
MATLANG: Matrix operations and their expressive power

Robert Brijder
Hasselt University
Hasselt, Belgium

robert.brijder@uhasselt.be

Floris Geerts
University of Antwerp

Antwerp, Belgium
floris.geerts@uantwerpen.be

Jan Van den Bussche
Hasselt University
Hasselt, Belgium

jan.vandenbussche@uhasselt.be

Timmy Weerwag
Hasselt University
Hasselt, Belgium

ABSTRACT
We investigate the expressive power of MATLANG, a for-
mal language for matrix manipulation based on common
matrix operations and linear algebra. The language can be
extended with the operation inv for inverting a matrix. In
MATLANG + inv we can compute the transitive closure of
directed graphs, whereas we show that this is not possible
without inversion. Indeed we show that the basic language
can be simulated in the relational algebra with arithmetic
operations, grouping, and summation. We also consider an
operation eigen for diagonalizing a matrix. It is defined such
that for each eigenvalue a set of orthogonal eigenvectors is
returned that span the eigenspace of that eigenvalue. We
show that inv can be expressed in MATLANG + eigen. We
put forward the open question whether there are boolean
queries about matrices, or generic queries about graphs, ex-
pressible in MATLANG+ eigen but not in MATLANG+ inv.
Finally, the evaluation problem for MATLANG + eigen is
shown to be complete for the complexity class 9R.

1. INTRODUCTION
In view of the importance of large-scale statistical and

machine learning (ML) algorithms in the overall data an-
alytics workflow, database systems are in the process of
being redesigned and extended to allow for a seamless in-
tegration of ML algorithms and mathematical and statisti-
cal frameworks, such as R, SAS, and MATLAB, with exist-
ing data manipulation and data querying functionality [42,
19, 5, 38, 10, 27, 21]. In particular, data scientists often
use matrices to represent their data, as opposed to using
the relational data model, and create custom data analyt-
ics algorithms using linear algebra, instead of writing SQL

queries. Here, linear algebra algorithms are expressed in a
declarative manner by composing basic linear algebra con-
structs such as matrix multiplication, matrix transposition,
element-wise operations on the entries of matrices, solv-
ing nonsingular systems of linear equations (matrix inver-

@2018 Copyright held by the authors. Publication rights
licensed to ACM. This is a minor revision of the work pub-
lished in ICDT 2018, vol. 98 of LIPIcs, pages 10:1–10:17.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Request permissions from permissions@acm.org.

sion), diagonalization (eigenvalues and eigenvectors), sin-
gular value decomposition, just to name a few. The main
challenges from a database system’s perspective are to en-
sure scalability by providing physical data independence
and optimizations. We refer to [39] for an overview of the
di↵erent systems addressing these challenges.

In this context, the following natural questions arise:
Which linear algebra constructs need to be supported to
perform certain data analytical tasks? Does the additional
support for certain linear algebra operations increase the
overall functionality? Can a linear algebra algorithm be
rewritten, in an equivalent way, to an algorithm using a
smaller number of linear algebra operations? Such ques-
tions have been extensively studied for“classical”query lan-
guages (fragments and extensions of SQL) in database the-
ory and finite model theory [1, 26]. Indeed, the questions
raised all relate to the expressive power of query languages.
In this paper we enroll in the investigation of the expressive
power of matrix query languages.

As a starting point we focus on matrices and matrix query
languages alone, leaving the study of the expressive power
of languages that operate on both relational data and ma-
trices for future work. Even this“matrix only” setting turns
out to be quite interesting and challenging on its own.

To set the stage, we need to formally define what we
mean by a matrix query language. There has been work in
finite model theory and logic to understand the capability
of certain logics to express linear algebra operations [13,
12, 20]. In particular, the extent to which fixpoint logics
with counting and their extension with so-called rank oper-
ators can express linear algebra has been considered. The
motivation for that line of work is mainly to find a logical
characterization of polynomial-time computability and less
so in understanding the expressive power of specific linear
algebra operations.

In this paper, we take the opposite approach in which
we define a basic matrix query language, referred to as
MATLANG, which is built up from basic linear algebra
operations, supported by linear algebra systems such as
R and MATLAB, and then closing these operations under
composition. All basic linear algebra operations supported
in MATLANG stem from “atomic” operations supported
in these popular linear algebra packages. While many
other operations are supported by these packages, we
feel that they are somewhat less atomic. We present
examples later on, showing that MATLANG is indeed
capable of expressing common matrix manipulations. In
fact, we propose MATLANG as an analog for matrices of

60 SIGMOD Record, March 2019 (Vol. 48, No. 1)

the relational algebra for relations.
To study the expressive power of MATLANG, we relate it

to the relational algebra with aggregates [25, 30]. In fact, it
turns out that MATLANG is already subsumed by aggregate
logic with only three nonnumerical variables. Conversely,
MATLANG can express all queries from graph databases (bi-
nary relational structures) to binary relations that can be
expressed in first-order logic with three variables. In con-
trast, the four-variable query asking if the graph contains
a four-clique, is not expressible. We note that the connec-
tion with three-variable logics has recently been strength-
ened [15].

We thus see that, for example, when data analysts want
to check for four-cliques in a graph, more advanced lin-
ear algebra operations than those in MATLANG need to
be considered. Similarly, extracting information related to
the connectivity of graphs requires extending MATLANG.
We consider two such extensions in the paper: extend-
ing MATLANG with matrix inversion (inv) and extending
MATLANG with an operation (eigen) to compute eigenvec-
tors. Since no unique set of eigenvectors exists, the eigen

operation is intrinsically non-deterministic.
We show that MATLANG+ inv is strictly more expressive

than MATLANG. Indeed, the transitive closure of binary
relations becomes expressible. The possibility of reducing
transitive closure to matrix inversion has been pointed out
by several researchers [29, 11, 35].

We show that MATLANG + eigen can express inversion
by using a deterministic MATLANG+ eigen expression (i.e.,
despite it using eigen, it always deterministically returns
the inverse of a matrix, if it exists). The argument is well
known from linear algebra, but our result shows that start-
ing from the eigenvectors, MATLANG is expressive enough
to construct the inverse.

We subsequently show that the equivalence of
MATLANG + eigen expressions is decidable. Related
to this is the question whether the evaluation of expres-
sions in MATLANG + eigen is e↵ectively computable. This
may seem like an odd question, since linear algebra compu-
tations are done in practice. These evaluation algorithms,
however, often use techniques from numerical mathematics
[17], resulting in approximations of the precise result —
here, we are interested in the exact result. In particular,
we show that the input-output relation of an expression e
in MATLANG + eigen, applied to input matrices of given
dimensions, is definable in the existential theory of the real
numbers (which is decidable [3, 4]), by a formula of size
polynomial in the size of e and the given dimensions.

We finally show that, conversely, there exists a fixed ex-
pression (data complexity) in MATLANG + eigen for which
the evaluation problem is 9R-complete, where 9R is the
class of problems that can be reduced in polynomial time
to the existential theory of the reals [36, 37], even when
restricted to input matrices with integer entries.

1.1 Related work
Programming languages to manipulate matrices trace

back to the APL language [22]. Providing database
support for matrices and multidimensional arrays has
been a long-standing research topic [33], originally geared
towards applications in scientific data management.

In [27], Lara is proposed as a domain-specific program-
ming language written in Scala that provides both linear
algebra (LA) and relational algebra (RA) constructs. This

approach is taken one step further in [21] where it is shown
that the RA operations and a number of LA operations can
be defined in terms of three core operations called Ext,
Union, and Join.

Another relevant related work is the FAQ framework [2],
which focuses on the project-join fragment of the algebra for
K-relations [18]. The connection between MATLANG and
the algebra for K-relations is more deeply investigated in
[8]. Yet another related formalism is that of logics with rank
operators [13, 12, 32]. These operators solve 0, 1-matrices
over finite fields, and increase the expressive power of estab-
lished logics over abstract structures. In contrast, in this
paper we are interested in queries on arbitrary matrices.

Modest changes to SQL in order to perform LA opera-
tions in a scalable way within relational databases are pro-
posed in [31]. In this way, various linear algebra operations
are implemented in an e�cient way using the relational al-
gebra.

While the previous work is focused on showing that rela-
tional algebra (appropriately extended) can serve as a plat-
form for supporting large scale linear algebra operations,
the focus of our work here is complementary. Indeed, we
want to understand the precise expressive power of com-
mon linear algebra operations, as adequately formalized in
the language MATLANG and its extensions (see [7] for more
details).

2. MATLANG

2.1 Syntax and semantics
We assume a su�cient supply of matrix variables, which

serve to indicate the inputs to expressions in MATLANG.
The syntax of MATLANG expressions is defined by the
grammar:

e ::= M (matrix variable)

| let M = e1 in e2 (local binding)

| e⇤ (conjugate transpose)

| 1(e) (one-vector)

| diag(e) (diagonalization of a vector)

| e1 · e2 (matrix multiplication)

| apply[f](e1, . . . , en) (pointwise application, f 2 ⌦)

In the last rule, f is the name of a function f : Cn !
C, where C denotes the complex numbers. Formally, the
syntax of MATLANG is parameterized by a repertoire ⌦ of
such functions, but for simplicity we will not reflect this in
the notation. We will see various examples of MATLANG

expressions below.
To define the semantics of MATLANG, we first define the

basic matrix operations. Following practical matrix sub-
languages such as those of R or MATLAB, we will work
throughout with matrices over the complex numbers. How-
ever, a real-number version of the language could be defined
as well.

Transpose: If A is a matrix then A⇤ is its conjugate trans-
pose. So, if A is an m⇥n matrix then A⇤ is an n⇥m
matrix and the entry A⇤

i,j is the complex conjugate of
the entry Aj,i.

One-vector: If A is an m⇥n matrix then 1(A) is the m⇥1
column vector consisting of all ones.

SIGMOD Record, March 2019 (Vol. 48, No. 1) 61

1

✓
2

p
3 4

4 5 6

◆
=

✓
1
1

◆
diag

✓
6
7

◆
=

✓
6 0
0 7

◆

apply[�̇](

0

@
1 1 1
0 1 1
0 0 0

1

A ,

0

@
0 0 1
0 1 0
1 0 1

1

A) =

0

@
1 1 0
0 0 1
0 0 0

1

A

Figure 1: Some basic matrix operations of
MATLANG.

Diag: If v is an m ⇥ 1 column vector then diag(v) is the
m⇥m diagonal square matrix with v on the diagonal
and zero everywhere else.

Matrix multiplication: If A is an m ⇥ n matrix and B
is an n ⇥ p matrix then the well known matrix multi-
plication AB is defined to be the m ⇥ p matrix where
(AB)i,j =

Pn
k=1 Ai,kBk,j . In MATLANG we explic-

itly denote this as A · B.

Pointwise application: If A(1), . . . , A(n) are ma-
trices of the same dimensions m ⇥ p, then
apply[f](A(1), . . . , A(n)) is the m ⇥ p matrix C

where Ci,j = f(A(1)
i,j , . . . , A(n)

i,j).

example 2.1. The operations 1(A), diag(v), and
apply[f](A(1), . . . , A(n)) are illustrated in Figure 1. In
the pointwise application example, we use the function �̇
defined by x �̇ y = x � y if x and y are both real numbers
and x � y, and x �̇ y = 0 otherwise.

The formal semantics of MATLANG expressions is de-
fined in a straightforward manner. Expressions will be
evaluated over instances where an instance I is a func-
tion, defined on a nonempty finite set var(I) of matrix vari-
ables, that assigns a matrix to each element of var(I). The
rules that allow to derive that an expression e, on an in-
stance I, successfully evaluates to a matrix A, denoted by
e(I) = A, is defined recursively as follows. If M 2 var(I),
then M(I) := I(M). If e1(I) = A and e2(I[M := A]) = B,
where I[M := A] is the instance obtained from I by map-
ping M to the matrix A, then (let M = e1 in e2)(I) := B.
We have e⇤(I) := (e(I))⇤, (1(e))(I) := 1(e(I)), and if e(I) is
a column vector, then (diag(e))(I) := diag(e(I)). Moreover,
if the number of columns of e1(I) is equal to the number of
rows of e2(I), then (e1 · e2)(I) := e1(I) · e2(I). Finally, if
ek(I) for k 2 {1, . . . , n} all have the same dimensions, then
apply[f](e1, . . . , en) := apply[f](e1(I), . . . , en(I)).

The reason why an evaluation may not succeed (i.e., e(I)
may not be defined) is that diag, apply, and matrix multipli-
cation have conditions on the dimensions of matrices that
need to be satisfied for the operations to be well-defined.

example 2.2 (Scalars). As a first example we show
how to express scalars (elements in C). Obviously, in prac-
tice, scalars would be part of the language. In this pa-
per, however, we are interested in expressiveness, so we
start from a minimal language (MATLANG) and then see
what is expressible in this language. To express a scalar
c 2 C, consider (by abuse of notation) the constant func-
tion c : C ! C : z 7! c and the MATLANG expression

c := apply[c]
�
1(1(M)⇤)

�
.

Regardless of the matrix assigned to M , the expression eval-
uates to the 1 ⇥ 1 matrix whose unique entry is scalar c.

example 2.3 (Scalar multiplication). We can
also express scalar multiplication of a matrix by a scalar,
i.e., the operation which multiplies every entry of a matrix
by the same scalar. Indeed, let c be a scalar and consider
the MATLANG expression

let O = 1(M) · c(M) · (1(M⇤))⇤
in apply[⇥](O, M),

where c is the scalar expression from the previous example.
If M is assigned an m ⇥ n matrix A, then c(A) returns the
1 ⇥ 1 matrix [c] and in variable O we compute the m ⇥ n
matrix where every entry equals c. Then pointwise multipli-
cation ⇥ with returns x⇥y on input (x, y) is used to do the
scalar multiplication of A by c. This example generalizes in
a straightforward manner to

apply[⇥]
�
1(e2) · e1 · (1(e⇤

2))
⇤, e2

�
,

where e1 and e2 are MATLANG expressions such that e1(I)
is a 1 ⇥ 1-matrix for any instance I. It should be clear
that this expression evaluates to the scalar multiplication of
e2(I) by e1(I) for any I. We use e1 � e2 as a shorthand
notation for this expression. For example, c� e2 represents
the scalar multiplication of e2 by the scalar c.

example 2.4 (Google matrix). Let A be the adja-
cency matrix of a directed graph (modeling the Web graph)
on n nodes numbered 1, . . . , n. Let 0 < d < 1 be a fixed
“damping factor”. Let ki denote the outdegree of node i.
For simplicity, we assume ki is nonzero for every i. Then
the Google matrix [9, 6] of A is the n ⇥ n matrix G defined
by Gi,j = dAij/ki + (1 � d)/n. The calculation of G from
A can be expressed in MATLANG as follows:

let J = 1(A) · 1(A)⇤
in

let B = apply[/](A, A · J) in

let N = 1(A)⇤ · 1(A) in

apply[+](d � B, (1 � d) �
�
apply[1/x](N)

�
� J)

In variable J we compute the n ⇥ n matrix where every
entry equals one. In A·J we compute the n⇥n matrix where
all entries in the ith row equal ki. An n ⇥ n matrix holding
the entries Aij/ki is computed in B. In N we compute the
1⇥1 matrix containing the value n. The pointwise functions
applied are addition, division, and reciprocal. We use the
shorthand for constants (d and 1 � d) from Example 2.2,
and � from Example 2.3.

2.2 Types and schemas
We now introduce a notion of schema, which assigns types

to matrix names, so that expressions can be type-checked
against schemas. We already remarked the need for this.
Indeed, due to conditions on the dimensions of matrices,
MATLANG expressions are not well-defined on all instances.
For example, if I is an instance where I(M) is a 3⇥4 matrix
and I(N) is a 2 ⇥ 4 matrix, then the expression M · N is
not defined on I. The expression M · N⇤, however, is well-
defined on I.

Our types need to be able to guarantee equalities between
numbers of rows or numbers of columns, so that apply and
matrix multiplication can be type-checked. Our types also
need to be able to recognize vectors, so that diag can be
type-checked.

Formally, we assume a su�cient supply of size symbols,
which we will denote by the letters ↵, �, �. A size sym-
bol represents the number of rows or columns of a matrix.

62 SIGMOD Record, March 2019 (Vol. 48, No. 1)

Together with an explicit 1, we can indicate arbitrary ma-
trices as ↵⇥�, square matrices as ↵⇥↵, column vectors as
↵⇥1, row vectors as 1⇥↵, and scalars as 1⇥1. Formally, a
size term is either a size symbol or an explicit 1. A type is
then an expression of the form s1 ⇥ s2 where s1 and s2 are
size terms. Finally, a schema S is a function, defined on a
nonempty finite set var(S) of matrix variables, that assigns
a type to each element of var(S).

The rules that allow to derive that an expression e over a
schema S successfully infers an output type ⌧ , denoted by
S ` e : ⌧ , are defined recursively as follows. If M 2 var(S),
then S ` M : S(M). If S ` e1 : ⌧1 and S[M := ⌧1] ` e2 : ⌧2,
where S[M := ⌧] denotes the schema that is obtained from
S by mapping M to the type ⌧ , then S ` let M = e1 in e2 :
⌧2. If S ` e : s1⇥s2, then S ` e⇤ : s2⇥s1 and S ` 1(e) : s1⇥
1. If S ` e : s⇥1, then S ` diag(e) : s⇥s. If S ` e1 : s1 ⇥s2

and S ` e2 : s2 ⇥ s3, then S ` e1 · e2 : s1 ⇥ s3. Finally,
S ` ek : ⌧ for k 2 1, . . . , n with n > 0 and f : Cn ! C,
then S ` apply[f](e1, . . . , en) : ⌧ .

When we cannot infer a type, we say e is not well-typed
over S. For example, when S(M) = ↵⇥� and S(N) = �⇥�,
then the expression M · N is not well-typed over S. The
expression M ·N⇤, however, is well-typed with output type
↵⇥ �.

To establish the soundness of the type system, we need
a notion of conformance of an instance to a schema.

Formally, a size assignment � is a function from size sym-
bols to positive natural numbers. We extend � to any size
term by setting �(1) = 1. Now, let S be a schema and I
an instance with var(I) = var(S). We say that I is an in-
stance of S if there is a size assignment � such that for all
M 2 var(S), if S(M) = s1⇥s2, then I(M) is a �(s1)⇥�(s2)
matrix. In that case we also say that I conforms to S by
the size assignment �.

Proposition 2.5 (Safety). If S ` e : s1 ⇥ s2, then
for every instance I conforming to S, by size assignment �,
the matrix e(I) is well-defined and has dimensions �(s1) ⇥
�(s2).

3. EXPRESSIVE POWER OF MATLANG

3.1 Relational representation of matrices
It is natural to represent an m⇥n matrix A by a ternary

relation

Rel2(A) := {(i, j, Ai,j) | i 2 {1, . . . , m}, j 2 {1, . . . , n}}.

In the special case where A is an m ⇥ 1 matrix (column
vector), A can also be represented by a binary relation
Rel1(A) := {(i, Ai,1) | i 2 {1, . . . , m}}. Similarly, a
1 ⇥ n matrix (row vector) A can be represented by
Rel1(A) := {(j, A1,j) | j 2 {1, . . . , n}}. Finally, a 1 ⇥ 1
matrix (scalar) A can be represented by the unary singleton
relation Rel0(A) := {(A1,1)}.

Note that in MATLANG, we perform calculations on ma-
trix entries, but not on row or column indices. This fits
well to the relational model with aggregates as formalized
by Libkin [30]. In this model, the columns of relations are
typed as“base”, indicated by b, or“numerical”, indicated by
n. In the relational representations of matrices presented
above, the last column is of type n and the other columns
(if any) are of type b. In particular, in our setting, numer-
ical columns hold complex numbers. We now rephrase our
relational encoding more formally in this setting.

That is, we assume a supply of relation variables, which,
for convenience, we can take to be the same as the matrix
variables. A relation type is a tuple of b’s and n’s. A
relational schema S is a function, defined on a nonempty
finite set var(S) of relation variables, that assigns a relation
type to each element of var(S).

To define relational instances, we assume a countably in-
finite universe dom of abstract atomic data elements. For
notational convenience, we assume that the natural num-
bers are contained in dom.

Let ⌧ be a relation type. A tuple of type ⌧ is a tuple
(t(1), . . . , t(n)) of the same arity as ⌧ , such that t(i) 2 dom
when ⌧(i) = b, and t(i) is a complex number when ⌧(i) = n.
A relation of type ⌧ is a finite set of tuples of type ⌧ . An
instance of a relational schema S is a function I defined
on var(S) so that I(R) is a relation of type S(R) for every
R 2 var(S).

The matrix data model can now be formally connected
to the relational data model, as follows. Let ⌧ = s1 ⇥ s2 be
a matrix type. Let us call ⌧ a general type if s1 and s2 are
both size symbols; a vector type if s1 is a size symbol and
s2 is 1, or vice versa; and the scalar type if ⌧ is 1 ⇥ 1. To
every matrix type ⌧ we associate a relation type

Rel(⌧) :=

8
><

>:

(b,b,n) if ⌧ is a general type;

(b,n) if ⌧ is a vector type;

(n) if ⌧ is the scalar type.

Then to every matrix schema S we associate the relational
schema Rel(S) where Rel(S)(M) = Rel(S(M)) for every
M 2 var(S). For each instance I of S, we define the in-
stance Rel(I) over Rel(S) by

Rel(I)(M) :=

8
><

>:

Rel2(I(M)) if S(M) is a general type;

Rel1(I(M)) if S(M) is a vector type;

Rel0(I(M)) if S(M) is the scalar type.

3.2 To relational algebra with summation
Given the representation of matrices by relations, we now

show that MATLANG can be simulated in the relational al-
gebra with aggregates. Actually, the only aggregate oper-
ation we need is summation. The relational algebra with
summation extends the well-known relational algebra for
relational databases and is defined as follows. For a full
formal definition, see [30]. For our purposes it su�ces to
highlight the following about the relational algebra with
summation. Expressions are built up from relation names
using the classical operations union, set di↵erence, Carte-
sian product (⇥), selection (�), and projection (⇡), plus
two new operations: function application and summation.
For selection, we only use equality and nonequality compar-
isons on base columns. No selection on numerical columns
will be needed in our setting. Function application and
summation are defined as follows.

• For any function f : Cn ! C, the operation apply[f ;
i1, . . . , in] can be applied to any relation r having
{i1, . . . , in} as a subset of its set of numerical columns.
The result is the relation {(t, f(t(i1), . . . , t(in))) | t 2
r}, appending a numerical column to r. We allow
n = 0, i.e., constants f .

• The operation sum[i; i1, . . . , in] can be applied to any
relation r having columns i, i1, . . . , in, where column
i must be numerical. In our setting we only need the

SIGMOD Record, March 2019 (Vol. 48, No. 1) 63

operation in cases where columns i1, . . . , in are base
columns. The result of the operation is the relation

n�
t(i1), . . . , t(in),

X

t02group[i1,...,in](r,t)

t0(i)
� ��� t 2 r

o
,

where group[i1, . . . , in](r, t) is equal to
�
t0 2 r

�� t0(i1) = t(i1) ^ · · · ^ t0(in) = t(in)

.

Again, n can be zero, in which case the result is a
singleton.

Given that relations are typed, one can define well-
typedness for expressions in the relation algebra with
summation, and define the output type. We omit this
definition here, as it follows a well-known methodology
[40] and is analogous to what we have already done for
MATLANG in Section 2.2.

Theorem 3.1. Let S be a matrix schema, and let e be a
MATLANG expression that is well-typed over S with output
type ⌧ . Let ` = 2, 1, or 0, depending on whether ⌧ is
general, a vector type, or scalar, respectively.

1. There exists an expression Rel(e) in the relational al-
gebra with summation that is well-typed over Rel(S)
with output type Rel(⌧) such that for every instance I
of S, we have Rel `(e(I)) = Rel(e)(Rel(I)).

2. The expression Rel(e) uses neither set di↵erence, nor
selection conditions on numerical columns.

3. The only functions used in Rel(e) are those used in
pointwise applications in e; complex conjugation; mul-
tiplication of two numbers; and the constant functions
0 and 1.

3.3 To relational calculus with summation
We can sharpen Theorem 3.1 by working in the relational

calculus with aggregates. In this logic, we have base vari-
ables and numerical variables. Base variables can be bound
to base columns of relations, and compared for equality.
Numerical variables can be bound to numerical columns,
and can be equated to function applications and aggregates.
We will not recall the syntax formally, see [30] for a full def-
inition. It turns out that when simulating MATLANG ex-
pression in the relational calculus with aggregates we only
need formulas with at most three base variables.

Proposition 3.2. Let S, e, ⌧ , and ` as in Theorem 3.1.
For every MATLANG expression e there is a formula 'e

over Rel(S) in the relational calculus with summation, such
that

1. If ⌧ is general, 'e(i, j, z) has two free base variables
i and j and one free numerical variable z; if ⌧ is a
vector type, we have 'e(i, z); and if ⌧ is scalar, we
have 'e(z).

2. For every instance I, the relation defined by 'e on
Rel(I) equals Rel`(e(I)).

3. The formula 'e uses only three distinct base variables.
The functions used in pointwise applications in 'e are
as in the statement of Theorem 3.1. Furthermore,
'e neither uses equality conditions between numeri-
cal variables nor equality conditions on base variables
involving constants.

3.4 Expressing graph queries
We now express relational queries as matrix queries. This

works best for binary relations, or graphs, which we can
represent by their adjacency matrices.

Formally, we define a graph schema to be a relational
schema where every relation variable is assigned the type
(b,b) of arity two. We define a graph instance as an in-
stance I of a graph schema, where the active domain of I
(i.e., the domain elements that occur in some tuple of some
relation of I) equals {1, . . . , n} for some positive natural
number n.

To every graph schema S we associate a matrix schema
Mat(S), where (Mat(S))(R) = ↵⇥↵ for every R 2 var(S),
for a fixed size symbol ↵. So, all matrices are square ma-
trices of the same dimension. Let I be a graph instance of
S, with active domain {1, . . . , n}. We will denote the n⇥n
adjacency matrix of a binary relation r over {1, . . . , n} by
Adj I(r). Now any such instance I is represented by the
matrix instance Mat(I) over Mat(S), where Mat(I)(R) =
Adj I(I(R)) for every R 2 var(S).

A graph query over a graph schema S is a function that
maps each graph instance I of S to a binary relation on the
active domain of I. We say that a MATLANG expression e
expresses the graph query q if e is well-typed over Mat(S)
with output type ↵ ⇥ ↵, and for every graph instance I of
S, we have Adj I(q(I)) = e(Mat(I)).

We can now give a partial converse to Theorem 3.1.
We assume active-domain semantics for first-order logic
[1]. Note that the following result deals only with pure
first-order logic, without aggregates or numerical columns.

Theorem 3.3. Every graph query expressible in FO3

(first-order logic with equality, using at most three distinct
variables) is expressible in MATLANG. The only functions
needed in pointwise applications are boolean functions on
{0, 1}, and testing if a number is positive.

We can complement the above theorem by showing that
the quintessential first-order query requiring four variables
is not expressible.

Proposition 3.4. The graph query over a single binary
relation R that maps I to I(R) if I(R) contains a four-
clique, and to the empty relation otherwise, is not express-
ible in MATLANG.

We conclude by showing that MATLANG cannot express
the transitive-closure graph query which maps a graph to
its transitive closure. This follows from the locality of the
calculus with aggregates [30].

Proposition 3.5. The graph query over a single binary
relation R that maps I to the transitive-closure of I(R) is
not expressible in MATLANG.

4. MATRIX INVERSION
We now consider the extension of MATLANG with matrix

inversion. Let S be a schema and e be an expression that is
well-typed over S, with output type of the form ↵⇥↵. Then
the expression e�1 is also well-typed over S, with the same
output type ↵⇥↵. The semantics is defined as follows. For
an instance I, if e(I) is an invertible matrix, then e�1(I) is
defined to be the inverse of e(I); otherwise, it is defined to
be the zero square matrix of the same dimensions as e(I).
The extension of MATLANG with inversion is denoted by
MATLANG + inv.

64 SIGMOD Record, March 2019 (Vol. 48, No. 1)

example 4.1 (PageRank). Recall Example 2.4 where
we computed the Google matrix of A. In the process we
already showed how to compute the n ⇥ n matrix B defined
by Bi,j = Ai,j/ki, and the scalar n. We use eB and en to
denote the corresponding MATLANG expressions. Let I be
the n⇥n identity matrix, and let 1 denote the n⇥1 column
vector consisting of all ones. The PageRank vector v of A
can be computed as follows [14]:

v =
1 � d

n
(I � dB)�11.

This calculation is readily expressed in MATLANG + inv as

(1 � d) � (apply[1/x](en))�
�
apply[�](diag(1(M)), d � eB)

��1 · 1(M).

example 4.2 (Transitive closure). The reflexive-
transitive closure of a binary relation is expressible in
MATLANG + inv. Let A be the adjacency matrix of a
binary relation r on {1, . . . , n}. Let I be the n ⇥ n identity
matrix, expressible as diag(1(A)). Let en be the expression
computing the scalar n. The sum of the absolute values
of the entries of each column of B = 1

n+1A is strictly

less than 1, so S =
P1

k=0 Bk converges, and is equal
to (I � B)�1 [17, Lemma 2.3.3]. Now (i, j) belongs to
the reflexive-transitive closure of r if and only if Si,j is
nonzero. Thus, we can compute the reflexive-transitive
closure of r by evaluating

let M = apply[�]
�
diag(1(M)), apply[1/(x+1)](en)�M

�
in

apply[6= 0](M�1)

by assigning matrix variable M to A. Here, 6= 0 is the
function which returns 1 if the value is nonzero and 0 oth-
erwise. We can express the transitive closure by multiplying
the above expression by M .

Given our earlier observation that the transitive-closure
query cannot be expressed in MATLANG (Proposition 3.5)
and the MATLANG + inv expression given in the previous
example which does express this query, we may conclude:

Theorem 4.3. MATLANG+ inv is strictly more powerful
than MATLANG in expressing graph queries.

Once we have the transitive closure, we can do many
other things such as checking bipartiteness of undirected
graphs, checking connectivity, and checking cyclicity. Using
Theorem 3.3 one can show that MATLANG is able to reduce
these queries to the transitive-closure query.

5. EIGENVECTORS
We next consider the extension of MATLANG with an

operation eigen. Formally, we define the operation eigen

as follows. Let A be an n ⇥ n matrix. Recall that A is
called diagonalizable if there exists a basis of Cn consisting
of eigenvectors of A. In that case, there also exists such a
basis where eigenvectors corresponding to the same eigen-
value are orthogonal. Accordingly, we define eigen(A) to
return an n ⇥ n matrix, the columns of which form a basis
of Cn consisting of eigenvectors of A, where eigenvectors
corresponding to a same eigenvalue are orthogonal. If A is
not diagonalizable, we define eigen(A) to be the n ⇥ n zero
matrix.

Note that eigen is nondeterministic; in principle there are
infinitely many possible results. This models the situation
in practice where numerical packages such as R or MAT-

LAB return approximations to the eigenvalues and a set of
corresponding eigenvectors. Eigenvectors, however, are not
unique. In fact, there are infinitely many eigenvectors.

Hence, some care must be taken in extending MATLANG

with the eigen operation. Syntactically, as for inversion,
whenever e is a well-typed expression with a square out-
put type, we now also allow the expression eigen(e), with
the same output type. Semantically, however, the semantic
rules of MATLANG must be adapted so that they do not
infer statements of the form e(I) = B, but rather of the
form B 2 e(I), i.e., B is a possible result of e(I). The
let-construct now becomes crucial; it allows us to assign a
possible result of eigen to a new variable, and work with
that intermediate result consistently.

example 5.1 (Rank of a matrix). First, we
remark that one can show that the diagonal matrix con-
taining the eigenvalues ⇤ corresponding to the matrix
B of eigenvectors computed by eigen(A) is expressible in
MATLANG + eigen. Hence we allow a shorthand notation
where eigen(A) obtains the tuple (B, ⇤) instead of just B.
We then agree that ⇤, like B, is a zero matrix if A is not
diagonalizable.

Since the rank of a diagonalizable matrix equals the num-
ber of nonzero entries in its diagonal form, we can express
the rank of a diagonalizable matrix A as follows:

let (B, ⇤) = eigen(A) in 1(A)⇤ · apply[6= 0](⇤) · 1(A).

Using a known argument from linear algebra we obtain
that MATLANG + inv is subsumed by MATLANG + eigen.

Theorem 5.2. Matrix inversion is expressible in
MATLANG + eigen.

An interesting open problem is the following: Are there
graph queries expressible deterministically in MATLANG +
eigen, but not in MATLANG + inv?

6. THE EVALUATION PROBLEM
We next consider the evaluation problem of expressions

in our most expressive language MATLANG+eigen. Naively,
the evaluation problem asks, given an input instance I and
an expression e, to compute the result e(I). There are some
issues with this naive formulation, however. Indeed, in our
theory we have been working with arbitrary complex num-
bers. How do we even represent the input? Notably, the
eigen operation on a matrix with only rational entries may
produce irrational entries. In fact, the eigenvalues of an
adjacency matrix (even of a tree) need not even be defin-
able in radicals [16]. Practical systems, of course, apply
techniques from numerical mathematics to compute ratio-
nal approximations. But it is still theoretically interesting
to consider the exact evaluation problem. For a treatise on
computations of eigenvectors, inverses, and other matrix
notions, we refer to [17].

Our approach is to represent the output symbolically,
following the idea of constraint query languages [23, 28].
Specifically, we can define the input-output relation of an
expression, for given dimensions of the input matrices, by
an existential first-order logic formula over the reals. Such

SIGMOD Record, March 2019 (Vol. 48, No. 1) 65

formulas are built from real variables, integer constants, ad-
dition, multiplication, equality, inequality (<), disjunction,
conjunction, and existential quantification.

Any m ⇥ n matrix A can be represented by a tuple
of 2mn real numbers. Indeed, let ai,j = <Ai,j (the real
part of a complex number), and let bi,j = =Ai,j (the
imaginary part). Then A can be represented by the
tuple (a1,1, b1,1, a1,2, b1,2, . . . , am,n, bm,n). The next result
introduces the variables xM,i,j,<, xM,i,j,=, yi,j,<, and yi,j,=,
where the x-variables describe an arbitrary input matrix
I(M) and the y-variables describe an arbitrary possible
output matrix e(I).

In the following, an input-sized expression consists of a
schema S, an expression e in MATLANG + eigen that is
well-typed over S with output type t1 ⇥ t2, and a size as-
signment � defined on the size symbols occurring in S. For
complexity considerations, we assume the sizes given in �
are coded in unary.

Theorem 6.1. There exists a polynomial-time com-
putable translation that maps any input-sized expression e
to an existential first-order formula e over the vocabulary
of the reals, expanded with symbols for the functions used
in pointwise applications in e, such that

1. Formula e has the following free variables:

• For every M 2 var(S), let S(M) = s1⇥s2. Then
 e has the free variables xM,i,j,< and xM,i,j,=,
for i = 1, . . . ,�(s1) and j = 1, . . . ,�(s2).

• In addition, e has the free variables ye,i,j,< and
ye,i,j,=, for i = 1, . . . ,�(t1) and j = 1, . . . ,�(t2).

The set of these free variables is denoted by
FV(S, e,�).

2. Any assignment ⇢ of real numbers to these variables
specifies, through the x-variables, an instance I con-
forming to S by �, and through the y-variables, a
�(t1) ⇥ �(t2) matrix B.

3. Formula e is true over the reals under such an as-
signment ⇢, if and only if B 2 e(I).

The existential theory of the reals is decidable; actually,
the full first-order theory of the reals is decidable [3, 4].
But, specifically the class of problems that can be reduced
in polynomial time to the existential theory of the reals
forms a complexity class on its own, known as 9R [36, 37].
This class lies between NP and PSPACE. The above the-
orem implies that the intensional evaluation problem for
MATLANG+ eigen belongs to this complexity class. We de-
fine this problem as follows. The idea is that an arbitrary
specification, expressed as an existential formula � over the
reals, can be imposed on the input-output relation of an
input-sized expression.

Definition 6.2. The intensional evaluation problem is
a decision problem that takes as input: (1) an input-sized
expression (S, e,�), where all functions used in pointwise
applications are explicitly defined using existential formulas
over the reals, and (2) an existential formula � with free
variables in FV(S, e,�).

The problem asks if there exists an instance I conforming
to S by � and a matrix B 2 e(I) such that (I, B) satisfies
�.

An input (S, e,�,�) is a yes-instance to the intensional
evaluation problem precisely when the existential sentence

9FV(S, e,�)(e ^ �) is true in the reals, where e is the
formula obtained by Theorem 6.1. Hence we can conclude:

Corollary 6.3. The intensional evaluation problem for
MATLANG + eigen belongs to 9R.

Since the full first-order theory of the reals is decidable,
our theorem implies many other decidability results, includ-
ing that both the equivalence problem and the determinacy
problem for input-sized expressions are decidable.

Corollary 6.3 gives an 9R upper bound on the combined
complexity of query evaluation [41]. Our final result is a
matching lower bound, already for data complexity alone.

Theorem 6.4. There exists a fixed schema S and a fixed
expression e in MATLANG + eigen, well-typed over S, such
that the following problem is hard for 9R: Given an inte-
ger instance I over S, decide whether the zero matrix is a
possible result of e(I). The pointwise applications in e use
only simple functions definable by quantifier-free formulas
over the reals.

7. CONCLUSION
There is a commendable trend in contemporary database

research to leverage and considerably extend techniques
from database query processing and optimization to sup-
port large-scale linear algebra computations. In principle,
data scientists could then work directly in SQL or related
languages. Still, some users will prefer to continue using the
matrix languages they are more familiar with. Supporting
these languages is also important so that existing code need
not be rewritten.

From the perspective of database theory, it then becomes
relevant to understand the expressive power of these lan-
guages as well as possible. In this paper we have proposed a
framework for viewing matrix manipulation from the point
of view of expressive power of database query languages.
Our results formally confirm that the basic set of matrix
operations o↵ered by systems in practice, formalized here
in the language MATLANG+ inv+ eigen, really is adequate
for expressing a range of linear algebra techniques and pro-
cedures.

Deep inexpressibility results have been developed for log-
ics with rank operators [32]. Although these results are
mainly concerned with finite fields, they might still provide
valuable insight in our open questions. Also, we have not
covered all standard constructs from linear algebra. For
instance, it may be worthwhile to extend our framework
with the operation of putting matrices in upper triangu-
lar form, with the Gram-Schmidt procedure (which is now
partly hidden in the eigen operation), and with the singular
value decomposition.

There also have been proposals to go beyond matrices,
introducing data models and algebra for tensors or multi-
dimensional arrays [33, 24, 34]. It would be interesting to
understand the expressive power of such tensor languages.

Acknowledgments.
We thank Bart Kuijpers, Lauri Hella, Wied Pakusa,

Christoph Berkholz, and Anuj Dawar for helpful discus-
sions, and Wim Martens for useful comments on the text.
R.B. is a postdoctoral fellow of the Research Foundation –
Flanders (FWO).

66 SIGMOD Record, March 2019 (Vol. 48, No. 1)

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] M. Abo Khamis, H. Ngo, and A. Rudra. FAQ:

questions asked frequently. In Proc. PODS 2016.
ACM Press, 2016.

[3] D. Arnon. Geometric reasoning with logic and
algebra. Artif. Intell., 37:37–60, 1988.

[4] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in
Real Algebraic Geometry. Springer, second edition,
2008.

[5] M. Boehm et al. SystemML: declarative machine
learning on Spark. Proc. VLDB Endow,
9(13):1425–1436, 2016.

[6] A. Bonato. A Course on the Web Graph, volume 89
of Graduate Studies in Mathematics. American
Mathematical Society, 2008.

[7] R. Brijder, F. Geerts, J. Van den Bussche, and
T. Weerwag. On the expressive power of query
languages for matrices. ACM TODS, 2019. To appear.

[8] R. Brijder, M. Gyssens, and J. Van den Bussche. On
matrices and K-relations. arXiv:1904.03934, 2019.

[9] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Comput. Networks
ISDN, 30:107–117, 1998.

[10] L. Chen, A. Kumar, J. Naughton, and J. Patel.
Towards linear algebra over normalized data. Proc.
VLDB Endow, 10(11):1214–1225, 2017.

[11] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick,
and T. Zeume. Reachability is in DynFO. J. ACM,
65(5):33:1–33:24, 2018.

[12] A. Dawar. On the descriptive complexity of linear
algebra. In W. Hodges and R. de Queiroz, editors,
Proc. WoLLIC 2008, volume 5110 of LNCS, pages
17–25. Springer, 2008.

[13] A. Dawar, M. Grohe, B. Holm, and B. Laubner.
Logics with rank operators. In Proc. LICS 2009,
pages 113–122, 2009.

[14] G. Del Corso, A. Gulli, and F. Romani. Fast
PageRank computation via a sparse linear system.
Internet Math., 2(3):251–273, 2005.

[15] F. Geerts. On the expressive power of linear algebra
on graphs. In Proc. ICDT 2019, volume 127 of
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2019.

[16] C. Godsil. Some graphs with characteristic
polynomials which are not solvable by radicals. J.
Graph Theory, 6:211–214, 1982.

[17] G. Golub and C. Van Loan. Matrix Computations.
The Johns Hopkins University Press, fourth edition,
2013.

[18] T. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Proc. PODS 2007, pages
31–40. ACM Press, 2007.

[19] J. Hellerstein et al. The MADlib analytics library: Or
MAD skills, the SQL. Proc. VLDB Endow,
5(12):1700–1711, 2012.

[20] B. Holm. Descriptive Complexity of Linear Algebra.
PhD thesis, University of Cambridge, 2010.

[21] D. Hutchison, B. Howe, and D. Suciu. LaraDB: a
minimalist kernel for linear and relational algebra
computation. In Proc. BeyondMR 2007, pages

2:1–2:10, 2007.
[22] K. Iverson. A Programming Language. John Wiley &

Sons, Inc., 1962.
[23] P. Kanellakis, G. Kuper, and P. Revesz. Constraint

query languages. J. Comput. Syst. Sci., 51(1):26–52,
Aug. 1995.

[24] M. Kim. TensorDB and Tensor-Relational Model for
E�cient Tensor-Relational Operations. PhD thesis,
Arizona State University, 2014.

[25] A. Klug. Equivalence of relational algebra and
relational calculus query languages having aggregate
functions. J. ACM, 29(3):699–717, 1982.

[26] P. Kolaitis. On the expressive power of logics on finite
models. In Finite Model Theory and Its Applications,
chapter 2. Springer, 2007.

[27] A. Kunft, A. Alexandrov, A. Katsifodimos, and
V. Markl. Bridging the gap: Towards optimization
across linear and relational algebra. In Proc.
BeyondMR 2016, pages 1:1–1:4, 2016.

[28] G. Kuper, L. Libkin, and J. Paredaens, editors.
Constraint Databases. Springer, 2000.

[29] B. Laubner. The Structure of Graphs and New Logics
for the Characterization of Polynomial Time. PhD
thesis, Humboldt-Universität zu Berlin, 2010.

[30] L. Libkin. Expressive power of SQL. Theor. Comput.
Sci., 296:379–404, 2003.

[31] S. Luo, Z. Gao, M. Gubanov, L. L. Perez, and
C. Jermaine. Scalable linear algebra on a relational
database system. In Proc. ICDE 2017, pages 523–534.
IEEE Computer Society, 2017.

[32] W. Pakusa. Linear Equation Systems and the Search
for a Logical Characterisation of Polynomial Time.
PhD thesis, RWTH Aachen, 2015.

[33] F. Rusu and Y. Cheng. A survey on array storage,
query languages, and systems. arXiv:1302.0103, 2013.

[34] T. Sato. Embedding Tarskian semantics in vector
spaces. arXiv:1703.03193, 2017.

[35] T. Sato. A linear algebra approach to datalog
evaluation. Theory Pract. Log. Prog., 17(3):244–265,
2017.

[36] M. Schaefer. Complexity of some geometric and
topological problems. In D. Eppstein and E. Gansner,
editors, Graph Drawing, volume 5849 of LNCS, pages
334–344. Springer, 2009.

[37] M. Schaefer and D. Štefankovič. Fixed points, Nash
equilibria, and the existential theory of the reals.
Theory Comput. Syst., 60(2):172–193, 2017.

[38] M. Schleich, D. Olteanu, and R. Ciucanu. Learning
linear regression models over factorized joins. In Proc.
SIGMOD 2016, pages 3–18. ACM, 2016.

[39] A. Thomas and A. Kumar. A comparative evaluation
of systems for scalable linear algebra-based analytics.
Proc. VLDB Endow, 11(13):2168–2182, 2018.

[40] J. Van den Bussche, D. Van Gucht, and
S. Vansummeren. A crash course in database queries.
In Proc. PODS 2007, pages 143–154. ACM Press,
2007.

[41] M. Vardi. The complexity of relational query
languages. In Proc. STOC 1982, pages 137–146, 1982.

[42] Y. Zhang, W. Zhang, and J. Yang. I/O-e�cient
statistical computing with RIOT. In Proc. ICDE
2010, pages 1157–1160, 2010.

SIGMOD Record, March 2019 (Vol. 48, No. 1) 67

