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ABSTRACT
To maintain the accuracy of supervised learning models in
the presence of evolving data streams, we provide temporally-
biased sampling schemes that weight recent data most heav-
ily, with inclusion probabilities for a given data item decay-
ing exponentially over time. We then periodically retrain
the models on the current sample. We provide and analyze
both a simple sampling scheme (T-TBS) that probabilisti-
cally maintains a target sample size and a novel reservoir-
based scheme (R-TBS) that is the first to provide both con-
trol over the decay rate and a guaranteed upper bound on
the sample size. The R-TBS and T-TBS schemes are of
independent interest, extending the known set of unequal-
probability sampling schemes. We discuss distributed imple-
mentation strategies; experiments in Spark show that our
approach can increase machine learning accuracy and ro-
bustness in the face of evolving data.

1. INTRODUCTION
A key challenge for machine learning (ML) is to keep ML

models from becoming stale in the presence of evolving data.
In the context of the emerging Internet of Things (IoT),
for example, the data comprise dynamically changing sensor
streams, and a failure to adapt to changing data can lead to
a loss of predictive power.

One way to deal with this problem is to re-engineer exist-
ing static supervised learning algorithms to become adap-
tive. Some parametric methods such as regression models
can indeed be re-engineered so that the parameters are time-
varying, but for many popular non-parametric algorithms
such as k-nearest neighbors (kNN) classifiers, decision trees,
random forests, gradient boosted machines, and so on, it
is not at all clear how re-engineering can be accomplished.
The 2017 Kaggle Data Science Survey [1] indicates that a
substantial portion of the models that developers use in in-
dustry are non-parametric. We therefore consider alternative
approaches in which we periodically retrain ML models, al-
lowing static ML algorithms to be used in dynamic settings
essentially as-is. There are several possible retraining ap-
proaches.

Retraining on cumulative data: Periodically retrain-
ing a model on all of the data that has arrived so far is clearly
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infeasible because of the huge volume of data involved. More-
over, recent data is swamped by the massive amount of past
data, so the retrained model is not su�ciently adaptive.

Sliding windows: A simple sliding-window approach pe-
riodically retrains on the data from, e.g., the last two hours.
If the data arrival rate is high and there is no bound on mem-
ory, then one must deal with long retraining times caused by
large amounts of data in the window. The simplest way to
bound the window size is to retain the last n items. Alterna-
tively, one could try to subsample within the time-based win-
dow [10]. The fundamental problem with all of these bound-
ing approaches is that old data is completely forgotten; the
problem is especially severe when the data arrival rate is
high. This can undermine the robustness of an ML model in
situations where old patterns can reassert themselves. For
example, a singular event such as a holiday, stock market
drop, or terrorist attack can temporarily disrupt normal data
patterns, which will reestablish themselves once the e↵ect of
the event dies down. Periodic data patterns can lead to the
same phenomenon. Another example, from [15], concerns
influencers on Twitter: a prolific tweeter might temporarily
stop tweeting due to travel, illness, or some other reason,
and hence be completely forgotten in a sliding-window ap-
proach. Indeed, in real-world Twitter data, almost a quarter
of top influencers were of this type, and were missed by a
sliding window approach.

Temporally biased sampling: An appealing alternative
is a temporally biased sampling-based approach, i.e., main-
taining a sample that heavily emphasizes recent data but
also contains a small amount of older data, and periodically
retraining a model on the sample. By using a time-biased
sample, the retraining costs can be held to an acceptable
level while not sacrificing robustness in the presence of re-
current patterns. This approach was proposed in [15] in the
setting of graph analysis algorithms, and has recently been
adopted in the MacroBase system [5]. The orthogonal prob-
lem of choosing when to retrain a model is also an important
question, and is related to, e.g., the literature on “concept
drift” [9]; in this paper we focus on the problem of how to
e�ciently maintain a time-biased sample.

In more detail, our time-biased sampling algorithms en-
sure that the“appearance probability” for a given data item,
i.e., the probability that the item appears in the current
sample, decays over time at a controlled exponential rate.
We assume that items arrive in batches B1, B2, . . ., at time
points t1, t2, · · · , where each batch contains 0 or more items.
Our goal is to generate a sequence {Sk}k�1, where Sk is a
sample of the items that have arrived at or prior to time tk.
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These samples should be biased towards recent items, in the
following sense. For 1  i  k, denote by ↵i,k = tk � ti the
age at time tk of an item belonging to batch Bi. Then for
arbitrary times ti  tj  tk and items x 2 Bi and y 2 Bj ,

Pr[x 2 Sk]/ Pr[y 2 Sk] = f(↵i,k)/f(↵j,k) = e��(tj�ti), (1)

where f(↵) = e��↵ is the exponential decay function. (We
briefly discuss other decay functions in Section 7.) Thus
items with a given timestamp are sampled uniformly, and
items with di↵erent timestamps are handled in a carefully
controlled manner, such that the appearance probability for
an item of age ↵ is proportional to f(↵). The criterion in (1),
which is expressed in terms of wall-clock time, is natural and
appealing in applications and, importantly, is interpretable
and understandable to users. As discussed in [7, 15], the
decay function can be chosen to meet application-specific
criteria. If training data is available, � can also be chosen to
maximize accuracy of a specified ML model via cross vali-
dation combined with grid search—in our experiments, we
found empirically that accuracy tended to be a quasiconvex
function of �, which bodes well for automatic optimization
methods such as stochastic gradient descent.

Prior work: It is surprisingly hard to both enforce (1)
and to bound the sample size. As discussed in detail in an
extended version of this paper [12], prior algorithms that
bound the sample size either cannot consistently enforce (1)
or cannot handle wall-clock time. Examples of the former
include algorithms based on the A-Res scheme of Efraimidis
and Spirakis [8] and on Chao’s algorithm [6]. A-Res enforces
conditions on the acceptance probabilities of items; this leads
to appearance probabilities that, unlike (1), are both hard
to compute and not intuitive. In [12], we show that Chao’s
algorithm fails to enforce (1) either when initially filling up
an empty sample or in the presence of data that arrives
slowly relative to the decay rate. The second type of al-
gorithm, due to Aggarwal [4], can only control appearance
probabilities based on the indices of the data items and not
wall-clock time; this can be suboptimal in the presence of
time-varying arrival rates. Thus our new sampling schemes
are interesting in their own right, significantly expanding the
set of unequal-probability sampling techniques.

T-TBS: We first provide and analyze Targeted-Size Time-
Biased Sampling (T-TBS), a relatively simple algorithm that
generalizes the Bernoulli sampling scheme in [15] (which we
call B-TBS). T-TBS allows complete control over the de-
cay rate (expressed in wall-clock time) and probabilistically
maintains a target sample size. T-TBS is easy to implement
and highly scalable when applicable, but only works under
the strong restriction that the mean sizes of the arriving
batches are constant over time and known a priori. There
are scenarios where T-TBS might be a good choice (see Sec-
tion 3), but many applications have non-constant, unknown
mean batch sizes and/or cannot tolerate sample overflows.

R-TBS: We then provide a novel algorithm, Reservoir-
Based Time-Biased Sampling (R-TBS), that is the first to
simultaneously enforce (1) at all times, provide a guaranteed
upper bound on the sample size, and allow unknown, varying
data arrival rates. Guaranteed bounds are desirable because
they avoid memory management issues associated with sam-
ple overflows, especially when large numbers of samples are
being maintained—so that the probability of some sample
overflowing is high—or when sampling is being performed in
a limited memory setting such as at the “edge” of the IoT.

Also, bounded samples reduce variability in retraining times
and do not impose upper limits on the incoming data flow.

Distributed implementation: Both T-TBS and R-TBS
can be parallelized. Whereas T-TBS is relatively straightfor-
ward to implement, an e�cient distributed implementation
of R-TBS is nontrivial. We exploit various implementation
strategies to minimize I/O, avoid unnecessary concurrency
control, and make decentralized decisions about which items
to insert into, or delete from, the reservoir. Our experiments
(Section 6) demonstrate the e�ciency and e↵ectiveness of
our techniques.

2. BACKGROUND
For the remainder of the paper, assume that batches arrive

at regular time intervals, so that ti = i� for some � > 0. All
items that arrive in an interval

�
(k � 1)�, k�

⇤
are treated

as if they arrived at time k�, i.e., at the end of the interval,
so that all items in batch Bi have time stamp i�. It follows
that the age at time tk of an item that arrived at time ti  tk

is simply ↵i,k = (k � i)�.
In this section, we briefly review two classical sampling

schemes whose properties we will combine in the R-TBS
algorithm. A detailed description of the two algorithms can
be found in [12].

Bernoulli Time-Biased Sampling (B-TBS): One sim-
ple sampling scheme [15] processes each incoming batch by
first downsampling the current sample and then accepting
all items in the batch into the sample with probability 1.
Downsampling is accomplished by flipping a coin indepen-
dently for each item in the sample: an item is retained in
the sample with probability p = e��� and removed with
probability 1 � p. In [12], we prove that B-TBS enforces
the relation in (1) as required. Unfortunately, the user can-
not independently control the expected sample size, which
is completely determined by � and the sizes of the incoming
batches.

Batched Reservoir Sampling (B-RS): The standard
reservoir sampling algorithm with sample size n accepts the
first n items into the sample with probability 1. For k > n,
the kth item is accepted with probability n/k, overwriting
a random victim; in [12], we show how to modify the algo-
rithm to handle batch arrivals. Although B-RS guarantees
an upper bound on the sample size, it does not support time
biasing. R-TBS (Section 4) maintains a bounded reservoir as
in B-RS while supporting time-biased sampling as in B-TBS.

3. TARGETED-SIZE TBS
We now describe the T-TBS scheme, which improves upon

the simple Bernoulli sampling scheme B-TBS by ensuring
the inclusion property in (1) while providing probabilistic
guarantees on the sample size. We write Bk = |Bk| for k � 1,
and assume that the batch sizes {Bk}k�1 are independent
and identically distributed (i.i.d.) as a random variable B,
with common mean b = E[B] < 1.

The Algorithm: The idea behind the algorithm is to
downsample to remove older items, as in B-TBS, but to also
downsample the incoming batches at a rate q such that n
becomes the “equilibrium” sample size, while also ensuring
that (1) holds. Setting p = e��� as before, a simple calcu-
lation shows that, for any q 2 (0, 1], Pr[x 2 Sk] = qpk�i =
qe��(tk�ti), and (1) follows immediately.

To choose q, suppose that |Sk�1| = n and we are about to
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process batch Bk. The expected number of items that will
be removed is (1�p)n and the expected number of accepted
items is qb. For n to be an equilibrium point, we equate these
terms and solve for q to obtain q = n(1 � p)/b. Note that,
even if we always accept all items in an arriving batch (i.e.,
q = 1) but the resulting expected inflow b is less than the
expected outflow n(1 � p), the sample will consistently fall
below n, and so we require that b � n(1 � p).

ALGORITHM 1: Targeted-size TBS (T-TBS)

1 p = e
���: decay factor

2 n: target sample size
3 b: assumed mean batch size such that b � n(1� p)

4 Initialize: S  ;; q  n(1� p)/b

5 for k  1, 2, . . . do
6 m Binomial(|S|, p) //simulate |S| trials
7 S  Sample(S, m) //retain m random elements
8 l Binomial(|Bk|, q) //simulate |Bk| trials
9 B0

k  Sample(Bk, l) //downsample new batch

10 S  S [ {B0
k} //add new items to sample

11 output S

The resulting sampling scheme is given as Algorithm 1; it
precisely controls inclusion probabilities in accordance with
(1) while constantly pushing the sample size toward the
target value n. Conceptually, at each time tk, T-TBS first
downsamples the current sample by independently flipping a
coin for each item with retention probability p. T-TBS then
downsamples the arriving batch Bk via independent coin
flips; an item in Bk is inserted into the sample with proba-
bility q. For e�ciency, the algorithm exploits the fact that for
j independent trials, each having success probability r, the
total number of successes has a binomial distribution with
parameters j and r. Thus, in lines 6 and 8, the algorithm
simulates the coin tosses by directly generating the num-
ber of successes m or l—which can be done using standard
algorithms [13]—and then retaining m or l randomly cho-
sen items. So the function Binomial(j, r) returns a random
sample from the binomial distribution with j independent
trials and success probability r per trial, and the function
Sample(A, m) returns a uniform random sample, without
replacement, containing min(m, |A|) elements of the set A;
note that Sample(A, m) returns an empty sample if A = ;,
m = 0, or both.

Sample-Size Properties: Theorem 1 below precisely de-
scribes the sample size behavior of T-TBS, which directly
impacts memory requirements, e�ciency of memory usage,
and ML model retraining time; see [12] for a statement and
proof of this result in the setting of general decay functions.
(The proof exploits the fact that {|Sk|}k�0 is a Markov
chain.) Denote by Ck = |Sk| the sample size at time tk

and by b̄ � 1 the maximum possible batch size, so that
Pr[B  b̄] = 1. Also set �2 = bq(1 + p � q)/(1 � p2) 2 (0, 1)
and write p = e��� as before. Write “i.o.” to denote that an
event occurs “infinitely often”, i.e., for infinitely many values
of k, and write “w.p.1” for “with probability 1”.

Assertions (i)–(iii) of Theorem 1 deal with the distribution
of the sample size after a large number of batches have been
processed. Specifically, by (i) and (ii), the expected sample
size E[Ck] approximately equals the target size n and the
variance of Ck approximately equals the finite constant �2,
which depends on b, p, and q; note that the convergence of
E[Ck] to n happens exponentially fast. By (iii), the prob-

ability that the sample size deviates from n by more than
100✏% is exponentially small when k or n is large, provided
that the batch sizes are bounded.

Whereas Assertions (i)–(iii) describe average behavior over
many sampling runs, Assertions (iv) and (v) concern the be-
havior of the successive sample sizes during an individual
sampling run. By (iv), any sample size can be attained with
positive probability, so one potential type of bad behavior
might occur if, with positive probability, the sample size is
unstable in that it drifts o↵ to +1 over time. By (v), if
the batch sizes are bounded, then such unstable behavior is
ruled out: with probability 1, the sample-size process is sta-
ble in that every possible sample-size value occurs infinitely
often, with finite expected time between visits. Moreover,
the average sample size—averaged over times t1, t2, . . . , tk—
converges to n with probability 1 as k becomes large. On the
negative side, it follows that, for a given sampling run, the
sample size will repeatedly—though infrequently, since the
expected sample size at any time point is finite—become
arbitrarily large, even if the average behavior is good. This
result shows that, even in the most stable case, the sample-
size control provided by T-TBS is incomplete, and thus moti-
vates the more complex R-TBS algorithm given in the next
section. This sample-size fragility is amplified when batch
sizes fluctuate in a non-predicable way, as often happens in
practice, and T-TBS can break down; see Section 6.

Theorem 1. If {Bk}k�1 are i.i.d. with mean b < 1, then

(i) E[Ck] = n(1 � pk) " n as k ! 1;

(ii) Var[Ck] ! �2 as k ! 1;

(iii) if b̄ < 1, then (a) Pr[Ck � (1 + ✏)n]  e�O(kn2✏2) for

all ✏, k > 0 and (b) Pr[Ck  (1 � ✏)n]  e�O(kn2) for
any ✏ 2 (0, 1) and su�ciently large k;

(iv) 8m � 0, 9k � 0 such that Pr[Ck � m] > 0;

(v) if b̄ < 1, then (a) Pr[Ck = m i.o.] = 1 for all m �
0, (b) the expected times between successive visits to
state m are uniformly bounded for any m � 0, and (c)
limk!1(1/k)

Pk
i=0 Ci = n w.p.1.

Despite the fluctuations in sample size, T-TBS is of inter-
est because, when the mean batch size is known and constant
over time, and when some sample overflows are tolerable, T-
TBS is relatively simple to implement and parallelize, and is
very fast (see Section 6). For example, if the data comes from
periodic polling of a set of robust sensors, the data arrival
rate will be known a priori and will be relatively constant,
except for the occasional sensor failure, and hence T-TBS
might be appropriate.

4. RESERVOIR-BASED TBS
Our new reservoir-based time-biased sampling algorithm

(R-TBS) combines the best features of T-TBS and B-RS,
controlling the decay rate while ensuring that the sample
never overflows. Importantly, unlike T-TBS, the R-TBS al-
gorithm can handle any sequence of batch sizes. The proofs
of all the theorems in this section can be found in [12].

4.1 Item Weights and Latent Samples
To precisely control the sample size in the presence of de-

cay, we essentially need to handle samples having“fractional
size”. We do this via “item weights” and “latent samples”.
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Item weights: In R-TBS, the weight of an item of age
↵ is given by f(↵) = e��↵; note that a newly arrived item
has a weight of f(0) = 1. As discussed later, R-TBS ensures
that the probability that an item appears in the sample is
proportional to its weight. All items arriving at the same
time have the same weight, so that the total weight of all
items seen up through time tk is Wk =

Pk
i=1 |Bi|f(↵i,k).

ALGORITHM 2: Generating a sample from a latent sample

1 L = (A, ⇡, C): latent sample

2 U  Uniform()
3 if U  frac(C) then S  A [ ⇡ else S  A
4 return S

Latent samples: The other key concept for R-TBS is
the notion of a latent sample, which formalizes the idea of a
sample of fractional size. Formally, given a set U of items,
a latent sample of U with sample weight C is a triple L =
(A, ⇡, C), where A ✓ U is a set of bCc full items and ⇡ ✓ U
is a (possibly empty) set containing at most one partial item;
⇡ is nonempty if and only if C > bCc.

a b c d

partial item

a b ca b c a b c d

Figure 1: Latent sample L (sample weight C = 3.6) and possible
realized samples

We randomly generate a sample S from L by sampling
as described in Algorithm 2, where frac(x) = x � bxc; e.g.,
see Figure 1. In the pseudocode, the function Uniform()
generates a random number uniformly distributed on [0, 1].
Each full item is included with probability 1 and the partial
item is included with probability frac(C), and it is easy to
show that E[|S|] = C. By allowing at most one partial item,
we minimize the latent sample’s footprint: |A [ ⇡|  bCc +
1. Importantly, if the weight C of a latent sample L is an
integer, then L contains no partial item, and the sample S
generated from L via Algorithm 2 is unique and contains
exactly C items.

Downsampling: Besides extracting an actual sample from
a latent sample, another key operation on latent samples
is downsampling (Algorithm 3). For ✓ 2 [0, 1], the goal of
downsampling L = (A, ⇡, C) is to obtain an new latent sam-
ple L0 = (A0, ⇡0, ✓C) such that, if we generate S and S0 from
C and C0 via Algorithm 2, we have

Pr[x 2 S0] = ✓ Pr[x 2 S] (2)

for all x 2 S. Thus all of the the appearance probabilities, as
well as the sample weight (and hence expected sample size),
are scaled down by a factor of ✓. R-TBS uses downsampling
to remove sample items that either decay or are overwritten
by arriving items, and also to initially filter the items in an
arriving batch.

In the pseudocode, the subroutine Swap1(A, ⇡) moves a
randomly selected item from A to ⇡ and moves the current
item in ⇡ (if any) to A. Similarly, Move1(A, ⇡) moves a
randomly selected item from A to ⇡, replacing the current
item in ⇡ (if any).

ALGORITHM 3: Downsampling

1 L = (A, ⇡, C): input latent sample
2 ✓: scaling factor with ✓ 2 [0, 1]

3 if C = 0 then return L0 = (;, ;, 0) //sample is empty

4 U  Uniform(); C0 = ✓C
5 if bC0c = 0 then //no full items retained
6 if U > frac(C)/C then
7 (A0, ⇡0) Swap1(A, ⇡)

8 A0  ;
9 else if 0 < bC0c = bCc then //no items deleted

10 if U >
�
1� ✓ frac(C)

�
/
�
1� frac(C0)

�
then

11 (A0, ⇡0) Swap1(A, ⇡)

12 else //items deleted: 0 < bC0c < bCc
13 if U  ✓ frac(C) then
14 A0  Sample(A, bC0c)
15 (A0, ⇡0) Swap1(A0, ⇡)
16 else
17 A0  Sample(A, bC0c+ 1)
18 (A0, ⇡0) Move1(A0, ⇡)

19 if C0 = bC0c then //no fractional item
20 ⇡0  ;

21 return L
0 = (A0

, ⇡
0
, C

0)

a b c

b c a a b ca c b

Figure 2: Downsampling example: C = 2.4! C
0 = 2.1

To gain some intuition for why the algorithm works, con-
sider a special case (the if-statement in line 9): the goal is
to form a latent sample L0 = (A0, ⇡0, ✓C) from a latent sam-
ple L = (A, ⇡, C), where L and L0 have the same number
of full items and each has one partial item; e.g., C = 2.4
and C0 = 2.1. In this case, the partial item x⇤ 2 ⇡ either
becomes full by being swapped into A0 or remains as the
partial item for L0. The symmetric treatment of the items
in A ensures that appearance probabilities are scaled down
uniformly. Denoting by � the probability of not swapping,
we have P [x⇤ 2 S0] = � · frac(C0) + (1 � ⇢) · 1. On the other
hand, (2) implies that P [x⇤ 2 S0] = ✓ frac(C). Equating
these expressions shows that � must equal the formula on
the right side of the inequality on line 10; see Figure 2. The
other possible downsampling scenarios are described in [12].

Theorem 2. For ✓ 2 [0, 1], let L0 = (A0, ⇡0, ✓C) be the
latent sample produced from a latent sample L = (A, ⇡, C)
via Algorithm 3, and let S0 and S be samples produced from
L0 and L via Algorithm 2. Then Pr[x 2 S0] = ✓ Pr[x 2 S]
for all x 2 A [ ⇡.

The union operator: We also need to take the union of
disjoint latent samples while preserving the inclusion prob-
abilities for each. Two latent samples L1 = (A1, ⇡1, C1) and
L2 = (A2, ⇡2, C2) are disjoint if (A1 [ ⇡1) \ (A2 [ ⇡2) = ;.
The pseudocode for the union operation is given as Algo-
rithm 4. The idea is to add all full items to the combined la-
tent sample. If there are partials items in L1 and L2, then we
transform them to either a single partial item, a full item, or
a full plus partial item, depending on the values of frac(C1)
and frac(C2). Such transformations are done in a manner
that preserves the appearance probabilities. We obtain the
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union of multiple latent samples by iterating Algorithm 4;
for latent samples L1, . . . , Lk, we denote the resulting latent
sample by

Sk
j=1 Lj .

ALGORITHM 4: Union
1 L1 = (A1, ⇡1, C1): fractional sample of size C1

2 L2 = (A2, ⇡2, C2): fractional sample of size C2

3 C  C1 + C2

4 U  Uniform()
5 if frac(C1) + frac(C2) < 1 then
6 A A1 [ A2

7 if U  frac(C1)/
�
frac(C1) + frac(C2)

�
then ⇡  ⇡1 else

⇡  ⇡2

8 else if frac(C1) + frac(C2) = 1 then
9 ⇡  ;

10 if U  frac(C1) then A A1 [ A2 [ ⇡1 else
A A1 [ A2 [ ⇡2

11 else //frac(C1) + frac(C2) > 1
12 if U 

�
1� frac(C1)

� � ⇥�
1� frac(C1)

�
+

�
1� frac(C2)

�⇤
then

13 ⇡ = ⇡1

14 A A1 [ A2 [ ⇡2

15 else
16 ⇡ = ⇡2

17 A A1 [ A2 [ ⇡1

18 return L=(A,⇡, C)

Theorem 3. Let L1 = (A1, ⇡1, C1) and L2 = (A2, ⇡2, C2),
be disjoint latent samples, and let L = (A, ⇡, C) be the latent
sample produced from L1 and L2 by Algorithm 4. Let S1,
S2, and S be random samples generated from L1, and L2,
and L via Algorithm 2. Then (i) C = C1 + C2 = E[S],
(ii) 8x 2 L1, Pr[x 2 S] = Pr[x 2 S1], and (iii) 8x 2 L2,
Pr[x 2 S] = Pr[x 2 S2].

4.2 The R-TBS Algorithm
The algorithm: R-TBS is given as Algorithm 5. The al-

gorithm generates a sequence of latent samples {Lk}k�1 and
from these generates a sequence of actual samples {Sk}k�1

that are returned to the user. In the algorithm, the func-
tions Getsample, Downsample, and Union execute the
operations described in Algorithms 2, 3, and 4.

The goal of the algorithm is to ensure that

Pr[x 2 Sk] = ⇢kf(↵i,k) (3)

for all k � 1, i  k, and x 2 Bi, where f(↵) = e��↵

and {⇢k}k�1 are the successive values of the variable ⇢ dur-
ing a run of the algorithm. Clearly, (3) immediately im-
plies (1). We choose ⇢k to make the sample size as large
as possible without exceeding n. Indeed, we show in The-
orem 4 below that Ck = ⇢kWk for all k, and therefore
set ⇢k = min(1, n/Wk), so that Ck = min(Wk, n). Thus
if Wk < n, then the sample weight is at its maximum possi-
ble value Wk, leading to the maximum possible sample size
of bWkc or dWke. If Wk � n, then the sample weight, and
hence the sample size, is capped at n.

R-TBS functions similarly to classic reservoir sampling.
When a new batch of items arrives, all of the items are ac-
cepted if the cumulative set of (weighted) items plus the
batch items fit in the reservoir of size n (⇢ = 1 in line 9). If
the total item weight exceeds n just before the batch arrives,
then a random subset of old items is removed from the sam-
ple via downsampling (⇢/⇢0 < 1 in line 8, over and above
decay ✓) and a random subset of the arriving items, also
filtered via downsampling (⇢ < 1 in line 9), take their place

ALGORITHM 5: Reservoir-based TBS (R-TBS)

1 ✓ = e���: decay factor
2 n: maximum sample size

3 Initialize: W  0; A ;; ⇡  ;; C  0; ⇢ 1
4 for k  1, 2, . . . do
5 W  ✓W + |Bk| //update total weight

6 ⇢0  ⇢
7 ⇢ min(1, n/W ) //update ⇢

8 (A, ⇡, C) Downsample
�
(A, ⇡, C), (⇢/⇢0)✓

�
//decay old items

9 L0  Downsample
�
(Bk, ;, |Bk|), ⇢

�
//take in new items

10 L Union
�
L0, (A, ⇡, C)

�
//combine old and new items

11 S  Getsample(L)
12 output S

(line 10). The algorithm also correctly handles the interme-
diate case where all cumulative items fit, but inserting all
arriving items would cause the reservoir to overflow; in this
case, only some of the new items overwrite sample items.

Algorithm properties: Theorem 4(i) below asserts that
R-TBS satisfies (3) and hence (1), thereby maintaining the
correct inclusion probabilities. Theorem 4(ii) implies that
the sample size and stability are maximized, as formalized
in Theorem 5 below. Finally, the assertion in Theorem 4(iii)
ensures that the inclusion probabilities for a given item are
nonincreasing over time. This is crucial, since otherwise we
might have to recover an item that was previously deleted
from the sample, which is impossible.

Theorem 4. Let {Lk = (Ak, ⇡k, Ck)}k�1 and {Sk}k�1 be
a sequence of latent samples and samples, respectively, pro-
duced by Algorithm 5 and define ⇢k = min(1, n/Wk). Then
(i) Pr[x 2 Sk] = ⇢kf(↵i,k) for all 1  i  k and x 2 Bi, (ii)
Ck = ⇢kWk for all k, and (iii) ⇢kf(↵i,k)  ⇢k�1f(↵i,k�1)
for all 1  i < k.

A sample Sk is unsaturated if Ck < n and saturated if
Ck = |Sk| = n; note that Wk < n if and only if Sk is unsat-
urated. Theorem 5 asserts that, among all sampling schemes
with exponential time biasing, R-TBS both maximizes the
expected sample size in unsaturated scenarios and minimizes
sample-size variability. Thus R-TBS tends to yield more ac-
curate ML results (via more training data) and greater sta-
bility in both result quality and retraining costs.

Theorem 5. Let H be any sampling algorithm for expo-
nential decay that satisfies (1) and denote by Sk and SH

k

the samples produced at (arbitrary) time tk by R-TBS and
H. Then (i) if Wk < n, then E[|SH

k |]  E[|Sk|], and (ii) if
E[|SH

k |] = E[|Sk|], then Var[|SH
k |] � Var[|Sk|].

Indeed, (1) implies that, for any ti  tk and x 2 Bi,
the inclusion probability Pr[x 2 SH

k ] must be of the form
rH

k f(↵i,k) for some function rH
k independent of i. Taking i =

k, we see that rH
k  1. For R-TBS with Ck < n, Theorem 4

implies that rH
k = ⇢k = Ck/Wk = 1, so that Pr[x 2 SH

k ] 
Pr[x 2 Sk], proving (i). To prove (ii), observe that, over all
possible sample-size distributions having mean value equal
to Ck = E[|Sk|], the variance is minimized by concentrating
all of the probability mass onto bCkc and dCke, and this is
precisely the sample-size distribution attained by R-TBS.

5. DISTRIBUTED TBS ALGORITHMS
We now describe the distributed implementation of T-

TBS and R-TBS, denoted as D-T-TBS and D-R-TBS.
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Overview of D-T-TBS: The D-T-TBS implementation
is very similar to the simple distributed Bernoulli time-biased
sampling algorithm in [15]. It is embarrassingly parallel, re-
quiring no coordination. At each time point tk, each worker
in the cluster subsamples its partition of the sample with
probability p, subsamples its partition of Bk with probabil-
ity q, and then takes a union of the resulting data sets.

Overview of D-R-TBS: This algorithm, unlike D-T-
TBS, maintains a bounded sample, and hence is not embar-
rassingly parallel. D-R-TBS first needs to aggregate the local
partition sizes for the incoming batch Bk to compute the to-
tal batch size |Bk| and calculate the new total weight Wk.
Then, based on |Bk|, Wk, and the current sample weight Ck,
D-R-TBS computes the downsample rate for the items in the
reservoir, as well as the downsample rate for the items in Bk.
After that, D-R-TBS chooses the items in the reservoir to
delete through a Downsample operation, selects items in
Bk (also via Downsample), inserts the selected items into
the reservoir (via Union), and finally generates the sample
(via Getsample). The expensive operations Downsample,
Union, and Getsample are all performed in a distributed
manner. They each require the master to coordinate among
the workers. Getsample and Union operations are rela-
tively straightforward. The most challenging part of D-R-
TBS lies in choosing items to delete from the reservoir and
selecting new items to insert; we introduce two alternative
approaches in Section 5.2. The implementation details for
D-T-TBS are mostly subsumed by those for D-R-TBS, so
we focus on the latter.

5.1 Distributed Data Structures
There are two important data structures in D-R-TBS: the

incoming batch and the reservoir. Conceptually, we view an
incoming batch Bk as an array of slots numbered from 1
through |Bk|, and the reservoir L as an array of slots num-
bered from 1 through bCkc containing full items plus a spe-
cial slot for the partial item. For both data structures, data
items need to be distributed into partitions due to the large
data volumes. Therefore, the slot number of an item, s, maps
to a pair (ps, rs), where ps is the partition ID and rs is the
position inside the partition.

Incoming batches usually come from a distributed stream-
ing system, such as Spark Streaming; the actual data struc-
ture is specific to the streaming system (e.g. an incoming
batch is stored as an RDD in Spark Streaming). As a result,
the partitioning strategy of the incoming batch is opaque to
D-R-TBS. Unlike the incoming batch, which is read-only and
discarded at the end of each time period, the reservoir data
structure must be continually updated. An e↵ective strategy
for storing and operating on the reservoir is thus crucial for
good performance. We now explore alternative approaches
to implementing the reservoir.

Distributed in-memory key-value store: One natural
approach implements the reservoir using an o↵-the-shelf dis-
tributed in-memory key-value (KV) store, such as Redis [3]
or Memcached [2]. Each item in the reservoir is stored as a
KV pair, with the slot number as the key and the item as
the value. The partial item has a special slot number such
as -1. Inserts and deletes to the reservoir naturally translate
into put and delete operations to the KV store.

There are three major limitations to this approach. First,
the hash-based or range-based data-partitioning scheme used
by a distributed KV store yields reservoir partitions that do
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Figure 3: Retrieving insert items

not correlate with the partitions of incoming batch. When
items from a given partition of an incoming batch are in-
serted into the reservoir, the inserts touch many (if not all)
partitions of the reservoir, incurring heavy network I/O. Sec-
ond, KV stores incur unnecessary concurrency-control over-
head. For each batch, D-R-TBS already carefully coordi-
nates the deletes and inserts so that no two delete or insert
operations access the same slots in the reservoir and there is
no danger of write-write or read-write conflicts. Finally, the
KV store approach requires an explicit slot number for each
item. As a result, D-R-TBS needs to take extra care to make
sure that after deletes and inserts of reservoir items, the slot
numbers are still unique and contiguous, e.g. by recycling
the slot numbers of deleted items for new inserts. The bur-
den of keeping track of delete and insert slot numbers falls
on the master node.

Co-partitioned reservoir: An alternative approach im-
plements a distributed in-memory data structure for the
reservoir so as to ensure that the reservoir partitions co-
incide with the partitions from incoming batches. This can
be achieved in spite of the unknown partitioning scheme of
the streaming system. Specifically, the reservoir is initially
empty, and all items in the reservoir are from the incoming
batches. Therefore, if an item from a given partition of an
incoming batch is always inserted into the corresponding“lo-
cal” reservoir partition and deletes are also handled locally,
then the co-partition and co-location of the reservoir and in-
coming batch partitions is automatic. For our experiments,
we implemented the co-partitioned reservoir in Spark using
the in-place updating technique for RDDs in [15]; see [12].

Note that, with co-partitioned reservoir, the mapping be-
tween a specific full item and its current slot number may
change over time due to insertions and deletions. This does
not cause any statistical issues, because the set-based R-TBS
algorithm is oblivious to specific slot numbers.

5.2 Choosing Items to Delete and Insert
To bound the sample size, D-R-TBS must carefully co-

ordinate workers when choosing the items to delete from,
and insert into, the reservoir. It must also ensure the sta-
tistical correctness of random number generation and ran-
dom permutation operations in the distributed environment.
We consider two possible approaches, focusing on the co-
partitioned reservoir; see [12] for the KV store version.

Centralized decisions: In the most straightforward ap-
proach, the master makes centralized decisions. For inserts,
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the master generates the slot numbers of the incoming items
Bk at time tk that need to be inserted into the reservoir.
Suppose that Bk comprises m � 1 partitions. Each gener-
ated slot number s 2 {1, 2, . . . , |Bk|} is mapped to an item
location indicated by (ps, rs). Denote by Q the set of item
locations, i.e., the set of (ps, rs) pairs. In order to perform
the inserts, D-R-TBS needs to first retrieve the actual items
based on the item locations. This can be achieved with a
join-like operation between Q and Bk, with the (ps, rs) pair
matching the actual location of an item inside Bk. To opti-
mize this operation, we make Q a distributed data structure
and use a customized partitioner to ensure that all pairs
(ps, rs) with ps = j are co-located with partition j of Bk

for j = 1, 2, . . . , m. Then a co-partitioned and co-located
join can be carried out between Q and Bk, as illustrated
in Figure 3(a) for m = 3. The resulting set of retrieved in-
sert items, denoted as S, is also co-partitioned with Bk as
a by-product. After that, the actual inserts are carried out
depending on the reservoir representation (KV store or co-
partitioned reservoir). For the co-partitioned reservoir, we
simply use a join-like operation on S and the reservoir L
to add the corresponding insert items to the co-located par-
tition of L. Similarly, for deletes, the master generates slot
numbers of the reservoir items to be deleted, then deletes are
executed based on the reservoir representation. For the co-
partitioned reservoir, we again use a customized partitioner
for the set of (ps, rs) pairs that represent the slot numbers,
denoted as R, such that deletes are co-located with the cor-
responding L partitions. Then a join-like operation on R and
L performs the actual delete operations on the reservoir.

Distributed decisions: The above approach requires the
master to generate large quantities of slot numbers, so we
now explore an alternative approach that o✏oads the slot
number generation to the workers while still ensuring the
statistical correctness of the computation. This approach has
the master choose only the number of deletes and inserts per
worker according to an appropriate multivariate hypergeo-
metric distribution. For deletes, each worker chooses ran-
dom victims from its local partition of the reservoir based
on the number of deletes given by the master. For inserts,
the worker randomly and uniformly selects items from its
local partition of the incoming batch Bk given the number
of inserts. Figure 3(b) depicts how the insert items are re-
trieved under this decentralized approach. We use the tech-
nique in [11] for parallel pseudo-random number generation.

The foregoing distributed decision making approach works
only when the co-partitioned reservoir is used. This is be-
cause the KV store approach requires a target reservoir slot
number for each insert item from the incoming batch, and
the target slot numbers have to be generated in such a way
as to ensure that, after the deletes and inserts, all of the slot
numbers are still unique and contiguous in the new reser-
voir. This requires a lot of coordination among the workers,
which inhibits truly distributed decision making.

6. EXPERIMENTS
We briefly highlight some of our experimental results; see

[12] for details and additional experiments. We implemented
R-TBS and T-TBS on Spark. Data was streamed in from
HDFS using Spark Streaming’s microbatches. All perfor-
mance experiments were conducted on a cluster of 9 Pro-
Liant DL160 G6 servers interconnected by 1 Gbit Ethernet.
Decay occurs according to a time scale such that the batch-

arrival interval is � = 1 in the decay formulas.

(a) Growing Batch Sz. (b) Stable Batch Sz. (Det.)

(c) Stable Batch Sz. (Unif.) (d) Decaying Batch Sz.

Figure 4: Sample size behavior of T-TBS and R-TBS

Sample size Behavior: Figures 4 shows sample size
behavior of T-TBS and R-TBS under a variety of batch-size
regimes. In Figure 4(a), the (deterministic) batch size is ini-
tially fixed and the algorithm is tuned to a target sample size
of 1000, with a decay rate of � = 0.05. At k = 200, the batch
size starts to increase: Bk+1 = �Bk, where � = 1.002. This
leads to an overflowing sample for T-TBS, whereas R-TBS
maintains a constant sample size. Even in a stable batch-
size regime with batch sizes either constant (Figure 4(b);
Bk ⌘ 100 with � = 0.1) or fluctuating (Figure 4(c); Bk uni-
form on [0, 200]), R-TBS can maintain a bounded sample
size, whereas the sample size under T-TBS fluctuates per
Theorem 1; as in Theorem 5, the R-TBS unsaturated sam-
ple size is always larger than than for T-TBS. For � = 0.8, so
that the batch sizes start to shrink at k = 200, Figure 4(d)
shows that R-TBS is more robust to sample underflows.

 0

 10

 20

 30

 40

 50

R-TBS
(Cent,KV,RJ)

R-TBS
(Cent,KV,CJ)

R-TBS
(Cent,CP)

R-TBS
(Dist,CP)

T-TBS
(Dist,CP)

E
xe

cu
tio

n
 T

im
e
 (

se
c)

Figure 5: Per-batch distributed runtime comparison

Runtime performance: Figure 5 shows the average run-
time per batch for five di↵erent implementations of dis-
tributed TBS algorithms. Each batch contains 10 million
items. The first four are D-R-TBS implementations with
di↵erent design choices: whether to use centralized or dis-
tributed decisions in choosing items to insert and delete
(abbreviated as “Cent” and “Dist”, respectively), whether
to implement the reservoir using a key-value store or a co-
partitioned reservoir scheme (abbreviated as“KV”and“CP”),
and whether to subsample the incoming batch using the
standard repartition join or using a copartitioned join (ab-
breviated as “RJ” and “CJ”) under the centralized decision
scheme. As can be seen, the best implementation is almost
an order of magnitude faster than the worst. Since D-T-TBS
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is embarrassingly parallelizable, it is much faster than the
best D-R-TBS implementation (see rightmost bar). But, as
discussed in Section 3, T-TBS only works under very strong
restrictions on the data arrival process, and can su↵er from
occasional memory overflows.

We have also conducted scalability experiments and eval-
uated the impact of the decay factor as well as batch-size
skew on the runtime performance; see [12]. With 8 workers,
our implementation of R-TBS can handle 100 million items
arriving approximately every 16 seconds.

Application to ML models: We first compare the per-
formance of R-TBS, simple sliding windows (SW), and uni-
form sampling (Unif) when applied to a kNN classifier that
predicts a class for each item in an incoming batch and then
updates the sample. We use 100 classes, and the data gen-
eration process operates in one of two “modes”. In the “nor-
mal” mode, the frequency of items from any of the first 50
classes is five times higher than that of items in any of the
second 50 classes. In the “abnormal” mode, the frequencies
are five times lower. The sample size for both R-TBS and
Unif is 1000, and SW contains the last 1000 items; thus all
methods use the same amount of data for retraining.

Figure 6 shows the misclassification rates for the three
sampling methods under a periodic pattern of 10 normal
batches alternating with 10 abnormal batches, denoted as
P(10, 10). When the data distribution first becomes abnor-
mal at t = 10, the misclassification rates under all sampling
schemes increase sharply. R-TBS and SW adapt to the new
mode, with SW adapting slightly faster. (Unif never adapts
at all.) After the first mode change, however, R-TBS “re-
members” both normal and abnormal values, and thereby
becomes much more robust to subsequent mode changes,
whereas SW continues to overreact with wild fluctuations.

Table 1 displays both the accuracy and robustness of Unif,
SW, and R-TBS (using several values of �) over 30 runs. Ac-
curacy is measured in terms of the average misclassification
rate, and robustness is measured as the average 10% ex-
pected shortfall (ES) , i.e., the average value of the worst
10% of cases [14, p. 70]. Results are shown for a set of tem-
poral patterns that include several periodic patterns and a
“single event” comprising one normal-abnormal-normal cy-
cle. As can be seen, R-TBS and SW have similar accuracies,
and Unif is always the worst by a large margin. R-TBS is
always best in terms of robustness and SW is always the
worst, with ES values 1.5 to 2.5 times higher than for R-
TBS. Unif also does poorly in terms of robustness, except
for the single event, since the data remains in normal mode
after the abnormal period and time biasing becomes unim-
portant. Overall, R-TBS provides superior accuracy and ro-
bustness, and this performance edge is fairly stable across a
wide range of � values.

Figure 6: Misclassification
rate (percent) for kNN:
n=1000, P(10, 10)

Figure 7: Mean square error
for linear regression: n=1600,
P(16, 16)

Table 1: Accuracy and robustness of kNN performance
Single Event P(10,10) P(20,10) P(30,10)

� Miss% ES Miss% ES Miss% ES Miss% ES
0.05 17.1 16.8 16.1 22.1 15.3 24.4 15.1 25.9
0.07 16.5 17.3 15.3 21.3 14.9 24.0 14.4 25.2
0.10 15.7 18.5 15.1 22.1 14.7 24.9 14.7 26.9
SW 19.2 42.1 17.1 41.7 16.1 39.8 15.9 38.3
Unif 21.3 18.3 25.4 34.8 19.6 35.7 19.0 35.8

Figure 7 shows similar results for an experiment involving
a regression model. Interestingly, the parameters were such
that the R-TBS sample was never full, whereas SW and Unif
were always full. This shows that a smaller sample with good
ratios of old and new data can provide better prediction per-
formance than a larger but temporally unbalanced sample.

7. CONCLUSION & FUTURE WORK
Our experiments with ML models and graph analytics [15],

indicate the usefulness of periodic retraining over time-biased
samples to help ML algorithms robustly deal with evolving
data streams without requiring algorithmic re-engineering.

In ongoing work [12], we have extended our R-TBS and T-
TBS sampling schemes to arbitrary decay functions. Theory
and algorithms are more complex in this setting because,
unlike the exponential case, decay factors now vary by age,
so item ages must be tracked. R-TBS then satisfies (1) only
approximately, with an error that can be made arbitrarily
small by increasing the sample footprint. There is also a well
defined trade-o↵ between sample footprint and sample-size
stability and saturation. Interesting future directions are to
apply our ideas to other types of streaming analytics, and to
develop end-to-end solutions via drift-detection techniques.
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