

[21] M. Ebraheem et al. DeepER–deep entity resolution. arXiv
preprint arXiv:1710.00597, 2017.

[22] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE TKDE,
19(1):1–16, 2007.

[23] M. Fortini et al. Towards an open source toolkit for building
record linkage workflows. In In SIGMOD Workshop on
Information Quality in Information Systems, 2006.

[24] M. J. Franklin et al. CrowdDB: answering queries with
crowdsourcing. SIGMOD, 2011.

[25] C. Ge et al. Private exploration primitives for data cleaning.
arXiv preprint arXiv:1712.10266, 2017.

[26] C. Gokhale et al. Corleone: Hands-off crowdsourcing for entity
matching. SIGMOD, 2014.

[27] Y. Govind et al. Cloudmatcher: A cloud/crowd service for
entity matching. In BIGDAS, 2017.

[28] M. A. Hernández et al. HIL: a high-level scripting language for
entity integration. In EDBT, 2013.

[29] P. Konda et al. Magellan: Toward building entity matching
management systems. PVLDB, 9(12):1197–1208, 2016.

[30] P. Konda et al. Magellan: Toward building entity matching
management systems. 2016. Technical Report,
http://www.cs.wisc.edu/~anhai/papers/magellan-tr.pdf.

[31] P. Konda et al. Magellan: Toward building entity matching
management systems over data science stacks. PVLDB,
9(13):1581–1584, 2016.

[32] P. Konda et al. Performing entity matching end to end: A case
study. 2016. Technical Report,
http://www.cs.wisc.edu/~anhai/papers/umetrics-tr.pdf.

[33] E. LaRose et al. Entity matching using Magellan: Mapping
drug reference tables. In AIMA Joint Summit, 2017.

[34] H. Li et al. Matchcatcher: A debugger for blocking in entity
matching. In EDBT, 2018.

[35] S. Mudgal et al. Deep learning for entity matching: A design
space exploration. In SIGMOD, 2018.

[36] F. Panahi et al. Towards interactive debugging of rule-based
entity matching. In EDBT, 2017.

[37] P. Pessig. Entity matching using Magellan - Matching drug
reference tables. In CPCP Retreat 2017. http://cpcp.wisc.edu/
resources/cpcp-2017-retreat-entity-matching.

[38] K. Qian et al. Active learning for large-scale entity resolution.
In CIKM, 2017.

[39] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. KDD, 2002.

[40] J. Talbot et al. Ensemblematrix: Interactive visualization to
support machine learning with multiple classifiers. CHI, 2009.

[41] W.-C. Tan et al. Big gorilla: an open-source ecosystem for data
preparation and integration. In IEEE Data Engineering
Bulletin, Special Issue on Data Integration (to appear), 2018.

40 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Technical Perspective: Natural Language
Explanations for Query Results

Zachary G. Ives
University of Pennsylvania

zives@cis.upenn.edu

Motivated by conversational agents such as Siri,
Cortana, the Google Assistant, and Alexa — there
has been a surge of interest in spoken as well as tex-
tual natural language interfaces. To this point, such
systems have relied on innovations in speech recog-
nition (such as recurrent neural networks, LSTMs,
and so on) and in specially encoding specific question-
answering strategies via “skills.” A “natural” ques-
tion for the SIGMOD community is how to best con-
nect natural language interfaces systems to DBMSs,
ideally in a way that generalizes to any database
schema or instance.

In fact, the problem of providing a natural lan-
guage interface to a database system (i.e., mapping
from a spoken or textual question to a structured
query) dates back at least to the 1980s [4]. Such ef-
forts had middling success due to issues of accuracy,
so the problems were later revisited in the 2000’s
with an eye towards restricting the space of op-
tions in order to improve precision [6]. Nonetheless,
such systems did not gain much traction, again due
to the challenges of ensuring accuracy for a given
database when the user might ask an ambiguous
question.

Recent work by Li and Jagadish [5], called NaLIR,
proposed an interactive communicator within the
query system, which presents to the user a query
tree explaining what the system was going to do —
such that the user could correct any mistakes. This
was helpful in improving reliability, but it required
that the user understand tree structured represen-
tations of queries.

In “Natural Language Explanations for Query
Results,” Deutch and his co-authors suggest that
a more effective means of helping the user under-
stand and correct results might be through prove-
nance information — i.e., giving an explanation for
each answer of how and why it exists. Their ap-
proach adapts the NaLIR system and nicely lever-
ages the recent body of work on provenance semir-
ings [3, 2, 1]. The provenance semiring model has
an important property that equivalent query plans

(as produced by a query optimizer) will have equiv-
alent provenance expressions.

The innovations in this paper are in three ar-
eas. First, the authors use the structure of the
natural language query itself (and the mappings to
structured queries, and then later, from queries to
provenance) to present the provenance in a form
that matches the natural language query — and
thus the user’s expectations. Second, they reduce
the size (and repetition) of the provenance via fac-
toring. Finally, they incorporate aggregate results
(e.g., counts) in place of certain details.

The paper does a great job of clearly identifying
and articulating what makes the provenance prob-
lem different for natural language query systems,
and presenting elegant technical solutions to these
new challenges.

1. REFERENCES
[1] Yael Amsterdamer, Daniel Deutch, and Val

Tannen. Provenance for aggregate queries. In
PODS, pages 153–164, 2011.

[2] Todd J. Green, Grigoris Karvounarakis,
Zachary G. Ives, and Val Tannen. Update
exchange with mappings and provenance. In
VLDB, 2007. Amended version available as
Univ. of Pennsylvania report MS-CIS-07-26.

[3] Todd J. Green, Grigoris Karvounarakis, and
Val Tannen. Provenance semirings. In PODS,
2007.

[4] S. Jerrold Kaplan. Designing a portable natural
language database query system. ACM Trans.
Database Syst., 9:1–19, March 1984. Available
from http://doi.acm.org/10.1145/348.318584.

[5] Fei Li and HV Jagadish. Constructing an
interactive natural language interface for
relational databases. Proceedings of the VLDB
Endowment, 8(1):73–84, 2014.

[6] Ana-Maria Popescu, Oren Etzioni, and Henry
Kautz. Towards a theory of natural language
interfaces to databases. In IUI, pages 327–327,
2003.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 41

Natural Language Explanations for Query Results

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Nave Frost
Tel Aviv University

navefrost@mail.tau.ac.il

Amir Gilad
Tel Aviv University

amirgilad@mail.tau.ac.il

ABSTRACT
Multiple lines of research have developed Natural Language
(NL) interfaces for formulating database queries. We build
upon this work, but focus on presenting a highly detailed
form of the answers in NL. The answers that we present
are importantly based on the provenance of tuples in the
query result, detailing not only the results but also their
explanations. We develop a novel method for transforming
provenance information to NL, by leveraging the original NL
query structure. Furthermore, since provenance information
is typically large and complex, we present two solutions for
its effective presentation as NL text: one that is based on
provenance factorization, with novel desiderata relevant to
the NL case, and one that is based on summarization.

1. INTRODUCTION
Developing Natural Language (NL) interfaces to database

systems has been the focus of multiple lines of research (see
e.g. [17, 2, 21]). In this work we complement these ef-
forts by providing NL explanations to query answers. The
explanations that we provide elaborate upon answers with
additional important information, and are helpful for under-
standing why does each answer qualify to the query criteria.

As an example, consider the Microsoft Academic Search
database (http://academic.research.microsoft.com) and
consider the NL query in Figure 1a. A state-of-the-art NL
query engine, NaLIR [17], is able to transform this NL query
into the SQL query also shown (as a Conjunctive Query,
which is the fragment that we focus on in this paper) in Fig-
ure 1b. When evaluated using a standard database engine,
the query returns the expected list of organizations. How-
ever, the answers (organizations) in the query result lack
justification, which in this case would include the authors
affiliated with each organization and details of the papers
they have published (their titles, their publication venues
and publication years). Such additional information, corre-
sponding to the notion of provenance (e.g. [12, 14, 6]) can
lead to a richer answer than simply providing the names of
organizations: it allows users to also see relevant details of
the qualifying organizations. Provenance information is also
valuable for validation of answers: a user who sees an orga-
nization name as an answer is likely to have a harder time

c© VLDB Endowment 2017. This is a minor revision
of the paper entitled “Provenance for Natural Language
Queries”, published in the Proceedings of the VLDB En-
dowment, Vol. 10, No. 5, 2150-8097/17/01. DOI:
https://doi.org/10.14778/3055540.3055550

return the organization of authors who published papers
in database conferences after 2005

(a) NL Query

query(oname) :- org(oid, oname), conf(cid, cname),
pub(wid, cid, ptitle, pyear), author(aid, aname, oid),
domainConf(cid, did), domain(did, dname),
writes(aid, wid), dname = ’Databases’, pyear > 2005

(b) CQ Q

Figure 1: NL Query and CQ Q

TAU is the organization of Tova M. who published
’OASSIS...’ in SIGMOD in 2014

Figure 2: Answer For a Single Assignment

validating that this organization qualifies as an answer, than
if she was presented with the full details of publications.

We propose a novel approach of presenting provenance in-
formation for answers of NL queries, again as sentences in
Natural Language. Continuing our running example, Fig-
ure 2 shows one of the answers outputted by our system in
response to the NL query in Figure 1a.

Our solution consists of the following key contributions.

Provenance Tracking Based on the NL Query Structure.
A first key idea in our solution is to leverage the NL query
structure in constructing NL provenance. In particular, we
modify NaLIR so that we store exactly which parts of the NL
query translate to which parts of the formal query. Then,
we evaluate the formal query using a provenance-aware en-
gine (we use SelP [7]), further modified so that it stores
which parts of the query “contribute” to which parts of the
provenance. By composing these two “mappings” (text-to-
query-parts and query-parts-to-provenance) we infer which
parts of the NL query text are related to which provenance
parts. Finally, we use the latter information in an “inverse”
manner, to translate the provenance to NL text.

Factorization. A second key idea is related to the prove-
nance size. In typical scenarios, a single answer may have
multiple explanations (multiple authors, papers, venues and
years in our example). A näıve solution is to formulate and
present a separate sentence corresponding to each explana-

We are extremely grateful to Fei Li and H.V. Jagadish for
generously sharing with us the source code of NaLIR, and
providing invaluable support.

42 SIGMOD Record, March 2018 (Vol. 47, No. 1)

tion. The result will however be, in many cases, very long
and repetitive. As observed already in previous work [4,
18], different assignments (explanations) may have signifi-
cant parts in common, and this can be leveraged in a fac-
torization that groups together multiple occurrences. In our
example, we can e.g. factorize explanations based on author,
paper name, conference name or year. Importantly, we im-
pose a novel constraint on the factorizations that we look
for (which we call compatibility), intuitively capturing that
their structure is consistent with a partial order defined by
the parse tree of the question. This constraint is needed so
that we can translate the factorization back to an NL an-
swer whose structure is similar to that of the question. Even
with this constraint, there may still be exponentially many
(in the size of the provenance expression) compatible fac-
torizations, and we look for the factorization with minimal
size out of the compatible ones; for comparison, previous
work looks for the minimal factorization with no such “com-
patibility constraint”. The corresponding decision problem
remains coNP-hard (again in the provenance size), but we
devise an effective and simple greedy solution. We further
translate factorized representations to concise NL sentences,
again leveraging the structure of the NL query.

Summarization. We propose summarized explanations by
replacing details of different parts of the explanation by their
synopsis, e.g. presenting only the number of papers pub-
lished by each author, the number of authors, or the overall
number of papers published by authors of each organization.
Such summarizations incur by nature a loss of information
but are typically much more concise and easier for users
to follow. Here again, while provenance summarization has
been studied before (e.g. [1, 18]), the desiderata of a sum-
marization needed for NL sentence generation are different,
rendering previous solutions inapplicable here. We observe
a tight correspondence between factorization and summa-
rization: every factorization gives rise to multiple possible
summarizations, each obtained by counting the number of
sub-explanations that are “factorized together”. We provide
a robust solution, allowing to compute NL summarizations
of the provenance, of varying levels of granularity.

2. PRELIMINARIES
We provide here the necessary preliminaries on Natural

Language Processing, conjunctive queries and provenance.

2.1 From NL to Formal Queries
We start by recalling some basic notions from NLP, as they

pertain to the translation process of NL queries to a formal
query language. A key notion that we will use is that of the
syntactic dependency tree of NL queries. This is essentially a
node-labeled tree where labels consist of two components, as
follows: (1) Part of Speech (POS): the syntactic role of the
word; (2) Relationship (REL): the grammatical relationship
between the word and its parent in the dependency tree.

We focus on a sub-class of queries handled by NaLIR, namely
that of Conjunctive Queries, possibly with comparison oper-
ators (=, >,<) (NaLIR further supports nested queries and
aggregation). The corresponding NL queries in NaLIR fol-
low one of the two (very general) abstract forms described
in Figure 3: an object (noun) is sought for, that satisfies
some properties, possibly described through a complex sub-

return

object

verb mod

properties

nsubj

others

(a) Verb Mod.

return

object

non-verb mod

propertiesothers

(b) Non-Verb Mod.

Figure 3: Abstract Dependency Trees

sentence rooted by a modifier (which may or may not be
a verb, a distinction whose importance will be made clear
later).

(oname, TAU)

(aname, Tova M.)

(ptitle, OASSIS...)

(cname, SIGMOD)

(pyear, 2014)

return

organization
POS=NN, REL=dobj

of
POS=IN, REL=prep

authors
POS=NNS, REL=pobj

published
POS=VBD, REL=rcmod

in

conferences
POS=NNS, REL=pobj

database
POS=NN, REL=nn

after
POS=IN, REL=prep

2005
POS=CD, REL=pobj

paperswho

the

(a) Query Tree

organization

of

Tova M.

published

in

SIGMOD

in

2014

’OASSIS...’who

TAU (is the)

(b) Answer Tree

Figure 4: Question and Answer Trees

Example 2.1. Reconsider the NL query in Figure 1a; its
dependency tree is depicted in Figure 4a (ignore for now the
arrows). The part-of-speech (POS) tag of each node reflects
its syntactic role in the sentence – for instance, “organiza-
tion” is a noun (denoted “NN”), and “published” is a verb
in past tense (denoted “VBD”). The relation (REL) tag of
each node reflects the semantic relation of its sub-tree with
its parent. For instance, the REL of “of” is prep (“prepo-
sitional modifier”) meaning that the sub-tree rooted at “of”
describes a property of “organization” while forming a com-
plex sub-sentence. The tree in Figure 4a matches the abstract
tree in Figure 3b since “organization” is the object and “of”
is a non-verb modifier (its POS tag is IN, meaning “prepo-
sition or subordinating conjunction”) rooting a sub-sentence
describing “organization”.

The dependency tree is transformed by NaLIR, based also
on schema knowledge, to SQL. We focus in this work on NL
queries that are compiled into Conjunctive Queries (CQs).

Example 2.2. Reconsider our running example NL query
in Figure 1a; a counterpart Conjunctive Query is shown in
Figure 1b. Some words of the NL query have been mapped
by NaLIR to variables in the query, e.g., the word “orga-
nization” corresponds to the head variable (oname). Ad-
ditionally, some parts of the sentence have been complied

SIGMOD Record, March 2018 (Vol. 47, No. 1) 43

(oname,TAU)·(aname,Tova M.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,Querying...)·
(cname,VLDB)·(pyear,06’)+
(oname,TAU)·(aname,Tova M.)· (ptitle,Monitoring..)·
(cname,VLDB)·(pyear,07’)+
(oname,TAU)·(aname,Slava N.)·(ptitle,OASSIS...)·
(cname, SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,A sample...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,UPENN)·(aname,Susan D.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)

Figure 5: Value-level Provenance

to boolean conditions based on the MAS schema, e.g., the
part “in database conferences” was translated to dname =′

Databases′ in the CQ depicted in Figure 1b. Figure 4a shows
the mapping of some of the nodes in the NL query depen-
dency tree to variables of Q (ignore for now the values next
to these variables).

The translation performed by NaLIR from an NL query
to a formal one can be captured by a mapping from (some)
parts of the sentence to parts of the formal query. It can
also be defined as a partial function from the nodes of the
dependency tree to the variables of the query. We denote it
by dependency-to-query-mapping.

2.2 Provenance
After compiling a formal query corresponding to the user’s

NL query, we evaluate it and keep track of provenance, to
be used in explanations. To define provenance, we first ex-
emplify the standard notion of assignments for CQs.

Assignments allow for defining the semantics of CQs: a
tuple t is said to appear in the query output if there exists
an assignment α s.t. t = α(head(Q)). They will also be
useful in defining provenance below.

Example 2.3. Consider again the query Q in Figure 1b
and the database in Figure 6. The tuple (TAU) is an output
of Q when assigning the highlighted tuples to the atoms of Q.
As part of this assignment, the tuple (2, TAU) (the second
tuple in the org table) and (4, Tova M., 2) (the second tuple
of the author table) are assigned to the first and second atom
of Q, respectively. In addition to this assignment, there are
4 more assignments that produce the tuple (TAU) and one
assignment that produces the tuple (UPENN).

We next leverage assignments in defining provenance, in-
troducing a simple value-level model. The idea is that as-
signments capture the reasons for a tuple to appear in the
query result, with each assignment serving as an alternative
such reason (indeed, the existence of a single assignment
yielding the tuple suffices, according to the semantics, for its
inclusion in the query result). Within each assignment, we
keep record of the value assigned to each variable, and note
that the conjunction of these value assignments is required
for the assignment to hold. Capturing alternatives through
the symbolic “ + ” and conjunction through the symbolic
“ · ”, we arrive at the following definition of provenance as
sum of products.

Definition 2.4. Let A(Q,D) be the set of assignments
for a CQ Q and a database instance D. We define the value-

level provenance of Q w.r.t. D as
∑

α∈A(Q,D)

Π{xi,ai|α(xi)=ai}(xi, ai)

.

Rel. org
oid oname
1 UPENN
2 TAU

Rel. author
aid aname oid
3 Susan D. 1
4 Tova M. 2
5 Slava N. 2

Rel. pub
wid cid ptitle pyear
6 10 “OASSIS...” 2014
7 10 “A sample...” 2014
8 11 “Monitoring...” 2007
9 11 “Querying...” 2006

Rel. writes
aid wid
4 6
3 6
5 6
4 7
4 8
4 9

Rel. conf
cid cname
10 SIGMOD
11 VLDB

Rel. domainConf
cid did
10 18
11 18

Rel. domain
did name
18 Databases

Figure 6: DB Instance

Example 2.5. Re-consider our running example query and
consider the database in Figure 6. The value-level prove-
nance is shown in Figure 5. Each of the 6 summands stands
for a different assignment (i.e. an alternative reason for the
tuple to appear in the result). Assignments are represented
as multiplication of pairs of the form (var, val) so that var
is assigned val in the particular assignment. We only show
here variables to which a query word was mapped; these will
be the relevant variables for formulating the answer.

By composing the dependency-to-query-mapping from the
NL query’s dependency tree to query variables, and the as-
signments of query variables to values from the database,
we associate different parts of the NL query with values. We
will use this composition of mappings throughout the paper
as a means of assembling the NL answer to the NL query.

Example 2.6. Continuing our running example, consider
the assignment represented by the first monomial of Figure
5. Further reconsider Figure 4a, and now note that each
node is associated with a pair (var, val) of the variable to
which the node was mapped, and the value that this variable
was assigned in this particular assignment. For instance, the
node “organization” was mapped to the variable oname which
was assigned the value “TAU”.

3. FIRST STEP: A SINGLE ASSIGNMENT
We start describing our transformation of provenance to

NL for a single assignment. The solution will serve as the
basis for the general case of multiple assignments.

3.1 Basic Solution
We follow the structure of the NL query dependency tree

and generate an answer tree with the same structure by re-
placing/modifying the words in the question with the val-
ues from the result and provenance that were mapped using
the dependency-to-query-mapping and the assignment. Yet,
note that simply replacing the values does not always result
in a coherent sentence, as shown in the following example.

44 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Example 3.1. Re-consider the dependency tree depicted
in Figure 4a. If we were to replace the value in the organiza-
tion node to the value “TAU” mapped to it, the word “organi-
zation” will not appear in the answer although it is needed to
produce the coherent answer depicted in Figure 2. Without
this word, it is unclear how to deduce the information about
the connection between “Tova M.” and “TAU”.

We next account for these difficulties and exemplify our
approach that outputs the dependency tree of a detailed an-
swer; We do so by augmenting the query dependency tree
into an answer tree. we will further translate this tree to an
NL sentence.

Recall that the dependency tree of the NL query follows
one of the abstract forms in Figure 3. We distinguish be-
tween two cases based on nodes whose REL (relationship
with parent node) is modifier; in the first case, the clause
begins with a verb modifier (e.g., the node “published” in
Fig. 4a is a verb modifier) and in the second, the clause
begins with a non-verb modifier (e.g., the node “of” in Fig.
4a is a non-verb modifier). In short, the children of verb
modifier nodes are replaced with the value mapped to them
while the children of non-verb modifier nodes stay as part of
the tree and the value mapped to them is added to the tree.

Example 3.2. Re-consider Figure 4a, and note the map-
pings from the nodes to the variables and values as reflected
in the boxes next to the nodes. To generate an answer, we
follow the NL query structure, “plugging-in” mapped database
values. We start with “organization”, which is the first node
to be considered. Observe that “organization” has the child
“of” which is a non-verb modifier, so we add “TAU” as its
child. On the other hand, the node “authors” has the child
“published” which is a verb modifier, so we replace “authors”
with the value “Tova M.”, mapped to it. Another case is the
handling of the nodes “after” and “in” which are modifiers as
well. These nodes refer to times and locations, hence we re-
place the subtree rooted at these nodes with the node mapped
to their child (in the case of “after” it is “2014” and in the
case of “in” it is “SIGMOD”) and attach the node “in” as the
parent of the node, in both cases as it is the suitable word for
equality for years and locations.

So far we have augmented the NL query dependency tree
to obtain the dependency tree of the answer. The last step
is to translate this tree to a sentence. To this end, we re-
call that the original query, in the form of a sentence, was
translated by NaLIR to the NL query dependency tree. To
translate the dependency tree to a sentence, we essentially
“revert” this process, further using the mapping of NL query
dependency tree nodes to (sets of) nodes of the answer.

4. THE GENERAL CASE
In general, as illustrated in Section 2, the provenance may

include multiple assignments. We next generalize the con-
struction to account for this. Note that a näıve solution
in this respect is to generate a sentence for each individual
assignment and concatenate the resulting sentences. How-
ever, already for the small-scale example presented here, this
would result in a long and unreadable answer (recall Figure 5
consisting of six assignments). Instead, we propose two solu-
tions: the first based on the idea of provenance factorization
[18, 4], and the second leveraging factorization to provide a
summarized form.

[TAU] ·

A





([Tova M.] ·

B





([VLDB] ·
([2006] · [Querying...]

+ [2007] · [Monitoring...]))
+ [SIGMOD] · [2014] ·

([OASSIS...] + [A Sample...]))





B

+ [Slava N.] · [OASSIS...] · [SIGMOD] · [2014])





A

+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(a) f1
[TAU] ·

([SIGMOD] · [2014] ·
([OASSIS...] ·

([Tova M.] + [Slava N.]))
+ [Tova M.] · [A Sample...])

+ [VLDB] · [Tova M.] ·
([2006] · [Querying...]

+ [2007] · [Monitoring...])
+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(b) f2
Figure 7: Provenance Factorizations

4.1 NL-Oriented Factorization
We start by defining the notion of factorization in a stan-

dard way (see e.g. [18, 8]).

Definition 4.1. Let P be a provenance expression. We
say that an expression f is a factorization of P if f may
be obtained from P through (repeated) use of some of the
following axioms: distributivity of summation over multipli-
cation, associativity and commutativity of both summation
and multiplication.

Example 4.2. Re-consider the provenance expression in
Figure 5. Two possible factorizations are shown in Figure 7,
keeping only the values and omitting the variable names for
brevity (ignore the A,B brackets for now). In both cases, the
idea is to avoid repetitions in the provenance expression, by
taking out a common factor that appears in multiple sum-
mands. Different choices of which common factor to take
out lead to different factorizations.

How do we measure whether a possible factorization is
suitable/preferable to others? Standard desiderata [18, 8]
are that it should be short or that the maximal number of
appearances of an atom is minimal. On the other hand, we
factorize here as a step towards generating an NL answer;
to this end, it will be highly useful if the (partial) order of
nesting of value annotations in the factorization is consistent
the (partial) order of corresponding words in the NL query.
We will next formalize this intuition as a constraint over
factorizations. We start by defining a partial order on nodes
in a dependency tree:

Definition 4.3. Given an dependency tree T , we define
≤T as the descendant partial order of nodes in T : for each
two nodes, x, y ∈ V (T), we say that x ≤T y if x is a descen-
dant of y in T .

Example 4.4. In our running example (Figure 4a) it holds
in particular that authors ≤ organization, 2005 ≤ authors,
conferences ≤ authors and papers ≤ authors, but papers,
2005 and conferences are incomparable.

Next we define a partial order over elements of a factoriza-
tion, intuitively based on their nesting depth. To this end,
we first consider the circuit form [3] of a given factorization:

SIGMOD Record, March 2018 (Vol. 47, No. 1) 45

Example 4.5. Consider the partial circuit of f1 in Figure
8. The root, ·, has two children; the left child is the leaf
“TAU” and the right is a + child whose subtree includes the
part that is “deeper” than “TAU”.

Given a factorization f and an element n in it, we denote
by levelf (n) the distance of the node n from the root of
the circuit induced by f multiplied by (−1). Intuitively,
levelf (n) is bigger for a node n closer to the circuit root.

·
+

·

sub-circuit

Tova M.

·
SIGMOD2014OASSISSlava N.

TAU

Figure 8: Sub-Circuit of f1

Our goal here is to define the correspondence between the
level of each node in the circuit and the level of its “source”
node in the NL query’s dependency tree (note that each
node in the query corresponds to possibly many nodes in
the circuit: all values assigned to the variable in the differ-
ent assignments). In the following definition we will omit the
database instance for brevity and denote the provenance ob-
tained for a query with dependency tree T by provT . Recall
that dependency-to-query-mapping maps the nodes of the
dependency tree to the query variables and the assignment
maps these variables to values from the database.

Definition 4.6. Let T be a query dependency tree, let
provT be a provenance expression, let f be a factorization
of provT , let τ be a dependency-to-query-mapping and let
{α1, ...αn} be the set of assignments to the query. For each
two nodes x, y in T we say that x ≤f y if
∀i ∈ [n] : levelf (αi(τ(x))) ≤ levelf (αi(τ(y))).

We say that f is T -compatible if each pair of nodes x 6=
y ∈ V (T) that satisfy x ≤T y also satisfy that x ≤f y.

Essentially, T -compatibility means that the partial order
of nesting between values, for each individual assignment,
must be consistent the partial order defined by the structure
of the question. Note that the compatibility requirement
imposes constraints on the factorization, but it is in general
far from dictating the factorization, since the order x ≤T y
is only partial – and there is no constraint on the order of
each two provenance nodes whose “origins” in the query are
unordered. Among the T -compatible factorizations, we will
prefer shorter ones.

Definition 4.7. Let T be an NL query dependency tree
and let provT be a provenance expression for the answer.
We say that a factorization f of provT is optimal if f is
T -compatible and there is no T -compatible factorization f ′

of provT such that | f ′ |<| f | (| f | is the length of f).

The following example shows that the T -compatibility con-
straint still allows much freedom in constructing the factor-
ization. In particular, different choices can (and sometimes
should, to achieve minimal size) be made for different sub-
expressions, including ones leading to different answers and
ones leading to the same answer through different assign-
ments.

Example 4.8. Recall the partial order ≤T imposed by our
running example query, shown in part in Example 4.4. It im-
plies that in every compatible factorization, the organization
name must reside at the highest level, and indeed TAU was
“pulled out” first in Figure 8; similarly the author name must
be pulled out next. In contrast, since the query nodes corre-
sponding to title, year and conference name are unordered,
we may, within a single factorization, factor out e.g. the year
in one part of the factorization and the conference name in
another one. As an example, Tova M. has two papers pub-
lished in VLDB (“Querying...” and “Monitoring”) so factor-
izing based on VLDB would be the best choice for that part.
On the other hand, suppose that Slava N. had two paper pub-
lished in 2014; then we could factorize them based on 2014.
The factorization could, in that case, look like the following
(where the parts taken out for Tova and Slava are shown in
bold):

[TAU] ·
([Tova M.] ·
([VLDB] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

+ ([Slava N.] ·
([2014] ·
([SIGMOD] · [OASSIS...]

+ [VLDB] · [Ontology...])))

The following example shows that in some cases, requiring
compatibility can come at the cost of compactness.

Example 4.9. Consider the query tree T depicted in Fig-
ure 4a and the factorizations provT (the identity factoriza-
tion) depicted in Figure 5, f1, f2 presented in Figure 7.
provT is of length 30 and is 5-readable, i.e., the maximal
number of appearances of a single variable is 5 (see [8]). f1
is of length 20, while the length of f2 is only 19. In addi-
tion, both f1 and f2 are 3-readable. Based on those mea-
surements f2 seems to be the best factorization, yet f1 is
T -compatible with the question and f2 is not. For exam-
ple, conferences ≤T authors but “SIGMOD” appears higher
than “Tova M.” in f2. Choosing a T -compatible factorization
in f1 will lead (as shown below) to an answer whose struc-
ture resembles that of the question, and thus translates to a
more coherent and fitting NL answer.

Note that the identity factorization is always T -compatible,
so we are guaranteed at least one optimal factorization (but
it is not necessarily unique). We next study the problem of
computing such a factorization.

4.2 Computing Factorizations
Recall that our notion of compatibility restricts the factor-

izations so that their structure resembles that of the ques-
tion. Without this constraint, finding shortest factorizations
is coNP-hard in the size of the provenance (i.e. a boolean
expression) [13]. The compatibility constraint does not re-
duce the complexity since it only restricts choices relevant
to part of the expression, while allowing freedom for arbi-
trarily many other elements of the provenance. Also recall
(Example 4.8) that the choice of which element to “pull-out”
needs in general to be done separately for each part of the
provenance so as to optimize its size (which is the reason for
the hardness in [13] as well). In general:

46 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Proposition 4.10. Given a dependency tree T , a prove-
nance expression provT and an integer k, deciding whether
there exists a T -compatible factorization of provT of size ≤ k
is coNP-hard.

Greedy Algorithm. Despite the above result, the con-
straint of compatibility does help in practice, in that we can
avoid examining choices that violate it. For other choices, we
devise a simple algorithm that chooses greedily among them.
More concretely, the input to Algorithm 1 is the query tree
TQ (with its partial order ≤TQ), and the provenance provTQ .
The algorithm output is a TQ-compatible factorization f .
Starting from prov, the progress of the algorithm is made in
steps, where at each step, the algorithm traverses the circuit
induced by prov in a BFS manner from top to bottom and
takes out a variable that would lead to a minimal expression
out of the valid options that keep the current factorization
T -compatible. Naturally, the algorithm does not guarantee
an optimal factorization (in terms of length), but performs
well in practice.

In more detail, we start by choosing the largest nodes ac-
cording to ≤TQ which have not been processed yet (Line 2).
Afterwards, we sort the corresponding variables in a greedy
manner based on the number of appearances of each variable
in the expression using the procedure sortByFrequentV ars
(Line 3). In Lines 4–5, we iterate over the sorted variables
and extract them from their sub-expressions. This is done
while preserving the ≤TQ order with the larger nodes, thus
ensuring that the factorization will remain TQ-compatible.
We then add all the newly processed nodes to the set
Processed which contains all nodes that have already been
processed (Line 6). Lastly, we check whether there are no
more nodes to be processed, i.e., if the set Processed in-
cludes all the nodes of TQ (denoted V (TQ), see the condition
in Line 7). If the answer is “yes”, we return the factorization.
Otherwise, we make a recursive call. In each such call, the
set Processed becomes larger until the condition in Line 7
holds.

Algorithm 1: GreedyFactorization

input : TQ - the query tree, ≤TQ
- the query partial

order, prov - the provenance, τ, α -
dependency-to-query-mapping and assignment
from nodes in TQ to provenance variables,
Processed - subset of nodes from V (TQ) which
were already processed (initially, ∅)

output: f - TQ-compatible factorization of provTQ

1 f ← prov;
2 Frontier ← {x ∈ V (TQ)|∀(y ∈
V (TQ) \ Processed) s.t. x 6≤TQ

y};
3 vars← sortByFrequentV ars({α(τ(x))|x ∈
Frontier}, f);

4 foreach var ∈ vars do
5 Take out var from sub-expressions in f not including

variables from {x|∃y ∈ Processed : x = α(τ(y))};
6 Processed← Processed ∪ Frontier;
7 if |Processed| = |V (TQ)| then
8 return f ;

9 else
10 return GreedyFactorization(TQ, f, τ, α, Processed);

Example 4.11. Consider the query tree TQ depicted in
Figure 4a, and provenance prov in Figure 5. As explained

above, the largest node according to ≤TQ is organization,
hence “TAU” will be taken out from the brackets multiply-
ing all summands that contain it. Afterwards, the next node
according to the order relation will be author, therefore we
group by author, taking out “Tova M.”, “Slava N.” etc. The
following choice (between conference, year and paper name)
is then done greedily for each author, based on its num-
ber of occurrences. For instance, V LDB appears twice for
Tova.M. whereas each paper title and year appears only once;
so it will be pulled out. The polynomial [SlavaN.]·[OASSIS...]·
[SIGMOD]·[2014] will remain unfactorized as all values ap-
pear once. Eventually, the algorithm will return the factor-
ization f1 depicted in Figure 7, which is TQ-compatible and
much shorter than the initial provenance expression.

Proposition 4.12. Let f be the output of Algorithm 1 for
the input dependency tree TQ, then f is TQ-compatible.

Complexity. Denote the provenance size by n. The algo-
rithm complexity is O(n2 · logn): at each recursive call, we
sort all nodes in O(n · logn) (Line 3) and the we handle (in
Frontier) at least one node (in the case of a chain graph)
or more. Hence, in the worst case we would have n recursive
calls, each one costing O(n · logn).

4.3 Factorization to Answer Tree
The final step is to turn the obtained factorization into

an NL answer. Similarly to the case of a single assignment
(Section 3), we leverage the mappings and assignments to
convert the query dependency tree into an answer tree that
reflects the factorization. Intuitively, we follow the struc-
ture of a single answer, replacing each node there by either
a single node, standing for a single word of the factorized
expression, or by subtree, standing for some brackets (sub-
circuit) in the factorized expression.

Example 4.13. Consider the factorization f1 depicted in
Figure 7, and the structure of single assignment answer de-
picted in Figure 4b which was built based on an answer tree
for a single assignment. Given this input, we will generate
an answer tree corresponding to the following sentence:

TAU is the organization of
Tova M. who published

in VLDB
’Querying...’ in 2006 and
’Monitoring...’ in 2007

and in SIGMOD in 2014
’OASSIS...’ and ’A sample...’

and Slava N. who published
’OASSIS...’ in SIGMOD in 2014.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014.

Note that the query has two results: “TAU” and “UPENN”.
“UPENN” was produced with a single assignment, but there
are five different assignments producing “TAU”. Focusing
on the factorization part of the result “TAU”, notice that the
authors were pulled out first, then the conferences, and then
the years and papers, so this will be reflected in the factor-
ized answer tree. For example, we replace the node authors
with the values from the factorization that correspond to this
word, i.e., Tova M. and Slava N. The answer tree can also
be changed based on the hierarchy of the factorization. For
instance, although the node paper is closer to the root of
the tree then the nodes year and conference in the origi-
nal answer tree, the order of these nodes in the new answer

SIGMOD Record, March 2018 (Vol. 47, No. 1) 47

tree will be reversed since f1 extracted the values “VLDB”,
“SIGMOD” and “2014”.

Why require compatibility? We conclude this part
of the paper by revisiting our decision to require compati-
ble factorizations, highlighting difficulties in generating NL
answers using non-compatible factorizations.

Example 4.14. Consider factorization f2 from Figure 7.
“TAU” should be at the beginning of the sentence and followed
by the conference names “SIGMOD” and “VLDB”. The sec-
ond and third layers of f2 are composed of author names
(“Tova M.”, “Slava N.”), paper titles (“OASSIS”, “A sam-
ple...”, “Monitoring...”) and publication years (2007, 2014).
Changing the original order of the words such that the con-
ference name “SIGMOD” and the publication year “2014”
will appear before “Tova M.” breaks the sentence structure in
a sense. It is unclear how to algorithmically translate this
factorization into an NL answer, since we need to patch the
broken structure by adding connecting phrases. One hypo-
thetical option of patching f2 and transforming it into an
NL answer is depicted below. The bold parts of the sentence
are not part of the factorization and it is not clear how to
generate and incorporate them into the sentence algorithmi-
cally. Even if we could do so, it appears that the resulting
sentence would be quite convoluted:

TAU is the organization of authors who published in
SIGMOD 2014

’OASSIS...’ which was published by
Tova M. and Slava N.

and Tova M. published ’A sample...’
and Tova M. published in VLDB

’Querying...’ in 2014
and ’Monitoring...’ in 2007.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014

Observe that the resulting sentence is much less clear than
the one obtained through our approach, even though it was
obtained from a shorter factorization f2; the intuitive rea-
son is that since f2 is not T -compatible, it does not admit
a structure that is similar to that of the question, thus is
not guaranteed to admit a structure that is coherent in Nat-
ural Language. Interestingly, the sentence we would obtain
in such a way also has an edit distance from the question [9]
that is shorter than that of our answer, demonstrating that
edit distance is not an adequate measure here.

4.4 From Factorizations to Summarizations
When there are many assignments and/or the assignments

involve multiple distinct values, even an optimal factorized
representation may be too long and convoluted for users to
follow.

Example 4.15. Reconsider Example 4.13; if there are
many authors from TAU then even the compact representa-
tion of the result could be very long. In such cases we need
to summarize the provenance in some way that will preserve
the “essence” of all assignments without actually specifying
them, for instance by providing only the number of authors/-
papers for each institution.

To this end, we employ summarization, as follows. First,
we note that a key to summarization is understanding which
parts of the provenance may be grouped together. For that,
we use again the mapping from nodes to query variables:

(A) [TAU] · Size([Tova M.],[Slava N.]) · Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

(B) [TAU]·(
[Tova M.] ·
Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

[Slava N.] · [OASSIS...] · [SIGMOD] · [2014])
Figure 9: Summarized Factorizations

(A) TAU is the organization of 2 authors who published
4 papers in 2 conferences in 2006 - 2014.
(B) TAU is the organization of Tova M. who published
4 papers in 2 conferences in 2006 - 2014 and Slava N.
who published ’OASSIS...’ in SIGMOD in 2014.

Figure 10: Summarized Sentences

we say that two nodes are of the same type if both were
mapped to the same query variable. Now, let n be a node in
the circuit form of a given factorization f . A summarization
of the sub-circuit of n is obtained in two steps. First, we
group the descendants of n according to their type. Then,
we summarize each group separately. The latter is done in
our implementation simply by either counting the number
of distinct values in the group or by computing their range
if the values are numeric. In general, one can easily adapt
the solution to apply additional user-defined“summarization
functions” such as “greater / smaller than X” (for numerical
values) or “in continent Y” for countries.

Example 4.16. Re-consider the factorization f1 from Fig-
ure 7. We can summarize it in multiple levels: the highest
level of authors (summarization “A”), or the level of papers
for each particular author (summarization “B”), or the level
of conferences, etc. Note that if we choose to summarize at
some level, we must summarize its entire sub-circuit (e.g. if
we summarize for Tova. M. at the level of conferences, we
cannot specify the papers titles and publication years).

Figure 9 presents the summarizations of sub-trees for the
“TAU” answer, where “size” is a summarization operator that
counts the number of distinct values and “range” is an oper-
ator over numeric values, summarizing them as their range.
The summarized factorizations are further converted to NL
sentences which are shown in Figure 10. Summarizing at a
higher level results in a shorter but less detailed summariza-
tion.

5. RELATED WORK
Multiple lines of work (e.g. [2, 17, 21]) have proposed

NL interfaces to formulate database queries, and additional
works [10] have focused on presenting the answers in NL,
typically basing their translation on the schema of the out-
put relation. Among these, works such as [2, 17] also harness
the dependency tree in order to make the translation form
NL to SQL by employing mappings from the NL query to
formal terms. To our knowledge, no previous work has fo-
cused on formulating the provenance of output tuples in NL.
This requires fundamentally different techniques (e.g. that
of factorization and summarization, building the sentence
based on the input question structure, etc.) and leads to
answers of much greater detail.

The tracking, storage and presentation of provenance have
been the subject of extensive research (see e.g. [12, 14,
6]) while the field of provenance applications has also been

48 SIGMOD Record, March 2018 (Vol. 47, No. 1)

Table 1: Sample use-cases and results
Query Single Assignment Multiple Assignments - Summarized
Return the homepage of SIGMOD http://www.sigmod2011.org/ is

the homepage of SIGMOD
Return the authors who published
papers in SIGMOD before 2015 and
after 2005

Tova M. published “Auto-
completion...” in SIGMOD in
2012

Tova M. published 10 papers in SIGMOD in 2006-
2014

Return the authors from TAU who
published papers in VLDB

Tova M. from TAU published
“XML Repository...” in VLDB

Tova M. from TAU published 11 papers in VLDB

Return the authors who published
papers in database conferences

Tova M. “published Auto-
completion...” in SIGMOD

Tova M. published 96 papers in 18 conferences

Return the organization of authors
who published papers in database
conferences after 2005

TAU is the organization of Tova
M. who published ‘OASSIS...’ in
SIGMOD in 2014

TAU is the organization of 43 authors who pub-
lished 170 papers in 31 conferences in 2006 - 2015

broadly studied (e.g. [7, 19]). A longstanding challenge
in this context is the complexity of provenance expressions,
leading to difficulties in presenting them in a user compre-
hensible manner. Approaches in this respect include showing
the provenance in a graph form (see e.g. [20, 6]), allowing
user control over the level of granularity (“zooming” in and
out [5]), or otherwise presenting different ways of provenance
visualization [14]. Other works have studied allowing users
to query the provenance (e.g. [16, 15]) or to a-priori request
that only parts of the provenance are tracked (see for ex-
ample [7, 11]). Importantly, provenance factorization and
summarization have been studied (e.g., [1, 18, 4]) as means
for compact representation of the provenance. Usually, the
solutions proposed in these works aim at reducing the size of
the provenance but naturally do not account for its presenta-
tion in NL; we have highlighted the different considerations
in context of factorization/summarization in our setting.

6. CONCLUSION AND LIMITATIONS
We have studied in this paper, for the first time to our

knowledge, provenance for NL queries. We have devised
means for presenting the provenance information again in
Natural Language, in factorized or summarized form.

There are two main limitations to our work. First, a part
of our solution was designed to fit NaLIR, and will need to be
replaced if a different NL query engine is used. Specifically,
the “sentence generation” module will need to be adapted to
the way the query engine transforms NL queries into formal
ones; our notions of factorization and summarization are ex-
pected to be easier to adapt to a different engine. Second,
our solution is limited to Conjunctive Queries. One of the
important challenges in supporting NL provenance for fur-
ther constructs such as union and aggregates is the need to
construct a concise presentation of the provenance in NL.

Acknowledgments. This research was partially supported
by the Israeli Science Foundation (ISF, grant No. 1636/13),
and by ICRC - The Blavatnik Interdisciplinary Cyber Re-
search Center. The contribution of Amir Gilad is part of a
Ph.D. thesis research conducted at Tel Aviv University.

7. REFERENCES
[1] E. Ainy, P. Bourhis, S. B. Davidson, D. Deutch, and

T. Milo. Approximated summarization of data provenance.
In CIKM, pages 483–492, 2015.

[2] Y. Amsterdamer, A. Kukliansky, and T. Milo. A natural
language interface for querying general and individual
knowledge. VLDB, pages 1430–1441, 2015.

[3] P. Brgisser, M. Clausen, and M. A. Shokrollahi. Algebraic
Complexity Theory. Springer Publishing Company,
Incorporated, 2010.

[4] A. P. Chapman, H. V. Jagadish, and P. Ramanan. Efficient
provenance storage. In SIGMOD, pages 993–1006, 2008.

[5] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson.
Addressing the provenance challenge using zoom. Concurr.
Comput. : Pract. Exper., pages 497–506, 2008.

[6] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In SIGMOD,
pages 1345–1350, 2008.

[7] D. Deutch, A. Gilad, and Y. Moskovitch. Selective
provenance for datalog programs using top-k queries.
PVLDB, pages 1394–1405, 2015.

[8] K. Elbassioni, K. Makino, and I. Rauf. On the readability
of monotone boolean formulae. JoCO, pages 293–304, 2011.

[9] M. Emms. Variants of tree similarity in a question
answering task. In Proceedings of the Workshop on
Linguistic Distances, pages 100–108, 2006.

[10] E. Franconi, C. Gardent, X. I. Juarez-Castro, and
L. Perez-Beltrachini. Quelo Natural Language Interface:
Generating queries and answer descriptions. In Natural
Language Interfaces for Web of Data, 2014.

[11] B. Glavic. Big data provenance: Challenges and
implications for benchmarking. In Specifying Big Data
Benchmarks - First Workshop, WBDB, pages 72–80, 2012.

[12] T. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40, 2007.

[13] E. Hemaspaandra and H. Schnoor. Minimization for
generalized boolean formulas. In IJCAI, pages 566–571,
2011.

[14] M. Herschel and M. Hlawatsch. Provenance: On and behind
the screens. In SIGMOD, pages 2213–2217, 2016.

[15] Z. G. Ives, A. Haeberlen, T. Feng, and W. Gatterbauer.
Querying provenance for ranking and recommending. In
TaPP, pages 9–9, 2012.

[16] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying
data provenance. In SIGMOD, pages 951–962, 2010.

[17] F. Li and H. V. Jagadish. Constructing an interactive
natural language interface for relational databases. Proc.
VLDB Endow., pages 73–84, 2014.

[18] D. Olteanu and J. Závodný. Factorised representations of
query results: Size bounds and readability. In ICDT, pages
285–298, 2012.

[19] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. In SIGMOD, pages
1579–1590, 2014.

[20] Y. L. Simmhan, B. Plale, and D. Gannon. Karma2:
Provenance management for data-driven workflows. Int. J.
Web Service Res., pages 1–22, 2008.

[21] D. Song, F. Schilder, C. Smiley, C. Brew, T. Zielund,
H. Bretz, R. Martin, C. Dale, J. Duprey, T. Miller, and
J. Harrison. TR discover: A natural language interface for
querying and analyzing interlinked datasets. In ISWC,
pages 21–37, 2015.

SIGMOD Record, March 2018 (Vol. 47, No. 1) 49

