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Guest Editor’s Notes 
	

Welcome	to	the	March	2019	issue	of	the	ACM	SIGMOD	Record!		
	
The	new	year	of	2019	begins	with	a	special	issue	on	the	2018	ACM	SIGMOD	Research	Highlight	
Award.	This	 is	an	award	 for	 the	database	community	to	showcase	a	set	of	 research	projects	 that	
exemplify	core	database	research.	In	particular,	these	projects	address	an	important	problem,	rep-
resent	a	definitive	milestone	 in	solving	the	problem,	and	have	 the	potential	of	significant	 impact.	
This	award	also	aims	to	make	the	selected	works	widely	known	in	the	database	community,	to	our	
industry	partners,	and	to	the	broader	ACM	community.		
	
The	award	committee	and	editorial	board	included	Yanlei	Diao,	Zack	Ives,	Wim	Martens,	Jun	Yang,	
and	 Divesh	 Srivastava.	 	We	 solicited	 articles	 from	 PODS	 2018,	 SIGMOD	 2018,	 VLDB	 2018,	 ICDE	
2018,	EDBT	2018,	and	ICDT	2018,	as	well	as	from	community	nominations.	Through	a	careful	re-
view	process	nine	articles	were	 finally	selected	as	2018	Research	Highlights.	The	authors	of	each	
article	worked	closely	with	an	associate	editor	to	rewrite	the	article	into	a	compact	8-page	format,	
and	 improved	 it	 to	appeal	 to	 the	broad	data	management	 community.	 In	addition,	 each	 research	
highlight	is	accompanied	by	a	one-page	technical	perspective	written	by	our	associate	editor	or	an	
external	expert	on	the	topic	presented	in	the	article.		The	technical	perspective	provides	the	reader	
with	 an	 overview	 of	 the	 background,	 the	 motivation,	 and	 the	 key	 innovation	 of	 the	 fea-
tured	research	highlight,	as	well	as	its	scientific	and	practical	significance.		
	
The	2018	research	highlights	cover	a	broad	set	of	topics,	including	(a)	a	combination	of	applied	and	
theoretical	research	to	understand	why	regular	path	queries	in	graph	database	applications	behave	
better	than	worst-case	complexity	results	suggest	(“Bridging	Theory	and	Practice	with	Query	Log	
Analysis”);	(b)	a	novel	programming	framework	and	system	for	systemizing	the	implementation	of	
privacy	algorithms.	(“єktelo:	A	Framework	for	Defining	Differentially-Private	Computations”);	(c)	a	
principled	approach	to	learn	and	reason	about	the	entity	matching	classification	task	over	a	vector	
of	similarity	scores	(“Entity	Matching	with	Quality	and	Error	Guarantees”);	(d)	a	rigorous	demon-
stration	that	theoretical	ideas	for	enumerating	the	answers	to	a	query	can	actually	work	in	practice	
and	deal	with	updates	to	the	data	(“Efficient	Query	Processing	for	Dynamically	Changing	Datasets”);	
(e)	an	innovative	use	of	database	techniques	for	scalable	processing	of	massive	datasets	to	solve	the	
general	 problem	 of	 signal	 reconstruction	 (“Efficient	 Signal	 Reconstruction	 for	 a	 Broad	 Range	 of	
Applications”);	(f)	modeling	the	interaction	between	humans	and	data	systems	to	satisfy	the	user’s	
information	need	as	a	cooperative	two-player	game,	where	the	strategy	to	play	this	game	is	learned	
through	reinforcement	 learning	(“How	Do	Humans	and	Data	Systems	Establish	a	Common	Query	
Language?”);	(g)	a	 first	study	of	 the	expressive	power	of	 linear	algebra,	used	 in	machine	learning	
algorithms,	and	how	it	relates	to	that	of	the	relational	algebra	(“MATLANG:	Matrix	operations	and	
their	 expressive	power”);	 (h)	 the	 first	 algorithms	 for	 random	sampling	 from	data	 streams	 in	 the	
time	decay	model	 (“Online	Model	Management	 via	Temporally	Biased	Sampling”);	 and	 (i)	 a	new	
succinct	data	structure	that	can	filter	for	point	queries,	range	queries,	and	approximate	counts	effi-
ciently	while	balancing	the	various	hardware	and	workload	trade-offs	(“Succinct	Range	Filters”).	
On	behalf	 of	 the	 SIGMOD	Record	Editorial	Board,	 I	 hope	 that	 you	 enjoy	 reading	 the	March	2019	
issue	of	the	SIGMOD	Record!		
	

Divesh	Srivastava	

March	2019	
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Research Highlights: Bridging Theory and Practice with
Query Log Analysis

Leonid Libkin
School of Informatics, University of Edinburgh

libkin@inf.ed.ac.uk

Take a database conference paper and search for “in the
real world” in it; chances are high you will find it. Of course
what is real depends on one’s perspective: for a pure theory
paper it could be what one saw in a systems paper, for a
systems paper it could be an issue that implementors of
DBMSs had to deal with, and for the latter it may be what
the customers need. But to sharpen our research tools, it
helps tremendously to understand that the real “real world”
is, and adjust our (sometimes very elaborate) techniques to
address problems that actually occur.

A nice example of this is analyzing the computational
complexity of database queries. Database theory has de-
veloped an arsenal of tools for this. We know that for many
classes of queries, the complexity is roughly ‖D‖O(‖Q‖) for
a database D and a query Q, where ‖ ‖ means size. Thus,
much research went into the detailed analysis of the struc-
ture of queries that removes ‖Q‖ from the exponent and
replaces it by a small fixed constant. We have a very good
theoretical understanding of such classes, but we know much
less about their relationship with queries that real-world
users write.

Sometimes the situation is even more dramatic and the
complexity of best known algorithms is exponential, e.g.,
c‖D‖ for a constant c. This looks like an non-starter, and
theoretical research tends to dismiss queries of such a com-
plexity. But it shouldn’t. To start with, we have many
examples of problems working well in the real “real world”
and yet having bad theoretical behavior. For example, satis-
fiability is the canonical NP-complete problem, and yet SAT
solvers do very well these days. There are programming lan-
guages whose type inference algorithms require exponential
time. And closer to databases, the current leader among
graph databases, Neo4j, uses an NP-hard query evaluation
algorithm and yet it works well, as is evidenced by their
position in the graph database market.

The reason all these work well in practice is that the com-
plexity analysis considers the worst case, and the worst is
not necessarily what occurs in life. Yes, one can choke a
SAT solver, one can write a simple program whose type will
fill pages, and one can write a graph database query that
will take forever even on a relatively small graph, but these
are not the typical cases. The question then arises: what

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

are the typical cases that one deals with in that real world?
This is the question that the paper by Wim Martens and

Tina Trautner answers for path queries over graphs. To
understand what the real world looks like, one has to ob-
serve it, rather than just make assumptions about it. This
is what they do, by analyzing very large repositories of avail-
able SPARQL queries, and seeing what types of path queries
they use. It is important to look at large query logs, and also
at different ones, as different logs may well have very differ-
ent characteristics and one shouldn’t be making assumptions
about the entire world out there based on a partial view of
it, even if this view has many data points (this point is prob-
ably relevant even beyond analyzing query logs...).

The paper does not stop at analyzing query logs. It takes
the analysis further to answer the following question: why
some graph database queries, while behaving so badly in
theory, actually do well in practice? The type of restrictions
in path queries on graphs one deals with most often is in
the mode in which paths are traversed: either there are no
repeated nodes in paths (i.e., we have simple paths), or there
are no repeated edges (such paths are called trails; this is
the approach that Neo4j takes). Both have long been known
to be NP-hard, in the worst case. From practice, we know
that the trail semantics of Neo4j works well. Why?

The paper answers this question. By analyzing queries
found in the logs, it establishes conditions that simultane-
ously cover a vast majority of real life queries, and at the
same time admit efficient evaluation algorithms. Thus, the
worst case might occur, but it is not that common, and this
tells us that the high theoretical complexity is not seen in
the real world.

This is a very nice combination of applied and theoretical
research. One does not stop at simply analyzing the logs;
instead the authors turn the result of the analysis into a
nontrivial theoretical result that says when query evaluation
is efficient.

I very much hope we shall see more papers of this kind.
Very often the gap between theory and systems is too large in
our community: theoreticians produce results motivated by
their theoretical value, and systems research often finds such
results too far fetched and goes ahead disregarding theoret-
ical developments, hoping for the best essentially (Neo4j’s
NP-hard algorithm is an example: their approach would
have been dismissed by theoreticians, but they went ahead,
and it worked). To close the gap, we need to establish this
back-and-forth between theory and systems, and the paper
you are about to read is one of relatively few but very promi-
nent examples of it. I hope more will follow.
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Bridging Theory and Practice with Query Log Analysis

Wim Martens
University of Bayreuth

wim.martens@uni-bayreuth.de

Tina Trautner
University of Bayreuth

tina.trautner@uni-bayreuth.de

ABSTRACT
Since large structured query logs have recently become avail-
able, we have a new opportunity to gain insights in the types
of queries that users ask. Even though such logs can be quite
volatile, there are various new observations that can be made
about the structure of queries inside them, on which we re-
port here. Furthermore, building on an extensive analysis
that has been done on such logs, we were able to provide
a theoretical explanation why regular path queries in graph
database applications behave better than worst-case com-
plexity results suggest at first sight.

1. INTRODUCTION
The recent availability of large logs of structured queries

provides new research opportunities for the database com-
munity. With millions of queries available for analysis, we
suddenly have a large amount of information that can help
us to identify interesting characteristics of real-world data-
base queries. Such characteristics can then guide our focus
when we want to study certain aspects of query evaluation or
optimization, or if we simply want to understand the types
of questions that users find interesting.

Database research has traditionally always had a strong
focus on searching for subclasses of query languages that
exhibit favorable computational properties. Well-known ex-
amples are the focus on conjunctive queries instead of full-
fledged query languages, Datalog as a subset of Prolog, myr-
iads of fragments of XPath or XQuery in the times of XML
research, or even set semantics of queries (i.e., select distinct
queries), as opposed to bag semantics.

Now that query logs are becoming available, we are ob-
taining hard data against which we can test or justify the
importance of some of the specific problems we have been
studying, and in which we may be able to discover new inter-
esting cases. A nice side-effect for researchers is that, once
we find a specific property of queries to be very prominent
in logs, we immediately have numbers that we can use to
motivate research on this specific property.

This paper is primarily based on the paper “Evaluation
and Enumeration Problems for Regular Path Queries” (pub-
lished in ICDT 2018), but also on “An Analytical Study of
Large SPARQL Query Logs” (published in VLDB 2018)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

However, there is also a snag: the query logs we currently
have exhibit very different characteristics depending on the
data source that is queried [5]. Due to the mixture of robotic
and user-generated queries, these characteristics can even
vary significantly on a day-to-day basis for the same query
log [4]. This has some very important consequences that
we need to keep in mind. First of all, we need to be care-
ful that we don’t focus too much on an aspect that is too
specific, i.e., we would overfit our research. Needless to say,
this is a delicate balance that is challenging to maintain.
Second, studies on query log analysis should not be used
to argue that some property of queries is not interesting.
This is for the simple reason that, even though we may have
“large” amounts of queries available, there is an even larger
amount of queries that we do not have available (or will be-
come important in the future) and we know nothing about.
The old-fashioned elegance of a problem therefore remains
extremely important for guiding research.

In this paper we report on some lessons learned from
analysing over half a billion queries, coming from DBpedia,
Semantic Web Dog Food, LinkedGeoData, BioPortal, Open-
BioMed, British Museum, and WikiData. We also illustrate
how some of the knowledge gained from this analysis could
be used in theoretical research to give an explanation why
certain types of queries seem to behave mostly unproblem-
atically in practice even though their worst-case complexity
is quite high.

2. ANALYSIS OF SPARQL LOGS
To the best of our knowledge, the first study on huge

logs of structured queries was done by Bonifati et al. [5].
The study had a total of about 180M SPARQL queries,
summarized in Table 1. The table mentions, for each of
the logs, its total number of queries (Total) and the num-
ber of queries that could be parsed using Apache Jena 3.0.1
(Valid). From the latter set, duplicates were removed, re-
sulting in the unique queries that could be parsed (Unique).
The queries come from DBpedia, LinkedGeoData (LGD),
BioPortal (BioP), OpenBioMed (BioMed), Semantic Web
Dog Food (SWDF), British Museum (BritM), and Wiki-
Data. The WikiData17 set is very small: it consists of the
user-submitted example queries from Wikidata in February
2017. This first study has since been extended with 170M
DBpedia queries [6] and 208M Wikidata queries [7], adding
up to more than 550 million queries. In this paper we will

https://www.wikidata.org/wiki/Wikidata:SPARQL_
query_service/queries/examples
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Table 1: Query logs in the corpus of [5].

Source Total #Q Valid #Q Unique #Q

DBpedia9/12 28,534,301 27,097,467 13,437,966
DBpedia13 5,243,853 4,819,837 2,628,005
DBpedia14 37,219,788 33,996,480 17,217,448
DBpedia15 43,478,986 42,709,778 13,253,845
DBpedia16 15,098,176 14,687,869 4,369,781

LGD13 1,841,880 1,513,868 357,842
LGD14 1,999,961 1,929,130 628,640

BioP13 4,627,271 4,624,430 687,773
BioP14 26,438,933 26,404,710 2,191,152

BioMed13 883,374 882,809 27,030

SWDF13 13,762,797 13,618,017 1,229,759

BritM14 1,523,827 1,513,534 135,112

WikiData17 309 308 308

Total 180,653,910 173,798,237 56,164,661

primarily focus on the query logs in Table 1, but we will re-
port insights from the other studies [7, 6] whenever relevant.

Size of Queries.
A first important discovery that was made in the logs

is about the size of queries. In [5], this was measured by
counting the number of subject-predicate-object triples in
the queries, which are the SPARQL counterpart of atoms
(or relational predicates) in relational databases. The dis-
tribution in these logs is extremely skewed: if we look in the
Unique queries, over 56% have only a single triple. Even
though there are queries with up to 229 triples, it is the case
that up to six triples are enough to capture over 90% of the
queries and, with up to twelve triples, we capture over 99%.
In Wikidata logs that were recently investigated [7], the dis-
tribution is less skewed, at least for the non-robotic queries.
Here, only 13% of the unique queries have a single triple.
Moreover, one needs up to 9 triples to capture over 90% and
up to 16 triples to capture over 99% of the queries.

Cyclicity.
These observations on the size of queries are important

if we want to understand cyclicity. Cyclicity and acyclicity
of queries is indeed a very important aspect of queries that
has received a huge amount of attention in the literature
(e.g., [11] and the references therein). An important reason
is that queries in practice are assumed to be only mildly
cyclic, which would be good news, since cyclic queries are
more complex to evaluate. Since our standard definitions of
cyclicity require a query to have at least three atoms to be
cyclic [1], and since 78% of the unique queries in Table 1 only
have up to two triples, we already know that the majority
must be acyclic. But the assumption that real world queries
are only mildly cyclic is also strongly confirmed when we
look deeper. Out of all the conjunctive queries, even 99.9%
are acyclic. Again, these numbers slightly shift when we
look into the non-robotic Wikidata queries mentioned be-
fore, where around 97.8% of the unique queries investigated
in [7] are acyclic. In terms of treewidth, we found queries in
the logs with treewidth up to five (if one also allows property

“Henry VIII”

?spouse1

?spouse2

?spouse3

?spouse4

?spouse5

?spouse6

Figure 1: Graphical representation of a highly cyclic
query: a 7-clique containing one constant and six
variables. All edges connecting to Henry VIII are
labeled “married-to” and all edges between the vari-
ables ?spouse1, . . . , ?spouse6 are labeled “! =”. The
query therefore searches for six different spouses of
Henry VIIIth. The query is inspired on a query we
found in the logs of Table 1.

paths). An interesting real-world query with treewidth five
can be found in Figure 1. (The subquery consisting of the
variables is a six-clique, which has treewidth five.)

Query Shapes.
Since so many queries in the logs are acyclic, it also makes

sense to look more closely at their structure. More pre-
cisely, one can consider the graph structure induced by the
subject-predicate-object triples in the queries by considering
each triple (x, y, z) and turning it into two nodes x and z,
connected by an undirected edge. (The construction of the
graph is actually more subtle – sometimes hypergraphs are
required. We refer to [5] for more details.)

For those queries that can be adequately represented as a
graph, the undirected version of this graph was considered
and it was investigated which fractions of the queries are a
single edge, a chain (a connected, acyclic sequence of edges),
a star (is a “central” node, to which chains can be attached),
or a tree. These shapes are intended to be cumulative, so
each shape generalizes the previous one. Considering the
unique conjunctive queries, it turns out that around 78.98%
are a single edge, 98.87% are a chain, 99.81% are a star,
and 99.90% are trees. A visual inspection of the remaining
queries showed that many of them can be seen as flowers,
which are a central node, to which trees or petals can be
attached. Here, a petal consists of two nodes u and v that
are connected by chains. This generalization allowed to cap-
ture 99.94% of the queries. Most of the remaining queries
consisted of multiple connected components. Generalizing
from flower queries to bouquet queries allowed to capture
essentially 100%. Here, a bouquet is a graph in which each
connected component is a flower.

Differences Between Logs.
Even though some trends can be identified in the logs,

there are also some drastic differences. This is a healthy
warning for us: we should not declare that we now un-
derstand what users are interested in. For instance, in the

SIGMOD Record, March 2019 (Vol. 48, No. 1) 7



BioP13 and BioP14 logs, 79.66% and 40.48% of the unique
queries use the GRAPH-operator, whereas this operator only
occurs in 2.71% of the total queries. Bielefeldt et al. [4] ob-
served huge differences in query volumes in Wikidata logs
over different days, mainly due to automatically generated
queries that, consequently, can have huge effect on the types
of queries in the logs. Finally, in the data of Table 1, less
than 1% of the queries use property paths, whereas this
grows to 38% of the unique queries in [7].

3. CASE IN POINT: PATH QUERIES
Regular path queries (RPQs) are a crucial feature of graph

database query languages, since they allow us to answer
queries that involve arbitrarily long paths in graphs using
regular expressions. We give an example. Consider the toy
graph database in Figure 2, which is loosely inspired on a
part of the Wikidata graph. Suppose that we want to find
artists who died at age 27, we can easily do so using a regular
path query. (These artists are known under the name “27
club”. The club has famous members such as Kurt Cobain,
Jimi Hendrix, Janis Joplin, Jim Morrison, and Amy Wine-
house.) For instance, we can retrieve the persons who died
at age 27 with a Cypher-like subquery of the form

CONSTRUCT (x)

MATCH (x:Person)-[:age-at-death]->(y:Integer)

WHERE y = 27

Likewise, artists can be found by the query

CONSTRUCT (x)

MATCH (x:Person)-[:occupation]->()

-[:subclassof*]->(y:Profession)

WHERE y.name = ’artist’

The second query asks for persons whose occupation is a pro-
fession that is connected with a subclassof-path to “artist”.
Here, we used the regular expression subclassof∗ to allow
arbitrarily long paths in which every edge is labeled with
subclassof. Since we may not know in advance how many
subclassof-edges we have to consider, it is very comfort-
able to be able to use the regular path query subclassof∗.
The example also illustrates the robustness of regular path
queries. Even when the graph database changes (e.g., by
introducing an additional profession such as “string instru-
mentalist”), the query still returns the correct results.

Regular path queries or RPQs started as an academic idea
in Cruz et al.’s seminal paper [8] and are nowadays part of
SPARQL, Cypher and Oracle’s PGQL. Although the main
idea behind RPQs is always to match regular expressions
against paths in a graph database, academic research and
real-world systems do not always agree on how this should
be done. The main difference lies in which paths should
be considered for matching, and the most considered candi-
dates are all paths or paths without repeated nodes or edges.
Whereas academic research most commonly allows all paths
(which allow polynomial time algorithms to test if a match-
ing path exists between two given nodes), graph database
systems usually revert to paths without repeated nodes or
edges. There seem to be different reasons why this is so.
First of all, this restriction always ensures that the number
of paths that can match is finite, so one does not have to
deal with infinity. Second, paths without repeated nodes
or edges gives the semantics that some users seem to pre-
fer [Lindaaker, personal communication]. From a theoretical

point of view, however, such paths very quickly lead to in-
tractability. Even testing if a matching path exists between
nodes is NP-complete, see Theorem 1.

3.1 Complexity of Simple Paths and Trails
We briefly want to explain some of the fundamental results

about RPQ evaluation against paths without repeated nodes
or edges. We use edge-labeled graphs as abstractions for
graph databases. To this end, let Σ be a set of labels. A
graph database (with labels in Σ) is a pair G = (V,E),
where V is the finite set of nodes of G and E ⊆ V × Σ× V
is the set of edges. We say that edge e = (u, a, v) is from
node u to node v and has label a. Notice that this definition
allows graphs to have self-loops and multiple edges from u
to v if they have different labels. The size of a graph G,
denoted by |G|, is defined as |G| = |V |+ |E|.

A path from node u to node v in G is a sequence

p = (v0, a1, v1)(v1, a2, v2) · · · (vn−1, an, vn)

of edges in G such that u = v0 and v = vn. By lab(p) we
denote the sequence a1 · · · an of labels on the edges of p. The
length of a path p is its number of edges. A path p is simple
if it has no repeated nodes, that is, all nodes v0, . . . , vn are
pairwise different. It is a trail if it has no repeated edges,
that is, every edge appears only once in p.

Regular path queries are abstracted as regular expres-
sions. Here, ε, and every Σ-symbol is a regular expression;
and if r and s are regular expressions, then so are (r · s),
(r+s), and (r∗). (To improve readability, we use associativ-
ity and the standard priority rules to omit braces in regular
expressions. We usually also omit the outermost braces.)
We use r? to abbreviate r + ε. The size |r| of a regular
expression is the number of occurrences of Σ-symbols in r.
For example, |((a · b) ·a)∗| = 3. We define the language L(r)
of r as usual. A path p matches r if lab(p) ∈ L(r), that
is, the sequence of labels on the edges of p is in the lan-
guage of r. The following two decision problems are central
to evaluation of regular path queries over simple paths and
trails.

SimPath(R)

Given: A graph G = (V,E), two nodes x, y ∈ V ,
and an RPQ r ∈ R.

Question: Is there a simple path from x to y in G
that matches r?

Trail(R)

Given: A graph G = (V,E), two nodes x, y ∈ V ,
and an RPQ r ∈ R.

Question: Is there a trail from x to y in G that
matches r?

We parameterized the problems with a class R of regular
expressions, so that we can discuss variants of these prob-
lems. (If R is just a single regular expression r, then we
simply write SimPath(r) instead of SimPath({r}), and anal-
ogously for Trail.)

Notice that any algorithm that is able to answer RPQs
(i.e., compute all matching paths) while considering simple
paths and trails, is able to solve these decision problems.
So, the complexity of these decision problems is important.
Notice that both problems are trivially in NP. Mendelzon
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name: Jimi Hendrix
aka: James Marshall Hendrix

name: Marilyn Monroe
aka: Norma Jean Baker

name: Brian Jones
aka: Lewis Brian Hopkin Jones

name: Amy Winehouse
aka: Amy Jade Winehouse
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name: musician
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Figure 2: A graph database (as a property graph), inspired on a fragment of WikiData

and Wood studied SimPath and discovered that it becomes
NP-hard very quickly [16]. Items (a) and (b) of the following
theorem come from their work:

Theorem 1. The following problems are NP-complete:
(a) SimPath((aa)∗) (b) SimPath(a∗ba∗)
(c) Trail((aa)∗) (d) Trail(a∗ba∗)

Items (c) and (d) can be obtained by easy reductions from
the two disjoint paths problem, using the standard split-
graph construction from Perl and Shiloach [18] or LaPaugh
and Rivest [12] and the same reductions as for simple paths
used by Mendelzon and Wood [16].

So, not only are SimPath and Trail NP-complete, they are
even NP-complete in cases where the regular path query
is fixed. Furthermore, the expressions for which this NP-
completeness holds can be very small. It is therefore no
surprise that, from a worst-case complexity perspective, it
seems to be a bad idea to build a query language for graph
databases on simple path or trail semantics. We note that
it is understood for which fixed regular expressions SimPath
and Trail are NP-complete [3, 13].

3.2 What About Query Logs?
Once query logs became available, we have been able to

analyze what kind of RPQs actually occur. The study of
Bonifati et al. [5] had 247k SPARQL property paths in
unique queries, which gave us a first impression. Syntac-
tically, SPARQL property paths are extensions of RPQs.
This is important, because it means that the types of regu-
lar expressions we will see are not syntactically constrained
by the query language. On top of the ordinary operators
for RPQs, SPARQL allows operators for wildcards and for
following edges in the reverse direction. This would not be
the case for Cypher, for example. (In Neo4j’s Cypher 3.2
manual, only single labels or wildcards were allowed below
Kleene stars [17]. Cypher 9 is becoming more liberal and
allows disjunction below a Kleene star, see [10, Figure 3:
Syntax of Cypher patterns]. In the near future, Cypher
plans to support full regular path queries [10].)

In Table 2, we provide a summary of the types of prop-
erty paths found in the data of [5]. That is, Table 2 is not
the table appearing in [5], but we went over the raw data

again and aggregated the types of expressions slightly dif-
ferently. We use the following conventions: (1) lower case
letters denote single symbols, (2) upper case letters denote
sets of symbols, (3) we denote a wildcard test by t, (4) we
do not distinguish between following an edge in the forward
or backward direction, (5) each expression type also encom-
passes its symmetric form. For instance, when we write a∗b,
we count the expressions of the form a∗b and ba∗. We always
list the variant that occurred most often in the data. That
is, a∗b occurred more often than ba∗. These conventions are
the same as in our conference paper [14].

Under Expression Type, the table summarizes which types
of expressions are in Bonifati et al.’s data set, sometimes
parameterized by a number ` for which the next column de-
scribes the values that were found. Relative describes which
percentage of the 247,404 expressions fall into this expres-
sion type. We discuss STE? in the next section.

In Table 2 we can immediately observe that the property
paths found in the query logs of Bonifati et al. are not very
complex and that the expressions mentioned in Theorem 1
only occur very rarely. In fact, the query (ab)∗ occured
only once and we found out that this query was posed by
a theoretician testing the robustness of the engine [Vrgoč,
personal communication].

Another thing to keep in mind is how to interpret the
classification in Table 2. After all, property paths do not
occur often in the logs of Table 1: only about 0.4% of the
queries have them. However, this seems to be an artifact
of the underlying data. Most of the property paths appear
in DBpedia queries, but DBpedia was designed when prop-
erty paths were not yet part of SPARQL. In a more recent
study on Wikidata query logs, containing 35 million unique
queries, a drastically larger 38.94% of the queries use prop-
erty paths [7]. Moreover, the structure of these property
paths shows a picture similar to what we see in Table 2 [7].

4. SIMPLE TRANSITIVE EXPRESSIONS
We now define a class of RPQs called simple transitive

expressions (STEs), with the intent of capturing the vast
majority of the expressions in Table 2, while avoiding the
problems discussed in Section 3.1. Intuitively, simple tran-

SIGMOD Record, March 2019 (Vol. 48, No. 1) 9



Expression Type ` Relative STE?

(a1 + · · ·+ a`)
∗ 2–4 29.10% yes

t 25.48% yes(∗)

a∗ 19.66% yes
a1 · · · a` 2–6 8.66% yes
a∗b 7.73% yes

(a1 + · · ·+ a`) 1–6 6.61% yes
(a1 + · · ·+ a`)

+ 1–2 1.54% yes
a1?a2? · · · a`? 1–5 1.15% yes
a(b1 + b2)? 0.01% yes
a1a2? · · · a`? 2–3 0.01% yes

a∗b? < 0.01% yes
abc∗ < 0.01% yes

A1 · · ·A` 2–6 < 0.01% yes
(a1 + a2)? < 0.01% yes

t∗ < 0.01% yes(∗)

tb∗ < 0.01% yes(∗)

t? < 0.01% yes(∗)

(ab∗) + c < 0.01% no
a∗ + b < 0.01% no
a+ b+ < 0.01% no
a+ + b+ < 0.01% no

(ab)∗ < 0.01% no

Table 2: Structure of the 247,404 SPARQL prop-
erty paths that were also used in the query logs in-
vestigated by Bonifati et al. [5]. The structure is
sometimes in terms of a variable ` ∈ N, for which the
second column indicated the values that were found
in the logs. Relative indicates which percentage of
the 247,404 property paths have this structure.

sitive expressions aim at capturing very basic navigation in
graphs: first do some local navigation, followed by an op-
tional transitive step, and finally again some local naviga-
tion. The rationale is that, if we want to connect entities in
a graph database, then this is a natural way to navigate. Let
us again consider our running example of artists that died
at the age of 27. When we want to find out if a Person is an
artist, we first need to do some local navigation (following
an occupation-edge) and then perform a transitive reflex-
ive step (following an arbitrarily long path of subclassof-
edges). More precisely, simple transitive expressions allow
to:

1. first follow a path of length exactly k1 or at most k1

(for some k1 ∈ N),

2. then do a (reflexive) transitive closure step,

3. finally, follow a path of length exactly k2 or at most k2

(for some k2 ∈ N).

All three steps are subject to label tests. Furthermore,
any step can be omitted, so a simple transitive expression
can also express that paths must have length between k1

and k1 + k2. In the following definition, we use sets A =
{a1, . . . , a`} ⊆ Σ to abbreviate disjunctions (a1 + · · ·+ a`).

Definition 2. An atomic expression is of the form A ⊆
Σ with A 6= ∅. A bounded expression is a regular expres-
sion of the form A1 · · ·Ak or A1? · · ·Ak?, where k ≥ 0 and
each Ai is an atomic expression. Finally, a simple transitive

expression (STE) is a regular expression

BpreT
∗Bsuff,

where Bpre and Bsuff are bounded expressions and T is ε or
an atomic expression.

A minor technicality is that we can take T = ε. This means
that T ∗ will only match the empty word, and therefore the
STE defines a finite language. In Table 2 the column STE?
indicates whether the expression is an STE. Here, we write
“yes(∗)” to indicate that the expression is an STE if a wild-
card is treated the same as a set of labels A. (Our algorithms
indeed can be generalized to incorporate wildcards.)

In total, we saw that only 20 property paths are not STEs
or trivially equivalent to an STE (by taking T = ε in the def-
inition of STEs, for example). For instance, the expression
type a1a2? · · · a`? is equivalent to an STE where Bpre = a1,
T = ε, and Bsuff = a2? · · · a`?. In this sense, 99.992% of the
property paths in Table 2 correspond to STEs.

In fact, all expressions in the table except for (ab)∗ are
unions of STEs. Unions of STEs can actually be handled in
the same way than STEs, by applying the STE evaluation
algorithm to each part of the union.

4.1 Dichotomies for STEs
Our main technical results are two dichotomies for eval-

uating STEs under simple path and trail semantics. That
is, we precisely characterize for which classes R of STEs the
problems SimPath for R and Trail for R are easy and for
which classes these problems are difficult. Here, “easy” and
“difficult” refer to complexities in parameterized complexity,
namely fixed-parameter tractable and W[1]-hard. Our results
will imply that SimPath and Trail are “easy” for the types of
expressions in Table 2 — except for (ab)∗. Furthermore,
the parameters on which the complexity can exponentially
depend are small.

Some Examples and Intuition.
We give a bit of intuition about our results. Throughout

the example, we use the following notation. The input graph
is always denoted as G, and it has n nodes and m edges. We
always denote the start and end nodes in the input of the
SimPath problem by x and y, respectively. We will abbrevi-
ate long concatenations with a power notation, that is, we
use rk to denote a sequence of k times the expression r. For
instance a4 denotes the expression aaaa. Let ak denote the
class {ak | k ∈ N} of STEs. We define the classes (a?)k,
aka∗, baka∗, and akba∗ analogously.

We now discuss the complexities of SimPath for these
classes. As a first example, we consider SimPath for (a?)k.
This problem is easy to solve: one can simply use an algo-
rithm that tests reachability with a-labeled edges. The crux
is that loops do not matter: if there is a path from x to y
that matches (a?)k then there is also a simple such path,
since removing loops does not change matching (a?)k.

This technique does not work for our second example:
SimPath for ak. However, Alon et al.’s color coding tech-
nique [2] can solve this problem in time 2O(k)m logn. Color
coding therefore shows that SimPath for ak is fixed-parameter
tractable, where the parameter is the size k of the RPQ: it
is an algorithm with complexity f(k) · p(|G|+ k), where f is
a computable function and p is a polynomial. The function
f is even single exponential in this case. Notice that, if P
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x
y

Figure 3: Intuition behind cuttability, using bbba∗

6= NP, we cannot hope for f to be a polynomial function,
because SimPath for ak is at least as difficult as the Hamil-
tonian Path problem. (Indeed, the cases of SimPath for ak

where we give a graph G with only a-labeled edges and the
RPQ am+1 are equivalent to the Hamiltonian Path problem
for G.)

As a third example, we consider SimPath for aka∗. This
problem requires yet another technique, since color coding
is designed to work for fixed-length paths. It can be solved
in time 2O(k)(n2 + mn), however, using the representative
sets technique of Fomin et al. [9]. The representative sets
technique is nontrivial and addresses the following problem.
Assume that we try to deal with aka∗ naively by considering
all simple paths P of length k that start in x. For each such
path P , assuming it ends in some node xP , we could then
test reachability from xP to y while avoiding the nodes of P .
But this algorithm is too inefficient. We may have up to nk

different possibilities for P , which means that the running
time is not of the form f(k) · p(|G| + k) for a polynomial
p and computable function f . In other words, it does not
show that the problem is fixed-parameter tractable. This is
where the representative sets technique is useful. It shows
that the number of different paths P we have to consider
can be limited to 2O(k)n, which makes the problem fixed-
parameter tractable. The representative sets technique can
even be adapted so that it enumerates all the simple paths.

We turn to two cases where the edge labels become impor-
tant. First, consider SimPath(baka∗). Here, we can simply
enumerate all b-edges that start in x and then use the algo-
rithm for SimPath(aka∗) from there (and making sure that
we don’t visit x). This shows that SimPath(baka∗) is fixed-
parameter tractable.

Second, take SimPath(akba∗). At its core, this problem
is a variant of the Two Disjoint Paths problem. We are
essentially searching for two nodes x′ and y′ such that there
is a path P1 of length k from x to x′ and a path P2 from
y′ to y. Moreover, P1 and P2 should be node-disjoint and
there should be a b-edge from x′ to y′. Since we can prove
that this Two Disjoint Paths problem (with parameter k) is
W[1]-hard [14], it turns out that SimPath(akba∗) is hard as
well.

The central notion in our dichotomy for SimPath is cut
borders of STEs. We explain this notion intuitively, based on
two simple examples. Consider the expressions r1 = aaaa∗

and r2 = aaab∗. Assume that, as in Figure 3, we found a
path p (that may contain a loop) from x to y that matches r1.
Intuitively, if we want to test if the simple path p′ obtained
from p by deleting all loops still matches r1, we just need
to test if p′ has length at least three. For r2, however, we
additionally need to test that the loop does not occur in
the prefix of length 3 of p. For this reason, the cut border
of r2 will be equal to 3. We can prove that this notion of
cut border is indeed the crucial one for the complexity of
SimPath.

c` cr

x
k1 k2

y

c` : left cut border
cr : right cut border

Figure 4: Assume r = A1 · · ·Ak1T
∗A′k2

· · ·A′1 has left
and right cut borders c1 and c2, respectively. As-
sume that an arbitrary path from s to t matches r
such that its length k1 prefix and length k2 suffix do
not have loops and are node disjoint. If, after re-
moving all loops, (1) the length c1 prefix and length
c2 suffix are still the same and (2) the path still has
length at least k1 + k2, then it matches r.

Dichotomy for Simple Paths.
We now state our main result on SimPath and explain the

cut borders, cuttability, and the sampling condition after its
statement. (We only require the condition that R can be
sampled for the lower bound proof in part (b).)

Theorem 3. Let R be a class of STEs that can be sam-
pled.

(a) If R is cuttable, then SimPath(R) is solvable in time

2O(s)nc+3m, where c is the cut border of R.

(b) Otherwise, SimPath(R) cannot be solved in time f(s) ·
(n + m)c for a constant c and a computable function
f , unless FPT = W[1].

Here, n and m are the number of nodes and edges in the
graph, respectively, and s is the size of the regular expression.

Here, FPT is the class of problems that is fixed-parameter
tractable. It is a standard assumption in parameterized com-
plexity theory that FPT 6= W[1]. This assumption has a
similar calibre as the P 6= NP assumption in terms of deci-
sion problems.

We now explain cut borders, cuttability, and the condition
thatR can be sampled. To this end, the left (resp., right) cut
border of an STE r = A1 · · ·Ak1T

∗A′k2
· · ·A′1 is the largest

value i such that T has a symbol that is not in Ai (resp.,
A′i). If we have A1? · · ·Ak1? (resp., A′k2

? · · ·A′1?), then the
left (resp., right) cut border is 0. The cut border of r is the
sum of its left and right cut border. A class R of STEs is
cuttable if there exists a c ∈ N such that the cut border of
each expression r ∈ R is at most c. The intuition of cut
borders is explained in Figure 4: they characterize parts of
paths in which it is not allowed to remove loops to obtain a
simple path that still matches the expression.

Finally, we say that R can be sampled if there exists an
algorithm that, given a number k in unary, returns an ex-
pression from R that has cut border at least k. Notice that
this is a very weak restriction on R.

Notice that the difference between cuttable and non-cutta-
ble classes of STEs can be subtle. Using the same notation as
with our previous examples, the classes akb∗ and ak(a+ b)∗

are not cuttable, but (a+ b)ka∗ is. Looking back at Table 2,
we see that abc∗ is 2-bordered and all other STEs are either
0-bordered or 1-bordered. It therefore seems that cut bor-
ders in practice are small and over 99% of the expressions
fall on the tractable side of Theorem 3.
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c` cr
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c` : left cut border
cr : right cut border

× : conflict position

× ×× × × × ×

Figure 5: Visualization of the effect of conflict posi-
tions in a path that matches an STE r. If we would
start with an arbitrary path and remove loops, we
mainly need to be careful about labels behind the
cut borders that can be identical to labels in the
transitive part.

Dichotomy for Trails.
We now present a similar dichotomy for trails, obtained

in [15]. The dichotomy is, perhaps surprisingly, different
from the one in Theorem 3 in the sense that more classes
fall on the tractable side. For instance, SimPath(akb∗) is
intractable, whereas Trail(akb∗) is fixed parameter tractable
because the a-path and the b-path can be evaluated inde-
pendent of each other (no a-edge will be equal to a b-edge).
We explain conflict positions, almost conflict-freeness, and
conflict-sampling after the theorem statement. (The condi-
tion that R can be conflict-sampled is only needed for (b).)

Theorem 4. Let R be a class of STEs that can be conflict-
sampled.

(a) If R is almost conflict free, then Trail(R) is solvable

in time 2O(s) ·mc+6, where c is the number of conflict
positions in R.

(b) Otherwise, Trail(R) cannot be solved in time f(s)(n+
m)c for a constant c and a computable function f , un-
less FPT = W[1].

Here, n and m are the number of nodes and edges in the
graph, respectively, and s is the size of the regular expression.

If r = A1 · · ·Ak1T
∗A′k2

· · ·A′1 is an STE, we say that a
position left of the left cut border (resp., right of the right
cut border) is a conflict position if T and Ai (resp., A′i)
have a common symbol or, equivalently, have a non-empty
intersection. If we have A1? · · ·Ak1? (resp., A′k2

? · · ·A′1?),
then the left (resp., right) cut border is 0 and therefore there
are no cut positions. In Figure 5 we give a visual intuition
about the meaning of conflict positions. A class R of STEs
is almost conflict free if there exists a constant c ∈ N such
that each expression r ∈ R has at most c conflict positions.
The class akb∗ is not cuttable, but it is conflict-free because
{a} and {b} have an empty intersection. The point is that
an edge labeled by some symbol in {a} can never be the
same than an edge labeled by some symbol in {b}, since
their labels must be different. Therefore, we can evaluate
ak and b∗ separately.

A class R of STEs can be conflict-sampled if there exists
an algorithm that, given a number k in unary, returns an
expression r ∈ R with at least k conflict positions.

Extension to Enumeration of Paths.
Real-life graph databases are usually not primarily inter-

ested in solving decision problems, but in computing the

answers to a query. Enumeration algorithms can be seen
as a theoretical framework in which such problems can be
studied. Such algorithms typically consider the preprocess-
ing time and delay for computing the answers of a query.
Here, the preprocessing time is the time required before pro-
ducing the first answer (and possibly build a data structure
so that consecutive answers can be generated quickly) and
the delay is the time required between two consecutive an-
swers. In this framework, the requirement is usually that
each answer is returned only once.

The tractability results from Theorems 3(a) and 4(a) can
be extended to enumeration problems. Using an adaptation
of Yen’s algorithm [19] that works with labeled simple paths
(resp., labeled trails), it can be shown that the paths that
match the expressions can also be enumerated in such a way
that the delay between the answers roughly corresponds to
the upper bounds in Theorems 3(a) and 4(a).

Theorem 5. Let G = (V,E) be a graph, x and y be two
nodes in V , and R a set of STEs.

If R is cuttable, then the simple paths from x to y that
match r, for a given r ∈ R can be enumerated with 2O(s) ·
nc+3m preprocessing time and 2O(s) · nc+4m delay.

If R is almost conflict free, then the trails from x to y
that match r, for a given r ∈ R can be enumerated with
2O(s) ·mc+6 preprocessing time and 2O(s) ·mc+7 delay.

Core Techniques.
At the core of our tractability results lies the representa-

tive sets technique of Fomin et al. [9]. This technique can
be used to find simple paths and trails of length at least k
in time 2O(k)(n2 +nm), given a graph and the number k. If
regular path queries are involved, the technique is only com-
patible with certain languages, such as cuttable or conflict-
free STEs. The compatible languages have the property that
we only need to guard a constant number of nodes/edges at
the beginning and at the end of the path, to make sure that
the rest of the path does not re-use the same nodes/edges.

Indeed, we can show that for languages violating this
property, the problem becomes intractable. The reason is
that it becomes at least as hard as a parameterized version
of the two-disjoint paths problem. This parameterized prob-
lem asks: given a graph G, node pairs (x1, y1) and (x2, y2),
and parameter k ∈ N, are there two disjoint paths p1 from
x1 to y1 and p2 from x2 to y2 such that p1 has length k. (One
can consider node-disjoint or edge-disjoint paths here.) We
prove that this problem is W[1]-hard, both when node- or
edge disjointness is required.

4.2 What Does This Mean?
If we interpret Theorems 3 and 4 in the light of the real

world property paths in Table 2 we can observe the following.
Let n and m be the number of nodes and edges of the graph,
respectively.

Concerning simple paths, Theorem 3 gives us a running
time of 2O(s)nc+3m for regular path query evaluation, where
s is the size of the regular path query and c is the cut border.
This result, together with the observation that the largest
cut border in Table 2 is two, and therefore very small, can
be seen as an explanation why, in practice, simple path se-
mantics usually does not bring systems to their knees, even
though this would theoretically be possible using regular ex-
pressions such as (aa)∗. Since the evaluation problem under
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simple path semantics generalizes the Hamilton Path prob-
lem (if s = n− 1), we cannot hope for a significantly better
complexity unless P = NP.

One should keep in mind that this is a worst-case bound.
In most practical settings, we expect that the run-time of
even more naive evaluation algorithms will not come close
to requiring nc+3 time for these simple expressions. For
instance, the nc factor comes from considering all paths that
start in a given node x and obey a label constraint. For
instance, for the expression abc∗, these are just the paths
that start in x and are labeled ab. While this can, in the
worst case, be n2 many paths, we expect this to be much
less in real databases.

The story for trails is similar. Here our upper bound ad-
mittedly gives less efficiency guarantees than the one for
simple paths, but this is mainly because we have developed
our methods for simple paths and then adapted them for
trails. Furthermore, the dichotomy shows that it is easier
to deal with trails than with simple paths: for every class
of queries for which we have fixed-parameter tractable al-
gorithms for simple path semantics, we also have them for
trail semantics, but not vice versa.

5. CONCLUSIONS
The results in Section 4 can be seen as a theoretical expla-

nation why evaluating certain queries (regular path queries
against simple paths and trails) in graph databases seems to
be less problematic in practice than theoretical results seem
to suggest. The main reason is that, in the query logs that
were considered in Section 2, the parameters that have a
drastic impact on the complexity of evaluation remain rela-
tively small.

In this sense, this paper showcases a line of work in which
query log analysis was useful. However, a lot of work still
remains to be done. First of all, the analysis of the logs
in Section 2 showed much more than just the distribution
of regular path queries. For instance, the shapes of queries
found in the logs may be useful to generate realistic bench-
marks. Second of all, the query log analysis from Section 2
itself is challenging too. For instance, in all the query logs
we have seen until now, the distribution of the queries (and
of interesting properties of queries) is extremely skewed. It
is not clear how we balance finding interesting aspects of
queries in logs with the fact that so many queries are ex-
tremely small, e.g., only have a single triple.

Furthermore, apart from having investigated successful
and timeout queries for Wikidata [7], we do not know much
about the combination of queries and data. For instance, it
could be very interesting to study which parts of the graph
are used for the evaluation of a query, and how large inter-
mediate results become. Such studies must be left to future
work.
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When was the last time that you wrote code to imple-
ment a join algorithm? Chances are, it was during an un-
dergraduate database class – if at all. The wide availabil-
ity of database management systems in all their manifesta-
tions (admitting a wide definition, to encompass perform-
ing look-ups in a spreadsheet) mean that we do not have to
(re)implement common operations over and over again. This
brings many advantages. We benefit from time savings, both
in development time, and also in execution time: we can ex-
pect that optimized professional code will outperform our
ad-hoc efforts. Moreover, we expect such code to be robust,
and less prone to crashing on unexpected inputs. It should
produce results that can be relied on to be correct, and handle
errors gracefully.

Such “systematization” is a core methodology in com-
puter science. Whenever we identify new areas where com-
putation is needed, there is a sequence of steps that can be
followed. First, we develop algorithms for special cases or
particular operations. Over time, these move from proof-of-
concept code into more reliable libraries and toolkits. From
these, we abstract new collections of operations that together
can be combined to address instances that might arise. De-
scribing the sequence of steps to perform might initially be
done via simple scripting or calls out from an existing high-
level language, but over time may instead be expressed via
a special purpose (and oft-times declarative) language, or
through a graphical user interface. Eventually, we have a
stand-alone system to describe tasks, which can be deployed
by users who might otherwise lack the ability to code up the
routines themselves.

Viewed through this lens, we can see many cases of sys-
tems emerging in computer science. The (relational) database
management system is perhaps our default example. High-
level languages themselves have also followed this path. Cur-
rently, machine learning tools are part way through this evo-
lution: machine learning algorithms and libraries have been
around for a while, but we are yet to achieve user-friendly
systems that allow non-expert users to quickly and easily de-
fine complex machine learning pipelines.

The following paper by Zhang et al. talks in terms of
a framework for a class of privacy-preserving computations
over data. The artifact, εKTELO, represents an important step

on the pathway to providing systems for such computations.
It is not the first system in this domain. Frameworks such
as PINQ [2], which extends the (non-private) LINQ frame-
work, and Featherweight PINQ [1] are acknowledged as di-
rect antecedents. εKTELO extends these by providing a dif-
ferent selection of primitives at higher levels of abstraction.

Computing under guarantees of privacy shares many sim-
ilarities with secure computation. In particular, the mantra
“Don’t roll your own crypto” can equally well be transcribed
as “Don’t roll your own privacy”. Subtle (and not so subtle)
errors in defining and combining algorithms to protect the
privacy of individuals motivate us to further automate and
systematize the handling of private data. εKTELO assists by
not only providing a broad set of tools for the most common
operations on private data, but also by simplifying the anal-
ysis of the privacy properties of the resulting composition
(captured by the sometimes inscrutable privacy parameter ε
alluded to in the name). It more clearly separates the pri-
vate from the public domain, and directs attention to steps
which move information across this divide. The value of the
framework is demonstrated not only by the ease with which
a range of algorithms can be expressed, but also in the way
it exposes new variants that can lead to improved utility.

By no means should we expect εKTELO to be the last word
on this topic. There are a number of limitations that we can
hope future work to overcome. Chief among these is the re-
striction to input that is modeled as a single table. Compare
this to the DBMS, where we can SELECT, PROJECT and JOIN
to our heart’s content, all the while remaining fully within
the world of relations. The ability to represent and compute
by linking over different tables, and model networks of in-
teractions, represents a pressing open problem for privacy
computation that needs to be solved before systems can gen-
eralize to this case.
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ABSTRACT
The adoption of differential privacy is growing but the complexity
of designing private, efficient and accurate algorithms is still high.
We propose a novel programming framework and system, εktelo,
for implementing both existing and new privacy algorithms. For
the task of answering linear counting queries, we show that nearly
all existing algorithms can be composed from operators, each con-
forming to one of a small number of operator classes. While past
programming frameworks have helped to ensure the privacy of pro-
grams, the novelty of our framework is its significant support for
authoring accurate and efficient (as well as private) programs.

We describe the design and architecture of the εktelo system
and show that εktelo is expressive enough to describe many algo-
rithms from the privacy literature. εktelo allows for safer imple-
mentations through code reuse and allows both privacy novices and
experts to more easily design new algorithms. We demonstrate the
use of εktelo by designing new algorithms offering state-of-the-art
accuracy and runtime.

1. INTRODUCTION
As the collection of personal data has increased, many institu-

tions face an urgent need for reliable privacy protection mecha-
nisms. They must balance the need to protect individuals with de-
mands to use the collected data—for new applications or modeling
their users’ behavior—or share it with external partners. Differ-
ential privacy [8, 9] is a rigorous privacy definition that offers a
persuasive assurance to individuals, provable guarantees, and the
ability to analyze the impact of combined releases of data. Infor-
mally, an algorithm satisfies differential privacy if its output does
not change too much when any one record in the input database is
added or removed.

The research community has actively investigated differential
privacy and algorithms are known for a variety of tasks ranging

This is a minor revision of the work published in SIGMOD June
10–15, 2018, Houston, TX, USA.
https://doi.org/10.1145/3183713.3196921

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

from data exploration to query answering to machine learning. How-
ever, the adoption of differentially private techniques in real-world
applications remains rare. We believe this is because implementing
programs that provably satisfy privacy and ensure sufficient util-
ity for a given task is still extremely challenging for non-experts
in differential privacy. In fact, the few real world deployments of
differential privacy—like OnTheMap [1, 15] (a U.S. Census Bu-
reau data product), RAPPOR [11] (a Google Chrome extension),
and Apple’s private collection of emoji’s and HealthKit data—have
required teams of privacy experts to ensure that implementations
meet the privacy standard and that they deliver acceptable utility.
There are three important challenges in implementing and deploy-
ing differentially private algorithms.

The first and foremost challenge is the difficulty of designing
utility-optimal algorithms: i.e., algorithms that can extract the max-
imal accuracy given a fixed “privacy budget.” While there are a
number of general-purpose differentially private algorithms, such
as the Laplace Mechanism [8], they typically offer suboptimal ac-
curacy if applied directly. A carefully designed algorithm can im-
prove on general-purpose methods by an order of magnitude or
more—without weakening privacy: accuracy is improved by care-
ful engineering and sophisticated algorithm design.

One might hope for a single dominant algorithm for each task,
but a recent empirical study [17] showed that the accuracy of ex-
isting algorithms is complex: no single algorithm delivers the best
accuracy across the range of settings in which it may be deployed.
The choice of the best algorithm may depend on the particular task,
the available privacy budget, and properties of the input data such
as its size and distribution. Therefore, to achieve state-of-the-art
accuracy, a practitioner currently has to make a host of complex
algorithm choices, which may include choosing a low-level repre-
sentation for the input data, translating their queries into that rep-
resentation, choosing among available algorithms, and setting pa-
rameters. The best choices will vary for different input data and
different analysis tasks.

The second challenge is that the tasks in which practitioners are
interested are diverse and may differ from those considered in the
literature. Hence, existing algorithms need to be adapted to new
application settings, a non-trivial task. For instance, techniques
used by modern privacy algorithms include optimizing error over
multiple queries by identifying common sub-expressions, obtaining
noisy counts from the data at different resolutions, and using com-
plex inference techniques to reconstruct answers to target queries
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from noisy, inconsistent and incomplete measurement queries. But
different algorithms use different specialized operators for these
sub-tasks, and it can be challenging to adapt them to new situations.
Thus, designing utility-optimal algorithms requires significant ex-
pertise in a complex and rapidly-evolving research literature.

A third equally important challenge is that correctly implement-
ing differentially private algorithms can be difficult. There are known
examples of algorithm pseudocode in research papers not satisfy-
ing differential privacy as claimed. For instance, Zhang et al [42]
showed that many variants of a privacy primitive called the Sparse
Vector Technique do not satisfy differential privacy. Differential
privacy can also be broken through incorrect implementations of
sound algorithms. For example, Mironov [30] showed that standard
implementations of basic algorithms like the Laplace Mechanism
[8] can violate differential privacy because of their use of floating
point arithmetic. Privacy-oriented programming frameworks such
as PINQ [10, 29, 32], Fuzz [13], PrivInfer [6] and LightDP [38]
help users implement programs whose privacy can be verified with
relatively little human intervention. While they help to ensure the
privacy criterion is met, they may impose their own restrictions and
offer little or no support for designing utility-optimal programs.

Contributions
To address the aforementioned challenges, we propose εktelo, a
programming framework and system that aids programmers in de-
veloping differentially private programs with high utility. Program-
mers can use εktelo to solve a core class of statistical tasks that
involve answering linear counting queries. (This class of queries
is defined in Sec. 2.) Tasks supported by εktelo include releas-
ing contingency tables, multi-dimensional histograms, answering
OLAP and range queries, and implementing private machine learn-
ing algorithms.

In εktelo, differentially private programs are described as plans
over a high level library of operators. Each operator is an abstrac-
tion of a key subroutine from a state-of-the-art algorithm. Within
εktelo, these operators are organized based on their functional-
ity into a small set of classes: transformation, querying, inference,
query selection, and partition selection. These classes, and the op-
erators within each class, are described in more detail in Sec. 3.2.

The design of εktelo has the following characteristics:
Expressiveness εktelo is designed to be expressive, meaning that
a wide variety of state-of-the-art algorithms can be written suc-
cinctly as εktelo plans. To ensure expressiveness, we carefully
designed a foundational set of operator classes that cover features
commonly used by leading differentially private algorithms. We
illustrate the expressiveness of our operators by showing in Sec. 4
that the algorithms from the DPBench benchmark [17] can be read-
ily re-implemented in εktelo.
Privacy “for free” εktelo is designed so that any plan written
in εktelo automatically satisfies differential privacy. The formal
statement of this privacy property is in Sec. 3.3, the proof of which
requires non-trivially extending the formal analysis of a past frame-
work [10]. The privacy guarantee means that plan authors are not
burdened with writing proofs for each algorithm they write. Fur-
thermore plan authors do not need to think about how to calibrate
the noise that is injected for privacy as this is handled automatically
by εktelo.
Reduced privacy verification effort Ensuring that an algorithm im-
plementation satisfies differential privacy requires verifying that it
matches the algorithm specification. The design of εktelo reduces
the amount of code that must be vetted in several ways. First, since
an algorithm is expressed as a plan and all plans automatically sat-

isfy differential privacy, the code to be vetted is solely the individ-
ual operators. Second, operators need to be vetted only once but
may be reused across multiple algorithms. Finally, it is not neces-
sary to vet every operator, but only those that are privacy-critical
(as shown in Sec. 3.1, εktelo mandates a clear distinction between
privacy-critical and non-private operators). This means that ver-
ifying the privacy of an algorithm requires checking fewer lines
of code. In Sec. 4, we compare the verification effort to vet the
DPBench codebase [2] against the effort required to vet these algo-
rithms when expressed as plans in εktelo.
Transparency In εktelo, since all algorithms are expressed in the
same form—a plan, consisting of a sequence of operators where
each operator is selected from a class—it is easy to compare algo-
rithms and identify differences. In Sec. 4, we summarize the plan
signatures of a number of state-of-the-art algorithms (pictured in
Fig. 2). These plan signatures reveal similarities and common id-
ioms in existing algorithms. These are difficult to discover from the
research literature or through code inspection.

The modular structure of εktelo creates opportunities for tech-
nical innovation. There are broadly two kinds of innovation. The
first is performance improvements that can be embedded directly
into the framework, for example by improving the implementation
of a key operator or designing efficient implementations of essen-
tial data structures. The second is technical innovation that arises
from using εktelo, for example, by using the framework to design
new algorithms. In this paper we present innovations of both kinds.
Improved Scalability Many of the operators in εktelo represent
data and queries using matrices. Performing matrix operations can
become a performance bottleneck. In Sec. 5.1, we present a spe-
cialized matrix representation that avoids the expensive material-
ization of matrix objects. This implicit matrix representation did
not appear in the first version of the εktelo framework [40] but is
described in the extended version [39].

A vitally important but computationally expensive operator in
many plans is inference. Inference is used to combine a collec-
tion of noisy measurements into a consistent estimate of the private
data. In Sec. 5.2, we introduce a general-purpose, efficient and scal-
able inference engine, which exploits implicit representations, and
subsumes customized inference subroutines from the literature.
Algorithm innovation enabled by εktelo Because εktelo plans
are composed of operators, improving existing algorithms and im-
plementing new algorithms becomes much easier: operators can be
combined in new ways, for example, by substituting one instance
of an operator class for another. In Sec. 6, we present one exam-
ple of algorithmic innovation. We describe a new algorithm that,
when expressed as a plan in εktelo, is similar to the MWEM algo-
rithm [16] but with a few key operators replaced, which can lower
error by as much as 8 times.

After providing background in Sec. 2, we describe the system
fully in Sec. 3. We illustrate the expressiveness of εktelo plans and
the benefits of εktelo in Sec. 4. Scalability innovations provided
by εktelo are presented in Sec. 5 while algorithmic innovations
enabled by εktelo are described in Sec. 6. We discuss related work
and conclude in Secs. 7 and 8.

2. BACKGROUND
The input to εktelo is a database instance of a single-relation

schema T (A1, A2, . . . , A`). Multi-relation schemas pose a number
of challenges (please see discussion in Sec. 8). Each attribute Ai is
assumed to be discrete (or suitably discretized). A condition for-
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mula, φ, is a Boolean condition that can be evaluated on any tuple
of T . We use φ(T ) to denote the number of tuples in T for which φ
is true. A number of operators in εktelo answer linear queries over
the table. A linear query is the linear combination of any finite set
of condition counts:

Definition 1 (Linear counting query (declarative)). A linear
query q on T is defined by conditions φ1 . . . φk and coefficients
c1 . . . ck ∈ R and returns q(T ) = c1φ1(T ) + · · · + ckφk(T ).

It is common to consider a vector representation of the database,
denoted x = [x1 . . . xn], where xi is equal to the number of tuples
of type i for each possible tuple type in the relational domain of T .
The size of this vector, n, is the product of the attribute domains.
Then it follows that any linear counting query has an equivalent
representation as a vector of n coefficients, and can be evaluated by
taking a dot product with x. Abusing notation slightly, let φ(i) = 1
if φ evaluates to true for the tuple type i and 0 otherwise.

Definition 2 (Linear counting query (vector)). For a linear query
q defined by φ1 . . . φk and c1 . . . ck, its equivalent vector form is
~q = [q1 . . . qn] where qi = c1φ1(i) + · · · + ckφk(i). The evaluation of
the linear query is ~q · x, where x is vector representation of T .

In the sequel, we will use vectorized representations of the data
frequently. We refer to the domain as the size of x, the vectorized
table. This vector is sometimes large and a number of methods for
avoiding its materialization are discussed later.

Let T and T ′ denote two tables of the same schema, and let T ⊕
T ′ = (T − T ′) ∪ (T ′ − T ) denote the symmetric difference between
them. We say that T and T ′ are neighbors if |T ⊕ T ′| = 1.

Definition 3 (Differential Privacy [8]). A randomized algo-
rithm A is ε-differentially private if for any two instances T , T ′

such that |T ⊕ T ′| = 1, and any subset of outputs S ⊆ Range(A),

Pr[A(T ) ∈ S ] ≤ exp(ε) × Pr[A(T ′) ∈ S ]

Differentially private algorithms can be composed with each other,
and other algorithms, using composition rules, such as sequential
and parallel composition [29] and post-processing [9]. Let f be a
function on tables that outputs real numbers. The sensitivity of the
function is defined as: max|T⊕T ′ |=1| f (T ) − f (T ′)|. The sensitivity
of a function evaluated on a table (or vector) resulting from a se-
quence of transformations can be calculated from the stability of
each transformation function:

Definition 4 (Stability). Let g be a transformation function
that takes a data source (table or vector) as input and returns a new
data source (of the same type) as output. For any pair of sources
S and S ′ let |S ⊕ S ′| denote the distance between sources. If the
sources are both tables, then this distance is the size of the symmet-
ric difference; if the sources are both vectors, then this distance is
the L1 norm. Then the stability of g is: maxS ,S ′:|S⊕S ′ |=1 |g(S )⊕g(S ′)|.

3. EKTELO
In this section, we describe the essential features of εktelo: its

system architecture, its operator-based programming framework,
and its guarantee that every program written in the framework sat-
isfies differential privacy.

3.1 System Architecture
In εktelo, the private input data source is encapsulated inside

a protected kernel. The analyst writes a differentially private pro-
gram in an unprotected client space. Access to the protected data

Algorithm 1 εktelo CDF Estimator

1: D← Protected(source_uri, ε) . Initialize εktelo
2: D←Where(D, sex == ‘M’ AND age ∈ [30, 39]) . Transform
3: D← Select(salary) . Transform
4: x← T-Vectorize(D) . Transform
5: P← AHPpartition(x, ε/2) . Partition Selection
6: x̄← V-ReduceByPartition (x, P) . Transform
7: M← Identity(|x̄|) . Query Selection
8: y← VecLaplace(x̄, M, ε/2) . Query
9: x̂← NNLS(P, y) . Inference

10: Wpre ← Prefix(|x|) . Query Selection
11: return Wpre · x̂ . Output

source is mediated by the protected kernel through a set of opera-
tors. The distinction between the client space and the protected ker-
nel is a fundamental one in εktelo. It allows analysts to write plans
(of differentially private programs) that consist of operator calls to
the data source embedded in otherwise arbitrary code (which may
include conditionals, loops, recursion, etc.). εktelo supports oper-
ators of three types, based on their interaction with the protected
kernel. The first type is a Private operator, which requests that the
protected kernel perform some action on the private data (e.g., a
transformation) but receives only an acknowledgment that the op-
eration has been performed. The second type is a Private→Public
operator, which returns information about the private data outside
the firewall (e.g., a differentially private measurement) and thus
consumes privacy budget. The last type is a Public operator, which
does not interact with the protected kernel or the protected data
source at all and can be executed entirely in client space. We illus-
trate the operators supported by εktelo in Sec. 3.2.

The protected kernel is initialized by specifying a single pro-
tected data object—an input table T—and a global privacy budget,
ε. Note that requests for data transformations may cause the pro-
tected kernel to derive additional data sources (whose lineage is
tracked to ensure correct privacy semantics).

We designed εktelo to be extensible through the addition of new
operators. The effort required depends on the operator type: Public
operators can be added at will; Private operators must register their
stability (Sec. 2); Private→Public operators must be vetted by a pri-
vacy engineer to ensure that they satisfy differential privacy (note,
that εktelo is responsible for appropriately calibrating the privacy
budget when such operators are applied to derived data sources).

3.2 Operator Framework
In εktelo, differentially private algorithms are described using

plans composed over a rich library of operators. Most of the plans
described in this paper are linear sequences of operators, but εktelo
also supports plans with iteration (as in plan #7, to be presented in
Fig. 2), recursion, and branching. Operators supported by εktelo
perform a well defined task and typically capture a key algorithm
design idea from the state-of-the-art. Each operator belongs to
one of five operator classes based on its input-output specification.
These are: (a) transformation, (b) query, (c) inference, (d) query
selection, and (e) partition selection. All the operators supported
by εktelo are listed in Fig. 1 grouped by operator class and color
coded by their type Private, Private→Public or Public. We next
describe an example εktelo plan and use it to introduce the differ-
ent operator classes.

Algorithm 1 shows the pseudocode for a plan authored in εktelo,
which takes as input a table D with schema [Age, Gender, Salary]
and returns the differentially private estimate of the empirical cu-
mulative distribution function (CDF) of the Salary attribute, for
males in their 30’s. The plan is fairly sophisticated and works in
multiple steps. The plan uses transformation operators on the in-
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Note: journal version with all plans

ID Cite Algorithm name Plan signature Transform Partition selection Query selection

1 Dwork et al. 2006 Identity SI LM TV T-Vectorize PA AHPpartition SI Identity

2 Xiao et al. 2010 Privelet SP LM LS TW T-Where PG Grid ST Total

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS TPR T-Project PD Dawa SP Privelet

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS TP V-SplitByPartition PW Workload-based SH2 H2

5 Li et al. 2014 Greedy-H SG LM LS TR V-ReduceByPartition PS Stripe(attr) SHB HB

6 - Uniform ST LM LS PM Marginal(attr) SG Greedy-H

7 Hardt et al. 2012 MWEM I:( SW LM MW ) Inference PU UniformPartition SU UniformGrid

8 Zhang et al. 2014 AHP PA TR SI LM LS LS Least squares SA AdaptiveGrids

9 Li et al. 2014 DAWA PD TR SG LM LS NLS Nneg Least squares Query SQ Quadtree

10 Cormode et al. 2012 Quadtree SQ LM LS MW Mult Weights LM Vector Laplace SHD HDMM

11 Qardaji et al. 2013 UniformGrid SU LM LS HR Thresholding SS Stripe(attr)

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS SW Worst-approx

13 McKenna et al. 2018 HDMM SHD LM LS SPB PrivBayes select

14 NEW DAWA-Striped PS TP[ PD TR SG LM] LS

15 NEW HB-Striped PS TP[ SHB LM] LS

16 NEW HB-Striped_kron SS LM LS

17 NEW PrivBayesLS SPB LM LS

18 NEW MWEM variant b I:( SW SH2 LM MW )

19 NEW MWEM variant c I:( SW LM NLS )

20 NEW MWEM variant d I:( SW SH2 LM NLS )

Note: Research highlight version with a subset of plans

ID Cite Algorithm name Plan signature Transformation Partition selection Query selection

1 Dwork et al. 2006 Identity SI LM TV T-Vectorize PA AHPpartition SI Identity

2 Xiao et al. 2010 Privelet SP LM LS TP V-SplitByPartition PG Grid ST Total

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS TR V-ReduceByPartition PD Dawa SP Privelet

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS PW Workload-based SH2 H2

5 Li et al. 2014 Greedy-H SG LM LS Inference PS Stripe(attr) SHB HB

6 - Uniform ST LM LS LS Least squares PM Marginal(attr) SG Greedy-H

7 Hardt et al. 2012 MWEM I:( SW LM MW ) NLS Nneg Least squares PU UniformPartition SU UniformGrid

8 Zhang et al. 2014 AHP PA TR SI LM LS MW Mult Weights SA AdaptiveGrids

9 Li et al. 2014 DAWA PD TR SG LM LS HR Thresholding Query SQ Quadtree

10 Cormode et al. 2012 Quadtree SQ LM LS LM Vector Laplace SW Worst-approx

11 Qardaji et al. 2013 UniformGrid SU LM LS SPB PrivBayes select

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS

13 NEW MWEM variant b I:( SW SH2 LM MW )

14 NEW MWEM variant c I:( SW LM NLS )

15 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 1: The operators currently implemented in εktelo. Private
operators are red, Private→Public operators are orange, and Public
operators are green.

put table D to filter out records that do not correspond to males in
their 30’s (Line 2), and to select only the salary attribute (Line 3).
Then it uses another transformation operator to construct a vector
of counts x that contains one entry for each value of salary. x[i]
represents the number of rows in the input (in this case males in
their 30’s) with salary equal to i. All transformation operators are
Private operators as they change the private database and do not
return anything outside the protected kernel.

Before adding noise to this histogram, the plan uses a partition
selection operator, AHPpartition (Line 5). Operators in this class
choose a partition P of the data vector x (or more generally, a map-
ping to a lower dimensional space) which is later used to trans-
form x. AHPpartition is a key subroutine in AHP [43], which was
shown to have state-of-the-art performance for histogram estima-
tion [17]. AHPpartition uses the data vector to identify a partition
of the counts in x such that counts within a partition group are close.
Since AHPpartition uses the private input, it is a Private→Public
operator and thus consumes privacy budget (in this case ε/2). Fig. 1
shows other examples of partition selection operators that are data
independent, and hence are Public operators.

Next the plan uses V-ReduceByPartition (Line 6), another trans-
formation operator, which applies on x the partition P computed by
AHPpartition. This results in a new reduced vector x̄ that contains
one entry for each partition group in P and the entry is computed
by adding up counts within each group.

The rest of the plan follows the “select-measure-reconstruct” para-
digm, an approach exemplified by the matrix mechanism [24, 27]
and used in several state-of-the-art algorithms [17]. In this paradigm,
in order to answer a workload of queries, the algorithm first selects
a different set of strategy queries, measures them using the Laplace
mechanism (with noise calibrated to the sensitivity of the strategy),
and lastly reconstructs answers to the original workload of queries
from the noisy measurements using inference algorithms. The care-
ful selection of a low sensitivity strategy can often lead to much
more accurate answers than directly answering the workload.

In our CDF estimation problem, the workload corresponds to
a set of prefix queries of the form “# people with salary < i".
Rather than asking these queries, the plan chooses the strategy of
“identity,” which corresponds to queries of the form “# people with
salary = i". In Algorithm 1, this is captured by the Identity op-
erator (Line 7). This operator is a query selection operator. Such
operators specify a set of measurement queries M, encoded in ma-
trix form to be applied to the data vector. The Identity operator
returns the identity matrix, which corresponds to querying all the
entries in x̄ (since M · x̄ = x̄). In general, query selection operators

do not answer any query, but rather specify which queries should be
estimated. (This is analogous to how partition selection operators
only select a partition but do not apply it.) Most query selection
operators are data independent and thus are Public, while some use
the data to select the query strategy, and hence are Private→Public.

Next, the plan performs the measurement step using the Vector
Laplace operator, which returns differentially private answers to all
the queries in M. First, it automatically calculates the sensitivity of
the vectorized queries – which depends on all upstream data trans-
formations – and then adds noise via the standard Laplace mecha-
nism (Line 8). This operator consumes the remainder of the privacy
budget. Query operators like Vector Laplace return a noisy mea-
surement from the data, and by definition are differentially private
algorithms that expend privacy budget. They are Private→Public.

So far the plan has computed an estimated histogram of partition
group counts y, but now it must reconstruct the empirical CDF on
the original salary domain. From the noisy counts on the reduced
domain y, the plan infers non-negative counts in the original vector
space of x by invoking an inference operator NNLS (non-negative
least squares) (Line 9). NNLS(P, y) finds a solution, x̂, to the prob-
lem Px̂ = y, such that all entries of x̂ are non-negative. Inference
operators never access the protected data and thus can be safely run
outside the protected kernel. All inference operators are Public.

Lastly, the plan constructs the set of queries, Wpre, needed to
compute the empirical CDF (a lower triangular k × k matrix rep-
resenting prefix sums) by calling the query selection operator Pre-
fix(k) (Line 10), and returns the output (Line 11).

3.3 Privacy Guarantee
In this section, we state the privacy guarantee offered by εktelo.

Informally, εktelo ensures that if the protected kernel is initialized
with a source database T and a privacy budget ε, then any plan
(chosen by the client) satisfies ε-differential privacy. εktelo en-
sures privacy by tracking the privacy budget consumed by each op-
erator call. The amount spent depends on the operator (e.g., Public
operators consume nothing) and on what operations came before
it (e.g., transformations). If at any point, the privacy budget is ex-
hausted, any subsequent call to an operator that requires budget
(i.e., a Private→Public operator) will throw an exception.

In the proof of privacy, we model a client’s plan as an arbitrary
and possibly infinite sequence of operator calls, where each call
may be adaptively chosen based on the results of earlier calls. Thus
we can think of the plan as a random process, where the random-
ness comes from the randomness of the operators (though the client
code could also be randomized). The length of the plan, measured
by the number of operator calls, can vary but we can nevertheless
consider the set of (partial) plans of length k for any k. (A shorter
plan can be extended with “no op” calls and for a longer plan, we
consider the prefix of its first k operators.) This allows us to define
a probability distribution over outcomes after k operations where
an outcome is a particular length k plan, denoted p1 p2 . . . pk, and
the outputs received from executing that plan, denoted o1o2 . . . ok.

Theorem 3.1 (Privacy of εktelo plans). Let T,T ′ be any two
neighboring instances. For all k ∈ N+,
P(Plan is p1 p2 . . . pk with outputs o1o2 . . . ok | Ektelo init. with (T, ε))
≤ eεP(Plan is p1 p2 . . . pk with outputs o1o2 . . . ok | Ektelo init. with (T ′, ε))

The proof of Theorem 3.1 extends the proof in [10] to support the
V-SplitByPartition operator. While εktelo ensures differential
privacy, private information could be leaked via side-channel at-
tacks (e.g., timing attacks) [14]. Privacy engineers who design op-
erators are responsible for protecting against such attacks; an anal-
ysis of this issue is beyond the scope of this paper.
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ID Cite Algorithm name Plan signature

1 Dwork et al. 2006 Identity SI LM

2 Xiao et al. 2010 Privelet SP LM LS

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS

5 Li et al. 2014 Greedy-H SG LM LS

6 - Uniform ST LM LS

7 Hardt et al. 2012 MWEM I:( SW LM MW )

8 Zhang et al. 2014 AHP PA TR SI LM LS

9 Li et al. 2014 DAWA PD TR SG LM LS

10 Cormode et al. 2012 Quadtree SQ LM LS

11 Qardaji et al. 2013 UniformGrid SU LM LS

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS

13 NEW MWEM variant b I:( SW SH2 LM MW )

14 NEW MWEM variant c I:( SW LM NLS )

15 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 2: The high-level signatures of a subset of plans imple-
mented in εktelo (referenced by ID). All plans begin with a vec-
torize transformation, omitted for readability. We also omit param-
eters of operators, including ε budget shares. I(subplan) refers to
iteration of a subplan and TP[subplan] means that subplan is exe-
cuted on each partition produced by TP.

4. EKTELO BENEFITS
εktelo provides a number of benefits for the authors of differen-

tially private programs, including code reuse, transparency, expres-
siveness, and a significant reduction in privacy verification effort.

We illustrate these benefits by reporting on our experience re-
implementing state-of-the-art algorithms as εktelo plans. We ex-
amined 12 algorithms for answering low-dimensional counting queries
that were deemed competitive in a recent benchmark study [17].
The process of re-implementing this seemingly diverse set of algo-
rithms consisted of identifying and isolating key subroutines and
translating them into operators.

The prototype implementation of εktelo, including all algorithms
used in experiments, consists of 7.9k lines of Python code. The
framework itself makes up 25% while operator implementations
make up 46% and 15% are tests and examples provided for users.
The remaining 14% are definitions of plans used in our experi-
ments, showing that once operators are defined, plan definitions
are relatively simple. In fact, plans can be described and compared
at a high level by looking at plan signatures. Fig. 2 describes the
12 re-implemented algorithms (numbered 1 through 12) using the
abbreviations for operators introduced in Fig. 1. We use these plan
signatures to highlight the following benefits:
Code reuse Operations that are common to many plans can be
implemented once and reused across εktelo programs. For exam-
ple, once reformulated in εktelo, nearly all the algorithms in Fig. 2
use the Vector Laplace operator (LM) and least squares inference
(LS). This benefits plan authors since it simplifies and accelerates
their ability to write new differentially private algorithms without
having to reimplement sophisticated and privacy critical operators.
In addition, any improvements to these operators will be inherited
by all the plans. We show such an example in Sec. 5.2.
Algorithm transparency By rewriting algorithms as plans, εktelo
makes explicit the typical high-level patterns that reflect design id-
ioms of algorithms in literature. For example, plans 2, 3, 4, 5, 6,
10, and 11 all share a common operator sequence: Query selection,
Query (LM), and Inference (LS); they differ only in the specifics of
their Query selection method. Moreover, εktelo plans help clarify
the distinctive components of complex state-of-the-art algorithms.
For instance, AHP and DAWA (plans 8 and 9 in Fig. 2) have the
same structure but differ only in two operators: partition selection
and query selection.

Reduced privacy verification effort Code reuse also reduces the
number of critical operators that must be carefully vetted. To ver-
ify privacy, the only operators that require careful vetting are those
that consume the privacy budget, which are the Private→Public op-
erators in Fig. 1. These are: Vector Laplace, the partition selection
operators for both DAWA [23] and AHP [43], a query selection op-
erator used by PrivBayes [41], and a query selection operator used
by the MWEM [16] algorithm, which privately derives the worst-
approximated workload query. In contrast, for the DPBench code
base, the entire code has to be vetted to audit the use and man-
agement of the privacy budget. As a result, fewer lines of code
must be verified as correct. For example, to verify the QuadTree
algorithm in the DPBench codebase requires checking 163 lines of
code. However, with εktelo, this only requires vetting the 30-line
Vector Laplace operator. And, furthermore, by vetting just this
one operator, we have effectively vetted 10 of the 18 algorithms in
Fig. 2, since the only privacy sensitive operator these algorithms
use is Vector Laplace.). Considering all the DPBench algorithms
in Fig. 2, algorithms 1-12, verifying the DPBench implementation
requires checking a total of 1837 lines of code while vetting all
the privacy-critical operators in εktelo requires checking only 517
lines of code.

5. SCALABILITY INNOVATIONS
In this section we describe a number of innovations that enable

key operations in εktelo to scale to larger problem instances.

5.1 Implicit matrix representations
Matrices and operations on matrices are central to the implemen-

tation of εktelo operators but can become a performance bottle-
neck. In an extension [39] to the original version [40] of εktelo,
we describe a set of specialized matrix representation techniques,
based on the implicit definition of matrices, which allows for per-
formance improvements and greater scalability as the size of the
data vector grows.

Matrices are used to represent three different objects in εktelo:
sets of workload queries, sets of measurement queries, and parti-
tions of the domain. In all cases the matrices contain one column
for each element of a corresponding data vector. In the case of both
workload and measurement matrices, rows represent linear queries.
The number of rows in a workload or measurement matrix is often
as large, or larger, than n, the number of elements in the data vec-
tor. Partition matrices have at most n rows, but may still be large.
For plans operating on large data vectors, where n approaches the
size of memory, these matrices, in standard form, are infeasible to
represent in memory and operate on.

While distributed computation would be one solution, we find
that we can remain with a main memory implementation by using
a set of performance enhancements based on two key observations.
First, the large matrix objects used in plans tend to possess struc-
ture that can be exploited to represent them very concisely. Second,
the plan implementations in εktelo use a relatively small set of ba-
sic operations on these matrix objects (e.g. matrix-vector product,
matrix multiplication, transpose, absolute value). Together, these
observations allow matrices to be represented and operated on im-
plicitly, which results in significant performance improvements.

As an example of an implicit matrix, recall the Prefix workload,
Wpre, an encoding of an empirical CDF, which was used in the
example plan (Algorithm 1). In explicit form, the prefix workload
has n2 entries and is defined as a lower-triangular matrix containing
1’s. Note that a sparse representation of Wpre would store (a list of)
only the nonzero elements of this matrix, but the space complexity
remains O(n2). Thus, the time complexity of computing matrix-
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Figure 3: For a given computation time, the proposed iterative
and implicit inference methods permit scaling to data vector sizes
as much as 1000× larger than previous techniques that use direct
approaches and dense matrices.

vector products using an explicit or sparse representation is O(n2).
However, the Prefix matrix can be completely specified by a single
parameter, n, which is the only state stored for the implicit version
of Wpre. Further, we can evaluate the matrix-vector product y =

Wprex using a simple one-pass algorithm over x. Thus, the implicit
Prefix workload representation achieves O(1) space complexity and
O(n) time complexity for computing matrix-vector products.

While the original version of εktelo exploited sparse matrix rep-
resentations for some objects, we improve and extend our matrix
representations to include implicit matrices in [39]. We describe a
set of core implicit matrices, operations to combine them to form
new implicit matrices, along with implementations of key opera-
tions on matrices, demonstrating significant performance improve-
ments for εktelo plans. One of the most important operations on
implicit matrices is inference, which we discuss next.

5.2 Scalable and general inference
Inference is a fundamental operator that can improve error with

no cost to privacy and, accordingly, we see that it appears in almost
every algorithm re-implemented in εktelo (as shown in Fig. 2). But
inference can be a costly operation. Recall that the input to infer-
ence is a measurement matrix, denoted by M, containing m queries
defined over a data vector of size n, along with the list of noisy
measurement answers y. The most common inference method in
existing algorithms is based on minimizing squared error:

Definition 5 (Ordinary least squares (LS)).

x̂ = arg min
x∈Rn

‖Mx − y‖2 (1)

The least squares solution (Eq. (1)) is given by the solution to the
normal equations MT Mx̂ = MT y. Assuming MT M is invertible,
then the solution is unique and can be expressed as x̂ = (MT M)−1MT y.
Matrix inversion is often avoided in favor of matrix factorizations
of M, but these methods, which we will refer to as direct, have time
complexity cubic in the domain size, making it unacceptable when
n is greater than about 5000.

Algorithms in prior work [18, 33, 34, 37] have performed least
squares inference on large domains by restricting the selection of
queries, namely to those representing a set of hierarchical queries.
For this special case, inference can be performed in time linear in
the domain size, avoiding the explicit matrix representation of the
queries. We avoid this approach in εktelo because it means that a
custom inference method may be required for each query selection
operation, and because it limits the measurement sets that can be
used. In addition, hierarchical methods only work for least squares
but not other inference methods, such as least squares with non-
negativity constraints (NNLS).

An alternative to the direct implementation of least squares infer-
ence uses an iterative gradient-based method, which solves the nor-

Table 1: For three new algorithms, (b), (c), and (d), the multi-
plicative factors by which error is improved, presented as (min,
mean, max) over datasets. For runtime, the mean is shown,
normalized to the runtime of standard MWEM. (1D, n=4096,
W=RandomRange(1000), ε = 0.1)

MWEM Variants ERROR IMPROVEMENT RUNTIME
Measure Selection Inference min mean max mean

(a) worst-approx MW 1 1 1 1
(b) worst-approx + H2 MW 1.03 2.80 7.93 354.9
(c) worst-approx NNLS, known total 0.78 1.08 1.54 1.0
(d) worst-approx + H2 NNLS, known total 0.89 2.64 8.13 9.0

mal equations by repeatedly computing matrix-vector products Mv
and MT v until convergence. The time complexity of these methods
is O(kn2) for dense matrix representations where k is the number
of iterations. We use a well-known iterative method, LSMR [12],
and empirically we observe LSMR to converge in far fewer than n
iterations when M is well-conditioned, and thus we expect k << n.

The benefits of iterative inference methods are amplified when
the underlying matrix representation is implicit. Letting Time(M)
denote the time complexity of evaluating a matrix-vector product
with M, the time complexity of least squares inference is O(k ·
Time(M)) where k is the number of iterations. For implicit ma-
trices, Time(M) is often O(n), resulting in a very favorable O(kn)
time complexity for inference. Iterative approaches, using implicit
matrices, are also well-suited to the other inference methods in
εktelo: least squares with non-negativity constraints (NNLS) and
multiplicative weights (MW).

We compare the performance of the above approaches for a fixed
measured query set consisting of binary hierarchical measurements
[18]. Fig. 3 shows that using sparse matrices and iterative methods
allows inference to scale to data vectors consisting of millions of
counts on a single machine in less than a minute. The use of im-
plicit matrices permits additional scale-up for both LeastSquares
and NNLS. We also compare against the custom inference method
introduced by Hay et al., denoted ‘Tree-based’ in the figure. It is
an algorithm that is logically equivalent to LeastSquares but spe-
cialized for hierarchically structured measurements. The general-
purpose LeastSquares implementation is able to scale to much
larger domains.

Importantly, the combination of general implicit matrix construc-
tion techniques with iterative inference results in flexible inference
capabilities for plan authors. With relative freedom, authors can
construct measurement matrices, or combine measurements from
different parts of a plan, and apply a single generic inference oper-
ator, which will run efficiently.

6. ALGORITHMIC INNOVATIONS
The operator-based model of εktelo enables novel improvements

to algorithm design through (i) operator inception, in which a new
operator is proposed for an operator class; (ii) recombination, where
different operator instances are substituted for those in an existing
plan to form a new plan; and (iii) plan restructuring, in which a plan
is systematically restructured by applying a general design princi-
ple or heuristic rule. In the original version of this paper [40], we
provide detailed examples of each of these innovation types. Below
we provide a single example, improving the well-known MWEM
algorithm, through operator inception and recombination.

The Multiplicative Weights Exponential Mechanism (MWEM)
[16] algorithm computes answers to a given workload of linear
queries. MWEM operates in a sequence of rounds, determined
by an input parameter. In each round it selects the worst-approx-
imated workload query with respect to its current estimate of the
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data, measures the selected query, and then uses the multiplicative
weights update rule to refine its estimate of the data.

When viewed as a plan in εktelo, a deficiency of MWEM be-
comes apparent. Its query selection operator selects a single query
to measure in each round, whereas most query selection operators
select a set of queries, each measuring disjoint partitions of the data.
By the parallel composition property of differential privacy, mea-
suring the entire set has the same privacy cost as asking any single
query from the set. This means that MWEM could be measuring
more than a single query per round (with no additional consump-
tion of the privacy budget).

To exploit this opportunity, we designed a new query selection
operator that adds to the worst-approximated query by attempting
to build a binary hierarchical set of queries over the sequence of
rounds of the algorithm. In round one, it adds any unit length
queries that do not intersect with the selected query. In round two,
it adds length two queries, and so on.

Adding more measurements to MWEM has an undesirable side
effect on runtime, however. Because it measures a much larger
number of queries across rounds of the algorithm and the runtime
of multiplicative weights inference scales with the number of mea-
sured queries, inference can be considerably slower. Thus, we
also use recombination to replace it with a version of least-squares
with a non-negativity constraint (NNLS) and incorporate a high-
confidence estimate of the total which is assumed by MWEM.

Using εktelo, it was easy to describe three MWEM variants,
which are shown in Fig. 2: an alternative query selection operator
(Plan #13) which augments selected measurements with hierarchi-
cal queries, an alternative inference operator (NNLS) (Plan #14),
and the addition of both alternative operators (Plan #15).

Table 1 shows the experimental results over a collection of 10
datasets taken from [17]. The performance of the first variant on
line (b) shows that the new query selection operator can signif-
icantly improve error: by a factor of 2.8 on average and by as
much as a factor of 7.9. As explained above, it also has a con-
siderable impact on performance because inference must operate
on a larger set of queries: the slow down is a factor of more than
300. Line (c) shows that using the original MWEM query selec-
tion with NNLS inference has largely equivalent error and runtime
to the original MWEM. However, combining augmented query se-
lection with NNLS inference, shown on line (d), reduces runtime
significantly while maintaining good accuracy: it is still slower than
the original MWEM algorithm, but by only a factor of 9. The per-
formance gains of NNLS inference over MW appear to be most
pronounced when the number of measured queries is large. Over-
all, the algorithm variant (d) would likely be favored by users, who
are typically willing to sacrifice efficiency for greater accuracy.

7. RELATED WORK
A number of languages and programming frameworks have been

proposed to make it easier for users to write private programs [10,
29,32,35]. The Privacy Integrated Queries (PINQ) platform began
this line of work and is an important foundation for εktelo. We
use the fundamentals of PINQ to ensure that plans implemented in
εktelo are differentially private. In particular, we adapt and extend
a formal model of a subset of PINQ features, called Featherweight
PINQ [10], to show that plans written using εktelo operators sat-
isfy differential privacy. Our extension adds support for the parti-
tion operator, a valuable operator for designing complex plans.

Additionally, there is a growing literature on formal verification
tools that prove that an algorithm satisfies differential privacy [4,6,
13,38]. For instance, LightDP [38] is a simple imperative language
in which differentially private programs can be written, allowing

verification with little manual effort. LightDP’s goal is orthogonal
to that of εktelo: it simplifies proofs of privacy, while εktelo’s goal
is to simplify the design of algorithms that achieve high accuracy.

Concurrently with our work, Kellaris et al. [19] observe that al-
gorithms for single-dimensional histogram tasks share subroutines
that perform common functions.

The use of inference appears in many differentially private algo-
rithms [3, 5, 7, 18, 22, 23, 25, 31, 36, 37, 43]. Proserpio et al. [31]
propose a general-purpose inference engine based on MCMC that
leverages properties of its operators to offset the otherwise high
time/space costs of this form of inference. Our work is comple-
mentary in that we focus on a different kind of inference (based on
least squares) in part because it is used, often implicitly, in many
published algorithms.

A full treatment of automated plan optimization is an important
future goal for εktelo, however εktelo could directly incorporate
limited forms of automation already proposed in the literature. The
matrix mechanism [25,27] formulates an optimization problem that
corresponds to automated query selection in εktelo. Other recent
work [20, 26] considers the problem of data-dependent algorithm
selection. These methods could be adapted to automatically select
from a set of predefined plans in εktelo.

8. CONCLUSIONS AND FUTURE WORK
We have described the design and implementation of εktelo: an

extensible programming framework and system for defining dif-
ferentially private algorithms. Many state-of-the-art differentially
private algorithms can be specified as εktelo plans, consisting of
sequences of operators, increasing code reuse and facilitating more
transparent algorithm comparisons. Algorithms implemented in
εktelo are often faster and return more accurate answers.
εktelo is extensible and we hope to expand the classes of tasks

that can be supported. First, εktelo is currently focused on statisti-
cal queries on a single table. Supporting more expressive aggregate
queries, for example those expressible as SQL queries over multi-
relational schemas, will require a number of extensions, including
more complex transformations, advanced stability analysis, and im-
proved inference [21].

Second, εktelo currently relies on materializing the data vector
in memory. Larger data vectors often occur with high-dimensional
data, and while parallel computation is one possible solution, pri-
vate algorithms may perform better when they are structured as a
collection of private measurements over lower-dimensional projec-
tions of the original data. The εktelo architecture is well-suited to
perform transformation, selection, and measurement in such plans,
and could adopt recently proposed methods [28] to perform “global”
inference without materializing the full data vector.

Third, εktelo provides a promising foundation for automatic op-
timization. Much like a relational optimizer, we envision adding a
component that can explore a plan space implied by the collection
of operators implemented in εktelo. However, optimization here
has dual objectives (accuracy and efficiency) and, in addition, it
may be important to accommodate user-defined accuracy metrics.
Further, the accuracy of some plans depends on the input data and
may incur a privacy cost if it is used naively by the system during
optimization.
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The challenge of entity matching is that of identifying
when different data items (often referred to as records or
mentions) refer to the same real-life entity. Popular instanti-
ations of this problem include deduplication, where the items
are database records that include duplicate representations
of the same entity (e.g., duplicate profiles in a social net-
work) [2], record linkage, where the items come from different
data sources that mention overlapping sets of entities (e.g.,
the profiles of two social networks) [5], and schema matching,
where the items are attributes of different database schemas
that intersect on their domain of interest (e.g., the database
schemas of different social networks) [6].

Common techniques for entity matching share various con-
ceptual steps. First, blocking breaks the problem into con-
siderably smaller subsets (blocks) of item pairs that have
a reasonable chance to be matched, in order to reduce the
quadratic number of needed comparisons. On each remain-
ing pair to consider, a collection of similarity functions is
applied to construct a vector of similarity scores. Next, a
classifier transforms the vector into a decision: match or
non-match. This classifier is typically built using supervised
machine learning, where training is done over entity pairs
labeled positively and negatively. Often, classification is
complemented by a clustering algorithm if the matching is
required to be transitive (i.e., if a profile matches a second
profile, which matches a third profile, then the first must
also match the third) [3].

There are other techniques for entity matching, including
rule-based linking, and entity resolution via probabilistic in-
ference. However, the field is generally short of fundamental
guiding theory [4]. The paper “Entity Matching with Ac-
tive Monotone Classification” [7] by Yufei Tao is a beautiful
piece of work that proposes a principled approach to learn
the aforementioned classification task over the vector of sim-
ilarity scores, and more importantly, to reason about the
theoretical bounds and the optimality of learning strategies.

The crux of the paper’s development is to adopt an as-
sumption that is very reasonable in the specific use case of
the classifier: if every similarity function thinks that one
pair is a better match than another, and if the latter is clas-
sified as a match, then the former should also be classified
as a match. A classifier that features this behavior is called
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monotone, and the paper studies the learnability of mono-
tone classifiers.

It is of course possible that no monotone classifier exists
that is perfectly correct, i.e., perfectly separates matches
from non-matches. Therefore, the author focuses on trade-
offs between the number of errors a classifier makes and the
number of pairs that need to be probed (checked if they are
a match or not).

The main algorithm in the paper, random probe with elim-
ination (RPE) has several properties that could make it
quite appealing to practitioners. It just consists of six lines
of code and is extremely simple. Nevertheless, the author
shows that it has favorable theoretical guarantees: it ensures
an asymptotically optimal tradeoff between the number of
probes and and the number of misclassified matches. Fur-
thermore, as the algorithm is based on random sampling, it
is expected to scale quite well.

Yufei Tao’s paper not only offers us a nice blend between
theory and practice, it is also a nice blend between databases
and machine learning, which fits perfectly in some of the
main research perspectives for the Principles of Data Man-
agement field [1].
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ABSTRACT
Given two sets of entities X and Y , entity matching aims
to decide whether x and y represent the same entity for
each pair (x, y) ∈ X × Y . In many scenarios, the only way
to ensure perfect accuracy is to launch a costly inspection
procedure on every (x, y), whereas performing the procedure
|X| · |Y | times is prohibitively expensive. It is, therefore,
important to design an algorithm that carries out the pro-
cedure on only some pairs, and renders the verdicts on the
other pairs automatically with as few mistakes as possible.
This article describes an algorithm that achieves the pur-
pose using the methodology of active monotone classification.
The algorithm ensures an asymptotically optimal tradeoff
between the number of pairs inspected and the number of
mistakes made.

1. INTRODUCTION
Given two sets of entities X and Y , entity matching aims

to decide whether x and y form a match, i.e., whether they
represent the same entity, for each pair (x, y) ∈ X × Y . For
example, X (or Y ) can be a set of advertisements placed
at Amazon (or eBay, resp.), where each advertisement has
attributes like prod-name, prod-description, year, price,
and so on. The goal is to decide whether advertisements x
and y are about the same product, for all (x, y) ∈ X × Y .

What makes the problem challenging is that the aforemen-
tioned decision cannot be made through a simple comparison
on the attributes of x and y, because even a pair of matching
x and y may still disagree on the attribute values. This is
obvious for prod-description and price since x and y can
introduce the same product in different ways, and price it dif-
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ferently. In fact, x and y may not agree even on a“supposedly
standardized” attribute like prod-name (e.g., x.prod-name =
“MS Word” vs. y.prod-name = “Microsoft Word Processor”),
although it would be reasonable to expect x.year = y.year
because advertisements are required to be correct.

In applications like the above one, the only way to ensure
perfect accuracy is to call upon human experts to inspect
each pair (x, y) ∈ X×Y . This is, however, expensive because
the amount of manual efforts, e.g., reading advertisements x
and y in detail, is huge. It is, therefore, important to design
an algorithm that asks humans to look at only some pairs,
and renders the verdicts on the other pairs automatically,
perhaps at the expense of a small number of errors.

Towards the above purpose, a dominant methodology be-
hind existing approaches (e.g., [1, 3, 6, 7, 12, 14, 21, 22, 24, 25])
is to transform the task into a multidimensional classification
problem with the following preprocessing:

1. First, shrink the set of all possible pairs to a subset
T ⊆ X × Y , by eliminating the pairs that obviously
cannot be matches. This is known as blocking, which is
carried out based on application-dependent heuristics.
This step is optional; if skipped, then T = X × Y . In
the Amazon-eBay example, T may involve only those
advertisement pairs (x, y) with x.year = y.year.

2. For each remaining entity pair (x, y) ∈ T , create a mul-
tidimensional point p(x,y) using a number d of similarity
functions

sim1, sim2, . . . , simd,

each evaluated on a certain feature. The i-th coordinate
of p(x,y) equals simi(x, y): a higher value means that x
and y are more similar on the i-th feature. This creates
a d-dimensional point set P = {p(x,y) | (x, y) ∈ T}.

In our example, from a numerical attribute such as
price, one may extract a feature that equals −|x.price−
y.price| (the purpose of the negation is to be consis-
tent with “larger means more similar”). From a text
attribute (such as prod-name and prod-description)
one may extract a feature by evaluating the similarity
between the corresponding texts of x and y using an
appropriate metric, e.g., edit distance for short texts,
and cosine similarity for long texts. Multiple feature
dimensions may be derived even on the same attribute.
For instance, one can extract two features by computing
the edit-distance and Jaccard-distance of x.prod-name
and y.prod-name separately.

Every point p(x,y) ∈ P carries a label, which is 1 if (x, y) is
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a match, or 0 otherwise. The original entity matching task
on X and Y is thus converted to inferring the labels of the
points in P . Still, human inspection is the last resort for
revealing the label of each p(x,y) with no errors.

1.1 Problem Formalization
Let P be a set of points in Rd, where R is the real domain,

and d is a positive integer. Each point p ∈ P carries a
label, denoted as label(p), which equals either 0 or 1. The
point labels need not follow any geometric patterns, namely,
label(p) can be 0 or 1 regardless of the labels of the other
points.

All the labels are hidden at the beginning. There is an
oracle which an algorithm can call to disclose the label of a
point p ∈ P selected by the algorithm. When this happens,
we say that p is probed. The algorithm’s cost is defined as
the number of points probed.

A classifier is a function F : Rd → {0, 1}. Its error on P
is the number of points mis-labeled, namely:

error(F , P ) = |{p ∈ P | F(p) 6= label(p)}|.
F is monotone if F(p) ≥ F(q) for any points p, q ∈ P
satisfying p[i] ≥ q[i] on all i ∈ [1, d], where p[i] is the i-th
coordinate of p. Denote by Cmono the set of all possible
monotone classifiers; note that |Cmono | is infinite.

We consider two problems closely related to active learning:

Problem 1 (Active Monotone Classification):
Find a monotone classifier F with small error(F , P )
by paying a low probing cost.

Problem 2 (Active Monotone Classification
with Exemptions): Probe a small set Z of points
in P to find a monotone classifier F with small
error(F , P \ Z).

Note that the two problems differ in whether the set Z of
points probed is exempted from calculating the error of the
returned classifier F . The challenges behind these problems
can be seen from the following extreme solutions:

• For Problem 1, one can simply probe all the points of P ,
paying the worst possible cost |P |, and then take all the
time needed to find the best classifier F∗ ∈ Cmono with
the smallest error on P (we do not explicitly constrain
CPU computation). Note that the error of F∗ need not
be zero because P may not—actually most likely will
not—fully obey monotonicity. In the other extreme, we
can choose to probe nothing and return some classifier
F by “wild guessing”, which has the smallest cost 0,
but risks suffering from the worst error |P | for F . The
main challenge is to achieve the lowest error with as
few probes as possible.

• For Problem 2, we can trivially achieve the minimum
value 0 for error(F , P \ Z) by probing all the points of
P , noticing that in this case P \ Z = ∅. In the other
extreme, one can return a wild guess F with no probes
at all, but again may suffer from the largest error |P |
for error(F , P \ Z). The main challenge is to strike an
attractive tradeoff between |Z| and error(F , P \ Z).

The above definitions extend in a natural way to a ran-
domized algorithm Aran . Both the classifier F returned

by Aran and the set Z of points probed by Aran are ran-
dom variables. For Problem 1, the expected error of Aran

is defined as E[error(F , P )], and its expected cost as E[|Z|].
Likewise, for Problem 2, the expected error of Aran is defined
as E[error(F , P \ Z)], and its expected cost still as E[|Z|]. In
all cases, expectation is over the random choices made by
the algorithm.

Remarks. The input P to both problems corresponds to the
set of points obtained from the set T in the entity matching
framework explained earlier. Problems 1 and 2 are designed
for two different scenarios that arise frequently in practice:

• Scenario 1: the entity sets X and Y are “training sets”
that represent the distributions DX and DY of entities
to be encountered from two sources, respectively. The
purpose of finding a classifier F is to apply it on new
(x̃, ỹ) /∈ X × Y to be received online where x̃ (or ỹ)
follows DX (or DY , resp.). That F is accurate on P
(a.k.a. T ) implies that F should also work statistically
well on (x̃, ỹ). This is the application backdrop of
Problem 1.

• Scenario 2: unlike the previous scenario, here X and
Y are already the “ground sets”. In other words, there
are no future pairs, such as (x̃, ỹ) in Scenario 1, to be
cared for; and it suffices to match only the elements of
X and Y . Thus, the “overall accuracy” of F on all the
points in P is unimportant because if a point already
has its label revealed, it does not need to be guessed by
F , and thus should be excluded from error calculation.
This is the application backdrop behind Problem 2.

The rationale behind monotonicity is that, if x and y form
a match according to the features picked, then any pair
(x′, y′) more similar than (x, y) on every feature should also
be regarded as a match. Indeed, any classifier that defies
monotonicity is awkward because it indicates that at least
some of the features have been selected inappropriately.

1.2 Relevant Research
This subsection will first give an introduction to several

key findings in active learning that are relevant to Problems 1
and 2, and then review the existing entity matching solutions
we are aware of.

Active Learning. Classification is a fundamental topic in
machine learning. Let U be a possibly infinite set of points
in Rd. The input is an infinite stream of pairs (p, label(p))
where p is a point from U , and label(p) is its binary label,
i.e., either 0 or 1. Each pair is sampled independently from
an unknown distribution D on U × {0, 1}. A classifier is a
function F : U → {0, 1}, whose error probability equals

Pr{p ∼ D | F(p) 6= label(p)}
namely, the probability of wrongly predicting the label of
a point p drawn from D. Let C be a candidate class of
classifiers, and ν be the smallest error probability of all
the classifiers in C. The learning objective is the achieve
the following probabilistically approximately correct (PAC)
guarantee:

With probability at least 1 − δ, find a classifier F from
C with error probability at most ν + ǫ, where δ > 0
and ǫ > 0 are input parameters.
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In the more traditional passive setup, label(p) is directly
disclosed in every pair (p, label(p)), where the efficiency goal
is to minimize the sample cost, which equals the number of
stream pairs that an algorithm needs to see before ensuring
the PAC guarantee. In practice, deciding the label of a point
can be so expensive that its cost far dominates the cost of
learning. This motivated active learning, where point labels
are all hidden originally. Given an incoming point p, an
algorithm can choose whether to probe p, i.e., paying a unit
cost for the revelation of label(p). The primary efficiency
goal is to perform the least number of probes; efforts should
still be made to avoid a high sample cost, although this now
becomes a secondary goal.

Active learning has been extensively studied; see excellent
surveys [16, 23]. A main challenge is to identify the intrinsic
parameters that determine the label complexity, i.e., the
number of probes mandatory to ensure the PAC guarantee.
Considerable progress has been made in various scenarios
[4, 8, 15]. Our subsequent discussion will concentrate on
agnostic active learning, where (i) ν > 0, meaning that even
the best classifier in C cannot perfectly separate points of
the two labels because, intuitively, D has “noise”, and (ii) no
assumptions are made on that noise. This is the branch of
active learning most relevant to our work.

The state-of-the-art understanding on agnostic learning is
based on two intrinsic parameters:

• the VC dimension λ of C on U ;

• the disagreement coefficient θ of C under D.

We will not delve into the precise definitions of the above
parameters (the interested reader may see [24] for details).
For this article, it suffices to understand that a higher λ or θ
indicates the necessity of probing more labels.

The dominant solution to agnostic active learning is an al-
gorithm named A2. Its initial ideas were developed by Balcan
et al. [2], and have been substantially improved/extended sub-
sequently [4, 9, 16]. As shown in [16], the algorithm achieves
the PAC guarantee with a probing cost of

Õ

(
θ · λ · ν2

ǫ2

)
(1)

where Õ(.) hides factors polylogarithmic to θ, 1/ǫ, and 1/δ.
On the lower bound side, extending an earlier result of Kaari-
ainen [17], Beygelzimer et al. [4] proved that the probing cost
needs to be

Ω

(
ν2

ǫ2
·
(

λ + log
1

δ

))
. (2)

There is a gap of θ between the upper and lower bounds.
When this parameter is O(1), the two bounds match up to
polylog factors. Indeed, most success stories in the literature
are based on candidate classes C and distributions D that
give rise to a small θ (e.g., see [8, 10,13,26]).

Unfortunately, as will be explained later in Section 1.3, the
class Cmono of monotone classifiers can have a very high VC
dimension λ, and simultaneously, a very large disagreement
coefficient θ. The consequences are two-fold:

• The θ gap between (1) and (2) becomes significant,
suggesting that agnostic active learning has not been
well understood on monotone classifiers.

• With both θ and λ being large, the A2 algorithm incurs
expensive probing costs on Cmono , and may no longer
be attractive.

The reader may have noticed that Problem 1 can be cast
as agnostic active learning by setting U (in active learning)
to P (in Problem 1), and generating an input stream (for
active learning) by repeatedly sampling P . This makes A2

a viable solution to entity matching. We will discuss its
performance guarantees in relation to our results in the next
subsection.

Entity Matching. There is a rich literature on entity
matching; see [1, 3, 5–7,12,14,18–22,25] and the references
therein. Most of these works focused on designing heuris-
tics that perform well in practice, instead of establishing
theoretical bounds. The papers [1, 3] are exceptions. In [1],
Arasu et al. observed that entity matching can be approached
using active learning. They presented algorithms to solve
some subproblems that arose in their framework. Unfortu-
nately, their overall solutions do not have attractive bounds
for Problem 1 or 2. In [3], Bellare et al. showed that if one
can solve Problem 1, the algorithm can be utilized to attain
small errors of other types, e.g., those based on recalls and
precisions, under certain assumptions.

1.3 Our Contributions
An Intrinsic Parameter. Recall that Problems 1 and 2
are defined on a set P of points in Rd. Given two points
p, q ∈ P , we say that p dominates q if p[i] ≥ q[i] holds on
all i ∈ [1, d]. Notice that a point dominates itself by this
definition. The dominance relation

R = {(p, q) ∈ P × P | p dominates q}
is a poset (partially ordered set).

It turns out that an intrinsic parameter characterizing the
hardness of both problems is the width w of R. Formally, w
is the size of the largest S ⊆ P such that no two different
points in S dominate each other; we will sometimes refer to
it as the dominance width of P . Any one-dimensional P has
w = 1. When d ≥ 2, w can be anywhere between 1 and n;
see Figure 1 for two extreme examples.

Problem 1. Denote by F∗ an optimal monotone classifier
on P , namely, this is a classifier in Cmono with the smallest
error on P . Set k = error(F∗, P ) and n = |P | throughout
the article. Our first main result is:

Theorem 1. For Problem 1:

• there is a randomized algorithm that has expected er-
ror at most 2k, and probes O(w(1 + log n

w
)) points in

expectation;

• there exists a constant c such that, when w ≥ 2 and
k ≤ cn/w, any algorithm with expected error O(k) must
have an expected probing cost of Ω(w log n

(k+1)w
).

Several observations can be made. First, when k = 0—
the noise-free scenario where the label-1 points of P can
be perfectly separated from the label-0 ones by a monotone
classifier—our algorithm in the first bullet always returns
such a classifier. Second, when w = Ω(n), our lower bound
in the second bullet evaluates to Ω(n), meaning that the
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(a) A point set of width 1 (b) A point set of width n

Figure 1: Illustration of dominance width

naive solution of probing all points in P can no longer be
improved by more than a constant factor in cost, for the
purpose of ensuring the smallest error asymptotically. Third,
we improve the aforementioned naive solution as long as
w = o(n), because for such w the upper bound in the first
bullet is o(n). Fourth, our upper and lower bounds nearly
match each other for k = O(n/w). Remember that no
algorithms can have an expected error less than k. Therefore,
under k = O(n/w), our solution is asymptotically optimal in
both expected error and expected probing cost.

As explained in Section 1.2, one can apply the A2 algorithm
of agnostic active learning to solve Problem 1 by repeatedly
sampling from P uniformly. To see its performance, let us
fit in the appropriate values for ν, ǫ, λ, and θ, as are defined
in Section 1.2. First, ν = k/n, according to the definition
of error(F∗, P ). Second, to match our expected error 2k,
ǫ should be no more than ν = k/n; setting ǫ to this value
makes ν2/ǫ2 = 1. As we proved in [24], when k = O(n/w),
both θ and λ can reach w even in 2D space. By (1), A2 has

expected probing cost Õ(w2), which Theorem 1 improves by

a factor of Õ(w).
Note that (2) does not give a lower bound on Problem 1.

Recall that (2) applies to agnostic active learning which is
just one possible way to approach Problem 1.

Problem 2. If an algorithm returns a monotone classifier F
by probing a set Z of points, it always holds that error(F , P \
Z) ≤ error(F , P ). Hence, Theorem 1 implies:

Corollary 1. For Problem 2, there is a randomized al-
gorithm that has expected error at most 2k, and expected
probing cost O(w(1 + log n

w
)).

What is intriguing is the opposite: can we substantially
reduce the error of Problem 2 without significantly increasing
the probing cost? This, subtly, is a question on the usefulness
of exempting Z from the error calculation. After all, the
intended purpose of Z is to push error(F , P \ Z) below k
(recall that, in Problem 1, the best achievable error is k).
Unfortunately, we are able to show:

Theorem 2. Fix any integers k and n such that k ≥ 1,
and n/k is an integer at least 2. There is a set S of one-
dimensional (i.e., d = 1) inputs to Problem 1 with the same
n and k such that any algorithm guaranteeing an expected
error at most k/2 on every input in S must entail an expected
probing cost of Ω(n/k) on at least one input in S.

Corollary 1 and Theorem 2 together point out a surprising
fact. If we are satisfied with an expected error of 2k, the
expected probing cost is no more than O(w(1 + log n

w
)) uni-

versally for all values of k. Even better, in the context of The-
orem 2 where d = 1, w equals 1, making O(w(1 + log n

w
)) =

O(log n). However, if we demand an expected error of k/2,
the expected probing cost surges to Ω(n/k), which is worse
than O(log n) for any k = o(n/ log n).

Theorem 2 also implies that, for k ≤ n/(w log2
n
w

), the
expected error must be at least Ω(k) if the expected probing
cost has to be O(w log(n/w)). Thus, on those values of k, our
algorithm in Corollary 1 is already asymptotically optimal.
Phrased differently, subject to O(w log n

w
) expected probing

cost, the hardness of the problem comes from guessing the la-
bels of points that have not been probed, such that excluding
Z from error calculation makes little difference.

Content of This Article. We will focus on establishing
the upper bound for Problem 1 in Theorem 1 by describing
our algorithm and its analysis in full. The proofs for the
lower bounds in Theorems 1 and 2, which can be found
in [24], are omitted from the article.

2. THE PROPOSED ALGORITHM
Our algorithm for Problem 1—named random probe with

elimination (RPE)—can be described in 6 lines as shown
in Figure 2. If Z is the set of points probed, the algorithm
produces a classifier F defined as:

F(p) =

{
1 if p dominates a label-1 point in Z
0 otherwise

(3)

To illustrate, consider that P consists of the 16 points in
Figure 3, where the black (or white) points carry label 1
(or 0, resp.). Here, k equals 3, noticing that no monotone
classifiers can have an error 2 or less, while it is easy to design
a monotone classifier with error 3, e.g., such a classifier would
correctly capture the labels of all points except p1, p11, and
p15. Assume that, at Step 2, RPE happens to probe p1

first, after which it eliminates the entire P except p6, p7,
and p8. Suppose also that, when Step 2 is executed again,
the algorithm chooses to probe p8, which removes all the
remaining points in P . With Z = {p1, p8}, the classifier of
(3) has an error 5 because it incorrectly maps p2, p3, p5, p11,
and p15 to 1.

Lemma 1. The classifier F in (3) is monotone.

Proof. Suppose that there exist points p, q such that p
dominates q, but F(p) = 0 and F(q) = 1. By (3), F(q) = 1
means that Z has a label-1 point that is dominated by q, and
hence, also dominated by p. This contradicts F(p) = 0.

The next lemma, together with (3), indicates a sense of
symmetry between labels 0 and 1 with respect to the classifier
F returned by RPE.

Lemma 2. For any p ∈ P , F(p) = 0 if and only if p is
dominated by a label-0 point in Z.

Algorithm RPE(P )

/* P is the input set of Problem 1 */

1. while P 6= ∅
2. pick a point p from P uniformly at random
3. probe p
4. if label(p) = 1 then
5. discard from P the points dominating p

else
6. discard from P the points that p dominates

Figure 2: The RPE algorithm
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Figure 3: An input to Problem 1 where k = 3; black
and white points have label 1 and 0, respectively.

Proof. By (3), F(p) = 0 means that p does not dominate
any label-1 point in Z. Hence, the deletion of p from P
must have been triggered by RPE probing a label-0 point
p′ dominating p (note that p′ could be p and that a point
is considered to dominate itself). This proves the “only-if”
direction.

To establish the“if”direction, we first need to prove that Z
obeys monotonicity, namely, for any p, q ∈ Z, if p dominates
q, then label(p) ≥ label(q). Assume, on the contrary, that
this is not true, meaning that label(p) = 0 and label(q) = 1.
If p was probed before q, then q must have been discarded
after discovering that p has label 0. Likewise, if q was probed
before p, then p must have been discarded after discovering
that q has label 1. This contradicts the fact that both p and
q were probed.

The monotonicity of Z suggests that, if p is dominated by
a label-0 point in Z, p cannot dominate any label-1 point in
Z. Hence, F(p) = 0, thus establishing the “if” direction.

RPE can be implemented in O(n polylog n) time for fixed
dimensionality d. By maintaining P in a binary search tree,
we can draw a random point p ∈ P at Step 2 in O(log n)
time, such that in total we spend O(n log n) time on this step.
By maintaining a range tree [11] on P , Steps 5 and 6 can be
implemented in O(x logd n) time, if x points are eliminated
from P . Each point contributes to the x-term exactly once
(it can be deleted only once). Hence, the total CPU time
spent on these two steps is bounded by O(n logd n).

The above is everything that a practitioner needs to know
in order to apply the RPE algorithm in practice. We will
delve into the theory behind RPE in the next two sections.

3. ANALYZING THE COST OF RPE
An Attrition-and-Elimination Game. We will now take
a detour to discuss a relevant problem. Consider the following
game between two players Alice and Bob. At the beginning,
Alice is given the set S = {1, 2, . . . , s} for some integer s ≥ 1.
The game goes in rounds. In each round:

• Bob performs “attrition” first, by either doing nothing
or arbitrarily deleting some elements from S.

• Alice then performs “elimination” by picking a number
p ∈ S uniformly at random, and deleting from S all
the numbers larger than or equal to p.

The game ends when S becomes empty. The number of
rounds is a random variable depending on Bob’s strategy.

How should Bob play in order to maximize the expectation
of that variable?

It is fairly intuitive that Bob should do nothing at all in
every round, in which case the expected number of rounds
is Θ(1 + log s). To prove this, denote by function f(s) the
largest real number such that Bob has a strategy to make
the expected number of rounds equal f(s). Consider the first
attrition of Bob. Clearly, what matters is the number x of
elements that Bob decides to remove (what those elements
actually are is not relevant due to symmetry). If x < s,
the game continues for Alice to work on a set S of size
s − x. After her elimination, S has i elements—for each
i ∈ [0, s − x − 1]—left with probability 1/(s − x). Therefore:

f(s) = 1 +
s−1
max
x=0

{
1

s − x

s−x−1∑

i=0

f(i)

}
.

As the base case, f(0) = 0. Solving the recurrence gives
f(s) = O(1 + log s) for s ≥ 1, regardless of the value of x.

Dominance Width and Chain Decomposition. Let us
return to Problem 1. Given a non-empty subset C of the
input P , we say that C is:

• A chain, if it is possible to linearize the points of C into
a sequence p1, p2, . . . , p|C| such that pi+1 dominates pi

for every i ∈ [1, |C| − 1]. We will refer to the sequence
as the ascending order of C.

• An anti-chain, if none of the points in C dominate each
other.

In Figure 3, {p6, p8, p10} is a chain, whereas {p4, p12, p13,
p14} is an anti-chain.

A chain decomposition is a collection of disjoint chains C1,
C2, . . ., Ct (for some t ≥ 1) whose union equals P . How to
determine the smallest number t is a fundamental result in
order theory:

Dilworth’s Theorem: Consider any poset; let w be
the largest size of all anti-chains. Then, (i) there is a
chain decomposition that contains w chains, and (ii)
no chain decompositions can have less than w chains.

For instance, the input set P of Figure 3 can be divided
into 6 chains: C1 = {p1, p2, p3, p4, p10}, C2 = {p11}, C3 =
{p5, p9, p12}, C4 = {p16}, C5 = {p13}, and C6 = {p6, p7,
p8, p14, p15}. This is a smallest chain decomposition due to
the anti-chain {p10, p11, p12, p16, p13, p14}. Hence, the domi-
nance width w of P is 6.

Probing Cost of RPE. Let {C1, C2, . . . , Cw} be an arbi-
trary smallest chain decomposition (which is not known to
RPE). We will prove that in expectation RPE probes O(1 +
log |Ci|) points in Ci for all i ∈ [1, w]. It will then follow that
the total expected number of probes is O(

∑w
i=1(1+log |Ci|)),

which peaks at O(w(1 + log n
w

)) when all the chains have the
same size n/w.

Without loss of generality, let us focus on C1. Break C1

into (i) the set Ctrue
1 of points with label 1, and (ii) the set

Cfalse
1 of points with label 0. Due to symmetry, it suffices to

prove that RPE probes O(1 + log |Ctrue
1 |) points from Ctrue

1

in expectation.
Set s = |Ctrue

1 |. List the points of Ctrue
1 in ascending order

p1, p2, . . . , ps. The operations that RPE performs on this
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chain can be captured as an attrition-and-elimination game
on an initial input S = {p1, p2, . . . , ps}:

• Bob formulates his strategy by observing the execution
of RPE. Suppose that the algorithm probes a point
p /∈ Ctrue

1 , and shrinks P at Step 5 or 6. Bob deletes
from S all those points of Ctrue

1 that are discarded in
the shrinking.

• When RPE probes a point p ∈ Ctrue
1 , Bob finishes his

attrition in this round, and passes S to Alice. Condi-
tioned on p ∈ Ctrue

1 , p was chosen uniformly at random
from the current S, i.e., the set of points from Ctrue

1

that are still in P . Hence, p can be regarded as the
choice of Alice. When RPE shrinks P at Step 5, Alice
discards p, as well as all the points behind p, from S.
This finishes a round of the game. The control is passed
back to Bob to start the next round.

By our earlier analysis on the attrition-and-elimination
game, RPE probes O(1 + log s) points from Ctrue

1 in expec-
tation. This establishes the upper bound in Theorem 1 on
the cost of RPE.

4. ANALYZING THE ERROR OF RPE
We now proceed to analyze the number of points mis-

labeled by the classifier F returned by RPE.
Fix an arbitrary optimal monotone classifier F∗, i.e., k =

error(F ∗, P ). Henceforth, a point p ∈ P is said to be an
ordinary point if F∗(p) = label(p), or a noise point, otherwise.
Define:

G∗
1 = {p ∈ P | label(p) = 1 and p is ordinary}

G∗
0 = {p ∈ P | label(p) = 0 and p is ordinary}.

Since P unions G∗
1, G∗

0, and the k noise points, we know:

error(F , P ) ≤ error(F , G∗
1) + error(F , G∗

0) + k. (4)

Let k0 be the number of label-0 noise points, that is,
points p satisfying label(p) = 0 but F∗(p) = 1. The rest of
the section serves as a proof of:

Lemma 3. E[error(F , G∗
1)] is at most k0.

By the symmetry shown in Lemma 2, the above lemma im-
plies that E[error(F , G∗

0)] is at most the number k1 of label-
1 noise points. Equation (4) then gives E[error(F , P )] ≤
k0 + k1 + k = 2k, thus establishing the upper bound in
Theorem 1 on the error of RPE.

4.1 RPE by Permutation
To analyze error(F , G∗

1), it will be convenient to consider
an alternative implementation of RPE named RPE-perm,
which is described in Figure 4. Compared to RPE, RPE-
perm differs only in how randomization is injected: this is
now done by randomly permuting P . We defer the proof of
the lemma below to Section 4.4.

Lemma 4. RPE and RPE-perm have the same expected
error and expected probing cost on every input P .

Algorithm RPE-perm(P )
1. randomly permute the points of P

/* if a point p ∈ P is the i-th (i ∈ [1, n]) in the
permutation, define its rank r(p) to be i */

2. while P 6= ∅
3. pick the point p ∈ P with the smallest rank
4. probe p
5. if label(p) = 1 then
6. discard from P the points dominating p

else
7. discard from P the points that p dominates

Figure 4: The permutation-version of RPE

4.2 Influence of Noise Points
Let us first gain some intuition on why error(F , G∗

1) is
small in expectation. Consider the example in Figure 3,
and the optimal F∗ that mis-labels only p1, p11, and p15.
Here, G∗

1 consists of all the black points except p1. The bad
news is that, if noise point p15 is probed first, the classifier
F output by RPE will map the ordinary points p9, p13, p14

to 0 incorrectly (see Lemma 2), causing an increase of 3
to error(F , G∗

1). The good news is that, if p15 is probed
after any of the ordinary points p9, p13, p14, then p15 will be
discarded and can do no harm. Under a random permutation,
p15 has only 1/4 probability to rank before all of p9, p13, p14,
which seems to suggest that p15 could trigger an increase of
only 3/4 to error(F , G∗

1) in expectation.
Unfortunately, the analysis is not as simple as this, due

to the presence of noise point p11, which complicates the
conditions for p15 to be probed. For example, observe that,
if p11 did not exist, p15 can never be probed when p9 ranks
before p15. This is no longer true with the presence of p11.
To see this, imagine that p11 ranks before p9, which in turn
ranks before p15. The probing of p11 evicts p9 from P . On
the other hand, p15 remains in P , and hence, gets a chance
to be probed later.

The above issue arises because p9 is dominated—and
thereby is “influenced”—by both noise points p11 and p15.
Separating and quantifying the influence of each noise point
turns out to be the most crucial idea behind our analysis.
Let N0 be the set of label-0 noise points, i.e., k0 = |N0|.
Next, we will describe a way to calculate the “exclusive influ-
ence” I(q) of each point q ∈ N0. In particular, we will do so
incrementally by observing how RPE-perm executes.

At the beginning, initialize I(q) = 0 for every q ∈ N0.
Whenever RPE-perm is about to probe a point q ∈ N0,
capture the set—denoted as P (q)—of points that are still in
P at this moment. Then, finalize I(q) as:

I(q) =
the number of points in P (q) ∩ G∗

1 that are
dominated by q.

At the end of RPE-perm, if a point q ∈ N0 is never probed,
define P (q) = ∅ and finalize its I(q) to be 0.

The next lemma explains why the set {I(q) | q ∈ N0}
separates and quantifies the influence of the noise points in
N0.

Lemma 5.
∑

q∈N0
I(q) = error(F , G∗

1).

Proof. Consider an arbitrary q ∈ N0 that was probed
by RPE-perm. Let p be any point in P (q) ∩ G∗

1 that is
dominated by q. By Lemma 2, F(p) = 0 because of q.
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Thus, p contributes 1 to error(F , G∗
1). Hence,

∑
q∈N0

I(q) ≤
error(F , G∗

1).
Conversely, let p be a point contributing 1 to error(F , G∗

1),
that is, label(p) = 1 but F(p) = 0. Let S be the set of label-0
points in Z that dominate p. By Lemma 2, |S| ≥ 1. Define
q to be the point in S that was probed the earliest. Because
p is an ordinary point with label 1 dominated by q, q must
be a noise point, i.e., q ∈ N0. Next, we argue that p must be
in P (q), meaning that p contributes 1 to I(q), which in turn
indicates error(F , G∗

1) ≤ ∑
q∈N0

I(q).

On the contrary, suppose that p /∈ P (q). Thus, p had
already disappeared when RPE-perm was about to probe q.
By definition of q, this implies that RPE-perm had probed a
label-1 point dominated by p; but doing so should have got
q discarded, giving a contradiction.

4.3 Proof of Lemma 3
Let us denote the points of N0 as q1, q2, . . . , qk0 in an

arbitrary order, and introduce a random variable

X =

k0∑

i=1

I(qi).

We will show E[X] ≤ |N0| = k0, which will prove Lemma 3
by way of Lemma 5. Given a subset S of P and any point
q ∈ P , define:

DS(q) = {p ∈ S | q dominates p}.

Our proof of E[X] ≤ k0 is inductive on k0.

4.3.1 The Base Case
Let us start with the case k0 = 1, namely, N0 = {q1}.

Lemma 6. I(q1) > 0 only if q1 has a smaller rank than
all the points in DG∗

1
(q1).

Proof. Suppose that DG∗
1
(q1) has a point p that ranks

before q1 in the permutation. We argue that RPE-perm will
not probe q1.

Suppose that RPE-perm probes q1. Consider the moment
right before the probing happens. Point p must have disap-
peared from P (otherwise, RPE-perm cannot have chosen to
probe q since the rank of p is smaller). Could it have been
discarded due to the probing of a label-0 point p′ 6= q1? No,
because otherwise, p ∈ G∗

1 asserts that p′ must also be a
label-0 noise point, contradicting k0 = 1. Thus, p must have
been discarded due to the probing of a label-1 point that
p dominates. But this should have evicted q1 as well, also
giving a contradiction.

Hence, I(q1) > 0 with a probability at most 1/(1+|DG∗
1
(q1)|).

Since I(q1) obviously cannot exceed |DG∗
1
(q1)|, we have:

E[I(q1)] ≤
|DG∗

1
(q1)|

1 + |DG∗
1
(q1)|

< 1.

4.3.2 The Inductive Case
Assuming E[X] ≤ k0 when k0 = t − 1 for some integer

t ≥ 2, we will prove that the same holds also for k0 = t.
Define J(i) (i ∈ [1, t]) as the event that qi has the largest

permutation rank among q1, q2, . . . , qt. We will show

E[X | J(i)] ≤ t (5)

for all i, which will give

E[X] =

t∑

i=1

E[X | J(i)] · Pr[J(i)] ≤
t∑

i=1

t · 1

t
= t

as is needed to complete the inductive argument.
Due to symmetry, the subsequent discussion will prove (5)

only for i = t, and hence, will be conditioned on the event
J(t). Recall that RPE-perm probes points in ascending order
of rank. Let us define the watershed moment as:

• The moment right before RPE-perm probes the first
point with a larger rank than all of q1, q2, . . ., qt−1;

• End of RPE-perm, if it does not probe any point that
ranks after q1, q2, . . . , qt−1.

At the watershed moment, I(q1), . . . , I(qt−1) have been final-
ized. Set Y =

∑t−1
i=1 I(qi). Denote by Pwater the content of

P at this instant.
The inductive assumption implies that E[Y ] ≤ t − 1. To

understand why, imagine deleting qt from P , after which the
input set P ′ has t − 1 label-0 noise points, but the same G∗

1.
The permutation after removing qt is a random permutation
of P ′. Thus, Y is exactly the value of error(F , G∗

1) on P ′.
The remainder of the proof shows E[I(qt) | J(t)] ≤ 1. This

will establish (5) because

E[X | J(t)] = E[Y ] + E[I(qt) | J(t)].

I(qt) = 0 when qt is not in Pwater (and hence, will not be
probed). Hence, it suffices to prove

E[I(qt) | J(t), qt ∈ Pwater ] ≤ 1.

Towards the purpose, we expand the left hand side over all
possible sets W that Pwater may be equal to:

E[I(qt) | J(t), qt ∈ Pwater ]

=
∑

W

E[I(qt) | J(t), qt ∈ Pwater = W ] · Pr[W ]. (6)

We will concentrate on proving that

E[I(qt) | J(t), qt ∈ Pwater = W ] ≤ 1

regardless of W , with which (6) can be bounded from above
by

∑
W Pr[W ] = 1.

Subject to the joint event “J(t) and qt ∈ Pwater = W”, the
elements of W are symmetric with respect to their relative
ordering in the permutation: any of the |W |! orderings can
take place with an equal probability. The analysis of E[I(qt)]
under that joint event is essentially the same as the base
case. By the same argument as in the proof of Lemma 6,
we assert that I(qt) > 0 only if qt ranks before all the
points in DW∩G∗

1
(qt), which happens with a probability of

1/(1 + |DW∩G∗
1
(qt)|). As I(qt) cannot exceed |DW∩G∗

1
(qt)|

under the joint event, we conclude that E[I(qt) | J(t), qt ∈
Pwater = W ] is no more than

|DW∩G∗
1
(qt)|

1 + |DW∩G∗
1
(qt)|

≤ 1.

4.4 Proof of Lemma 4
Both RPE and RPE-perm can be described as a random-

ized decision tree T defined as follows. Each node u of T is
associated with a subset of P , denoted as u(P ). If u is the
root, u(P ) = P , whereas if u is a leaf, u(P ) = ∅. An internal
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node u has |u(P )| child nodes. Each directed edge (u, v)
from u to a child v stores a point—denoted as point(u, v)—of
u(P ). Every point of u(P ) is stored on one and exactly
one outgoing edge of u. For each child v, the set v(P ) is
determined as:

• If label(p) = 0, v(P ) is the set of points in u(P ) that
are not dominated by point(u, v) (recall that a point
dominates itself).

• If label(p) = 1, v(P ) is the set of points in u(P ) that
do not dominate point(u, v).

Each root-to-leaf path π represents a possible probing se-
quence of RPE or RPE-perm. Specifically, for each node u
on π, u(P ) represents the content of P after the algorithm
probes the points stored on (the edges of) the root-to-u path.
We will prove that, for every leaf z of T , RPE and RPE-perm
reach z with exactly the same probability. This establishes
Lemma 4 because both error and probing cost are determined
by the sequence of points probed.

Let u1, u2, . . . , uℓ be the nodes on the root-to-z path (u1

is the root and z = uℓ). Obviously, RPE reaches z with
probability Πℓ−1

i=1
1

|ui(P )| . It remains to show that this is also

true for RPE-perm.
The execution of RPE-perm is a function of the permuta-

tion of P—denoted as Pperm—obtained at Step 1. For each
node u of T , denote by S(u) the set of all possible Pperm that
will bring the execution to u. When u is the root, S(u) is
the set of all n! permutations.

Lemma 7. For i ∈ [2, ℓ], S(ui) is the set of permutations
π ∈ S(ui−1) such that point(ui−1, ui) has the smallest rank
in π among all the points in ui−1(P ).

Proof. We prove the claim by induction. It holds for i =
2 because RPE-perm descends from u1 (the root) to u2 only
when point(u1, u2) is the first point of Pperm . Inductively,
assume that the claim is true for i = j − 1. As mentioned
before, uj−1(P ) is the content of P after RPE-perm probes
the points stored on the root-to-uj−1 path. Hence, the
algorithm branches to uj only if point(uj−1, uj) is the next
to pick in Pperm among the points in uj−1(P ). So the claim
holds also for i = j.

The lemma indicates that |S(ui)| = |S(ui−1)|/|ui−1(P )|.
Hence, |S(uℓ)| = |S(u1)| · Πℓ−1

i=1
1

|ui(P )| . The probability

that RPE-perm reaches uℓ equals |S(uℓ)|/n! which is simply
Πℓ−1

i=1
1

|ui(P )| . This concludes the proof of Lemma 4.
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The paper Efficient Query Processing for Dynamically
Changing Datasets, by Muhammad Idris, Mart́ın Ugarte,
Stijn Vansummeren, Hannes Voigt, and Wolfgang Lehner
studies two central aspects of answering queries: (1) enu-
merating the answers to a query and (2) changing data. It
is based on two papers by the same authors or a subset
thereof, namely The Dynamic Yannakakis Algorithm: Com-
pact and Efficient Query Processing Under Updates [4] and
Conjunctive Queries with Inequalities Under Updates [5].

In a nutshell, these papers show how theoretical ideas for
enumerating the answers to a query (e.g., in [1]) can be
brought to the point where they actually work in practice
and, furthermore, can deal with updates to the data. The
fact that this was possible was not at all clear from the
original theoretical work, which makes the current work ex-
tremely valuable to our community. Idris et al. show in their
experiments that their algorithms perform consistently bet-
ter than competitor incremental view maintenance systems
with up to two orders of magnitude improvements in both
time and memory consumption. They also show how the
algorithms can be extended to deal with more general join
conditions. So, they don’t just work, they actually work
really well.

In a classic paper from 2007, Bagan et al. studied for which
conjunctive queries it is possible to enumerate the answers
in constant delay, after linear precomputation. This means
that an algorithm is first allowed to spend linear time in the
database for computing a data structure, from which it is
then possible to generate the answers of the query such that
the time interval between consecutive answers does not de-
pend on the size of the data. The entire complexity analysis
is done in data complexity, which means that it only takes
the size D of the database into account and considers the
size Q of the query to be a constant. This means, more
concretely, that a run-time of 2O(Q) · O(D) would be con-
sidered to be linear in the database — this fact may clarify
to the attentive reader why bringing such an approach to
practice may indeed be challenging. A main contribution of
Bagan et al. is the result that says that, if acyclic queries
are free-connex, then they can be evaluated with linear pre-
computation and constant delay. However, if they are not
(and fulfill mild additional constraints [1]), then they cannot
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be evaluated within this time bound (under the conjecture
that Boolean n × n matrices cannot be multiplied in time
O(n2)).

Idris et al.’s work provides an algorithm that computes
a data structure that depends on the data and the query,
and supports constant-delay enumeration for answering the
query. The algorithm does not only support (projection-
free) join queries, but also free-connex acyclic conjunctive
queries which is, by results of Bagan et al. [1] and Brault-
Baron [3], the largest class of conjunctive queries for which
such an algorithm is possible under complexity-theoretical
assumptions. The approach is heavily based on Yannakakis’
algorithm for acyclic conjunctive query evaluation [6].

The approach is also robust under updates in the sense
that tuple insertions or deletions can be propagated effi-
ciently into the data structure. For so-called q-hierarchical
queries, it is able to deliver (1) constant-delay enumeration
of query results and (2) update propagation in time linear in
the size of the update. Berkholz et al. [2] proved that the q-
hierarchical queries are precisely the conjunctive queries that
allow such an algorithm, unless the Online Matrix-Vector
Multiplication conjecture is false.

This is a paper written by researchers with solid back-
grounds in systems and theory and it shows. It provides
algorithms for query evaluation that match rather tightly
with theoretical lower bounds and perform very well in the
experimental settings.
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ABSTRACT
The ability to efficiently analyze changing data is a key
requirement of many real-time analytics applications. Tra-
ditional approaches to this problem were developed around
the notion of Incremental View Maintenance (IVM), and are
based either on the materialization of subresults (to avoid
their recomputation) or on the recomputation of subresults
(to avoid the space overhead of materialization). Both tech-
niques are suboptimal: instead of materializing results and
subresults, one may also maintain a data structure that sup-
ports efficient maintenance under updates and from which
the full query result can quickly be enumerated. In two pre-
vious articles, we have presented algorithms for dynamically
evaluating queries that are easy to implement, efficient, and
can be naturally extended to evaluate queries from a wide
range of application domains. In this paper, we discuss our
algorithm and its complexity, explaining the main compo-
nents behind its efficiency. Finally, we show experiments that
compare our algorithm to a state-of-the-art (Higher-order)
IVM engine, as well as to a prominent complex event recog-
nition engine. Our approach outperforms the competitor
systems by up to two orders of magnitude in processing time,
and one order in memory consumption.

1 Introduction
The ability to efficiently analyze changing data is a key
requirement of many real-time analytics applications like
Stream Processing [20], Complex Event Recognition [9], Busi-
ness Intelligence [17], and Machine Learning [22].

In this context, we tackle the problem of dynamic query
evaluation, where a given query Q has to be evaluated against
a database that is constantly changing. Concretely, when

∗
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database db is updated to database db + u under update
u, the objective is to efficiently compute Q(db + u), taking
into consideration that Q(db) was already evaluated and
re-computations could be avoided.

Dynamic query evaluation is of utmost importance if re-
sponse time requirements for queries under concurrent data
updates have to be met or if data volumes are so large that
full re-evaluation of queries based on raw data is prohibitive.

The following example illustrates our setting. Assume that
we wish to detect potential credit card fraud. Credit card
transactions specify their timestamp (ts), account number
(acc), and amount (amnt). A typical fraud pattern is that,
in a short period of time, a criminal tests a stolen credit card
with a few small purchases to then make larger purchases
(cf. [18]). Assuming that the short period of time is 1 hour,
this pattern could be detected by dynamically evaluating the
query in Figure 1. Queries like this may exhibit arbitrary
local predicates and multi-way joins with equality as well as
inequality predicates. Traditional techniques to process such
queries dynamically can be categorized in two approaches: re-
lational and automaton-based. We outline the core principles
of relational approaches in the following and refer to [13] for
an in-depth discussion of the drawbacks of automaton-based
approaches.

Relational approaches such as [2, 10, 16] build upon the
technique of Incremental View Maintenance (IVM) [7]. To
process a query Q over a database db, IVM techniques ma-
terialize the output Q(db) and evaluate delta queries [10].
Upon update u, delta queries use db, u, and the materialized
Q(db) to compute the set of tuples to add/delete from Q(db)
in order to obtain Q(db + u). If u is small with respect to
the database db, this is expected to be faster than recomput-
ing Q(db + u) from scratch. To further speed up dynamic
query processing, also the result of some subqueries of Q
may be redundantly materialized. This approach is known
as Higher-Order IVM (HIVM) [15,16].

Unfortunately, (H)IVM shows a serious drawback in terms
of additional memory overhead, which quickly becomes pro-
hibitive for interactive data analytics scenarios: materializa-
tion of Q(db) requires Ω(|Q(db)|) space, where |db| denotes
the size of db. Therefore, when Q(db) is large, which is often
the case in data preparation scenarios for training statistical
models, materializing Q(db) quickly becomes impractical,
especially for main-memory based systems. HIVM is even
more affected by this problem than IVM since it not only
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Figure 1: Example query for detecting fraudulent
credit card activity.

materializes the result of Q but also the results of some sub-
queries. In fact some of these subresults can be partial join
results, which can be larger than both db and Q(db). For
example, in our fraud query, HIVM would materialize the
results of the join in the shaded area in Figure 1. Intuitively,
this join builds the table of all pairs of small transactions
that could be part of a credit card fraud if a third relevant
transaction occurs. Therefore, if we assume that there are
N small transactions in the time window, all of the same
account, this materialization will take Θ(N2) space. This
naturally becomes impractical when N grows.

While these problems are inherent to (H)IVM methods,
they can be avoided by taking a different approach to dynamic
query evaluation: instead of materializing Q(db) we can
build a succinct data structure that (1) supports efficient
maintenance under updates and (2) represents Q(db) in the
sense that from it we can generate Q(db) as efficiently as
if it were materialized. In particular, the representation is
equipped with index structures so that we can enumerate
Q(db) with constant delay [19]: one tuple at a time, while
spending only a constant amount of work to produce each
new tuple. This makes the enumeration competitive with
enumeration from materialized query results.

In essence, we hence separate dynamic query processing
into two stages: (1) an update stage where we only maintain
under updates the (small) information that is necessary for
result enumeration and (2) an enumeration stage where the
query result is efficiently enumerated.

In our work, which is documented in detail in [12] and
[13], we are concerned with designing a practical family of
algorithms for dynamic query evaluation based on this idea
for queries featuring both equi-joins and inequality joins, as
well as certain forms of aggregation. Our main insight is that,
for acyclic conjunctive queries, such algorithms can naturally
be obtained by modifying Yannakakis’ seminal algorithm for
processing acyclic joins in the static setting [23].

In a first step, we address the problem of efficiently evaluat-
ing acyclic aggregate-join queries by providing the Dynamic
Yannakakis Algorithm (Dyn) [12]. The representation of
query results that underlies this algorithm has several desir-
able properties:
- (P1) It allows to enumerate Q(db) with constant delay.
- (P2) For any tuple ~t, it can be used to check whether
~t ∈ Q(db) in constant time.

- (P3) It requires only O(|db|) space and is hence independent
of the size of Q(db).

- (P4) it features efficient maintenance under updates: given

update u to db, we can update the representation of Q(db)
to a representation of Q(db + u) in time O(|db|+ |u|). In
contrast, (H)IVM may require Ω(|u|+ |Q(db +u)|) time in
the worst case. For the subclass of q-hierarchical queries [4],
our update time is O(|u|).
Based on this technique to dynamically process queries

with equi-joins, we provide the core intuiton of a generaliza-
tion of the Dynamic Yannakakis Algorithm to conjunctive
queries with arbitrary θ-joins. We show that, in the spe-
cific case of inequality joins, this generalization improves the
state of the art for dynamically processing inequality joins
by performing consistently better, with up to two orders of
magnitude improvements in processing time and one order
in memory consumption.

It is important to note that we consider query evaluation
in main memory and measure time and space under data
complexity [21]. That is, the query is considered to be fixed
and not part of the input. This makes sense under dynamic
query evaluation, where the query is known in advance and
the data is constantly changing.

2 Preliminaries
Query Language. Throughout the paper, let x, y, z, . . .
denote variables (also commonly called column names or
attributes). A hyperedge is a finite set of variables. We use
x, y, . . . to denote hyperedges. A Generalized Conjunctive
Query (GCQ) is an expression of the form

Q = πy
(
r1(x1) 1 · · · 1 rn(xn) |

m∧

i=1

θi(zi)
)
.

Here r1, . . . , rn are relation symbols; x1, . . . , xn are hyper-
edges (of the same arity as r1, . . . , rn); θ1, . . . , θm are predi-
cates over z1, . . . , zm, respectively; and both y and

⋃m
i=1 zi

are subsets of
⋃n
i=1 xi. We treat predicates abstractly: for

our purpose, a predicate over x is a (not necessarily finite)
decidable set θ of tuples over x. For example, θ(x, y) = x < y
is the set of all tuples (a, b) satisfying a < b. We indicate
that θ is a predicate over x by writing θ(x). Throughout the
paper, we consider only non-nullary predicates with x 6= ∅.

Example 2.1. The following query is a GCQ.

πy,z,w,u
(
r(x, y) 1 s(y, z, w) 1 t(u, v) | x < z ∧ w < u

)

Intuitively, the query asks to take the natural join of r(x, y)
and s(y, z, w), form the cartesian product with t(u, v), and
subsequently select those tuples that satisfy x < z and w < u.

We call y the output variables of Q and denote them out(Q).
If y = x1∪ · · ·∪xn then Q is called full and we may omit the
symbol πy for brevity. We denote by full(Q) the full GCQ
obtained from Q by setting out(Q) to x1 ∪ · · · ∪ xn. The
elements ri(xi) are called atoms. at(Q) denotes the set of all
atoms in Q, and pred(Q) the set of all predicates in Q. A
conjunctive query (or CQ) is a GCQ where pred(Q) = ∅.
Semantics. We evaluate GCQs over Generalized Multiset
Relations (GMRs for short) [12,15,16]. Let dom(x) denote
the domain of variable x. As usual, a tuple over x is a
mapping ~t that assigns a value from dom(x) to every x ∈ x.
A GMR R over x is a function R : T[x]→ Z mapping tuples
over x to integers such that R(~t) 6= 0 for finitely many tuples ~t.
Here, T[x] denotes the set of all tuples over x. In contrast to
classical multisets, the multiplicity of a tuple in a GMR can
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R
x y z Z
1 2 2 2
2 4 6 3
1 2 3 3

S
u v Z
4 5 5
2 3 4
1 4 2

T
u v Z
4 5 −4
2 1 6
1 4 3

S 1 T
u v Z
4 5 −20
1 4 6

πy(R)
y Z
2 5
4 3

S + T
u v Z
4 5 1
2 3 4
1 4 5
2 1 6

S − T
u v Z
4 5 9
2 3 4
1 4 −1
2 1 −6

σy<u(R 1 S)
x y z u v Z
1 2 2 4 5 10
1 2 3 4 5 15

Figure 2: Operations on GMRs.

hence be negative, allowing to treat insertions and deletions
uniformly. We write var(R) for x; supp(R) for the finite set
of all tuples with non-zero multiplicity in R; ~t ∈ R to indicate
~t ∈ supp(R); and |R| for |supp(R)|. A GMR R is positive
if R(~t) > 0 for all ~t ∈ supp(R). The operations of GMR
union (R + S), minus (R − S), projection (πz R), natural
join (R 1 T ) and selection (σP (R)) are defined similarly
as in relational algebra with multiset semantics. Figure 2
illustrates these operations; see [12, 16] for formal semantics.

A database over a set A of atoms is a function db that
maps every atom r(x) ∈ A to a positive GMR dbr(x) over
x. We write |db| for

∑
r(x)∈A |dbr(x)|. Given a database db

over the atoms occurring in query Q, the evaluation of Q
over db, denoted Q(db), is the GMR over y constructed in
the expected way: take the natural join of all GMRs in the
database, do a selection over the result w.r.t. each predicate,
and finally project on y. It is instructive to note that after
evaluation, each result tuple has an associated multiplicity
that counts the number of derivations for the tuple. In other
words, the query language has built-in support for COUNT

aggregations. We note that, in their full generality, GMRs
can carry multiplicities that are taken from an arbitrary
algebraic semiring structure (cf., [15]), which can be useful
to describe the computation of more advanced aggregations
over the result of a GCQ [1]. To keep the notation and
discussion simple we fix the ring Z of integers throughout
the paper, but our results generalize to arbitrary semirings
and their associated aggregations.

Updates and deltas. An update to a GMR R is simply a
GMR ∆R over the same variables as R. Applying update
∆R to R yields the GMR R + ∆R. An update to a database
db is a collection u of (not necessarily positive) GMRs, one
GMR ur(x) for every atom r(x) of db, such that dbr(x) + ur(x)
is positive. We write db +u for the database obtained by
applying u to each atom of db.

Computational Model. We focus on dynamic query eval-
uation in main-memory. We assume a model of computation
where the space used by tuple values and integers, the time
of arithmetic operations on integers, and the time of memory
lookups are all O(1). We further assume that every GMR
R can be represented by a data structure that allows (1)
enumeration of R with constant delay (as defined in Sec-
tion 3); (2) multiplicity lookups R(~t) in O(1) time given ~t;
(3) single-tuple insertions and deletions in O(1) time; while
(4) having size that is proportional to |R|. We further assume
the existence of dynamic data structures that can be used
to index GMRs on a subset of their variables. Concretely if

R is a GMR over x and I is an index of R on y ⊆ x then
we assume that for every y-tuple ~s we can retrieve in O(1)
time a pointer to the GMR Rn~s, which is the GMR over x
consisting of all tuples that project to ~s:

Rn~s ∈ GMR[x] : ~t 7→
{
R(~t) if ~t[y] = ~s

0 otherwise

Moreover, we assume that single-tuple insertions and dele-
tions to R can be reflected in the index in O(1) time and that
an index takes space linear in |R|. Essentially, our assump-
tions amount to perfect hashing of linear size [8]. Although
this does not directly match a realistic setting, it is well
known that complexity results for this model can be trans-
lated, through amortized analysis, to average complexity in
real-life implementations [8].

3 Dynamic Yannakakis
In this section we formulate Dyn, a dynamic version of the
Yannakakis algorithm [23], that focuses on the evaluation of
CQs. How to deal with θ-joins is discussed in Section 4.

3.1 Intuition
A data structure D supports enumeration of a set E if
there is a routine enum such that enum(D) outputs each
element of E exactly once. Such enumeration occurs with
delay d if the time until the first output; the time between
any two consecutive outputs; and the time between the last
output and the termination of enum(D), are all bounded
by d. D supports enumeration of a GMR R if it supports
enumeration of the set ER = {(~t, R(~t)) | ~t ∈ supp(R)}. When
evaluating a GCQ Q over a database db, we will be interested
in representing the elements of Q(db) by means of a data
structure Ddb, such that we can enumerate Q(db) from Ddb.
If, for every db, the delay to enumerate Q(db) from Ddb is
independent of |db| then we say that the enumeration occurs
with constant delay [19].

As a trivial example of constant delay enumeration (CDE
for short) of a GMR R, assume that the pairs (~t,R(~t)) of
ER are stored in an array A (without duplicates). Then
A supports CDE of R: enum(A) simply iterates over each
element in A, one by one, always outputting the current
element. Since array indexation is a O(1) operation, this
gives constant delay. This example shows that CDE of
Q(db) can always be done naively by materializing Q(db) in
an in-memory array. Unfortunately, this requires memory
proportional to |Q(db)| which, depending on Q, can be of size
polynomial in |db|. We hence desire other data structures to
represent Q(db) using less space, while still allowing CDE.

To understand how this can be done, it is instructive to
consider a simple binary join Q = R(x, y) 1 S(y, z) and
analyze why traditional join processing algorithms do not
yield CDE. Suppose that we evaluate Q using a simple in-
memory hash join with R as build relation and S as probe
relation. Assume that the corresponding index of R on
y (i.e. the hash table) has already been computed. Now
observe that, when iterating over S to probe the index, we
may have to visit an unbounded number of S-tuples that do
not join with any R-tuple. Consequently, the delay between
consecutive output tuples may be as large as |S|, which is not
constant. A similar analysis shows that other join algorithms,
such as the sort-merge join, do not yield enumeration with
constant delay.
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How can we obtain CDE for R(x, y) 1 S(y, z)? Intuitively
speaking, if we can ensure to only iterate over those S-tuples
that have matching R-tuples, we trivially obtain constant
delay since then every probe will yield a new output tuple.
As such, the key is to first compute Y = πy(R) 1 πy(S)
and index both R and S on y. We can then iterate over the
elements of Y , probing both R and S in each iteration to
generate the output with constant delay. In the presence of
updates, this means that we only need to maintain Y , as well
as the indexes on R and S—all of which are of size linear in
db and can be maintained efficiently.

3.2 The Algorithm
To extend the intuition of Section 3.1 from a binary join
to general CQs that feature both multiway equi-joins and
projections, we need to maintain for all the relations that
are used as probe relations in a join, the set of tuples that
will match the corresponding build relation(s). Of course, we
also need to decide in what order we will join the relations,
since this determines the auxiliary sets of tuples (like Y
above) that we need to maintain. For Dyn, this query plan
is specified by means of a pair (T,N) called a GJT pair.

GJT pairs. To simplify notation, we denote the set of all
variables (resp. atoms, resp. predicates) that occur in an
object X (such as a query) by var(X) (resp. at(X), resp.
pred(X)). In particular, if X is itself a set of variables, then
var(X) = X. We extend this notion uniformly to labeled
trees. E.g., if n is a node in tree T , then varT (n) denotes the
set of variables occurring in the label of n, and similarly for
edges and trees themselves. If T is clear from the context,
we omit subscripts from our notation.

Definition 3.1. A GJT pair is a tuple (T,N) with T a
generalized join tree and N a sibling-closed connex subset of
T . A generalized join tree (GJT) is a node-labeled directed
tree T = (V,E) such that:
- T is binary: every node has at most two children.
- Every leaf is labeled by an atom.
- Every interior node n is labeled by a hyperedge and has at

least one child c such that var(n) ⊆ var(c). Such a child is
called a guard of n.

- Whenever the same variable x occurs in the label of two
nodes m and n of T , then x occurs in the label of each
node on the unique path linking m and n.

A simple GJT is a GJT where var(n) ⊆ var(c) for every node
n with child c, i.e., a GJT where every child is a guard of its
parent. A connex subset of T is a set N ⊆ V that includes
the root of T such that the subgraph of T induced by N is
a tree. N is sibling-closed if for every node n ∈ N with a
sibling m in T , m is also in N . The frontier of a connex set
N is the subset F ⊆ N consisting of those nodes in N that
are leaves in the subtree of T induced by N .

Figure 3 shows a GJT pair (T1, N1) and a GJT T2. T1 is
simple, but T2 is not since t(x, u) is not a guard of {x, y}. The
set N1 = {{x}, {x, y}, t(x, u)}, highlighted in gray, is a sibling-
closed connex subset of T1, and its frontier is {{x, y}, t(x, u)}.

Definition 3.2. Let (T,N) be a GJT pair and assume that
{|r1(x1), . . . , rn(xn)|} is the multiset of atoms occurring as
labels in the leaves of T . Then the query associated to T is
the full join Q[T] = (r1(x1) 1 · · · 1 rn(xn)) and the query
associated to (T,N) is the CQ Q[T,N] = πvar(N)(Q[T]).

{x}
(T1, N1)

{x, y}

r(x, y, z) s(x, y, v)

t(x, u)

{x, y}
(T2)

{x, y}

r(x, y, z) t(x, u)

s(x, y, v)

Figure 3: Two example GJTs.

ρ{x}
x #
1 24

ρ{x,y}
x y #
1 2 4
2 2 21

ρr = dbr

x y z #
1 2 3 2
2 2 4 3
2 2 8 4

ρs = dbs

x y v #
1 2 4 2
1 3 5 3
2 2 4 3

ρt = dbt

x u #
1 6 2
1 3 4
4 5 5

= πx(ρ{x,y} 1 ρt)

= πx,y(ρr 1 ρs)

P{x,y}
S{x,y}
x
1

Sr

x y
1 2
2 2

Ss

x y
1 2
2 2

Pt

St

x
1

Figure 4: (T1, N1)-representation for the database db
specified by the GMRs depicted at the leaves.

The data structure. Following the intuition of Section 3.1,
a GJT pair (T,N) acts as query plan by which Dyn processes
Q[T,N] dynamically. In particular, the GJT T specifies the
data structure to be maintained and drives the processing of
updates, while the connex set N drives the enumeration of
query results. The data structure itself is defined next.

Definition 3.3. Let (T,N) be a GJT pair and let db be a
database over at(Q). The T -reduct (or semi-join reduction)
of db is a collection ρ of GMRs, one GMR ρn for each node
n ∈ T , defined inductively as follows:

- if n = r(x) is an atom, then ρn = dbr(x)
- if n has a single child c, then ρn = πvar(n)ρc
- otherwise, n has two children c1 and c2. In this case we

have ρn = πvar(n) (ρc1 1 ρc2). Note that, because n has a
guard child, this is actually a semijoin.

A T -reduct needs to be augmented by suitable index struc-
tures to be used for both enumeration and maintenance under
updates. Concretely for each node n with parent p in T , the
following indexes are created:

- If n belongs to N , then we store an index Pn of ρn on
var(p) ∩ var(n), called the parent index of n.

- If n is a node with a sibling m, then we store an index Sn
of ρn on var(n) ∩ var(m), called the sibling index of n.

The T -reduct ρ together with the collection of indexes is
called a (T,N)-representation for db, or (T,N)-rep for short.

Figure 4 depicts an example (T1, N1)-representation ρ for
the database db composed of the GMRs shown at the leaves
of the tree. It is important to observe that the size of this
representation for a database db can be at most linear in
the size of db. The reason is that each interior node only
does projections or semijoins. Therefore, as illustrated in
Figure 4, for each node n there is some descendant atom
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Algorithm 1 Dyn: Dynamic Yannakakis

1: function enumT,N (ρ)
2: for each ~t ∈ ρroot(T ) do enumT,N (root(T ),~t, ρ)

3: function enumT,N (n,~t, ρ)
4: if n is in the frontier of N then yield (~t, ρn(~t))
5: else if n has one child c then
6: for each ~s ∈ ρcn~t do enumT,N (c, ~s, ρ)
7: else n has two children c1 and c2
8: for each ~t1 ∈ ρc1 n~t do
9: for each ~t2 ∈ ρc2 n~t do

10: for each (~s1, µ) ∈ enumT,N (c1, ~t1, ρ) do
11: for each (~s2, ν) ∈ enumT,N (c2, ~t2, ρ) do
12: yield (~s1 ∪ ~s2, µ× ν)

13: procedure updateT,N (ρ, u)
14: for each n ∈ leafs(T ) labeled by r(x) do
15: ∆n ← ur(x)

16: for each n ∈ nodes(T ) \ leafs(T ) do
17: ∆n ← empty GMR over var(n)

18: for each n ∈ nodes(T ), traversed bottom-up do
19: ρn+ = ∆n

20: if n has a parent p and a sibling m then
21: ∆p+ = πvar(p) (ρm 1 ∆n)
22: else if n has parent p then
23: ∆p+ = πvar(p) ∆n

α (possibly n itself) such that supp(ρn) ⊆ supp(πvar(n) dbα).
Consequently, the indexes are also of size linear in db.

Given these definitions, the enumeration and maintenance
algorithms that form the Dynamic Yannakakis algorithm are
shown in Algorithm 1. They operate as follows.

Enumeration. To enumerate from a (T,N)-rep we iterate
over the reductions ρn with n ∈ N in a nested fashion,
starting at the root and proceeding top-down. When n is the
root, we iterate over all tuples in ρn. For every such tuple ~t,
we iterate only over the tuples in the children c of n that are
compatible with ~t (i.e., tuples in ρc that join with ~t). Note
that such tuples can be enumerated efficiently thanks to the
index Pc. This procedure continues until we reach nodes
in the frontier of N at which time the output tuple can be
constructed. The pseudocode is given by the routine enum
in Algorithm 1, where the tuples that are compatible with ~t
are computed by ρcn~t.
Update processing. To maintain a (T,N)-rep under up-
date u it suffices to traverse the nodes of T in a bottom-up
fashion. At each node n we have to compute the update ∆n

to apply to ρn and its associated indexes. For leaf nodes, this
update is given by the update u itself. For interior nodes,
∆n can be computed from the update and the original reduct
of its children. Algorithm 1 gives the pseudocode. Here,
line 21 is then implemented by means of a straightforward
hash-join (using the sibling index Sm on ρm). As a side effect
of modifying ρ the associated indexes are also updated (not
shown).

Theorem 3.4. Let (T,N) be a fixed GJT pair. Given a
(T,N)-rep of db with T -reduct ρ, enumT,N (ρ) enumerates
Q[T,N](db) with constant delay. Moreover, update(ρ, u)
updates the (T,N)-rep from a (T,N)-rep of db to a (T,N)-
rep of db + u in time O(|db|+ |u|). If T is simple, then the
update time is O(|u|), hence independent of |db|.

Note that updateT,N can be used to build a (T,N)-rep of
db in timeO(|db|): start from an empty (T,N)-rep (which rep-
resents the empty database) and then call updateT,N (ρ, u)
with u = db. This hence shows that Dyn can be used to
enumerate Q[T,N](db) with constant delay after linear time
preprocessing.

We also note that if ~t is a tuple over var(M) for some
connex subset M ⊆ N of T , then checking whether ~t ∈
πvar(M)Q[T,N](db) can be done in constant time: it suffices

to check that ~t[var(m)] ∈ ρm for every m ∈ M and return
true if and only if this is the case. Since T and N are fixed,
the size of M is bounded and these are a constant number
of checks, all of which run in constant time.

Discussion. Dyn heavily relies on having a GJT pair (T,N)
to process queries. If, for a CQ Q there exists some GJT
pair (T,N) such that Q ≡ Q[T,N] then Q is said to be
free-connex acyclic, and (T,N) is called a GJT pair for Q.
Q is acyclic if full(Q) ≡ Q[T] for some T .1 Not all CQs
are (free-connex) acyclic. For instance, the triangle query
r(x, y) 1 s(y, z) 1 t(x, z) is the prototypical example of a non-
acyclic query. Furthermore, πx,z(r(x, y) 1 s(y, z)) is acyclic
but not free-connex acyclic. Since every free-connex acyclic
CQ is acyclic, this example shows that free-connex acyclic
CQs form a strict subclass of the acyclic CQs. Recent analysis
of query logs show that free-connex acyclic queries occur
very frequently in practice [5]. We refer readers interested in
algorithms for computing GJT pairs for GCQs to [14].

One may wonder whether algorithms with the same proper-
ties as Dyn can be obtained for CQs that are not free-connex
acyclic. It is known that this is not possible for the class of
all acyclic CQs, unless multiplication of two n × n binary
matrices can be computed in O(n2) time [3]. Using further
complexity-theoretic assumptions, it is possible to show that
this is also not possible for the class of all CQs [6].

It is also known [4] that, unless the Online Matrix-Vector
Multiplication conjecture [11] is false, the class of queries that
allow both (1) constant-delay enumeration of query results
and (2) update processing time O(|u|) for every update u, is
exactly the class of so-called q-hierarchical queries. While we
forego a formal definition of this class, we show in [12] that a
CQ Q is q-hierarchical if, and only if there exists a GJT pair
(T,N) for Q such that T is simple. Since Dyn has update
time O(|u|) for exactly these queries, Dyn hence meets the
theoretical lower bound.

For readers familiar with the Yannakakis algorithm [23]
it may not be obvious from the description above why Dyn
can be claimed to be a dynamic version of Yannakakis. We
refer to [12] for a discussion.

4 Dealing with θ-joins
To extend Dyn to also process θ-joins, it is instructive to
consider the GCQ Q = (R(x, y) 1 S(y, z) | x < z) where the
θ-join is an inequality-join. To obtain CDE for Q, assume
that we have already computed Y = πx,y(σx<z(R(x, y) 1

S(y, z))) and that, moreover, we have a more powerful index
structure I that allows, for any tuple {x, y}-tuple ~t over, to
enumerate σx<z(S(y, z)n~t) with constant delay. We can
then obviously enumerate Q with constant delay by iterating

1
There exists many equivalent definitions of when a join query is

acyclic, and consequently also of when a CQ with projections is free-
connex acyclic. See [12,14] for a discussion of why the new definition
that we give here is equivalent to the existing ones.
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over the elements of ~t ∈ Y , and for each such ~t, probe
I to produce the tuples ~s ∈ σx<z(S(y, z)n~t), outputting
each ~s ∪ ~t. Since σx<z(S(y, z)n~t) allows CDE, the entire
procedure is CDE. The key question then, is how we can
build this more powerful index structure I. The solution is
to build a normal (hash-based) index J of S on y but use
sorting to store the index in such a way that for every ~t over
y this index returns a pointer to Sn~t for which tuples are
enumerated in descending order on z. This now supports
CDE of σx<z(S(y, z)n~t), for every ~t over {x, y}: use J to
enumerate Rn~t with constant delay and in decreasing order
on z. Yield the current tuple ~s that is being enumerated in
this fashion, provided that ~t(x) < ~s(z). As soon as ~t(x) ≥ ~s(z)
we know that all subsequent ~s will fail the inequality, and we
can hence terminate. This example forms the basic intuition
in how we can extend Dyn to deal with GCQs with inequality
joins. We next sketch the generalization to arbitrary θ-joins,
and refer to [13] for detailed exposition.

First, in the presence of θ-joins, a GJT pair is defined
exactly as in Definition 3.1 except that now additionally
every edge p→ c from parent p to child c is labeled by a set
pred(p → c) of predicates. It is required that every predi-
cate θ(z) in this set satisfies z ⊆ var(p) ∪ var(c). The query
Q[T,N] associated to (T,N) then becomes πvar(N)(Q[T] |
∧θ(z)∈pred(T )θ(z)). Here, pred(T ) are all the predicates occur-
ring on edges in T .

Next, (T,N)-reps are extended to account for predicates.
Concretely, the inductive definition of ρn in the T -reduct
becomes:

- if n = r(x) is an atom, then ρn = dbr(x)
- if n has a single child c, then ρn = πvar(n)σpred(n→c)ρc
- otherwise, n has two children c1 and c2. In this case we

set ρn = πvar(n)σpred(n) (ρc1 1 ρc2).

Here pred(n) denotes the set of all predicates on the edges
from n to its children in T . The indexes that we need to
maintain are modified as follows: Pn should now allow CDE
of σpred(p→n)(ρnn~t), for every ~t over var(p), where p is n’s

parent. Sn should allow CDE of σpred(p)(ρnn~t) for every

tuple ~t over var(m) where m is the sibling of n. The exact
design of these indexes of course depends on the semantics
of the predicates included in T ; for inequality predicates we
have sketched above how they work. The generalization of
Dyn works as long as we have these indexes.

Finally, Algorithm 1 is modified so that in Lines 6, 8 and
9 we iterate over σpred(n→c)(ρcn~t) resp. σpred(n→c1)(ρc1 n~t)
and σpred(n→c2)(ρc2 n~t). Lines 19, 21, 23 are modified to
compute the ∆ GMRs under the now-modified definition
of (T,N)-rep. We refer to the general version of Dyn with
arbitrary θ-joins as GDyn, and the version where all θ-joins
are inequalities as IEDyn.

Theorem 4.1. Let (T,N) be a fixed GJT pair. Given a
(T,N)-rep of db, both GDyn and IEDyn correctly enumerate
Q[T,N](db) and update the (T,N)-rep to a rep of db + u
under update u. In the case that all predicates in θ-joins are
inequalities, IEDyn has the following complexity. If there
is at most one inequality on each edge in T , then IEDyn
enumerates with constant delay and has O(M ·log(M)) update
time where M = (|db|+ |u|). If T has some edge that contains
multiple inequalities, the delay is O(log(|db|)) and the update
time is O(M2 · log(M)).2

2
In [13] there was an incorrect claim: we stated that updates could

5 Experimental Evaluation
We have implemented (IE)Dyn as a query compiler that
generates executable code in the Scala programming language.
The generated code instantiates a (T,N)-rep for a query Q
and defines trigger functions that are used for maintaining
the (T,N)-rep under updates.

Our implementation supports two modes of operation:
push-based and pull-based. In both modes, the system main-
tains the (T,N)-rep under updates. In the push-based mode
the system generates, on its output stream, the delta re-
sult ∆Q(db, u) := Q(db + u)−Q(db) after each single-tuple
update u. To do so, it uses a modified version of enumera-
tion that we call delta enumeration. Similarly to how enum
enumerates Q(db), delta enumeration enumerates ∆Q(db, u)
with constant delay (if Q has at most one inequality per pair
of atoms) resp. logarithmic delay (otherwise). To do so, it
uses both (1) the (T,N)-reduct GMRs ρn and (2) the delta
GMRs ∆ρn that are computed by update when processing
u. In this case, however, one also needs to index the ∆ρn
similarly to ρn. In the pull-based mode, in contrast, the sys-
tem only maintains the (T,N)-rep under updates but does
not generate any output stream. Nevertheless, at any time a
user can call enum to obtain the current output.

It should be noted that our implementation also supports
the processing of general acyclic GCQs that are not neces-
sarily free-connex. This is done using the following simple
strategy. Let Q be acyclic but not free-connex. First, com-
pute a free-connex acyclic approximation QF of Q. QF can
always be obtained from Q by extending the set of output
variables of Q. In the worst case, we need to add all vari-
ables, and QF becomes the full join underlying Q. Then,
use (IE)Dyn to maintain a (T,N)-rep for QF . When op-
erating in push-based mode, for each update u, we use the
(T,N)-rep to delta-enumerate ∆QF (db, u) and project each
resulting tuple to materialize ∆Q(db, u) in an array. Sub-
sequently, we copy this array to the output. Note that the
materialization of ∆Q(db, u) here is necessary since the delta
enumeration can produce duplicate tuples after projection.
When operating in pull-based mode, we materialize Q(db)
in an array, and use delta enumeration of QF to maintain
the array under updates. Of course, under this strategy, we
require Ω(|Q(db)|) space in the worst case, just like (H)IVM
would, but we avoid the (partial) materialization of delta
queries. Note the distinction between the two modes: in
push-based mode ∆Q(db, u) is materialized (and discarded
once the output is generated), while in pull-based mode Q(db)
is materialized upon requests. Finally, our implementation
also supports common aggregates like SUM and AVG, see [12]
for more information.

5.1 Conjunctive Queries
We evaluate a subset of queries available in the industry-
standard benchmarks TPC-H and TPC-DS. In particular, we
evaluate those queries involving only equijoins, whose FROM-
WHERE clauses are acyclic. Queries are divided into acyclic
full-join queries (called FQs) and acyclic aggregate queries.
Acyclic full join queries are generated by taking the FROM
clause of the corresponding queries on the benchmarks. We
omit the ORDER BY and LIMIT clauses, we replaced the

be processed in time O(M · log(M)) in this last case. We then found
a bug in our algorithm and we currently do not know if this bound
can be achieved. See [14] for a proof that IEDyn runs in the bounds
claimed here.
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Figure 5: Dyn usage of resources as a percentage of the resources consumed by DBToaster (lower is better).

Benchmark Query # of tuples

TPC-H

Full joins

FQ1 2,833,827
FQ2 2,617,163
FQ3 2,820,494
FQ4 2,270,494

Aggregate
queries

Q1 7,999,406
Q3 10,199,406
Q4 9,999,406
Q6 7,999,406
Q9 11,346,069
Q12 9,999,406
Q13 2,200,000
Q16’ 1,333,330
Q18 10,199,406

TPC-DS

Full joins FQ5 10,669,570

Aggregate
queries

Q3 11,638,073
Q7 13,559,239
Q19 11,987,115
Q22 36,138,621

Table 1: CQ benchmark stream sizes.

left-outer join in TPC-H query Q13 by an equijoin, and
modified TPC-H Q16 to remove an inequality. See [12] for
the full query specification.

Our workload consist of a stream of updates, where each
update consists of a single-tuple insertion. The streams were
generated using the TPC-H and TPC-DS data generators.
The number of tuples in each stream is depicted in Table 1.

We compare IEDyn with DBToaster [16] using memory
footprint and update processing time as comparison metrics.
DBToaster is a state-of-the-art implementation of HIVM. It
operates in pull-based mode, and is optimized for aggrega-
tions over equi-joins. DBToaster has been extensively tested
for such queries and has proven to be more efficient than
a commercial database management system, a commercial
stream processing system and an IVM implementation [16].
It is therefore an interesting implementation to compare to.
DBToaster compiles given SQL statements into executable
trigger programs in different programming languages. We
compare against those generated in Scala from the DBToaster
Release 2.2.3

3https://dbtoaster.github.io/

Figure 5 depicts the resources used by Dyn as a percent-
age of the resources used by DBToaster, both operating in
pull-based mode. For each query, we plot the percentage of
memory used by Dyn considering that 100% is the memory
used by DBToaster, and the same is done for processing
time. This improves readability and normalizes the chart.
To present the absolute values, on top of the bars correspond-
ing to each query we write the memory and time used by
DBToaster. Some executions of DBToaster failed because
they required more than 16GB of main memory. In those
cases, we report 16GB of memory and the time it took the
execution to raise an exception. We mark such queries with
an asterisk (*) in Figure 5. Note that Dyn never runs out of
memory, and times reported for Dyn are the times required
to process the entire update stream.

From Figure 5 we see that for full join queries (FQ1-
FQ5), Dyn outperforms DBToaster by close to one order
of magnitude in both memory consumption and processing
time, illustrating the effectiveness of maintaining (T,N)-reps
rather than the query results themselves, especially when
these results are large. For aggregate queries, Figure 5 shows
that Dyn can significantly improve the memory consumption
of HIVM while improving processing time—up to two orders
of magnitude for TPC-H Q13’ and TPC-DS Q7. See [12] for
an in-depth discussion.

While the T -reps maintained by IEDyn feature constant
delay enumeration, this theoretical notion hides a constant
factor that could decrease performance in practice when
compared to full materialization. Experiments detailed in [12]
show that this not the case: Dyn’s enumeration time is
competitive with DBToaster.

5.2 Conjunctive Queries with Inequalities
To gauge the effectiveness of IEDyn on GCQs that feature
inequality joins, we evaluate the acyclic queries listed in
Table 2 on synthetically-generated streams of single-tuple
insertion updates. The sizes of the update streams are inten-
tionally kept low, since they generate huge output sizes (cf.
Table 2).

Here we only compare IEDyn with Esper4 but refer to [13]
for a more detailed comparison against other state of the art

4http://www.espertech.com/esper/esper-downloads/

SIGMOD Record, March 2019 (Vol. 48, No. 1) 39



Query Expression Join Type |Stream| |Output|
GCQ1 R(a, b, c) 1 S(d, e, f) | a < d < Full 12k 18, 017k
GCQ2 R(a, b, c) 1 S(d, e, f) 1 T (g, h, i) | a < d ∧ e < g < Full 2.7k 178, 847k
GCQ3 R(a, b, c) 1 S(d, e, f) 1 T (g, h, i) | a < d ∧ d < g < Full 2.7k 90, 425k
GCQ4 R(a, b, c) 1 S(d, e, f, k) 1 T (g, h, i, k) | a < d ∧ d < g <,= Full 21k 297, 873k
GCQ5 πa,b,d,e,f,g,h(GCQ3) < Free-connex 2.7k 114, 561k
GCQ6 πd,e,f,g,h,k(GCQ4) <,= Free-connex 21k 99, 043k
GCQ7 πb,c,e,f,h,i(GCQ3) < Free-connex 2.7k 114, 561k
GCQ8 πb,c,e,f,h,i(GCQ4) <,= Free-connex 21k 297, 873k

Table 2: GCQ benchmark queries, together with update stream and result sizes, k = 1000.
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Figure 6: IEDyn resource usage as a percentage of
the resources used by Esper (lower is better).

systems. Esper is a complex event processing engine with a
relational model based on Stanford STREAM [2]. It operates
in push-based mode. We use the Java-based open source
implementation4 for our comparisons.

Figure 6 depicts the resources used by IEDyn as a per-
centage of the resources used by Esper, both operating in
push-based mode. IEDyn significantly outperforms Esper
on all full join queries (GCQ1–GCQ4). We note that for
these queries, even in push-based mode IEDyn can support
the enumeration of query results from its data structures
at any time while competing push-based systems have no
such support. Hence, IEDyn is not only more efficient but
also provides more functionality. IEDyn also significantly
outperforms Esper on free-connex queries GCQ5 and GCQ6

with more than a threefold improvement in processing time
and an order of magnitude improvement in memory usage on
Q7. For non-free-connex queries GCQ7 and GCQ8, IEDyn
continues to significantly outperform Esper in processing
time, showing an order of magnitude improvement in mem-
ory usage for GCQ7.

6 Summary
Traditional techniques for dynamic query evaluation are
based either on materialization (to avoid recomputation of
subresults), or on recomputation of (to avoid the space over-
head of materialization). We have shown that both tech-
niques are suboptimal: instead of materializing subresults,
one can use Dynamic Yannakakis to maintain a data struc-
ture that is succinct; and yet supports all operations one
commonly expects from materialization: enumeration with
constant delay as well as fetching single tuples in constant
time. Our experiments against state-of-the art engines in
different domains show that this can improve performance
by orders of magnitude.
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When problems are scaled to “big data,” researchers
must often come up with new solutions, leveraging ideas
from multiple research areas — as we frequently wit-
ness in today’s big data techniques and tools for ma-
chine learning, bioinformatics, and data visualization.
Beyond these heavily studied topics, there exist other
classes of general problems that need to be rethought
at scale. One such problem is that of large-scale sig-
nal reconstruction [4]: taking a set of observations of
relatively low dimensionality, and using them to recon-
struct a high-dimensional, unknown signal. This class
of problems arises when we can only observe a subset
of a complex environment that we are seeking to model
— for instance, placing a few sensors and using their
readings to reconstruct an environment’s temperature,
or monitoring multiple points in a network and using
the readings to estimate end-to-end network traffic, or
using 2D slices to reconstruct a 3D image.

This signal reconstruction problem (SRP) is typically
approached as an optimization task, in which we search
for the high-dimensional signal that minimizes a loss
function comparing it to the known properties of the
signal. Prior solutions to the SRP make use of linear
algebra techniques [4] or expectation maximization [2]
to find a solution. However, at scale, the dimensionality
of the signal is high enough to render such optimiza-
tion techniques too costly. In “Efficient Signal Recon-
struction for a Broad Range of Applications,” Asudeh et
al. show that algorithmic insights about SRP, combined
with database techniques such as similarity joins and
sketches, can be used to scalably solve the signal recon-
struction problem. The paper creatively integrates query
processing, approximation, and linear algebra techniques.

The authors start by noting that SRP is a special case
of quadratic programming, which they exploit by solv-
ing the Lagrangian dual formulation of the original prob-
lem. Building upon this, they make a connection to
query processing: the key part of the algorithm com-
putes the product of a (typically very sparse) matrix A
with its transpose, AAT . In turn, that computation de-
rives most of its value from a small number of elements
from A.

The authors creatively leverage this observation to han-
dle huge matrices, by implementing matrix multiplica-
tion via a set-intersection primitive. They build upon
set-similarity joins and apply threshold-based techniques [3]
to bound the values of the matrix product, thus develop-
ing a fast approximation algorithm. Finally, they show
how to use min-hash sketches [1] to approximate the
sets, allowing further trade-offs of accuracy vs perfor-
mance (and space). Experimental analysis shows these
techniques scale well enough to to predict end-to-end
routes in a large P2P network, which is several orders of
magnitude larger than prior solutions could handle.

This paper is notable because it scalably addresses an
under-served problem with practical impact, and does so
in a clean, insightful, and systematic way. It makes sev-
eral key contributions. First, it shows how insights into
the linear algebra computation can be used for greater
efficiency (the connection to quadratic programming, which
allows it to be solved via the Lagrangian dual). Sub-
sequently, it makes insightful connections to techniques
from query processing and sketches, to develop approxi-
mation algorithms. Finally, the paper conducts an exper-
imental study demonstrating high performance at scale.
The paper illustrates the potential benefits of connecting
important optimization problems with database approx-
imate query processing techniques.
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ABSTRACT
The signal reconstruction problem (SRP) is an important optimiza-
tion problem where the objective is to identify a solution to an
under-determined system of linear equations AX = b that is clos-
est to a given prior. It has a substantial number of applications
in diverse areas including network traffic engineering, medical im-
age reconstruction, acoustics, astronomy and many more. Most
common approaches for solving SRP do not scale to large problem
sizes. In this paper, we propose a dual formulation of this problem
and show how adapting database techniques developed for scalable
similarity joins provides a significant speedup when the A matrix
is sparse and binary. Extensive experiments on real-world and syn-
thetic data show that our approach produces a significant speedup
of up to 20x over competing approaches.

1. INTRODUCTION
The database community has been at the forefront of grappling

with challenges of big data and has developed numerous techniques
for the scalable processing and analysis of massive datasets. These
techniques often originate from solving core data management chal-
lenges but then find their way into effectively addressing the needs
of big data analytics. For example, efficiency of machine learn-
ing has been successfully boosted by database techniques as var-
ied as materialization, join optimization, query rewriting for effi-
ciency, query progress estimation, federated databases, etc. This
paper studies how database techniques can benefit another founda-
tional problem in big data analytics, large-scale signal reconstruc-
tion [22], which is of significant interest to research communities
such as computer networks [25], medical imaging [11,14], etc. We
demonstrate that the scalability of existing solutions can be sig-
nificantly improved using ideas originally developed for similarity
joins [7] and selectivity estimation for set similarity queries [3,12].

Signal Reconstruction Problem (SRP): The essence of SRP is
to solve a linear system of the form AX = b, where X is a high-
dimensional unknown signal (represented by anm-d vector in Rm),
b is a low-dimensional projection ofX that can be observed in prac-
tice (represented by an n-d vector in Rn with n � m), and A is a
n×mmatrix that captures the linear relationship betweenX and b.
There are many real-world applications that follow the SRP model
(see § 2.1). For example, high-dimensional signals like environ-

c©VLDB Endowment 2018. This is a minor revision of the paper enti-
tled “Leveraging similarity joins for signal reconstruction”, published in
the Proceedings of the VLDB Endowment, Vol. 11, No. 10, 1276–1288.
DOI: https://doi.org/10.14778/3231751.3231752

mental temperature can only be observed through low-dimensional
observations, like readings captured by a small number of tempera-
ture sensors. Similarly, as further explained in § 2.1, end-to-end
network traffic, another high-dimensional signal, is often moni-
tored through low-dimensional readings such as traffic volume on
routers in the backbone or edge networks. In these applications,
the laws of physics or the topology of computer networks reveal the
value ofA, and our objective is to reconstruct the high-dimensional
signal X from the observation b based on the knowledge of A.

Since n� m, the linear system is underdetermined. That is, for
a given A and b, there are an infinite number of feasible solutions
(of X) that satisfy AX = b [13, 22]. In order to identify the best
reconstruction of the signal, it is customary to define and optimize
for a loss function that measures the distance between the recon-
structed X and a prior understanding of certain properties of X .
For example, one can represent one’s prior belief of X as an m-d
vector X ′, and define the loss function as the `2-norm of X −X ′,
i.e., ‖X − X ′‖2. In other cases, when prior knowledge indicates
that X is sparse, one can define the loss function as the `0-norm
of X , aiming to minimize the number of non-zero elements in the
reconstructed signal. For the purpose of this paper, we consider the
`2-based loss function of ‖X − X ′‖2, which has been adopted in
many application-oriented studies such as [11, 25].

Running Example of SRP: While SRP has a broad range of appli-
cations, for the ease of discussion, it is important to have a running
example of SRP on a domain-specific application. What we use as
a running example of SRP throughout the paper is a common in-
stance of network tomography (§ 2.1.1), where the objective is to
compute the pairwise end-to-end traffic in IP Networks. Pairwise
traffic measures the volume of traffic between all pairs of source-
destination nodes in an IP network, and has numerous uses such as
capacity planning, traffic engineering and detecting traffic anoma-
lies. Informally, consider an IP network where various sources and
destinations send different amounts of traffic to each other. The
network administrator is aware of the network topology and the
routing table (from which we can construct matrix A). In addi-
tion, the administrator can observe the traffic passing through each
link in the backbone network (observation b). The goal is to find
the amount of traffic flow between all source-destination pairs (sig-
nal X). Note that one cannot directly measure the raw traffic be-
tween all source-destination pairs due to challenges in instrumenta-
tion and storage - see [25, 26] for a technical discussion. In almost
all real-world IP networks, the number of source-destination pairs
is significantly larger than the number of links, leading to an un-
derdetermined linear system. To reconstruct the pairwise traffic,
the network community introduced various traffic models, e.g., the
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gravity model [25], as the prior forX ′, and used the `2-distance be-
tweenX and the prior as the loss function. Note that in reconstruct-
ing the pairwise distances, efficiency is a concern front-and-center,
especially given the rise of Software Designed Networks (SDNs)
which feature much larger sizes and much more frequent topolog-
ical changes, pushing further the scalability requirements of signal
reconstruction algorithms.

Research Gap: Because of the importance of SRP, there has been
extensive work from multiple communities on finding efficient so-
lutions. To solve the problem efficiently, methods explored in the
recent literature include statistical likelihood based iterative algo-
rithms based on expectation-maximization [5], as well as the use
of linear algebraic techniques such as computing the pseudoinverse
of A [22] or performing Singular Value Decomposition (SVD) on
A, and iterative algorithms for solving the linear system [22]. Yet
even these approaches cannot scale to fully meet the requirements
in practice, especially the traffic reconstruction needs of large-scale
IP networks - which call for a more scalable solution [26].

Our Approach: In this paper, we consider a special case of SRP
where A,X, b are non-negative with A being a sparse binary ma-
trix. Such a setting finds its applications in many domains, as ex-
plained in § 2.1.

Our proposed solution starts with an exact algorithm based on
the transformation of the problem into its Lagrangian dual repre-
sentation. As we shall show in § 6, our algorithm DIRECT, which
directly computes X through the dual representation, already out-
performs commonly used approaches for SRP, as it avoids expen-
sive linear algebraic operations required by the previous solutions.
Next, we investigate whether our approach can be sped up even
further, by replacing exact computations with approximation tech-
niques. This can be useful in applications where the user is willing
to trade accuracy for efficiency. We carefully investigate the com-
putational bottlenecks of DIRECT and find it to be a special case
of matrix multiplication involving a sparse binary matrix with its
transpose. We start by investigating a seemingly straightforward
sampling strategy for approximately computing this matrix multi-
plication, but encounter a negative result. Then, we use the obser-
vation that a small number of cells in the result matrix of the bottle-
neck operation take the bulk of the values, and propose a threshold-
based algorithm for approximating it. Specifically, we reduce the
problem to computing the dot product of two vectors if and only
if their similarity is above a user-provided threshold. Our key idea
here is to leverage various database techniques to speed up the mul-
tiplication operation. We propose a hybrid algorithm based on a
number of techniques originally proposed for computing similarity
joins and selectivity estimation of set similarity queries, resulting
in significant speedup in solving SRP in comparison with the exact
solution.

Experimental Summary: We conduct extensive experiments on
both real-world and synthetic datasets with a special emphasis on
traffic matrix computation. We compare our method against a num-
ber of commonly used approaches such as an efficient quadratic
programming based solver, a two stage approximate approach first
proposed in [25] and one based on compressive sensing. Our exper-
imental results show that our exact algorithm significantly outper-
forms the baselines. Furthermore, our threshold based approxima-
tion approaches inspired from similarity joins provide even more
speedup over DIRECT without resulting in any significant increase
in reconstruction error.

Summary of Contributions:
• We investigate the Signal Reconstruction Problem (SRP) which

has diverse applications. By using techniques that were origi-
nally pioneered for databases, we dramatically improve the scale
of problems that could be solved.
• We formulate SRP as a Quadratic Programming problem and

derive its Lagrangian dual form and propose an exact algorithm
DIRECT to solve the dual problem. Our algorithm DIRECT al-
ready outperforms commonly used approaches for SRP.
• We identify the computational bottleneck in DIRECT and pro-

pose a threshold-based algorithm for approximating it. We pro-
pose a hybrid algorithm that combines two algorithms that were
designed for efficiently computing set similarity joins.
• We conduct a comprehensive set of experiments on both real and

synthetic datasets that confirm the efficiency and effectiveness of
our approach, and report the results in [1]. Here we provide a
summary of those results.

Paper Organization: We provide the necessary background to
SRP and formally define it in § 2. In § 3, we describe the exact
algorithm DIRECT for solving SRP. In § 4, we show how to ap-
ply approximation using techniques from databases to significantly
speed up the computation. In § 5, we discuss how our approach can
be easily adapted to identify the top-K components of the recon-
structed signal. § 6 describes our experiments followed by related
work in § 7 with § 8 providing the conclusion.

2. PROBLEM FORMULATION
As mentioned in Section 1, we consider a special class of SRP

that has a number of applications in network traffic engineering,
tomographic image reconstruction and many others, discussed in
§ 2.1. We are given a system of linear equations AX = b where
• A ∈ {1, 0}n×m is a sparse binary matrix n� m.
• X ∈ Rm is the “signal” to be reconstructed and is a vector of

unknown values.
• b ∈ Rn is the vector of observations.

Each row in the matrix A corresponds to an equation with each
column corresponding to an unknown variable. When the num-
ber of equations (n) is much smaller than the number of unknowns
(m), the system of linear equations is said to be under-determined
and does not have a unique solution. The solution space can be
represented as a hyperplane in a m′ ∈ [2,m] dimensional vector
space1. Since SRP does not have a unique solution, one must have
auxiliary criteria to choose the best solution from the set of (pos-
sibly infinite) valid solutions. A common approach in SRP is to
provide a prior X ′ and the objective is to pick the solution X that
is closest to X ′. We study the problem where the objective is to
find the point satisfying AX = b that minimizes the `2 distance
from a prior point X ′. Formally the problem is defined as:

min ‖X −X ′‖2
s.t. AX = b (1)

Figure 1 provides an example visualization of the problem in 3
dimensions. The gray plane is the solution space with the prior
marked as a point X ′. The intersection of the perpendicular line to
the plane that passes though X ′ is the point that minimizes ‖X −
X ′‖2.

In this paper, we pay attention to the fact that SRP is a special
case of quadratic programming where (a) the constraints are only
in the form of equality, (b) matrix A is sparse, and (c) matrix A is
binary (and hence un-weighted). By leveraging these characteris-
tics, we seek to design more efficient solutions compared with the
baselines that are designed for general cases. Especially, in § 3, af-
ter studying the existing work, we use the dual representative of the
1We assume that the problem has at least one solution.
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Figure 1: Visualizing the problem

problem to propose an efficient exact algorithm. Later in § 4, we
show how leveraging similarity join techniques help in achieving
significant speed up without sacrificing much accuracy.

2.1 Broad Application Range
SRP covers a broad range of real world problems that use signal

reconstruction. In practice, it is popular to observe low-dimensional
projections in form of (unweighted) aggregates of a high-dimensional
signal vector. For example, in general network flow applications
(such as road traffic estimation [27]), the value on each edge is the
summation of the flows values which includes this edge as part of
the path between them. Of course, a requirement to our problem
is an “expert-provided” prior template, such as gravity model [25]
for the network flow problems. Another major application domain
for SRP problem over aggregates is image reconstruction (§ 2.1.2),
where observations are unweighted projections of unknowns. Im-
age reconstruction has a broad applications ranging from medical
imaging [11, 14], to astronomy [23] and physics [19] and to gas
flow reconstruction [2]. Some of the other applications of SRP, in
general, include radar data reconstruction [18], transmission elec-
tron microscopy [15], and product assortment design [9], to name
a few. To showcase some applications in more detail, we sketch a
few examples in the context of network flow problems and image
reconstruction in the following.

2.1.1 Network Tomography

Traffic matrix computation (the running example): Consider an
IP network with n traffic links and m source-destination traffic
flows (SD flow) between the ingress/egress points, where n �
m. The ingress/egress points can be PoPs (points of presence) or
routers or even IP prefixes depending on the level of granularity re-
quired. The network has a routing policy prescribes a path for each
of the SD flows that can be captured in a #links(n)×#flows(m)
binary matrix A, where the entry A[i, j] = 1 if the link i is used
to route the traffic of the j-th SD flow. The matrix A is sparse and
“fat” with more SD flows(columns) than number of links(rows).
Note that, one cannot directly measure each of the SD flows on
a link owing to efficiency reasons. However, one can easily mea-
sure the total volume of the network traffic that passes through a
given link using network protocols such as SNMP. Thus, the load
on each link i becomes the observed vector b. To obtain a prior
X ′, one can use any traffic model such as the popular and intu-
itive gravity model [25]. It assumes independence between source
and destination and states that traffic between any given source s
and destination d is proportional to the product of network traffic
entering at s and that exiting at d.
Traffic analysis attack in P2P networks: In traffic analysis at-
tack, the information leak on traffic data is exploited to expose the
user traffic pattern in P2P networks [10]. Here we propose the fol-
lowing traffic analysis attack that can be modeled to our problem:
Consider an adversary who monitors the link level traffics in a P2P
network. Applying SRP, one can directly identify the volume of
traffic between any pair of users in a P2P network.

2.1.2 Image Reconstruction
Image reconstruction [16,24] has a wide range of applications in

different fields such as medical imaging [11, 14], and physics [19].
Given a set of (usually 2D) projection of a (usually 3D) image, the
objective is to reconstruct it. The reconstruction is usually done
with the help of some prior knowledge. For example, knowing that
the 2D projections are taken from a human face, one may use a
template 3D face photo and, among all possible 3D reconstructions
from the 2D images, find the one that is the closest to the template,
making the image reconstruction more effective.

CT Scan: A popular application of SRP is tomographic reconstruc-
tion, which is a multi-dimensional linear inverse problem with wide
range of applications in medical imaging [11,14] such as CT scans
(computed tomography). Informally, a CT scan takes multiple 2D
projections (b) through X-rays from different angles (A) and the
objective is to reconstruct the 3D image from the projections. Note
that many 3D images may produce the same projections necessitat-
ing the use of priors to choose an appropriate reconstruction.

Radio astronomy: In Astronomy, SRP has application for recon-
structing interferometric images where the astrophysical signals are
probed through Fourier measurements. The objective is to recon-
struct the images from the observations – forming a SRP scenario.
Also, the specific prior information about the signals plays an im-
portant role in reconstruction, as mentioned in [23].

3. EXACT SOLUTION FOR SOLVING SRP
In this section, we begin by describing two representative ap-

proaches for solving SRP from prior research and highlight their
shortcomings. We then propose a dual representation of the prob-
lem that can be solved exactly in an efficient manner and already
outperforms the baselines. This alternate formulation has a number
of appealing properties that allows one to leverage various database
techniques for speeding it up.

3.1 Lagrangian Formulation of SRP
In this subsection, we leverage the Lagrangian dual form of SRP

as a special case of quadratic programming, and design an efficient
exact solution for it. For SRP as specified in Equation 1, f(X) =
1
2
XTX − X ′TX and g(X) = AX .2 Thus, our problem can be

re-written as:

L(X,λ) =
1

2
XTX −X ′TX + λT (AX − b) (2)

Next, we find the stationary point 3 of Equation 2 in the general
form by taking the derivatives with regard to X and λ and setting
them to zero, we get:

X = X ′ −AT (AAT )−1(AX ′ − b) (3)

Solving SRP in Dual Form. The stationary point of Equation 2 is
the optimal solution for our problem (Equation 1). In contrast to
prior work, we solve the SRP problem by directly solving Equa-
tion 3. We make two observations. First, the matrix AAT ∈ Zn×n

always has an inverse as it is full-rank. From Figure 1, one can note
that the problem has a unique solution that minimizes the distance
from the prior. It means that AAT is full-rank, because otherwise
the problem was not feasible and would not have a solution. Sec-
ond, Equation 3 does have a matrix inverse operator that is expen-
sive to compute. However, one can avoid taking the inverse ofAAT

2Note that min 1
2
XTX −X′TX is the same as min ||X −X′||2.

3Since, looking at Figure 1, Equation 1 has a single optimal point, Equa-
tion 2 has one stationary point which happens to be the saddle point.
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Figure 2: Illustration of the sparse representation of A. (a) Non sparse
representation, (b) Sparse representation

by computing ξ in Equation 4, and replacing (AAT )−1(AX ′ − b)
by it in Equation 3.

(AAT )ξ = AX ′ − b (4)

Algorithm 1 provides the pseudocode for DIRECT.

Algorithm 1 DIRECT
Input: A, b, and X ′

Output: X

1: t = AAT

2: t2 = AX ′ − b
3: Solve system of linear equations: t ξ = t2
4: X = X ′ −AT ξ
5: return X

Performance Analysis of DIRECT. Let us now investigate the
performance of our algorithm. Recall that A is a fat matrix with
n � m while X and X ′ are m-dimensional vectors, and b is a n-
dimensional vector. Line 1 of Algorithm 1 takes O(n2m) while
Line 2 takes O(nm). Line 3 involves solving a system of lin-
ear equations. A naive way would be to compute the inverse of
t that can take as much as O(n3). However, by observing that t is
sparse, one can use approaches such as Gauss-Jordan elimination
or other iterative methods that are practically much faster for sparse
matrices. Finally, the computation of Line 4 is in O(nm). Look-
ing at DIRECT holistically, one can notice that its computational
bottleneck is Line 1 thereby making the overall complexity to be
O(n2m).

An additional approach to speedup DIRECT is to observe that
matrix A is sparse and thereby store it in a manner that allows
efficient matrix multiplication. Since A is binary (and hence un-
weighted), a natural representation is to store only the indices of
non-zero values. Figures 2a and 2b show the non-sparse and
sparse representation of a matrix A. Note that AAT is symmet-
ric since t[i, j] and t[j, i] are obtained by the dot product of rows i
and j of A. Let l be the number of non-zero elements in each row.
Since A is sparse, l � m, one can design a natural matrix multi-
plication algorithm with time complexity of O(nml) that is orders
of magnitude faster than algorithm such as Strassen algorithm.

4. TRADING OFF ACCURACY WITH EF-
FICIENCY

In many applications of SRP, m is often in O(n2), thereby mak-
ing the computational complexity of DIRECT to be O(n4). The
key bottleneck is the computation of AAT . On the other hand, for
large problem instances, the user may accept trading off accuracy
with efficiency and prefer a close-to-exact solution that is computed
quickly, rather than the expensive exact solution. In this section,
our objective is to speed up DIRECT by computing the bottle-neck
step, i.e., computing AAT , approximately. We show how to lever-
age a threshold-based approach by only computing the values of
matrix AAT that are larger than a certain threshold. We describe
the connection between this problem variant and similarity joins
and propose a hybrid method by adopting two classical algorithms

designed for similarity estimation, which results in an efficient so-
lution for computing AAT .

4.1 Bounding Values in Matrix AAT

We begin by showing that one can efficiently compute the bound
for each cell value in matrix AAT . Figure 3 shows a sparse matrix
A with 183 rows and 495 columns, in which the non-zero elements
are highlighted in white. Figure 4 shows the non-zero elements in
matrix AAT . We can notice that AAT is square and also sparse
due to the fact that every element of AAT is the dot product of
two sparse vectors (two rows of matrix A). Furthermore, one can
also observe a more subtle phenomenon that we state in Theorem 1
which could used to design an efficient algorithm.

THEOREM 1. Given a sparse binary matrix A, considering the
elements on the diagonal of AAT , i.e., t[i, i], ∀0 ≤ i < n:
• t[i, i] = |A[i]|, where |A[i]| is the number of non-zero elements

in row A[i].
• t[i, i] is an upper bound for the elements in the row t[i] and

the column t[, i]; formally, ∀0 ≤ j < n : t[i, j] ≤ t[i, i] and
t[i, j] ≤ t[j, j].
The proof can be found in [1].
Consider two representations of AAT of the example matrix

given in Figure 3. Figure 4 shows all the non-zero elements of
AAT while Figure 5 shows a magnitude-weighted variant wherein
cells with larger values are plotted in brighter colors. Figure 5 vi-
sually shows that the elements on the diagonal are brighter than
the ones in the same row and column as predicted by Theorem 1.
Furthermore, one may notice that most of the non-zero elements
of AAT (in Figure 4) are small values (in Figure 5). This shows
that while there are a reasonable number of non-zero elements, the
number of elements with higher magnitude is often much smaller.
Next, we use this insight along with Theorem 1 for speeding up
DIRECT.

4.2 Threshold Based Computation Of AAT

In the previous subsection, we discussed the bound on the cell
values in AAT and showed that a small number of elements in
AAT take the bulk of the value. This is the key in designing a
threshold-based algorithm for computing AAT wherein we only
compute values of AAT that are above a certain threshold. Specif-
ically, we use the elements on the diagonal as an upper-bound and
only compute the elements for which this upper-bound is larger
than a user-specified threshold. Note that, if the threshold is equal
to 1, the algorithm will compute the values of all elements. How-
ever, the user-specified threshold allows additional opportunities
for efficiency.

Algorithm 2 provides the pseudocode for the threshold-based
multiplication of sparse binary matrix A with its transpose. This
algorithm depends on the existence of an oracle called SIM that
given two rows A[i] and A[j], and the threshold τ , returns the dot
product of A[i] and A[j] if the result is not less than τ .

4.3 Leveraging Similarity Joins for Oracle SIM
The database community has extensively studied mechanisms

for computing set similarity for applications such as data clean-
ing [7] where the objective is to efficiently identify the set of tuples
that are “close enough” on multiple attributes. In this subsection,
we describe how to implement the oracle SIM by leveraging prior
research on computing set similarity. Especially, we propose a hy-
brid method that combines the threshold-based similarity joins with
the sketch-based methods to resolve their shortcomings.

Oracle SIM through Set Similarity. Given two rows A[i] and
A[j], and the threshold τ , SIM should find the dot product of A[i]
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Figure 3: An example of the binary sparse matrix A183×495 Figure 4: The non-zero ele-
ments inAAT for the example
of Figure 3

Figure 5: Magnitude of
weights in AAT for the
example of Figure 3

Algorithm 2 ApproxAAT

Input: Sparse matrix A, Threshold τ
Output: t

1: F = {}
2: for i = 0 to n− 1 do
3: t[i, i] = |A[i]|
4: if |A[i]| ≥ τ then add i to F
5: end for
6: for every pair i, j ∈ F do
7: t[i, j] = t[j, i] = SIM(A[i], A[j], τ)
8: end for
9: return t

and A[j] if it is not less than τ . It is possible to make an interesting
connection between SIM and sets similarity problems as follows.
Let every column in matrix A be an object o in a universe U of m
elements. Every row A[i] represents a set Ui in U , where ∀oj ∈ U ,
oj ∈ Ui iff A[i, j] = 1. Equivalently, each row corresponds to
a set Ui that stores the indices of the non-zero columns similar to
Figure 2b. Using this transformation, we can see that our objective
is to compute |Ui ∩Uj | for all pairs of sets Ui and Uj where |Ui ∩
Uj | ≥ τ . Note that we represent |Ui ∩ Uj | by ∩i,j and |Ui ∪ Uj |
by ∪i,j respectively.

Due to its widespread importance, different versions of this prob-
lem have been extensively studied in the DB community. In this
paper, we consider one exact approach and two approximate ap-
proaches based on threshold-based algorithms [7] and sketch-based
methods [3, 8, 12]. We then compare and contrast the two approx-
imate approaches, describe the scenarios when they provide better
performance, and propose a hybrid algorithm based on these sce-
narios.

Exact Approach : Set Intersection. One can see that when τ =
1, the problem boils down to computing AAT exactly. This in
turn, boils down to computing the intersection between two sets as
efficiently as possible. The sparse representation of the matrix often
provides the non-zero columns in an ordered manner. The simplest
approaches for finding the intersection of ordered sets is to perform
a linear merge by scanning both the lists in parallel and leveraging
the ordered nature similar to the merge step of merge-sort. One
can also speedup this approach by using sophisticated approaches
such as binary search on one of the lists or using sophisticated data
structures such as treaps or skip-lists. Each of these approaches
allows one to “skip” some elements of a set when necessary.

Approximate Approach : Threshold based Algorithms. Threshold-
based algorithms, such as [7] identify the pair of sets such that their
similarity is more than a given threshold. This has a number of
applications such as data cleaning, deduplication, collaborative fil-
tering, and product recommendation in advertisement where the

objective is to quickly identify the pairs that are highly similar. The
key idea is that if the intersection of two sets is large, the intersec-
tion of small subsets of them is non zero [7]. More precisely, for
two sets Ui and Uj with size h, if ∩i,j ≥ τ , any subsets U ′i ⊂ Ui

and U ′j ⊂ Uj of size h − τ + 1 will overlap; i.e., |U ′i ∩ U ′j | > 0.
Using this idea, while considering an ordering of the objects, the
algorithm first finds the set of candidate pairs that overlap in a sub-
set of size h− τ + 1. In the second step, the algorithm verifies the
pairs, by removing the false positives.

One can see the effectiveness of this method highly depends on
the value of τ and, considering the target application, it works well
for the cases that τ is large. For example, consider a case where
h = 100. When τ = 99 (i.e., 99% similarity), the first filtering step
needs to compare the subsets of size 2 and is efficient; whereas if
τ = 10, the filtering step needs to compare the subset pairs of size
91, which is close to the entire set. The latrer case is quite possible
in our problem. To understand it better, let us consider matrix A in
Figure 3, while setting τ equal to 5 in Algorithm 2. Even though
the size of many of the rows is close to the threshold, there are
rows A[i] where |A[i]| is significantly larger than it. For example,
for two rows A[i] and A[j] where |A[i]| ≥ 50 and |A[j]| ≥ 50,
to satisfy the dot product be not less than τ , the filtering step needs
to compare the subsets of size ≥ 44, which is close to the exact
comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based
methods such as [3, 8, 12] use a precomputed synopsis such as
a minhash for answering different set aggregates such as Jaccard
similarity. The main idea behind the min-hashing [4] based algo-
rithms is as follows: consider a hash (ordering) of the elements
in U . For each set Ui, let hmin(Ui) be the element o ∈ Ui that
has the minimum hash value. Two sets Ui and Uj have the same
min-hash, when the element with the smallest hash value belongs
to their intersection. Hence, it is easy to see that the probability
that hmin(Ui) = hmin(Uj) is equal to ∩i,j

∪i,j
, i.e., Jaccard similarity

of Ui and Uj . Bottom-k sketch [8], a variant of min-hashing picks
the hash of the k elements in Ui with the smallest hash value, as its
signature. The Jaccard similarity of two sets Ui and Uj is estimated
as k∩(i,j)

k
, where k∩(i, j) is |hk(Ui) ∩ hk(Uj)|. Bayer et al. [3]

use the bottom-k sketch for estimating the union and intersection
of the sets. Let hi,j [k] be the hash value of the k-th smallest hash
value in hk(Ui) ∪ hk(Uj). The idea is that the larger the size of a
set is, the smaller the expected value of the k-th element in hash is.
Using the results of [3], m(k−1)

hi,j [k]
is an unbiased estimator for ∪i,j .

Hence the estimation for ∩i,j is as provided in Equation 5.

E[∩i,j ] =
k∩(i, j)

k

m(k − 1)

hi,j [k]
(5)

Estimating ∪i,j with Equation 5, performs well when ∪i,j �
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1 [3], i.e., the larger sets. Hence, we combine the threshold-based
and sketch-based algorithms to design the oracle SIM, as a hybrid
method that, based on the sizes of the rows A[i] and A[j], adopts
the threshold-based computation with sketch-based estimation for
computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the
effectiveness of threshold based approaches when Ui and Uj are
small and, as a result, the two sets need a large overlap to have the
intersection larger than τ , if |Ui| and |Uj | are less than log(m),
we choose the threshold-based intersection computation. However,
if the size of Ui or Uj is more then we use the bottom-k sketch,
while considering k to be log(m). For each element oj ∈ U, we
set h(oj) = j. Hence, for each vector Ui the index of the first
log(m) elements in it are its bottom-k sketch. Using this strategy,
Algorithm 3 shows the pseudo code of the oracle SIM.

Given two given sets Ui and Uj (corresponding to the rows A[i]
andA[j]) together with the threshold τ , the algorithm aims to com-
pute the value of ∩i,j , if it is larger than τ . Combining the two
aforementioned methods, if |Ui| and |Uj | are more than a value α,
the algorithm uses sampling to estimate ∩i,j , otherwise it applies
the threshold-based method to compute it. During the sampling,
rather than sampling from U , the algorithm samples from Ui to re-
duce the underestimation of probability. In this case, in order to
compute ∩i,j , the algorithm, for each sample, picks a random ob-
ject from Ui and check its existence in Uj . It is easy to see it is
an unbiased estimator for ∩i,j , where its expected value is ∩i,j . If
|Ui| or |Uj | is less than α, the algorithms applies threshold-based
strategy for computing ∩i,j . As discussed earlier in this subsection,
in order for ∩i,j to be more than τ , the subsets of size ∩i,j − τ +1
should intersect. Hence, the algorithm first applies the threshold
filtering and only if the two subsets intersect it continues with com-
puting ∩i,j .

Algorithm 3 SIM
Input: the sets Ui and Uj , Threshold τ
Output: c

1: if |Ui| ≥ log(m) and |Uj | ≥ log(m) then
2: hi = the first k elements in Ui

3: hj = the first k elements in Uj

4: k∩(i, j) = |hi ∩ hj |
5: hi,j [k] = the first k elements in hi ∪ hj

6: c = k∩(i,j)
k

m(k−1)
hi,j [k]

7: else
8: c = 0
9: if |Ui| > |Uj | then swap Ui and Uj

10: β = |Ui| − τ
11: for k = 0 to β do: if Ui[k] ∈ Uj then c = c+ 1
12: if c = 0 then return 0
13: for k = β to |Ui| − 1 do: if Ui[k] ∈ Uj then c = c+ 1
14: end if
15: return c

Performance Analysis. Algorithm 2 has a time complexity of
O(n+ µ2 min(l, log(m))), where µ = |{A[i]| |A[i]| ≥ τ}|.

5. SCALING SRP TO VERY LARGE SET-
TINGS

Recall that in SRP often n is a low dimensional vector with n�
m. In this subsection we briefly describe how to extend DIRECT
to handle cases where even n is very large (and still n � m). For
example, let n be 106 and m be 1012. A key aspect of DIRECT is
that it leverages the sparse representation of the matrix (as against
its complete dense representation) for speedup. However, when n

is very large, even fitting the sparse representation of A into the
memory may not be possible. To see why, even if there is only one
non-zero value in every column, then we use O(m) storage to even
represent this matrix.

Interestingly, the similarity-joins based techniques proposed in
§ 4 do not require to completely materialize even sparse represen-
tation of A for estimating AAT . Also, there are many scenarios
where the user is interested in knowing the values of a subset of
components of the reconstructed signals such as those correspond-
ing to the largest values of the reconstructed signal. We now show
how to adapt our algorithms to handle these scenarios.

Consider Algorithm 1 where the critical step is the first line. Al-
gorithm 3 applies bottom-k sketch for the sets whose size is more
than logm. Thus, choosing the signature size in the bottom-k
sketch to be in O(logm), Algorithm 3 needs at most O(logm)
elements from each row. As a result, Line 1 of DIRECT needs a
representation of size O(n logm) of A. For instance, in our exam-
ple of n = 106 and m = 1012, the size of the representative of A
is only in the order of 1 million rows by 40 columns. Also, since
AAT is a sparse matrix, we only store the non-zero values of matrix
t, rather than the complete n by n matrix. Line 2 is the multiplica-
tion of matrix A with X ′ whose dimensions are m by 1 followed
by subtracting the n-dimensional result vector from the vector b.
For this line, for each row of A, we use a sample of size O(logm)
for the non-zero elements of the row, while using the values of X ′

as the sampling distribution. The result is a representation of size
O(n logm) ofA. Also, rather than loading the complete vectorX ′

to the memory, in an iterative manner, we bring loadable buckets of
it to the memory, update the calculation for that bucket, and move
to the next one. In Line 4, t is the non-zero elements of AAT and
t′ is a n by 1 vector, and finding the n by 1 vector ξ is doable, using
methods like Gauss-Jordan. Finally, we only limit the calculations
to the variables of interest, or even if the computation of all vari-
ables is required, in an iterative manner, we move a loadable bucket
of them to the memory, compute their values, and move to the next
bucket.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Hardware and Platform. All our experiments were performed on
a Macintosh machine with a 2.6 GHz CPU and 8GB memory. The
algorithms were implemented using Python2.7 and Matlab.

Datasets. We conducted extensive experiments to demonstrate the
efficacy of our algorithms over graphs with diverse values for num-
ber of nodes, edges and source-destination pairs. Recall that given a
communication network, the size of the routing matrix A is param-
eterized by the number of edges and number of source-destination
pairs - and not by the number of nodes and edges. The size of
SRP that we tackle are 2-3 orders of magnitude larger than prior
work such as [26]. Specifically, we used p2p dataset from SNAP
repository of Stanford university4. The p2p dataset is a snapshot of
the Gnutella network in August 2002 with 10876 nodes and 39994
edges. Nodes represent the hosts and the links represent the con-
nection between the hosts. Each of the derived datasets is a sub-
graph of the overall p2p graph and was obtained by Forest Fire
model [17]. The characteristics of each of these datasets dubbed
p2p-2 and p2p-3 can be found in Table 1.

Constructing Traffic Matrices. Once we sample the network and
obtain a connected graph, we consider all possible source destina-
tion pairs, i.e., #nodes×(#nodes−1), to be as individual flows.
4SNAP Dataset: https://snap.stanford.edu/data/p2p-Gnutella04.html
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Table 1: Dataset Characteristics

Network #Nodes #Edges #Source-Destination pairs
N1 274 281 827

p2p-3 1438 7081 2M

For each source-destination pair we calculated the shortest path be-
tween them (network policies are not considered here as our algo-
rithm is oblivious of the route chosen). Traffic matrix is a collec-
tion of all such routes in the following manner, each of the rows
corresponds to an edge used in routing and each of the columns
corresponds to a source-destination pair. Every cell, c[i, j] is a ’1’
if edge[i] is involved in routing traffic for source-destination[j] else
is assigned a value ’0’. A visual glimpse of the routing matrix is
given in Figure 2.

We used a Pareto traffic generation model, a popular stochas-
tic model of the traffic flows for generating self-similar traffic ob-
served in network communication [6]. The distribution is parametr-
ized by a scale parameter xm (set to 20) and a shape parameter α
(set to 1). xm is the minimum value of the distribution of traffic
represented by the scale parameter while the shape parameter α in-
dicates the ’steepness of the slope’ of the distribution curve. The
prior to the experiments (X ′) was obtained as a function of gravity
model from [25].

6.2 Experimental Results
We compare the exact algorithm DIRECT with the baselines QP

and WLSE [25]. The evaluation was conducted over small scale
synthetic networks. Here we report the comparison results for N1

(Table 1). Please refer to [1] for the complete experiment results.
As shown in Figure 6, DIRECT significantly outperforms the base-
lines. In addition to comparing with these two baselines, forN1, we
also used compressive sensing [20] for estimating the values of the
source-destination pairs. Since the objective in compressive sens-
ing is the expensive l0-optimization, even for our smallest setting
N1 it took 23.414 seconds.

We next evaluate the exact version of DIRECT and its approx-
imate counterpart (using Algorithm 2) that leverages techniques
from similarity joins to speed up the computation. We use DIRECT-
E to refer to the exact version of DIRECT and DIRECT-A for its
approximate version. Note that our algorithms take advantage of
the sparse representation of matrix A and can perform the linear
algebraic operations without materializing the entire matrix. We
also evaluate the performance of our algorithms to two different
threshold values of (m/1000) and (m/100), where m is the num-
ber of source-destination pairs. Choosing an appropriate thresh-
old is often domain specific with larger thresholds providing better
speedups. We compare the performance of the algorithms DIRECT-
E and DIRECT-A through two metrics : performance and accu-
racy. We measure the former through execution time. We mea-
sure the accuracy of the signal reconstruction through bucketized
error where we bucketize the source-destination pairs by the ex-
act value of their flows and compute the error of the approximation
algorithm within each bucket. The bucketization is often more il-
luminating for scenarios such as network traffic engineering where
the signal exhibits a heavy tailed distribution and often the practi-
tioner is interested in accurately estimating large flows. After find-
ing the optimal flow assignments using the algorithm DIRECT-E,
we sort the source-destination pairs in descending order, based on
the amount of flow passing through them. For example, let a flow
assignment by DIRECT-E be {(SD1 : 3), (SD2 : 24), (SD3 :
7), (SD4 : 75), (SD5 : 5), (SD6 : 12)}. The sorted SD pairs
are {(SD4 : 75), (SD2 : 24), (SD6 : 12), (SD3 : 7), (SD5 :
5), (SD1 : 3)}. We then partition the SD pairs into 50 equal

size buckets (each bucket contains 2% of SD pairs5). In the pro-
vided example, assume that we partition them into 3 buckets B1 :
{(SD4 : 75), (SD2 : 24)}, B2 : {(SD6 : 12), (SD3 : 7)}, and
B3 : {(SD5 : 5), (SD1 : 3)}. For every SD pair, we consider
the difference between the values computed by DIRECT-A and the
one by DIRECT-E as the error of that SD pair, and compute the av-
erage for each bucket. In our example, let {(SD1 : 5), (SD2 :
24), (SD3 : 6), (SD4 : 79), (SD5 : 5), (SD6 : 11)} be the as-
signed values by DIRECT-A. Then the average errors for the buck-
ets B1, B2, and B3 are 2, 1, and 1, respectively. It was observed
in [25] that for many tasks in network traffic engineering such as
routing optimization, even a relative error of few 10s of percent is
considered tolerable.

p2p-3 (2M Source-Destination pairs) This network has 2M source-
destination pairs with 7081 edges sampled from the SNAP p2p
dataset. Figure 7 shows that DIRECT-E takes much as 1500 sec-
onds to compute the exact solution. This is often prohibitive and
simply unacceptable for many traffic engineering tasks. However,
our approximate algorithms can provide the result in as little as 35
seconds. This is a significant reduction in execution time with a
speedup of much as 97% of the running time of DIRECT-E. Fig-
ure 8 shows that the results are very close to the exact answer pro-
duced by DIRECT-E.

7. RELATED WORK
Linear Algebraic Techniques for Solving SRP: There has been
extensive work on solving the system of linear equations using a
wide variety of techniques such as computing the pseudoinverse of
A [22] or performing Singular Value Decomposition (SVD) on A,
and iterative algorithms for solving the linear system [22]. How-
ever, none of these methods scale for large-scale signal reconstruc-
tion problems. A key bottleneck in these approaches is often the
computation of the pseudo inverse for matrix A. Note that any ma-
trix B such that ABA = A is defined as a pseudo inverse for A.
It is possible to identify ”the infinitely many possible generalized
inverses” [22], each with its own advantages and disadvantages.
Moore-Penrose Pseudo inverse (MPP) [21] is one of the most well-
known and widely used pseudo inverse. MPP is the pseudo inverse
that has the smallest Frobenius norm, minimizes the least-square
fit in over-determined systems, and finds the shortest solution in
the under-determined ones. However, none of the pseudo-inverse
definitions suits our purpose of finding the solution X that mini-
mizes the `2 distance from a prior. Furthermore, computing pseudo
inverses is often done by SVD that is computationally very expen-
sive.

8. CONCLUSION
In this paper, we investigated how a wide ranging problem of

large scale signal reconstruction can benefit from techniques de-
veloped by the database community. Efficiently solving SRP has
number of applications in diverse domains including network traffic
engineering, astronomy, medical imaging etc. We propose an algo-
rithm DIRECT based on the Lagrangian dual form of SRP. We iden-
tify a number of computational bottlenecks in DIRECT and evaluate
the use of database techniques such as sampling and similarity joins
for speeding them up without much loss in accuracy. Our experi-
ments on networks that are orders of magnitude larger than prior
work show the potential of our approach.

5We have found out the knee point of the cumulative flow is around
2%.
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We all structure information in our brains: without 
structure, we would not be able to deal with the huge 
quantities of highly heterogenous information we 
process.  However, each of us structures this 
information slightly differently, often leading to 
misunderstandings or requiring additional rounds of 
dialog to clarify.  Database schema are also designed 
by humans.  The structure imposed on the information 
by the schema reflects the human designers’ 
perspective on the world, even if mediated through 
formal design techniques or computer software.  
Therefore, the structured data querying task can be 
viewed as having a schema mapping problem at its 
core: mapping between the “schema” the human has 
in her brain and the schema used to organize the 
database. 
 
In short, database querying would be much easier if 
only human users could know exactly how the 
database was structured (and also what sort of data it 
contained).  Indeed, there is a significant body of 
work on data exploration.  The basic idea here is that 
the human learns about what is in the database and 
how it is structured, leading her to the data items of 
interest.  In the process, the user typically specifies a 
sequence of (exploratory) queries, each based in part 
on the knowledge about the database that the user has 
gained thus far.  The system attempts to facilitate this 
exploration by the user.  See, for example, [1], for a 
review of such work. 
 
A completely distinct stream of work deals with 
approximately specified queries.  The user provides a 
query intent, whether in a query language with wild 
cards, in natural language, or by example; the system 
then works hard to understand (and execute) the 
intended query.  In the process, the user’s incomplete 
specification is completed, any errors in it are 
corrected, and so on.  In some proposals, the system 
may even engage in dialog with the user to clarify 

user intent.  However, the assumption is that the user 
intent is fixed during this process. 
 
Seeing these two very distinct bodies of work on 
making databases easier to query, one should take a 
step back and see that in both cases, the system and 
the user have a shared objective of the system 
providing the user with the desired information.  In 
the former, the user works to learn about the database; 
in the latter, the system works to learn about user 
intent.  This paper bridges the two approaches and 
asks why both couldn’t learn about each other. 
 
Of course, this sort of two-sided learning is easier said 
than done.  Figuring out how to do this effectively is 
the heart of the technical content in this paper.  The 
authors model it as a cooperative two-player game, 
where both the user and the system are trying to 
achieve the same objective, which is to satisfy the 
user’s information need.  In each round of the game, 
the user may specify the need differently to help the 
system get to the right answer, and the system may 
interpret the user query differently, based on its 
growing understanding of the user’s need.  The 
strategy to play this game is learned through 
reinforcement learning. 
 
This paper will open a whole new line of research, in 
which the user query statement is not kept fixed even 
if their information need remains unchanged. 
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ABSTRACT
As most users do not precisely know the structure and/or
the content of databases, their queries do not exactly re-
flect their information needs. While database management
systems (DBMS) may interact with users and use their feed-
back on the returned results to learn the information needs
behind their queries, current query interfaces assume that
users do not learn and modify the way way they express their
information needs in form of queries during their interaction
with the DBMS. Using a real-world interaction workload, we
show that users learn and modify how to express their infor-
mation needs during their interactions with the DBMS and
their learning is accurately modeled by a well-known rein-
forcement learning mechanism. As current data interaction
systems assume that users do not modify their strategies,
they cannot discover the information needs behind users’
queries effectively. We model the interaction between users
and DBMS as a game with identical interest between two ra-
tional agents whose goal is to establish a common language
for representing information needs in form of queries. We
propose a reinforcement learning method that learns and
answers the information needs behind queries and adapts to
the changes in users’ strategies and prove that it stochas-
tically improves the effectiveness of answering queries. We
propose two efficient implementation of this method over
large relational databases. Our empirical studies over real-
world query workloads indicate that our algorithms are effi-
cient and effective.

1. INTRODUCTION
Most users do not know the structure and content of

databases and concepts such as schema or formal query lan-
guages sufficiently well to express their information needs
precisely in the form of queries [8]. They may convey their
intents in easy-to-use but inherently ambiguous forms, such
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as keyword queries, which are open to numerous interpreta-
tions. Thus, it is very challenging for a database manage-
ment system (DBMS) to understand and satisfy the intents
behind these queries. The fundamental challenge in the in-
teraction of these users and DBMS is that the users and
DBMS represent intents in different forms.

Many such users may explore a database to find answers
for various intents over a rather long period of time. For
these users, database querying is an inherently interactive
and continuous process. As both the user and DBMS have
the same goal of the user receiving her desired information,
the user and DBMS would like to gradually improve their
understanding of each other and reach a common language
of representing intents over the course of various queries and
interactions. The user may learn more about the structure
and content of the database and how to express intents as
she submits queries and observes the returned results. Also,
the DBMS may learn more about how the user expresses her
intents by leveraging user feedback on the returned results.
The user feedback may include clicking on the relevant an-
swers [33], or the signals sent in touch-based devices [20].
Ideally, the user and DBMS should establish as quickly as
possible this common representation of intents in which the
DBMS accurately understands all or most user’s queries.

Researchers have developed systems that leverage user
feedback to help the DBMS understand the intent behind
ill-specified and vague queries more precisely [6]. These sys-
tems, however, generally assume that a user does not modify
her method of expressing intents throughout her interaction
with the DBMS. For example, they maintain that the user
picks queries to express an intent according to a fixed prob-
ability distribution. It is known that the learning methods
that are useful in a static setting do not deliver desired out-
comes in a setting where all agents may modify their strate-
gies [14]. Hence, one may not be able to use current tech-
niques to help the DBMS understand the users’ information
need in a rather long-term interaction.

To the best of our knowledge, the impact of user learning
on database interaction has been generally ignored. In this
paper, we propose a novel framework that formalizes the in-
teraction between the user and the DBMS as a game with
identical interest between two active and potentially ratio-
nal agents: the user and DBMS. The common goal of the
user and DBMS is to reach a mutual understanding on ex-
pressing information needs in the form of keyword queries.
In each interaction, the user and DBMS receive certain pay-
offs according to how much the returned results are relevant
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to the intent behind the submitted query. The user receives
her payoff by consuming the relevant information and the
DBMS becomes aware of its payoff by observing the user’s
feedback on the returned results. We believe that such a
game-theoretic framework naturally models the long-term
interaction between the user and DBMS. We explore the
user learning mechanisms and propose algorithms for the
DBMS to improve its understanding of intents behind the
user queries effectively and efficiently over large databases.
In particular, we make the following contributions:

• We model the long term interaction between the user
and DBMS using keyword queries as a particular type of
game called a signaling game [9] in Section 2.

• Using extensive empirical studies over a real-world in-
teraction log, we show that users modify the way they
express their information need over their course of inter-
actions in Section 3. We also show that this adaptation is
accurately modeled by a well-known reinforcement learn-
ing algorithm [27] in experimental game-theory.

• We describe our data interaction system that provides
an efficient implementation of our reinforcement learn-
ing method on large relational databases in Section 5.
In particular, we first propose an algorithm that imple-
ments our learning method called Reservoir. Then, using
certain mild assumptions and the ideas of sampling over
relational operators, we propose another algorithm called
Poisson-Olken that implements our reinforcement learn-
ing scheme and considerably improves the efficiency of
Reservoir.

• We report the results of our empirical studies on measur-
ing the effectiveness of our reinforcement learning method
and the efficiency of our algorithms using real-world and
large interaction workloads, queries, and databases in
Section 6. Our results indicate that our proposed re-
inforcement learning method is more effective than the
start-of-the-art algorithm for long-term interactions. They
also show that Poisson-Olken can process queries over
large databases faster than the Reservoir algorithm.

2. A GAME-THEORETIC FRAMEWORK
Users and DBMSs typically achieve a common under-

standing gradually and using a querying/feedback paradigm.
After submitting each query, the user may revise her strat-
egy of expressing intents based on the returned result. If the
returned answers satisfy her intent to a large extent, she may
keep using the same query to articulate her intent. Other-
wise, she may revise her strategy and choose another query
to express her intent in the hope that the new query will
provide her with more relevant answers. We will describe
this behavior of users in Section 3 in more detail. The user
may also inform the database system about the degree by
which the returned answers satisfy the intent behind the
query using explicit or implicit feedback, e.g., click-through
information [13]. The DBMS may update its interpretation
of the query according to the user’s feedback.

Intuitively, one may model this interaction as a game be-
tween two agents with identical interests in which the agents
communicate via sharing queries, results, and feedback on
the results. In each interaction, both agents will receive
some reward according to the degree by which the returned
result for a query matches its intent. The user receives her
rewards in the form of answers relevant to her intent and

the DBMS receives its reward through getting positive feed-
back on the returned results. The final goal of both agents
is to maximize the amount of reward they receive during the
course of their interaction.

2.1 Intent
An intent represents an information need sought after by

the user. Current keyword query interfaces over relational
databases generally assume that each intent is a query in a
sufficiently expressive query language in the domain of in-
terest, e.g., Select-Project-Join subset of SQL [8, 18]. Our
framework and results are orthogonal to the language that
precisely describes the users’ intents. Table 1 illustrates
a database with schema Univ(Name, Abbreviation, State,
Rank) that contains information about university rankings.
A user may want to find the information about university
MSU in Michigan, which is precisely represented by the in-
tent e2 in Table 2(a), which using the Datalog syntax [1] is:
ans(z) ← Univ(x, ‘MSU ’, ‘MI’, z).

2.2 Query
Users’ articulations of their intents are queries. Many

users do not know the formal query language, e.g., SQL, that
precisely describes their intents. Thus, they may prefer to
articulate their intents in languages that are easy-to-use, rel-
atively less complex, and ambiguous such as keyword query
language [18, 8]. In the proposed game-theoretic frameworks
for database interaction, we assume that the user expresses
her intents as keyword queries. More formally, we fix a
countably infinite set of terms, i.e., keywords, T . A key-
word query (query for short) is a nonempty (finite) set of
terms in T . Consider the database instance in Table 1. Ta-
ble 2 depicts a set of intents and queries over this database.
Suppose the user wants to find the information about Michi-
gan State University in Michigan, i.e. the intent e2. Because
the user does not know any formal database query language
and may not be sufficiently familiar with the content of the
data, she may express intent e2 using q2 : ‘MSU’.

Some users may know a formal database query language
that is sufficiently expressive to represent their intents. Nev-
ertheless, because they may not know precisely the content
and schema of the database, their submitted queries may
not always be the same as their intents [6]. For example, a
user may know how to write a SQL query. But, since she
may not know the state abbreviation MI, she may articulate
intent e2 as ans(z) ← Univ(x, ‘MSU ’, y, z), which is differ-
ent from e2. We plan to extend our framework for these
scenarios in future work. But, in this paper, we assume that
users articulate their intents as keyword queries.

2.3 User Strategy
The user strategy indicates the likelihood that the user

submits query q given that her intent is e. In practice, a user
has finitely many intents and submits finitely many queries
in a finite period of time. Hence, we assume that the sets
of the user’s intents and queries are finite. We index each
user’s intent and query by 1 ≤ i ≤ m and 1 ≤ j ≤ n,
respectively. A user strategy, denoted as U , is a m × n
row-stochastic matrix from her intents to her queries. The
matrix on the top of Table 3(a) depicts a user strategy using
intents and queries in Table 2. According to this strategy,
the user submits query q2 to express intents e1, e2, and e3.
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Table 1: A database instance of relation Univ

Name Abbreviation State Rank
Missouri State University MSU MO 20
Mississippi State University MSU MS 22
Murray State University MSU KY 14
Michigan State University MSU MI 18

Table 2: Intents and Queries
2(a) Intents

Intent# Intent
e1 ans(z)← Univ(x, ‘MSU ’, ‘MS’, z)
e2 ans(z)← Univ(x, ‘MSU ’, ‘MI’, z)
e3 ans(z)← Univ(x, ‘MSU ’, ‘MO’, z)

2(b) Queries

Query# Query
q1 ‘MSU MI’
q2 ‘MSU’

Table 3: Two strategy profiles over the intents and queries in
Table 2. User and DBMS strategies at the top and bottom,
respectively.

3(a) A strategy profile

q1 q2
e1 0 1
e2 0 1
e3 0 1

e1 e2 e3
q1 0 1 0
q2 0 1 0

3(b) Another strategy profile

q1 q2
e1 0 1
e2 1 0
e3 0 1

e1 e2 e3
q1 0 1 0
q2 0.5 0 0.5

2.4 DBMS Strategy
The DBMS interprets queries to find the intents behind

them. It usually interprets queries by mapping them to a
subset of SQL [8, 16]. Since the final goal of users is to see
the result of applying the interpretation(s) on the underly-
ing database, the DBMS runs its interpretation(s) over the
database and returns its results. Moreover, since the user
may not know SQL, suggesting possible SQL queries may
not be useful. A DBMS may not exactly know the language
that can express all users’ intents. Current usable query
interfaces, including keyword query systems, select a query
language for the interpreted intents that is sufficiently com-
plex to express many users’ intents and is simple enough so
that the interpretation and running its outcome(s) are done
efficiently [8].

To better leverage users feedback during the interaction,
the DBMS must show the results of and get feedback on a
sufficiently diverse set of interpretations [15, 31]. Of course,
the DBMS should ensure that this set of interpretations
is relatively relevant to the query, otherwise the user may
become discouraged and give up querying. This dilemma
is called the exploitation versus exploration trade-off. A
DBMS that only exploits, returns top-ranked interpretations
according to its scoring function. Hence, the DBMS may
adopt a stochastic strategy to both exploit and explore: it
randomly selects and shows the results of intents such that
the ones with higher scores are chosen with larger probabili-
ties [15, 31]. In this approach, users are mostly shown results
of interpretations that are relevant to their intents according
to the current knowledge of the DBMS and provide feedback
on a relatively diverse set of interpretations. More formally,

given Q is a set of all keyword queries, the DBMS strategy
D is a stochastic mapping from Q to L, where L is some in-
terpretation of the keyword query that contains some tuples
from the underlying database. The matrix on the bottom
of Table 3(a) depicts a DBMS strategy for the intents and
queries in Table 2. Based on this strategy, the DBMS uses
a exploitative strategy and always interprets query q2 as e2.
The matrix on the bottom of Table 3(b) depicts another
DBMS strategy for the same set of intents and queries. In
this example, DBMS uses a randomized strategy and does
both exploitation and exploration. For instance, it explores
e1 and e3 to answer q2 with equal probabilities, but it always
returns e2 in the response to q1.

2.5 Interaction & Adaptation
The data interaction game is a repeated game with iden-

tical interest between two players, the user and the DBMS.
At each round of the game, i.e., a single interaction, the user
selects an intent according to the prior probability distribu-
tion π. She then picks the query q according to her strategy
and submits it to the DBMS. The DBMS observes q and
interprets q based on its strategy, and returns the results of
the interpretation(s) on the underlying database to the user.
The user provides some feedback on the returned tuples and
informs the DBMS how relevant the tuples are to her intent.
In this paper, we assume that the user informs the DBMS if
some tuples satisfy the intent via some signal, e.g., selecting
the tuple, in some interactions.

Next, we compute the expected payoff of the players. Since
DBMS strategy D maps each query to a finite set of inter-
pretations, and the set of submitted queries by a user, or a
population of users, is finite, the set of interpretations for all
queries submitted by a user, denoted as Ls, is finite. Hence,
we show the DBMS strategy for a user as an n × o row-
stochastic matrix from the set of the user’s queries to the
set of interpretations Ls. We index each interpretation in
Ls by 1 ≤ ` ≤ o. Each pair of the user and the DBMS
strategy, (U ,D), is a strategy profile. The expected payoff
for both players with strategy profile (U ,D) is as follows,
where r(ei, e`) is some effectiveness metric such as precision
at k [21].

ur(U,D) =

m∑

i=1

πi

n∑

j=1

Uij

o∑

`=1

Dj` r(ei, e`), (1)

The expected payoff reflects the degree by which the user
and DBMS have reached a common language for commu-
nication. This value is high for the case in which the user
knows which queries to pick to articulate her intents and
the DBMS returns the results that satisfy the intents behind
the user’s queries. Hence, this function reflects the success
of the communication and interaction. For example, given
that all intents have equal prior probabilities, intuitively,
the strategy profile in Table 3(b) shows a larger degree of
mutual understanding between the players than the one in
Table 3(a). This is reflected in their values of expected pay-
off as the expected payoffs of the former and latter are 2

3
and

1
3
, respectively. We note that the DBMS may not know the

set of users’ queries beforehand and does not compute the
expected payoff directly. Instead, it uses query answering al-
gorithms that leverage user feedback, such that the expected
payoff improves over the course of several interactions.
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3. USER LEARNING MECHANISM
It is well established that humans show reinforcement be-

havior in learning [29, 24]. Many lab studies with human
subjects conclude that one can model human learning using
reinforcement learning models [29, 24]. The exact reinforce-
ment learning method used by a person, however, may vary
based on her capabilities and the task at hand. We have
performed an empirical study of a real-world interaction log
to find the reinforcement learning method(s) that best ex-
plain the mechanism by which users adapt their strategies
during interaction with a DBMS.

3.1 Human Learning Schemes
To provide a comprehensive comparison, we evaluate six

reinforcement learning methods used to model human learn-
ing in experimental game theory and/or Human Computer
Interaction (HCI) [27, 5]. These methods mainly vary based
on 1) the degree by which the user considers past interac-
tions when computing future strategies, 2) how they up-
date the user strategy, and 3) the rate by which they up-
date the user strategy. Win-Keep/Lose-Randomize keeps a
query with non-zero reward in past interactions for an in-
tent. If such a query does not exist, it picks a query ran-
domly. Latest-Reward reinforces the probability of using a
query to express an intent based on the most recent reward
of the query to convey the intent. Bush and Mosteller’s and
Cross’s models increases (decreases) the probability of us-
ing a query based its past success (failures) of expressing
an intent. A query is successful if it delivers a reward more
than a given threshold, e.g., zero. Roth and Erev’s model
uses the aggregated reward from past interactions to com-
pute the probability by which a query is used. Roth and
Erev’s modified model is similar to Roth and Erev’s model,
with an additional parameter that determines to what ex-
tent the user forgets the reward received for a query in past
interactions.

3.2 Empirical Analysis
Interaction Logs: We use an anonymized Yahoo! in-

teraction log for our empirical study, which consists of key-
word queries submitted to a Yahoo! search engine in July
2010 [32]. We have used three different contiguous subsam-
ples of this log whose information is shown in Table 4. The
duration of each subsample is the time between the time-
stamp of the first and last interaction records. The records
of the 8H-interaction sample appear at the beginning of the
the 43H-interaction sample, which themselves appear at the
beginning of the 101H-interaction sample.

Intent & Reward: Accompanying the interaction log is
a set of relevance judgment scores for each query and result
pair. Each relevance judgment score is a value between 0
and 4 and shows the degree of relevance of the result to the
query, with 0 meaning not relevant at all and 4 meaning the
most relevant result. We define the intent behind each query
as the set of results with non-zero relevance scores. We use
the standard ranking quality metric Normalized Discounted
Cumulative Gain (NDCG) for the returned results of a query
as the reward in each interaction as it models different levels
of relevance [21]. The value of NDCG is between 0 and 1
and it is 1 for the most effective list.

Training & Testing: We have used a set of 5,000 records
that appear in the interaction log immediately before the
first subsample of Table 4 and found the optimal values for

Table 4: Subsamples of Yahoo! interaction log

Duration #Interactions #Users #Queries #Intents

˜8H 622 272 111 62
˜43H 12323 4056 341 151
˜101H 195468 79516 13976 4829

parameters using grid search and the sum of squared errors.
We train and test a single user strategy over each subsample
and model, which represents the strategy of the user popu-
lation in each subsample. After estimating parameters, we
train the user strategy using each model over 90% of the to-
tal number of records in each selected subsample in the order
by which the records appear in the interaction log and test
over the remaining 10% using the user strategy computed at
the end of the training phase. We report the mean squared
errors over all intents in the testing phase for each subsample
and model in Table 5. A lower mean squared error implies
that the model more accurately represents the users’ learn-
ing method. We have excluded the Latest Reward results
from the figure as they are an order of magnitude worse than
the others.

Table 5: Accuracies of learning over the subsamples of Ta-
ble 4

Methods
Duration

101H 43H 8H
Bush and Mosteller’s 0.0672 0.1880 0.2434
Cross’s 0.0686 0.1908 0.2472
Roth and Erev’s 0.0666 0.1827 0.2522
Roth and Erev’s Modified 0.0666 0.1827 0.2522
Win-Keep/Lose-Randomize 0.0713 0.1876 0.2364

Results: Win-Keep/Lose-Randomize performs surpris-
ingly more accurately than other methods for the 8H-interaction
subsample. It indicates that in short-term and/or beginning
of their interactions, users may not have enough interactions
to leverage a more complex learning scheme and use a rather
simple mechanism to update their strategies. Both Roth
and Erev’s methods use the accumulated reward values to
adjust the user strategy gradually. Hence, they cannot pre-
cisely model user learning over a rather short interaction
and are less accurate than relatively more aggressive learn-
ing models such as Bush and Mosteller’s and Cross’s over
this subsample. Both Roth and Erev’s deliver the same re-
sult and outperform other methods in the 43-H and 101-H
subsamples. Win-Keep/Lose-Randomize is the least accu-
rate method over the two larger subsamples. Since larger
subsamples provide more training data, the predication ac-
curacy of all models improves as the interaction subsamples
becomes larger. The learned value for the forget parameter
in the Roth and Erev’s modified model is very small and
close to zero in our experiments, therefore, it generally acts
like the Roth and Erev’s model.

Long-term communications between users and DBMS may
include multiple sessions. Since Yahoo! query workload con-
tains the time stamps and user ids of each interaction, we
have been able to extract the starting and ending times of
each session. Our results indicate that as long as the user
and DBMS communicate over sufficiently many of interac-
tions, e.g., about 10k for Yahoo! query workload, the users
follow the Roth and Erev’s model of learning. Given that the
communication of the user and DBMS involve sufficiently
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many interactions, we have not observed any difference in
the mechanism by which users learn based on the numbers
of sessions in the user and DBMS communication.

Conclusion: Our analysis indicates that users show a
substantially intelligent behavior when adopting and modi-
fying their strategies over relatively medium and long-term
interactions. They leverage their past interactions and their
outcomes, i.e., have an effective long-term memory. This
behavior is most accurately modeled using Roth and Erev’s
model. Hence, in the rest of the paper, we set the user
learning method to this model.

4. LEARNING ALGORITHM FOR DBMS
Current systems generally assume that a user does not

learn and/or modify her method of expressing intents through-
out her interaction with the DBMS. However, it is known
that the learning methods that are useful in static settings
do not deliver desired outcomes in the dynamic ones [3].
Moreover, it has been shown that if the players do not use
the right learning algorithms in games with identical inter-
ests, the game and its payoff may not converge to any desired
states [28]. Thus, choosing the correct learning mechanism
for the DBMS is crucial to improve the payoff and converge
to a desired state.

4.1 DBMS Reinforcement Learning
We adopt Roth and Erev’s learning method for adapta-

tion of the DBMS strategy, with a slight modification. The
original Roth and Erev method considers only a single ac-
tion space. In our work, this would translate to having only
a single query. Instead we extend this such that each query
has its own action space or set of possible intents. The
adaptation happens over discrete time t = 0, 1, 2, 3, . . . in-
stances where t denotes the tth interaction of the user and
the DBMS. We refer to t simply as the iteration of the learn-
ing rule. For simplicity of notation, we refer to intent ei and
result s` as intent i and `, respectively, in the rest of the
paper. Hence, we may rewrite the expected payoff for both
user and DBMS as:

ur(U,D) =

m∑

i=1

πi

n∑

j=1

Uij

o∑

`=1

Dj`ri`,

where r : [m]×[o]→ R+ is the effectiveness measure between
the intent i and the result, i.e., decoded intent `. With
this, the reinforcement learning mechanism for the DBMS
adaptation is as follows.

a. Let R(0) > 0 be an n × o initial reward matrix whose
entries are strictly positive.

b. Let D(0) be the initial DBMS strategy with Dj`(0) =
Rj`(0)∑o

`=1
Rj`(0)

> 0 for all j ∈ [n] and ` ∈ [o].

c. For iterations t = 1, 2, . . ., do

i. If the user’s query at time t is q(t), DBMS returns a
result E(t) ∈ E with probability:

P (E(t) = i′ | q(t)) = Dq(t)i′(t).

ii. User gives a reward rii′ given that i is the intent
of the user at time t. Note that the reward depends

both on the intent i at time t and the result i′. Then,
set

Rj`(t+ 1) =

{
Rj`(t) + ri` if j = q(t) and ` = i′

Rj`(t) otherwise
.

(2)

iii. Update the DBMS strategy by

Dji(t+ 1) =
Rji(t+ 1)∑o
`=1Rj`(t+ 1)

, (3)

for all j ∈ [n] and i ∈ [o].

In the above algorithm R(t) is simply the reward matrix at
time t. We have also proved the following:

Theorem 4.1. The proposed learning algorithm in Sec-
tion 4.1 converges almost surely when the user learns using
Roth and Erev’s model.

The above result implies that the effectiveness of the DBMS,
stochastically speaking, increases as time progresses when
the learning rule in Section 4.1 is utilized. The user may also
learn at a relatively slow rate such that from the perspective
of the database it seems as though the user isn’t learning. Of
course, the user may not perform any learning. Our results
also hold for the case when the user doesn’t learn. We have
also proved that the payoff of the two agents only increases
or remains the same. To see all proofs in full, we refer the
reader to our published work [22].

It is quite costly to materialize and maintain the strategy
of the DBMS as shown in the previous examples. Thus, we
maintain the strategy and reinforcements in a constructed
feature space using n-grams for each attribute value. Our
mapping is then a mapping from query features to tuple
features.

5. EFFICIENT QUERY ANSWERING OVER
RELATIONAL DATABASES

An efficient implementation of our algorithm proposed in
Section 4 over large relational databases poses two chal-
lenges. First, since the set of possible interpretations and
their results for a given query is enormous, one has to find
efficient ways of maintaining users’ reinforcements and up-
dating DBMS strategy. Second, keyword and other usable
query interfaces over databases normally return the top-k
tuples according to some scoring functions [16, 8]. Due to
a series of seminal works by database researchers [12], there
are efficient algorithms to find such a list of answers. Never-
theless, our reinforcement learning algorithm uses a random-
ized semantics for answering algorithms in which candidate
tuples are associated a probability for each query that re-
flects the likelihood by which it satisfies the intent behind
the query. The tuples must be returned randomly accord-
ing to their associated probabilities. Using (weighted) sam-
pling to answer SQL queries with aggregation functions ap-
proximately and efficiently is an active research area [17].
However, there has not been any attempt on using a ran-
domized strategy to answer so-called point queries over rela-
tional data and achieve a balanced exploitation-exploration
trade-off efficiently.
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5.1 Keyword Query Interface
We use the current architecture of keyword query inter-

faces over relational databases that directly use schema in-
formation to interpret the input keyword query [8]. A no-
table example of such systems is IR-Style [16]. We provide
an overview of the basic concepts of such a system. We refer
the reader to [16, 8] for more explanation.

Tuple-set: Given keyword query q, a tuple-set is a set
of tuples in a base relation that contain some terms in q.
After receiving q, the query interface uses an inverted in-
dex to compute a set of tuple-sets. For instance, consider
a database of products with relations Product(pid, name),
Customer(cid, name), and ProductCustomer(pid, cid) where
pid and cid are numeric strings. Given query iMac John,
the query interface returns a tuple-set from Product and a
tuple-set from Customer that match at least one term in the
query.
Candidate Network: A candidate network is a join ex-

pression that connects the tuple-sets via primary key-foreign
key relationships. A candidate network joins the tuples
in different tuple-sets and produces joint tuples that con-
tain the terms in the input keyword query. One may con-
sider the candidate network as a join tree expression whose
leaves are tuple-sets. For instance, one candidate network
for the aforementioned database of products is Product ./
ProductCustomer ./ Customer. To connect tuple-sets via
primary key-foreign key links, a candidate network may in-
clude base relations whose tuples may not contain any term
in the query, e.g., ProductCustomer in the preceding exam-
ple. Given a set of tuple-sets, the query interface uses the
schema of the database and progressively generates candi-
date networks that can join the tuple-sets. For efficiency
considerations, keyword query interfaces limit the number
of relations in a candidate network to be lower than a given
threshold. Keyword query interfaces normally compute the
score of joint tuples by summing up the scores of their con-
structing tuples multiplied by the inverse of the number of
relations in the candidate network to penalize long joins [8].
We use the same scoring scheme. We also consider each
(joint) tuple to be candidate answer to the query if it con-
tains at least one term in the query.

5.2 Efficient Exploitation & Exploration
We propose the following two algorithms to generate a

weighted random sample of size k over all candidate tuples
for a query.

5.2.1 Reservoir
To provide a random sample, one may calculate the total

scores of all candidate answers to compute their sampling
probabilities. Because this value is not known beforehand,
one may use weighted reservoir sampling [7] to deliver a
random sample without knowing the total score of candidate
answers in a single scan of the data as follows. Reservoir
occurs after the complete joins of the candidate network have
be computed. Thus, it samples over tuples in the individual
tables and tuples in the joined tables. Reservoir generates
the list of answers only after computing the results of all
candidate networks, therefore, users have to wait for a long
time to see any result. It also computes the results of all
candidate networks by performing their joins fully, which
may be inefficient. We propose the following optimizations
to improve its efficiency and reduce the users’ waiting time.

5.2.2 Poisson-Olken
Poisson-Olken algorithm uses Poisson sampling to output

progressively the selected tuples as it processes each candi-
date network [25]. First, when a join needs to be constructed
between multiple tables in a candidate network, tuples are
only joined based on some statistics collected prior to inter-
action. These include how likely a given tuple might join
with another and how many tuples are in each relation. As
tuples are joined, they are sampled immediately, allowing
the algorithm to return before it has performed the entire
join.

The expected value of produced tuples in the Poisson-
Olken algorithm is close to k. However, as opposed to reser-
voir sampling, there is a non-zero probability that Poisson-
Olken may deliver fewer than k tuples. To drastically reduce
this chance, one may use a larger value for k in the algorithm
and reject the appropriate number of the resulting tuples
after the algorithm terminates [7]. The resulting algorithm
will not progressively produce the sampled tuples, but, as
our empirical study in Section 6 indicates, it is faster than
Reservoir over large databases with relatively many candi-
date networks as it does not perform any full join. For more
details, including the algorithms, see our full publication
in [22].

6. EMPIRICAL STUDY

6.1 Effectiveness
It is difficult to evaluate the effectiveness of online and

reinforcement learning algorithms for information systems
in a live setting with real users because it requires a very
long time and a large amount of resources [31, 15, 26, 14].
Thus, most studies in this area use purely simulated user
interactions [26, 15]. A notable exception is [31], which uses
a real-world interaction log to simulate a live interaction
setting. We follow a similar approach and use Yahoo! in-
teraction log [32] to simulate interactions using real-world
queries and dataset.
Strategy Initialization: We train a user strategy over

the Yahoo! 43H-interaction log whose details are in Section 3
using Roth and Erev’s method, which is deemed the most
accurate to model user learning according to the results of
Section 3. This strategy has 341 queries and 151 intents.
The DBMS starts the interaction with an empty strategy
and adds queries as it receives them, initialized with equal
probabilities.
Algorithms: We compare the algorithm introduced in

Section 4.1 against the state-of-the-art and popular algo-
rithm for online learning in information retrieval called UCB-
1 [26, 23]. It has been shown to outperform its competitors
in several studies [23, 26]. It calculates a score for an in-
tent e given the tth submission of query q as: Scoret(q, e) =
Wq,e,t

Xq,e,t
+ α

√
2ln t
Xq,e,t

, in which X is how many times an in-

tent was shown to the user, W is how many times the user
selects a returned intent, and α is the exploration rate set
between [0, 1]. The first term in the formula prefers the in-
tents that have received relatively more positive feedback,
i.e., exploitation, and the second term gives higher scores
to the intents that have been shown to the user less often
and/or have not been tried for a relatively long time, i.e.,
exploration. UCB-1 assumes that users follow a fixed prob-
abilistic strategy. Thus, its goal is to find the fixed but
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unknown expectation of the relevance of an intent to the
input query, which is roughly the first term in the formula;
by minimizing the number of unsuccessful trials.

Results: We simulate the interaction of a user popula-
tion that starts with our trained user strategy with UCB-1
and our algorithm. We measure the effectiveness of the algo-
rithms using the standard metric of Reciprocal Rank (RR)
[21]. In each interaction, an intent is randomly picked from
the set of intents in the user strategy by its prior probability
and submitted to UCB-1 and our method. Afterwards, each
algorithm returns a list of 10 answers and the user clicks
on the top-ranked answer that is relevant to the query ac-
cording to the relevance judgment information. We run our
simulations for one million interactions.

Figure 1 shows the accumulated Mean Reciprocal Rank
(MRR) over all queries in the simulated interactions. Our
method delivers a higher MRR than UCB-1 and its MRR
keeps improving over the duration of the interaction. UCB-
1, however, increases the MRR at a much slower rate. Since
UCB-1 is developed for the case where users do not change
their strategies, it learns and commits to a fixed probabilistic
mapping of queries to intents quite early in the interaction.
We have also observed that our method allows users to try
more varieties of queries to express an intent and learn the
one(s) that convey the intent effectively. As UCB-1 com-
mits to a certain mapping of a query to an intent early in
the interaction, it may not return sufficiently many relevant
answers if the user tries this query to express another intent.
This new mapping, however, could be promising in the long-
run. Hence, the user and UCB-1 strategies may stabilize in
less than desirable states. Since our method does not com-
mit to a fixed strategy that early, users may try this query
for another intent and reinforce the mapping if they get rel-
evant answers. Thus, users have more chances to try and
pick a query for an intent that will be learned and mapped
effectively to the intent by the DBMS.

Figure 1: Mean reciprocal rank for 1,000,000 interactions

6.2 Efficiency
Databases and Queries: We have built two databases

from Freebase (developers.google.com/freebase), TV-Program
and Play. TV-Program contains 7 tables and consists of 291,026
tuples. Play contains 3 tables and consists of 8,685 tu-
ples. For our queries, we have used two samples of 621 (459
unique) and 221 (141 unique) queries from Bing (bing.com)
query log whose relevant answers after filtering our noisy

clicks, are in TV-program and Play databases, respectively
[10]. After submitting each query and getting some results,
we simulate user feedback using the relevance information
in the Bing log.
Query Processing: We have used Whoosh inverted in-

dex (whoosh.readthedocs.io) to index each table in databases.
Whoosh recognizes the concept of table with multiple at-
tributes, but cannot perform joins between different tables.
Because the Poisson-Olken algorithm needs indexes over pri-
mary and foreign keys used to build candidate network, we
have built hash indexes over these tables in Whoosh. Given
an index-key, these indexes return the tuple(s) that match
these keys inside Whoosh. To provide a fair comparison
between Reservoir and Poisson-Olken, we have used these
indexes to perform joins for both methods. We have limited
the size of each candidate network to 5. Our system returns
10 tuples in each interaction for both methods.
Results: Table 6 depicts the time for processing candi-

date networks and reporting the results for both Reservoir
and Poisson-Olken over TV-Program and Play databases
over 1000 interactions. These results also show that Poisson-
Olken is able to significantly improve the time for executing
the joins in the candidate network, shown as performing
joins in the table, over Reservoir in both databases. The
improvement is more significant for the larger database, TV-
Program. Poisson-Olken progressively produces tuples to
show to user. But, we are not able to use this feature for
all interactions. For a considerable number of interactions,
Poisson-Olken does not produce 10 tuples, as explained in
Section 5.2. Hence, we have to use a larger value of k and
wait for the algorithm to finish in order to find a randomize
sample of the answers as explained at the end of Section 5.2.
Both methods have spent a negligible amount of time to re-
inforce the features, which indicate that using a rich set
of features one can perform and manage reinforcement effi-
ciently.

Table 6: Average candidate networks processing times in
seconds for 1000 interactions

Database Reservoir Poisson-Olken

Play 0.078 0.042
TV Program 0.298 0.171

7. RELATED WORK
Database community has proposed several systems that

help the DBMS learn the user’s information need by show-
ing examples to the user and collecting her feedback [19,
11, 4, 30, 2]. In these systems, a user explicitly teaches the
system by labeling a set of examples potentially in several
steps without getting any answer to her information need.
Thus, the system is broken into two steps: first it learns the
information need of the user by soliciting labels on certain
examples from the user and then once the learning has com-
pleted, it suggests a query that may express the user’s infor-
mation need. These systems usually leverage active learning
methods to learn the user intent by showing the fewest pos-
sible examples to the user [11]. However, ideally one would
like to have a query interface in which the DBMS learns
about the user’s intents while answering her (vague) queries
as our system does. As opposed to active learning methods,
one should combine and balance exploration and learning
with the normal query answering to build such a system.
Moreover, current query learning systems assume that users
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follow a fixed strategy for expressing their intents. Also, we
focus on the problems that arise in the long-term interaction
that contain more than a single query and intent.

8. CONCLUSION
Many users do not know how to express their information

needs. We showed that users learn and modify how they ex-
press their information needs during their interaction with
the DBMS and modeled the interaction between the user
and the DBMS as a game, where the players would like
to establish a common mapping from information needs to
queries via learning. As current query interfaces do not ef-
fectively learn the information needs behind queries in such
a setting, we proposed a reinforcement learning algorithm
for the DBMS that learns the querying strategy of the user
effectively. We provided efficient implementations of this
learning mechanisms over large databases.

Currently the algorithm proposed in this work does not
consider optimal strategy profiles. In the future we would
like to have the DBMS algorithm target these optimal strat-
egy profiles such that the mutual understanding between the
two players is optimal. Another question to ask is whether
there are information preserving transformations of data,
that can deliver a more effective interaction, e.g. merging
some entities. Given that the aforementioned transforma-
tions are costly and they do improve the interaction, we
would need to find the most cost-effective ones.
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Technical Perspective for: MATLANG: Matrix
Operations and Their Expressive Power

Dan Suciu
University of Washington

The main processing paradigm in data manage-
ment is bulk processing. As introduced by Codd
in the early 70’s, under this paradigm relations are
processed in bulk, one operator at a time. When ap-
plied to relations, this paradigm leads to relational
algebra, and its variants, relational calculus, and
SQL. Over the years, data management was faced
with the challenge of extending bulk processing op-
erators to new kinds of data, and/or new kinds of
queries: nested relations, semistructured data, re-
cursive queries. Each such extension requires sig-
nificant systems development, which should be ac-
companied, in fact preceded, by a careful study of
the expressive power of the new language. Is it as
expressive, more expressive, or less expressive than
relational algebra? The answer to this question has
profound implications on the ability of data process-
ing engines to optimize, compute, distribute, reuse
queries in that language. For example, extending
relational algebra with nested relations does not in-
crease its expressive power, while extending it with
fixpoint does, explaining why modern query engines
have an easier time supporting JSON than recur-
sion.

Today, data management is faced with a new
task: incorporate into the relational engine linear
algebra operations required by machine learning al-
gorithms. A superficial inspection suggests that this
is easy, because operations such as matrix multipli-
cation, transpose, addition, are already expressible
in SQL. In fact, in SciDB users indeed express these
operations in SQL, and the engine can already apply
the same optimizations as for general SQL queries.
But this answer is unsatisfactory. Most popular ML
or linear algebra systems today, such as NumPy,
ScaLAPAK, SystemML, support only linear algebra
operations, and, because of that, they outperform
relational engines for the tasks they are designed to
do (see reference [39] in the paper). This raises a
natural and important question: what is the expres-
sive power of linear algebra, and how does it relate

to that of the relational algebra?
The paper by Brijder, Geerts, Van den Bussche

and Weerwag, first published in ICDT’2018, initi-
ates the study into precisely this question. This is
undoubtedly only the first paper in this line, meant
mostly to raise the question; more are likely to fol-
low, for example see references [15] and [8], and the
important results there.

The first hurdle the paper faces is that there is
no standard linear algebra language. The authors
propose one such language, MATLANG, which in-
cludes the usual operations on matrices, and not
much else. The second hurdle is that expressions in
linear algebra and in relational algebra have differ-
ent types, hence are not directly comparable. To
circumvent that, the authors focus on the graph
properties that these languages can express, since
graphs can be represented both as relations and as
matrices. With these assumptions, the paper estab-
lishes a few results comparing the two languages.
For example, properties in linear algebra can be ex-
pressed in FO3 (which can be thought of as the
restriction of relational algebra to intermediate re-
sults of arity at most 3), however, if one adds a ma-
trix inverse operation to linear algebra then one can
express graph connectivity, suggesting that this lan-
guage is closer to the extension of relational algebra
with fixpoints. The reader will enjoy the arguments
used to prove these statements, and will definitely
be enticed to follow future progress on the impor-
tant study of the expressive power of linear algebra.
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ABSTRACT
We investigate the expressive power of MATLANG, a for-
mal language for matrix manipulation based on common
matrix operations and linear algebra. The language can be
extended with the operation inv for inverting a matrix. In
MATLANG + inv we can compute the transitive closure of
directed graphs, whereas we show that this is not possible
without inversion. Indeed we show that the basic language
can be simulated in the relational algebra with arithmetic
operations, grouping, and summation. We also consider an
operation eigen for diagonalizing a matrix. It is defined such
that for each eigenvalue a set of orthogonal eigenvectors is
returned that span the eigenspace of that eigenvalue. We
show that inv can be expressed in MATLANG + eigen. We
put forward the open question whether there are boolean
queries about matrices, or generic queries about graphs, ex-
pressible in MATLANG+ eigen but not in MATLANG+ inv.
Finally, the evaluation problem for MATLANG + eigen is
shown to be complete for the complexity class ∃R.

1. INTRODUCTION
In view of the importance of large-scale statistical and

machine learning (ML) algorithms in the overall data an-
alytics workflow, database systems are in the process of
being redesigned and extended to allow for a seamless in-
tegration of ML algorithms and mathematical and statisti-
cal frameworks, such as R, SAS, and MATLAB, with exist-
ing data manipulation and data querying functionality [42,
19, 5, 38, 10, 27, 21]. In particular, data scientists often
use matrices to represent their data, as opposed to using
the relational data model, and create custom data analyt-
ics algorithms using linear algebra, instead of writing SQL
queries. Here, linear algebra algorithms are expressed in a
declarative manner by composing basic linear algebra con-
structs such as matrix multiplication, matrix transposition,
element-wise operations on the entries of matrices, solv-
ing nonsingular systems of linear equations (matrix inver-

@2018 Copyright held by the authors. Publication rights
licensed to ACM. This is a minor revision of the work pub-
lished in ICDT 2018, vol. 98 of LIPIcs, pages 10:1–10:17.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Request permissions from permissions@acm.org.

sion), diagonalization (eigenvalues and eigenvectors), sin-
gular value decomposition, just to name a few. The main
challenges from a database system’s perspective are to en-
sure scalability by providing physical data independence
and optimizations. We refer to [39] for an overview of the
different systems addressing these challenges.

In this context, the following natural questions arise:
Which linear algebra constructs need to be supported to
perform certain data analytical tasks? Does the additional
support for certain linear algebra operations increase the
overall functionality? Can a linear algebra algorithm be
rewritten, in an equivalent way, to an algorithm using a
smaller number of linear algebra operations? Such ques-
tions have been extensively studied for“classical”query lan-
guages (fragments and extensions of SQL) in database the-
ory and finite model theory [1, 26]. Indeed, the questions
raised all relate to the expressive power of query languages.
In this paper we enroll in the investigation of the expressive
power of matrix query languages.

As a starting point we focus on matrices and matrix query
languages alone, leaving the study of the expressive power
of languages that operate on both relational data and ma-
trices for future work. Even this“matrix only” setting turns
out to be quite interesting and challenging on its own.

To set the stage, we need to formally define what we
mean by a matrix query language. There has been work in
finite model theory and logic to understand the capability
of certain logics to express linear algebra operations [13,
12, 20]. In particular, the extent to which fixpoint logics
with counting and their extension with so-called rank oper-
ators can express linear algebra has been considered. The
motivation for that line of work is mainly to find a logical
characterization of polynomial-time computability and less
so in understanding the expressive power of specific linear
algebra operations.

In this paper, we take the opposite approach in which
we define a basic matrix query language, referred to as
MATLANG, which is built up from basic linear algebra
operations, supported by linear algebra systems such as
R and MATLAB, and then closing these operations under
composition. All basic linear algebra operations supported
in MATLANG stem from “atomic” operations supported
in these popular linear algebra packages. While many
other operations are supported by these packages, we
feel that they are somewhat less atomic. We present
examples later on, showing that MATLANG is indeed
capable of expressing common matrix manipulations. In
fact, we propose MATLANG as an analog for matrices of
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the relational algebra for relations.
To study the expressive power of MATLANG, we relate it

to the relational algebra with aggregates [25, 30]. In fact, it
turns out that MATLANG is already subsumed by aggregate
logic with only three nonnumerical variables. Conversely,
MATLANG can express all queries from graph databases (bi-
nary relational structures) to binary relations that can be
expressed in first-order logic with three variables. In con-
trast, the four-variable query asking if the graph contains
a four-clique, is not expressible. We note that the connec-
tion with three-variable logics has recently been strength-
ened [15].

We thus see that, for example, when data analysts want
to check for four-cliques in a graph, more advanced lin-
ear algebra operations than those in MATLANG need to
be considered. Similarly, extracting information related to
the connectivity of graphs requires extending MATLANG.
We consider two such extensions in the paper: extend-
ing MATLANG with matrix inversion (inv) and extending
MATLANG with an operation (eigen) to compute eigenvec-
tors. Since no unique set of eigenvectors exists, the eigen
operation is intrinsically non-deterministic.

We show that MATLANG+ inv is strictly more expressive
than MATLANG. Indeed, the transitive closure of binary
relations becomes expressible. The possibility of reducing
transitive closure to matrix inversion has been pointed out
by several researchers [29, 11, 35].

We show that MATLANG + eigen can express inversion
by using a deterministic MATLANG+ eigen expression (i.e.,
despite it using eigen, it always deterministically returns
the inverse of a matrix, if it exists). The argument is well
known from linear algebra, but our result shows that start-
ing from the eigenvectors, MATLANG is expressive enough
to construct the inverse.

We subsequently show that the equivalence of
MATLANG + eigen expressions is decidable. Related
to this is the question whether the evaluation of expres-
sions in MATLANG + eigen is effectively computable. This
may seem like an odd question, since linear algebra compu-
tations are done in practice. These evaluation algorithms,
however, often use techniques from numerical mathematics
[17], resulting in approximations of the precise result —
here, we are interested in the exact result. In particular,
we show that the input-output relation of an expression e
in MATLANG + eigen, applied to input matrices of given
dimensions, is definable in the existential theory of the real
numbers (which is decidable [3, 4]), by a formula of size
polynomial in the size of e and the given dimensions.

We finally show that, conversely, there exists a fixed ex-
pression (data complexity) in MATLANG + eigen for which
the evaluation problem is ∃R-complete, where ∃R is the
class of problems that can be reduced in polynomial time
to the existential theory of the reals [36, 37], even when
restricted to input matrices with integer entries.

1.1 Related work
Programming languages to manipulate matrices trace

back to the APL language [22]. Providing database
support for matrices and multidimensional arrays has
been a long-standing research topic [33], originally geared
towards applications in scientific data management.

In [27], Lara is proposed as a domain-specific program-
ming language written in Scala that provides both linear
algebra (LA) and relational algebra (RA) constructs. This

approach is taken one step further in [21] where it is shown
that the RA operations and a number of LA operations can
be defined in terms of three core operations called Ext,
Union, and Join.

Another relevant related work is the FAQ framework [2],
which focuses on the project-join fragment of the algebra for
K-relations [18]. The connection between MATLANG and
the algebra for K-relations is more deeply investigated in
[8]. Yet another related formalism is that of logics with rank
operators [13, 12, 32]. These operators solve 0, 1-matrices
over finite fields, and increase the expressive power of estab-
lished logics over abstract structures. In contrast, in this
paper we are interested in queries on arbitrary matrices.

Modest changes to SQL in order to perform LA opera-
tions in a scalable way within relational databases are pro-
posed in [31]. In this way, various linear algebra operations
are implemented in an efficient way using the relational al-
gebra.

While the previous work is focused on showing that rela-
tional algebra (appropriately extended) can serve as a plat-
form for supporting large scale linear algebra operations,
the focus of our work here is complementary. Indeed, we
want to understand the precise expressive power of com-
mon linear algebra operations, as adequately formalized in
the language MATLANG and its extensions (see [7] for more
details).

2. MATLANG

2.1 Syntax and semantics
We assume a sufficient supply of matrix variables, which

serve to indicate the inputs to expressions in MATLANG.
The syntax of MATLANG expressions is defined by the
grammar:

e ::= M (matrix variable)

| let M = e1 in e2 (local binding)

| e∗ (conjugate transpose)

| 1(e) (one-vector)

| diag(e) (diagonalization of a vector)

| e1 · e2 (matrix multiplication)

| apply[f ](e1, . . . , en) (pointwise application, f ∈ Ω)

In the last rule, f is the name of a function f : Cn →
C, where C denotes the complex numbers. Formally, the
syntax of MATLANG is parameterized by a repertoire Ω of
such functions, but for simplicity we will not reflect this in
the notation. We will see various examples of MATLANG
expressions below.

To define the semantics of MATLANG, we first define the
basic matrix operations. Following practical matrix sub-
languages such as those of R or MATLAB, we will work
throughout with matrices over the complex numbers. How-
ever, a real-number version of the language could be defined
as well.

Transpose: If A is a matrix then A∗ is its conjugate trans-
pose. So, if A is an m×n matrix then A∗ is an n×m
matrix and the entry A∗i,j is the complex conjugate of
the entry Aj,i.

One-vector: If A is an m×n matrix then 1(A) is the m×1
column vector consisting of all ones.
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(
2
√

3 4
4 5 6

)
=

(
1
1

)
diag

(
6
7

)
=

(
6 0
0 7

)

apply[−̇](




1 1 1
0 1 1
0 0 0


 ,




0 0 1
0 1 0
1 0 1


) =




1 1 0
0 0 1
0 0 0




Figure 1: Some basic matrix operations of
MATLANG.

Diag: If v is an m × 1 column vector then diag(v) is the
m×m diagonal square matrix with v on the diagonal
and zero everywhere else.

Matrix multiplication: If A is an m × n matrix and B
is an n× p matrix then the well known matrix multi-
plication AB is defined to be the m× p matrix where
(AB)i,j =

∑n
k=1Ai,kBk,j . In MATLANG we explic-

itly denote this as A ·B.

Pointwise application: If A(1), . . . , A(n) are ma-
trices of the same dimensions m × p, then
apply[f ](A(1), . . . , A(n)) is the m × p matrix C

where Ci,j = f(A
(1)
i,j , . . . , A

(n)
i,j ).

example 2.1. The operations 1(A), diag(v), and

apply[f ](A(1), . . . , A(n)) are illustrated in Figure 1. In
the pointwise application example, we use the function −̇
defined by x −̇ y = x − y if x and y are both real numbers
and x ≥ y, and x −̇ y = 0 otherwise.

The formal semantics of MATLANG expressions is de-
fined in a straightforward manner. Expressions will be
evaluated over instances where an instance I is a func-
tion, defined on a nonempty finite set var(I) of matrix vari-
ables, that assigns a matrix to each element of var(I). The
rules that allow to derive that an expression e, on an in-
stance I, successfully evaluates to a matrix A, denoted by
e(I) = A, is defined recursively as follows. If M ∈ var(I),
then M(I) := I(M). If e1(I) = A and e2(I[M := A]) = B,
where I[M := A] is the instance obtained from I by map-
ping M to the matrix A, then (let M = e1 in e2)(I) := B.
We have e∗(I) := (e(I))∗, (1(e))(I) := 1(e(I)), and if e(I) is
a column vector, then (diag(e))(I) := diag(e(I)). Moreover,
if the number of columns of e1(I) is equal to the number of
rows of e2(I), then (e1 · e2)(I) := e1(I) · e2(I). Finally, if
ek(I) for k ∈ {1, . . . , n} all have the same dimensions, then
apply[f ](e1, . . . , en) := apply[f ](e1(I), . . . , en(I)).

The reason why an evaluation may not succeed (i.e., e(I)
may not be defined) is that diag, apply, and matrix multipli-
cation have conditions on the dimensions of matrices that
need to be satisfied for the operations to be well-defined.

example 2.2 (Scalars). As a first example we show
how to express scalars (elements in C). Obviously, in prac-
tice, scalars would be part of the language. In this pa-
per, however, we are interested in expressiveness, so we
start from a minimal language (MATLANG) and then see
what is expressible in this language. To express a scalar
c ∈ C, consider (by abuse of notation) the constant func-
tion c : C→ C : z 7→ c and the MATLANG expression

c := apply[c]
(
1(1(M)∗)

)
.

Regardless of the matrix assigned to M , the expression eval-
uates to the 1× 1 matrix whose unique entry is scalar c.

example 2.3 (Scalar multiplication). We can
also express scalar multiplication of a matrix by a scalar,
i.e., the operation which multiplies every entry of a matrix
by the same scalar. Indeed, let c be a scalar and consider
the MATLANG expression

let O = 1(M) · c(M) · (1(M∗))∗ in apply[×](O,M),

where c is the scalar expression from the previous example.
If M is assigned an m× n matrix A, then c(A) returns the
1 × 1 matrix [c] and in variable O we compute the m × n
matrix where every entry equals c. Then pointwise multipli-
cation × with returns x×y on input (x, y) is used to do the
scalar multiplication of A by c. This example generalizes in
a straightforward manner to

apply[×]
(
1(e2) · e1 · (1(e∗2))∗, e2

)
,

where e1 and e2 are MATLANG expressions such that e1(I)
is a 1 × 1-matrix for any instance I. It should be clear
that this expression evaluates to the scalar multiplication of
e2(I) by e1(I) for any I. We use e1 � e2 as a shorthand
notation for this expression. For example, c� e2 represents
the scalar multiplication of e2 by the scalar c.

example 2.4 (Google matrix). Let A be the adja-
cency matrix of a directed graph (modeling the Web graph)
on n nodes numbered 1, . . . , n. Let 0 < d < 1 be a fixed
“damping factor”. Let ki denote the outdegree of node i.
For simplicity, we assume ki is nonzero for every i. Then
the Google matrix [9, 6] of A is the n× n matrix G defined
by Gi,j = dAij/ki + (1 − d)/n. The calculation of G from
A can be expressed in MATLANG as follows:

let J = 1(A) · 1(A)∗ in

let B = apply[/](A,A · J) in

let N = 1(A)∗ · 1(A) in

apply[+](d�B, (1− d)�
(
apply[1/x](N)

)
� J)

In variable J we compute the n × n matrix where every
entry equals one. In A·J we compute the n×n matrix where
all entries in the ith row equal ki. An n×n matrix holding
the entries Aij/ki is computed in B. In N we compute the
1×1 matrix containing the value n. The pointwise functions
applied are addition, division, and reciprocal. We use the
shorthand for constants (d and 1 − d) from Example 2.2,
and � from Example 2.3.

2.2 Types and schemas
We now introduce a notion of schema, which assigns types

to matrix names, so that expressions can be type-checked
against schemas. We already remarked the need for this.
Indeed, due to conditions on the dimensions of matrices,
MATLANG expressions are not well-defined on all instances.
For example, if I is an instance where I(M) is a 3×4 matrix
and I(N) is a 2 × 4 matrix, then the expression M · N is
not defined on I. The expression M ·N∗, however, is well-
defined on I.

Our types need to be able to guarantee equalities between
numbers of rows or numbers of columns, so that apply and
matrix multiplication can be type-checked. Our types also
need to be able to recognize vectors, so that diag can be
type-checked.

Formally, we assume a sufficient supply of size symbols,
which we will denote by the letters α, β, γ. A size sym-
bol represents the number of rows or columns of a matrix.
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Together with an explicit 1, we can indicate arbitrary ma-
trices as α×β, square matrices as α×α, column vectors as
α×1, row vectors as 1×α, and scalars as 1×1. Formally, a
size term is either a size symbol or an explicit 1. A type is
then an expression of the form s1 × s2 where s1 and s2 are
size terms. Finally, a schema S is a function, defined on a
nonempty finite set var(S) of matrix variables, that assigns
a type to each element of var(S).

The rules that allow to derive that an expression e over a
schema S successfully infers an output type τ , denoted by
S ` e : τ , are defined recursively as follows. If M ∈ var(S),
then S `M : S(M). If S ` e1 : τ1 and S[M := τ1] ` e2 : τ2,
where S[M := τ ] denotes the schema that is obtained from
S by mapping M to the type τ , then S ` let M = e1 in e2 :
τ2. If S ` e : s1×s2, then S ` e∗ : s2×s1 and S ` 1(e) : s1×
1. If S ` e : s×1, then S ` diag(e) : s×s. If S ` e1 : s1×s2
and S ` e2 : s2 × s3, then S ` e1 · e2 : s1 × s3. Finally,
S ` ek : τ for k ∈ 1, . . . , n with n > 0 and f : Cn → C,
then S ` apply[f ](e1, . . . , en) : τ .

When we cannot infer a type, we say e is not well-typed
over S. For example, when S(M) = α×β and S(N) = γ×β,
then the expression M · N is not well-typed over S. The
expression M ·N∗, however, is well-typed with output type
α× γ.

To establish the soundness of the type system, we need
a notion of conformance of an instance to a schema.

Formally, a size assignment σ is a function from size sym-
bols to positive natural numbers. We extend σ to any size
term by setting σ(1) = 1. Now, let S be a schema and I
an instance with var(I) = var(S). We say that I is an in-
stance of S if there is a size assignment σ such that for all
M ∈ var(S), if S(M) = s1×s2, then I(M) is a σ(s1)×σ(s2)
matrix. In that case we also say that I conforms to S by
the size assignment σ.

Proposition 2.5 (Safety). If S ` e : s1 × s2, then
for every instance I conforming to S, by size assignment σ,
the matrix e(I) is well-defined and has dimensions σ(s1)×
σ(s2).

3. EXPRESSIVE POWER OF MATLANG

3.1 Relational representation of matrices
It is natural to represent an m×n matrix A by a ternary

relation

Rel2(A) := {(i, j, Ai,j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}.
In the special case where A is an m × 1 matrix (column
vector), A can also be represented by a binary relation
Rel1(A) := {(i, Ai,1) | i ∈ {1, . . . ,m}}. Similarly, a
1 × n matrix (row vector) A can be represented by
Rel1(A) := {(j, A1,j) | j ∈ {1, . . . , n}}. Finally, a 1 × 1
matrix (scalar) A can be represented by the unary singleton
relation Rel0(A) := {(A1,1)}.

Note that in MATLANG, we perform calculations on ma-
trix entries, but not on row or column indices. This fits
well to the relational model with aggregates as formalized
by Libkin [30]. In this model, the columns of relations are
typed as“base”, indicated by b, or“numerical”, indicated by
n. In the relational representations of matrices presented
above, the last column is of type n and the other columns
(if any) are of type b. In particular, in our setting, numer-
ical columns hold complex numbers. We now rephrase our
relational encoding more formally in this setting.

That is, we assume a supply of relation variables, which,
for convenience, we can take to be the same as the matrix
variables. A relation type is a tuple of b’s and n’s. A
relational schema S is a function, defined on a nonempty
finite set var(S) of relation variables, that assigns a relation
type to each element of var(S).

To define relational instances, we assume a countably in-
finite universe dom of abstract atomic data elements. For
notational convenience, we assume that the natural num-
bers are contained in dom.

Let τ be a relation type. A tuple of type τ is a tuple
(t(1), . . . , t(n)) of the same arity as τ , such that t(i) ∈ dom
when τ(i) = b, and t(i) is a complex number when τ(i) = n.
A relation of type τ is a finite set of tuples of type τ . An
instance of a relational schema S is a function I defined
on var(S) so that I(R) is a relation of type S(R) for every
R ∈ var(S).

The matrix data model can now be formally connected
to the relational data model, as follows. Let τ = s1× s2 be
a matrix type. Let us call τ a general type if s1 and s2 are
both size symbols; a vector type if s1 is a size symbol and
s2 is 1, or vice versa; and the scalar type if τ is 1 × 1. To
every matrix type τ we associate a relation type

Rel(τ) :=





(b,b,n) if τ is a general type;

(b,n) if τ is a vector type;

(n) if τ is the scalar type.

Then to every matrix schema S we associate the relational
schema Rel(S) where Rel(S)(M) = Rel(S(M)) for every
M ∈ var(S). For each instance I of S, we define the in-
stance Rel(I) over Rel(S) by

Rel(I)(M) :=





Rel2(I(M)) if S(M) is a general type;

Rel1(I(M)) if S(M) is a vector type;

Rel0(I(M)) if S(M) is the scalar type.

3.2 To relational algebra with summation
Given the representation of matrices by relations, we now

show that MATLANG can be simulated in the relational al-
gebra with aggregates. Actually, the only aggregate oper-
ation we need is summation. The relational algebra with
summation extends the well-known relational algebra for
relational databases and is defined as follows. For a full
formal definition, see [30]. For our purposes it suffices to
highlight the following about the relational algebra with
summation. Expressions are built up from relation names
using the classical operations union, set difference, Carte-
sian product (×), selection (σ), and projection (π), plus
two new operations: function application and summation.
For selection, we only use equality and nonequality compar-
isons on base columns. No selection on numerical columns
will be needed in our setting. Function application and
summation are defined as follows.

• For any function f : Cn → C, the operation apply[f ;
i1, . . . , in] can be applied to any relation r having
{i1, . . . , in} as a subset of its set of numerical columns.
The result is the relation {(t, f(t(i1), . . . , t(in))) | t ∈
r}, appending a numerical column to r. We allow
n = 0, i.e., constants f .

• The operation sum[i; i1, . . . , in] can be applied to any
relation r having columns i, i1, . . . , in, where column
i must be numerical. In our setting we only need the
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operation in cases where columns i1, . . . , in are base
columns. The result of the operation is the relation

{(
t(i1), . . . , t(in),

∑

t′∈group[i1,...,in](r,t)

t′(i)
) ∣∣∣ t ∈ r

}
,

where group[i1, . . . , in](r, t) is equal to
{
t′ ∈ r

∣∣ t′(i1) = t(i1) ∧ · · · ∧ t′(in) = t(in)
}
.

Again, n can be zero, in which case the result is a
singleton.

Given that relations are typed, one can define well-
typedness for expressions in the relation algebra with
summation, and define the output type. We omit this
definition here, as it follows a well-known methodology
[40] and is analogous to what we have already done for
MATLANG in Section 2.2.

Theorem 3.1. Let S be a matrix schema, and let e be a
MATLANG expression that is well-typed over S with output
type τ . Let ` = 2, 1, or 0, depending on whether τ is
general, a vector type, or scalar, respectively.

1. There exists an expression Rel(e) in the relational al-
gebra with summation that is well-typed over Rel(S)
with output type Rel(τ) such that for every instance I
of S, we have Rel`(e(I)) = Rel(e)(Rel(I)).

2. The expression Rel(e) uses neither set difference, nor
selection conditions on numerical columns.

3. The only functions used in Rel(e) are those used in
pointwise applications in e; complex conjugation; mul-
tiplication of two numbers; and the constant functions
0 and 1.

3.3 To relational calculus with summation
We can sharpen Theorem 3.1 by working in the relational

calculus with aggregates. In this logic, we have base vari-
ables and numerical variables. Base variables can be bound
to base columns of relations, and compared for equality.
Numerical variables can be bound to numerical columns,
and can be equated to function applications and aggregates.
We will not recall the syntax formally, see [30] for a full def-
inition. It turns out that when simulating MATLANG ex-
pression in the relational calculus with aggregates we only
need formulas with at most three base variables.

Proposition 3.2. Let S, e, τ , and ` as in Theorem 3.1.
For every MATLANG expression e there is a formula ϕe

over Rel(S) in the relational calculus with summation, such
that

1. If τ is general, ϕe(i, j, z) has two free base variables
i and j and one free numerical variable z; if τ is a
vector type, we have ϕe(i, z); and if τ is scalar, we
have ϕe(z).

2. For every instance I, the relation defined by ϕe on
Rel(I) equals Rel`(e(I)).

3. The formula ϕe uses only three distinct base variables.
The functions used in pointwise applications in ϕe are
as in the statement of Theorem 3.1. Furthermore,
ϕe neither uses equality conditions between numeri-
cal variables nor equality conditions on base variables
involving constants.

3.4 Expressing graph queries
We now express relational queries as matrix queries. This

works best for binary relations, or graphs, which we can
represent by their adjacency matrices.

Formally, we define a graph schema to be a relational
schema where every relation variable is assigned the type
(b,b) of arity two. We define a graph instance as an in-
stance I of a graph schema, where the active domain of I
(i.e., the domain elements that occur in some tuple of some
relation of I) equals {1, . . . , n} for some positive natural
number n.

To every graph schema S we associate a matrix schema
Mat(S), where (Mat(S))(R) = α×α for every R ∈ var(S),
for a fixed size symbol α. So, all matrices are square ma-
trices of the same dimension. Let I be a graph instance of
S, with active domain {1, . . . , n}. We will denote the n×n
adjacency matrix of a binary relation r over {1, . . . , n} by
Adj I(r). Now any such instance I is represented by the
matrix instance Mat(I) over Mat(S), where Mat(I)(R) =
Adj I(I(R)) for every R ∈ var(S).

A graph query over a graph schema S is a function that
maps each graph instance I of S to a binary relation on the
active domain of I. We say that a MATLANG expression e
expresses the graph query q if e is well-typed over Mat(S)
with output type α × α, and for every graph instance I of
S, we have Adj I(q(I)) = e(Mat(I)).

We can now give a partial converse to Theorem 3.1.
We assume active-domain semantics for first-order logic
[1]. Note that the following result deals only with pure
first-order logic, without aggregates or numerical columns.

Theorem 3.3. Every graph query expressible in FO3

(first-order logic with equality, using at most three distinct
variables) is expressible in MATLANG. The only functions
needed in pointwise applications are boolean functions on
{0, 1}, and testing if a number is positive.

We can complement the above theorem by showing that
the quintessential first-order query requiring four variables
is not expressible.

Proposition 3.4. The graph query over a single binary
relation R that maps I to I(R) if I(R) contains a four-
clique, and to the empty relation otherwise, is not express-
ible in MATLANG.

We conclude by showing that MATLANG cannot express
the transitive-closure graph query which maps a graph to
its transitive closure. This follows from the locality of the
calculus with aggregates [30].

Proposition 3.5. The graph query over a single binary
relation R that maps I to the transitive-closure of I(R) is
not expressible in MATLANG.

4. MATRIX INVERSION
We now consider the extension of MATLANG with matrix

inversion. Let S be a schema and e be an expression that is
well-typed over S, with output type of the form α×α. Then
the expression e−1 is also well-typed over S, with the same
output type α×α. The semantics is defined as follows. For
an instance I, if e(I) is an invertible matrix, then e−1(I) is
defined to be the inverse of e(I); otherwise, it is defined to
be the zero square matrix of the same dimensions as e(I).
The extension of MATLANG with inversion is denoted by
MATLANG + inv.
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example 4.1 (PageRank). Recall Example 2.4 where
we computed the Google matrix of A. In the process we
already showed how to compute the n× n matrix B defined
by Bi,j = Ai,j/ki, and the scalar n. We use eB and en to
denote the corresponding MATLANG expressions. Let I be
the n×n identity matrix, and let 1 denote the n×1 column
vector consisting of all ones. The PageRank vector v of A
can be computed as follows [14]:

v =
1− d
n

(I − dB)−11.

This calculation is readily expressed in MATLANG + inv as

(1− d)� (apply[1/x](en))�
(
apply[−](diag(1(M)), d� eB)

)−1 · 1(M).

example 4.2 (Transitive closure). The reflexive-
transitive closure of a binary relation is expressible in
MATLANG + inv. Let A be the adjacency matrix of a
binary relation r on {1, . . . , n}. Let I be the n× n identity
matrix, expressible as diag(1(A)). Let en be the expression
computing the scalar n. The sum of the absolute values
of the entries of each column of B = 1

n+1
A is strictly

less than 1, so S =
∑∞

k=0B
k converges, and is equal

to (I − B)−1 [17, Lemma 2.3.3]. Now (i, j) belongs to
the reflexive-transitive closure of r if and only if Si,j is
nonzero. Thus, we can compute the reflexive-transitive
closure of r by evaluating

letM = apply[−]
(
diag(1(M)), apply[1/(x+1)](en)�M

)
in

apply[ 6= 0](M−1)

by assigning matrix variable M to A. Here, 6= 0 is the
function which returns 1 if the value is nonzero and 0 oth-
erwise. We can express the transitive closure by multiplying
the above expression by M .

Given our earlier observation that the transitive-closure
query cannot be expressed in MATLANG (Proposition 3.5)
and the MATLANG + inv expression given in the previous
example which does express this query, we may conclude:

Theorem 4.3. MATLANG+ inv is strictly more powerful
than MATLANG in expressing graph queries.

Once we have the transitive closure, we can do many
other things such as checking bipartiteness of undirected
graphs, checking connectivity, and checking cyclicity. Using
Theorem 3.3 one can show that MATLANG is able to reduce
these queries to the transitive-closure query.

5. EIGENVECTORS
We next consider the extension of MATLANG with an

operation eigen. Formally, we define the operation eigen
as follows. Let A be an n × n matrix. Recall that A is
called diagonalizable if there exists a basis of Cn consisting
of eigenvectors of A. In that case, there also exists such a
basis where eigenvectors corresponding to the same eigen-
value are orthogonal. Accordingly, we define eigen(A) to
return an n× n matrix, the columns of which form a basis
of Cn consisting of eigenvectors of A, where eigenvectors
corresponding to a same eigenvalue are orthogonal. If A is
not diagonalizable, we define eigen(A) to be the n× n zero
matrix.

Note that eigen is nondeterministic; in principle there are
infinitely many possible results. This models the situation
in practice where numerical packages such as R or MAT-
LAB return approximations to the eigenvalues and a set of
corresponding eigenvectors. Eigenvectors, however, are not
unique. In fact, there are infinitely many eigenvectors.

Hence, some care must be taken in extending MATLANG
with the eigen operation. Syntactically, as for inversion,
whenever e is a well-typed expression with a square out-
put type, we now also allow the expression eigen(e), with
the same output type. Semantically, however, the semantic
rules of MATLANG must be adapted so that they do not
infer statements of the form e(I) = B, but rather of the
form B ∈ e(I), i.e., B is a possible result of e(I). The
let-construct now becomes crucial; it allows us to assign a
possible result of eigen to a new variable, and work with
that intermediate result consistently.

example 5.1 (Rank of a matrix). First, we
remark that one can show that the diagonal matrix con-
taining the eigenvalues Λ corresponding to the matrix
B of eigenvectors computed by eigen(A) is expressible in
MATLANG + eigen. Hence we allow a shorthand notation
where eigen(A) obtains the tuple (B,Λ) instead of just B.
We then agree that Λ, like B, is a zero matrix if A is not
diagonalizable.

Since the rank of a diagonalizable matrix equals the num-
ber of nonzero entries in its diagonal form, we can express
the rank of a diagonalizable matrix A as follows:

let (B,Λ) = eigen(A) in 1(A)∗ · apply[ 6= 0](Λ) · 1(A).

Using a known argument from linear algebra we obtain
that MATLANG + inv is subsumed by MATLANG + eigen.

Theorem 5.2. Matrix inversion is expressible in
MATLANG + eigen.

An interesting open problem is the following: Are there
graph queries expressible deterministically in MATLANG +
eigen, but not in MATLANG + inv?

6. THE EVALUATION PROBLEM
We next consider the evaluation problem of expressions

in our most expressive language MATLANG+eigen. Naively,
the evaluation problem asks, given an input instance I and
an expression e, to compute the result e(I). There are some
issues with this naive formulation, however. Indeed, in our
theory we have been working with arbitrary complex num-
bers. How do we even represent the input? Notably, the
eigen operation on a matrix with only rational entries may
produce irrational entries. In fact, the eigenvalues of an
adjacency matrix (even of a tree) need not even be defin-
able in radicals [16]. Practical systems, of course, apply
techniques from numerical mathematics to compute ratio-
nal approximations. But it is still theoretically interesting
to consider the exact evaluation problem. For a treatise on
computations of eigenvectors, inverses, and other matrix
notions, we refer to [17].

Our approach is to represent the output symbolically,
following the idea of constraint query languages [23, 28].
Specifically, we can define the input-output relation of an
expression, for given dimensions of the input matrices, by
an existential first-order logic formula over the reals. Such
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formulas are built from real variables, integer constants, ad-
dition, multiplication, equality, inequality (<), disjunction,
conjunction, and existential quantification.

Any m × n matrix A can be represented by a tuple
of 2mn real numbers. Indeed, let ai,j = <Ai,j (the real
part of a complex number), and let bi,j = =Ai,j (the
imaginary part). Then A can be represented by the
tuple (a1,1, b1,1, a1,2, b1,2, . . . , am,n, bm,n). The next result
introduces the variables xM,i,j,<, xM,i,j,=, yi,j,<, and yi,j,=,
where the x-variables describe an arbitrary input matrix
I(M) and the y-variables describe an arbitrary possible
output matrix e(I).

In the following, an input-sized expression consists of a
schema S, an expression e in MATLANG + eigen that is
well-typed over S with output type t1 × t2, and a size as-
signment σ defined on the size symbols occurring in S. For
complexity considerations, we assume the sizes given in σ
are coded in unary.

Theorem 6.1. There exists a polynomial-time com-
putable translation that maps any input-sized expression e
to an existential first-order formula ψe over the vocabulary
of the reals, expanded with symbols for the functions used
in pointwise applications in e, such that

1. Formula ψe has the following free variables:

• For every M ∈ var(S), let S(M) = s1×s2. Then
ψe has the free variables xM,i,j,< and xM,i,j,=,
for i = 1, . . . , σ(s1) and j = 1, . . . , σ(s2).

• In addition, ψe has the free variables ye,i,j,< and
ye,i,j,=, for i = 1, . . . , σ(t1) and j = 1, . . . , σ(t2).

The set of these free variables is denoted by
FV(S, e, σ).

2. Any assignment ρ of real numbers to these variables
specifies, through the x-variables, an instance I con-
forming to S by σ, and through the y-variables, a
σ(t1)× σ(t2) matrix B.

3. Formula ψe is true over the reals under such an as-
signment ρ, if and only if B ∈ e(I).

The existential theory of the reals is decidable; actually,
the full first-order theory of the reals is decidable [3, 4].
But, specifically the class of problems that can be reduced
in polynomial time to the existential theory of the reals
forms a complexity class on its own, known as ∃R [36, 37].
This class lies between NP and PSPACE. The above the-
orem implies that the intensional evaluation problem for
MATLANG+eigen belongs to this complexity class. We de-
fine this problem as follows. The idea is that an arbitrary
specification, expressed as an existential formula χ over the
reals, can be imposed on the input-output relation of an
input-sized expression.

Definition 6.2. The intensional evaluation problem is
a decision problem that takes as input: (1) an input-sized
expression (S, e, σ), where all functions used in pointwise
applications are explicitly defined using existential formulas
over the reals, and (2) an existential formula χ with free
variables in FV(S, e, σ).

The problem asks if there exists an instance I conforming
to S by σ and a matrix B ∈ e(I) such that (I,B) satisfies
χ.

An input (S, e, σ, χ) is a yes-instance to the intensional
evaluation problem precisely when the existential sentence

∃FV(S, e, σ)(ψe ∧ χ) is true in the reals, where ψe is the
formula obtained by Theorem 6.1. Hence we can conclude:

Corollary 6.3. The intensional evaluation problem for
MATLANG + eigen belongs to ∃R.

Since the full first-order theory of the reals is decidable,
our theorem implies many other decidability results, includ-
ing that both the equivalence problem and the determinacy
problem for input-sized expressions are decidable.

Corollary 6.3 gives an ∃R upper bound on the combined
complexity of query evaluation [41]. Our final result is a
matching lower bound, already for data complexity alone.

Theorem 6.4. There exists a fixed schema S and a fixed
expression e in MATLANG + eigen, well-typed over S, such
that the following problem is hard for ∃R: Given an inte-
ger instance I over S, decide whether the zero matrix is a
possible result of e(I). The pointwise applications in e use
only simple functions definable by quantifier-free formulas
over the reals.

7. CONCLUSION
There is a commendable trend in contemporary database

research to leverage and considerably extend techniques
from database query processing and optimization to sup-
port large-scale linear algebra computations. In principle,
data scientists could then work directly in SQL or related
languages. Still, some users will prefer to continue using the
matrix languages they are more familiar with. Supporting
these languages is also important so that existing code need
not be rewritten.

From the perspective of database theory, it then becomes
relevant to understand the expressive power of these lan-
guages as well as possible. In this paper we have proposed a
framework for viewing matrix manipulation from the point
of view of expressive power of database query languages.
Our results formally confirm that the basic set of matrix
operations offered by systems in practice, formalized here
in the language MATLANG+ inv + eigen, really is adequate
for expressing a range of linear algebra techniques and pro-
cedures.

Deep inexpressibility results have been developed for log-
ics with rank operators [32]. Although these results are
mainly concerned with finite fields, they might still provide
valuable insight in our open questions. Also, we have not
covered all standard constructs from linear algebra. For
instance, it may be worthwhile to extend our framework
with the operation of putting matrices in upper triangu-
lar form, with the Gram-Schmidt procedure (which is now
partly hidden in the eigen operation), and with the singular
value decomposition.

There also have been proposals to go beyond matrices,
introducing data models and algebra for tensors or multi-
dimensional arrays [33, 24, 34]. It would be interesting to
understand the expressive power of such tensor languages.

Acknowledgments.
We thank Bart Kuijpers, Lauri Hella, Wied Pakusa,

Christoph Berkholz, and Anuj Dawar for helpful discus-
sions, and Wim Martens for useful comments on the text.
R.B. is a postdoctoral fellow of the Research Foundation –
Flanders (FWO).

66 SIGMOD Record, March 2019 (Vol. 48, No. 1)



8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] M. Abo Khamis, H. Ngo, and A. Rudra. FAQ:
questions asked frequently. In Proc. PODS 2016.
ACM Press, 2016.

[3] D. Arnon. Geometric reasoning with logic and
algebra. Artif. Intell., 37:37–60, 1988.

[4] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in
Real Algebraic Geometry. Springer, second edition,
2008.

[5] M. Boehm et al. SystemML: declarative machine
learning on Spark. Proc. VLDB Endow,
9(13):1425–1436, 2016.

[6] A. Bonato. A Course on the Web Graph, volume 89
of Graduate Studies in Mathematics. American
Mathematical Society, 2008.

[7] R. Brijder, F. Geerts, J. Van den Bussche, and
T. Weerwag. On the expressive power of query
languages for matrices. ACM TODS, 2019. To appear.

[8] R. Brijder, M. Gyssens, and J. Van den Bussche. On
matrices and K-relations. arXiv:1904.03934, 2019.

[9] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Comput. Networks
ISDN, 30:107–117, 1998.

[10] L. Chen, A. Kumar, J. Naughton, and J. Patel.
Towards linear algebra over normalized data. Proc.
VLDB Endow, 10(11):1214–1225, 2017.

[11] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick,
and T. Zeume. Reachability is in DynFO. J. ACM,
65(5):33:1–33:24, 2018.

[12] A. Dawar. On the descriptive complexity of linear
algebra. In W. Hodges and R. de Queiroz, editors,
Proc. WoLLIC 2008, volume 5110 of LNCS, pages
17–25. Springer, 2008.

[13] A. Dawar, M. Grohe, B. Holm, and B. Laubner.
Logics with rank operators. In Proc. LICS 2009,
pages 113–122, 2009.

[14] G. Del Corso, A. Gulli, and F. Romani. Fast
PageRank computation via a sparse linear system.
Internet Math., 2(3):251–273, 2005.

[15] F. Geerts. On the expressive power of linear algebra
on graphs. In Proc. ICDT 2019, volume 127 of
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2019.

[16] C. Godsil. Some graphs with characteristic
polynomials which are not solvable by radicals. J.
Graph Theory, 6:211–214, 1982.

[17] G. Golub and C. Van Loan. Matrix Computations.
The Johns Hopkins University Press, fourth edition,
2013.

[18] T. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Proc. PODS 2007, pages
31–40. ACM Press, 2007.

[19] J. Hellerstein et al. The MADlib analytics library: Or
MAD skills, the SQL. Proc. VLDB Endow,
5(12):1700–1711, 2012.

[20] B. Holm. Descriptive Complexity of Linear Algebra.
PhD thesis, University of Cambridge, 2010.

[21] D. Hutchison, B. Howe, and D. Suciu. LaraDB: a
minimalist kernel for linear and relational algebra
computation. In Proc. BeyondMR 2007, pages

2:1–2:10, 2007.

[22] K. Iverson. A Programming Language. John Wiley &
Sons, Inc., 1962.

[23] P. Kanellakis, G. Kuper, and P. Revesz. Constraint
query languages. J. Comput. Syst. Sci., 51(1):26–52,
Aug. 1995.

[24] M. Kim. TensorDB and Tensor-Relational Model for
Efficient Tensor-Relational Operations. PhD thesis,
Arizona State University, 2014.

[25] A. Klug. Equivalence of relational algebra and
relational calculus query languages having aggregate
functions. J. ACM, 29(3):699–717, 1982.

[26] P. Kolaitis. On the expressive power of logics on finite
models. In Finite Model Theory and Its Applications,
chapter 2. Springer, 2007.

[27] A. Kunft, A. Alexandrov, A. Katsifodimos, and
V. Markl. Bridging the gap: Towards optimization
across linear and relational algebra. In Proc.
BeyondMR 2016, pages 1:1–1:4, 2016.

[28] G. Kuper, L. Libkin, and J. Paredaens, editors.
Constraint Databases. Springer, 2000.

[29] B. Laubner. The Structure of Graphs and New Logics
for the Characterization of Polynomial Time. PhD
thesis, Humboldt-Universität zu Berlin, 2010.

[30] L. Libkin. Expressive power of SQL. Theor. Comput.
Sci., 296:379–404, 2003.

[31] S. Luo, Z. Gao, M. Gubanov, L. L. Perez, and
C. Jermaine. Scalable linear algebra on a relational
database system. In Proc. ICDE 2017, pages 523–534.
IEEE Computer Society, 2017.

[32] W. Pakusa. Linear Equation Systems and the Search
for a Logical Characterisation of Polynomial Time.
PhD thesis, RWTH Aachen, 2015.

[33] F. Rusu and Y. Cheng. A survey on array storage,
query languages, and systems. arXiv:1302.0103, 2013.

[34] T. Sato. Embedding Tarskian semantics in vector
spaces. arXiv:1703.03193, 2017.

[35] T. Sato. A linear algebra approach to datalog
evaluation. Theory Pract. Log. Prog., 17(3):244–265,
2017.

[36] M. Schaefer. Complexity of some geometric and
topological problems. In D. Eppstein and E. Gansner,
editors, Graph Drawing, volume 5849 of LNCS, pages
334–344. Springer, 2009.
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Randoms sampling from data streams is a prob-
lem with a long history of studies, starting from
the famous reservoir sampling algorithm that is at
least 50 years old [2]. The reservoir sampling al-
gorithm maintains a random sample over all data
items that have ever been received from the stream.
This is not suitable for many of today’s applications
on evolving data streams, where recent data is more
important than older ones.

There are two popular approaches to dealing with
evolving data streams in the literature.

Sliding windows: In the sliding window model,
only data that have arrived in the window [now −
w, now] are relevant, where now is the current time
instance, and w is the length (in terms of time) of
the window. In the context of random sampling,
this means that the sample should be only drawn
from data items in the window, each with equal
probability. Random sampling in the sliding win-
dow model have been well studied, and optimal al-
gorithms are available [1].

Time decay: In the time decay model, the “im-
portance” assigned to each data item decreases as
its age. The importance function, in general, can
be an arbitrary non-increasing function of age, but
the mostly commonly used one is exponential decay,
where the importance is of an item x is e−λ(now−tx),
where tx is the timestamp of x, and λ is a parameter
that controls the rate of the decay. In the context of
random sampling, this means that the probability
of each item being sampled should be proportional
to its importance.

The following figure illustrates the difference be-
tween the sliding window model and the time decay
model. While the sliding window model applies a
sharp threshold (the length of the sliding window)
on the age of the items, the time decay model is
much “smoother”. It gives everyone a chance to be
sampled, although older items have exponentially
smaller probabilities to get into the sample.

sampling probability

age

sliding window

time decay

Figure 1: Sampling probability vs. age in the
two models.

The following paper by Hentschel, Haas, and Tian
takes the time decay approach to random sampling.
Building upon prior work, they designed two elegant
algorithms with strong theoretical guarantees. The
first one, called T-TBS, is very simple to implement
and highly scalable, but assumes the arriving batch
sizes are i.i.d. with a common mean. The sam-
ple size may not be guaranteed when this assump-
tion fails. The second algorithm, called R-TBS, is
more complicated, but offers stronger guarantees.
It provides a guaranteed upper bound on the sam-
ple size, and allows unknown, varying arrival rates.
The authors have also applied their time-decayed
samples to training machine learning models over
evolving data. The results demonstrate promising
results showing that these samples can help to re-
fresh the models to capture evolving patterns in the
stream more accurately. The paper should be useful
for anyone who is interested in random sampling or
data analytics over evolving data in general.
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ABSTRACT
To maintain the accuracy of supervised learning models in
the presence of evolving data streams, we provide temporally-
biased sampling schemes that weight recent data most heav-
ily, with inclusion probabilities for a given data item decay-
ing exponentially over time. We then periodically retrain
the models on the current sample. We provide and analyze
both a simple sampling scheme (T-TBS) that probabilisti-
cally maintains a target sample size and a novel reservoir-
based scheme (R-TBS) that is the first to provide both con-
trol over the decay rate and a guaranteed upper bound on
the sample size. The R-TBS and T-TBS schemes are of
independent interest, extending the known set of unequal-
probability sampling schemes. We discuss distributed imple-
mentation strategies; experiments in Spark show that our
approach can increase machine learning accuracy and ro-
bustness in the face of evolving data.

1. INTRODUCTION
A key challenge for machine learning (ML) is to keep ML

models from becoming stale in the presence of evolving data.
In the context of the emerging Internet of Things (IoT),
for example, the data comprise dynamically changing sensor
streams, and a failure to adapt to changing data can lead to
a loss of predictive power.

One way to deal with this problem is to re-engineer exist-
ing static supervised learning algorithms to become adap-
tive. Some parametric methods such as regression models
can indeed be re-engineered so that the parameters are time-
varying, but for many popular non-parametric algorithms
such as k-nearest neighbors (kNN) classifiers, decision trees,
random forests, gradient boosted machines, and so on, it
is not at all clear how re-engineering can be accomplished.
The 2017 Kaggle Data Science Survey [1] indicates that a
substantial portion of the models that developers use in in-
dustry are non-parametric. We therefore consider alternative
approaches in which we periodically retrain ML models, al-
lowing static ML algorithms to be used in dynamic settings
essentially as-is. There are several possible retraining ap-
proaches.

Retraining on cumulative data: Periodically retrain-
ing a model on all of the data that has arrived so far is clearly

c©2018 Copyright held by the owner/author(s). This is a minor revision
of the paper entitled Temporally-Biased Sampling for Online Model Man-
agement, published in Proceedings of the 21st International Conference on
Extending Database Technology (EDBT), March 26-29, 2018, ISBN 978-
3-89318-078-3 on OpenProceedings.org.
.

infeasible because of the huge volume of data involved. More-
over, recent data is swamped by the massive amount of past
data, so the retrained model is not sufficiently adaptive.
Sliding windows: A simple sliding-window approach pe-

riodically retrains on the data from, e.g., the last two hours.
If the data arrival rate is high and there is no bound on mem-
ory, then one must deal with long retraining times caused by
large amounts of data in the window. The simplest way to
bound the window size is to retain the last n items. Alterna-
tively, one could try to subsample within the time-based win-
dow [10]. The fundamental problem with all of these bound-
ing approaches is that old data is completely forgotten; the
problem is especially severe when the data arrival rate is
high. This can undermine the robustness of an ML model in
situations where old patterns can reassert themselves. For
example, a singular event such as a holiday, stock market
drop, or terrorist attack can temporarily disrupt normal data
patterns, which will reestablish themselves once the effect of
the event dies down. Periodic data patterns can lead to the
same phenomenon. Another example, from [15], concerns
influencers on Twitter: a prolific tweeter might temporarily
stop tweeting due to travel, illness, or some other reason,
and hence be completely forgotten in a sliding-window ap-
proach. Indeed, in real-world Twitter data, almost a quarter
of top influencers were of this type, and were missed by a
sliding window approach.
Temporally biased sampling: An appealing alternative

is a temporally biased sampling-based approach, i.e., main-
taining a sample that heavily emphasizes recent data but
also contains a small amount of older data, and periodically
retraining a model on the sample. By using a time-biased
sample, the retraining costs can be held to an acceptable
level while not sacrificing robustness in the presence of re-
current patterns. This approach was proposed in [15] in the
setting of graph analysis algorithms, and has recently been
adopted in the MacroBase system [5]. The orthogonal prob-
lem of choosing when to retrain a model is also an important
question, and is related to, e.g., the literature on “concept
drift” [9]; in this paper we focus on the problem of how to
efficiently maintain a time-biased sample.

In more detail, our time-biased sampling algorithms en-
sure that the “appearance probability” for a given data item,
i.e., the probability that the item appears in the current
sample, decays over time at a controlled exponential rate.
We assume that items arrive in batches B1,B2, . . ., at time
points t1, t2, · · · , where each batch contains 0 or more items.
Our goal is to generate a sequence {Sk}k≥1, where Sk is a
sample of the items that have arrived at or prior to time tk.
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These samples should be biased towards recent items, in the
following sense. For 1 ≤ i ≤ k, denote by αi,k = tk − ti the
age at time tk of an item belonging to batch Bi. Then for
arbitrary times ti ≤ tj ≤ tk and items x ∈ Bi and y ∈ Bj ,

Pr[x ∈ Sk]/Pr[y ∈ Sk] = f(αi,k)/f(αj,k) = e−λ(tj−ti), (1)

where f(α) = e−λα is the exponential decay function. (We
briefly discuss other decay functions in Section 7.) Thus
items with a given timestamp are sampled uniformly, and
items with different timestamps are handled in a carefully
controlled manner, such that the appearance probability for
an item of age α is proportional to f(α). The criterion in (1),
which is expressed in terms of wall-clock time, is natural and
appealing in applications and, importantly, is interpretable
and understandable to users. As discussed in [7, 15], the
decay function can be chosen to meet application-specific
criteria. If training data is available, λ can also be chosen to
maximize accuracy of a specified ML model via cross vali-
dation combined with grid search—in our experiments, we
found empirically that accuracy tended to be a quasiconvex
function of λ, which bodes well for automatic optimization
methods such as stochastic gradient descent.

Prior work: It is surprisingly hard to both enforce (1)
and to bound the sample size. As discussed in detail in an
extended version of this paper [12], prior algorithms that
bound the sample size either cannot consistently enforce (1)
or cannot handle wall-clock time. Examples of the former
include algorithms based on the A-Res scheme of Efraimidis
and Spirakis [8] and on Chao’s algorithm [6]. A-Res enforces
conditions on the acceptance probabilities of items; this leads
to appearance probabilities that, unlike (1), are both hard
to compute and not intuitive. In [12], we show that Chao’s
algorithm fails to enforce (1) either when initially filling up
an empty sample or in the presence of data that arrives
slowly relative to the decay rate. The second type of al-
gorithm, due to Aggarwal [4], can only control appearance
probabilities based on the indices of the data items and not
wall-clock time; this can be suboptimal in the presence of
time-varying arrival rates. Thus our new sampling schemes
are interesting in their own right, significantly expanding the
set of unequal-probability sampling techniques.

T-TBS: We first provide and analyze Targeted-Size Time-
Biased Sampling (T-TBS), a relatively simple algorithm that
generalizes the Bernoulli sampling scheme in [15] (which we
call B-TBS). T-TBS allows complete control over the de-
cay rate (expressed in wall-clock time) and probabilistically
maintains a target sample size. T-TBS is easy to implement
and highly scalable when applicable, but only works under
the strong restriction that the mean sizes of the arriving
batches are constant over time and known a priori. There
are scenarios where T-TBS might be a good choice (see Sec-
tion 3), but many applications have non-constant, unknown
mean batch sizes and/or cannot tolerate sample overflows.

R-TBS: We then provide a novel algorithm, Reservoir-
Based Time-Biased Sampling (R-TBS), that is the first to
simultaneously enforce (1) at all times, provide a guaranteed
upper bound on the sample size, and allow unknown, varying
data arrival rates. Guaranteed bounds are desirable because
they avoid memory management issues associated with sam-
ple overflows, especially when large numbers of samples are
being maintained—so that the probability of some sample
overflowing is high—or when sampling is being performed in
a limited memory setting such as at the “edge” of the IoT.

Also, bounded samples reduce variability in retraining times
and do not impose upper limits on the incoming data flow.
Distributed implementation: Both T-TBS and R-TBS

can be parallelized. Whereas T-TBS is relatively straightfor-
ward to implement, an efficient distributed implementation
of R-TBS is nontrivial. We exploit various implementation
strategies to minimize I/O, avoid unnecessary concurrency
control, and make decentralized decisions about which items
to insert into, or delete from, the reservoir. Our experiments
(Section 6) demonstrate the efficiency and effectiveness of
our techniques.

2. BACKGROUND
For the remainder of the paper, assume that batches arrive

at regular time intervals, so that ti = i∆ for some ∆ > 0. All
items that arrive in an interval

(
(k − 1)∆, k∆

]
are treated

as if they arrived at time k∆, i.e., at the end of the interval,
so that all items in batch Bi have time stamp i∆. It follows
that the age at time tk of an item that arrived at time ti ≤ tk
is simply αi,k = (k − i)∆.

In this section, we briefly review two classical sampling
schemes whose properties we will combine in the R-TBS
algorithm. A detailed description of the two algorithms can
be found in [12].
Bernoulli Time-Biased Sampling (B-TBS): One sim-

ple sampling scheme [15] processes each incoming batch by
first downsampling the current sample and then accepting
all items in the batch into the sample with probability 1.
Downsampling is accomplished by flipping a coin indepen-
dently for each item in the sample: an item is retained in
the sample with probability p = e−λ∆ and removed with
probability 1 − p. In [12], we prove that B-TBS enforces
the relation in (1) as required. Unfortunately, the user can-
not independently control the expected sample size, which
is completely determined by λ and the sizes of the incoming
batches.
Batched Reservoir Sampling (B-RS): The standard

reservoir sampling algorithm with sample size n accepts the
first n items into the sample with probability 1. For k > n,
the kth item is accepted with probability n/k, overwriting
a random victim; in [12], we show how to modify the algo-
rithm to handle batch arrivals. Although B-RS guarantees
an upper bound on the sample size, it does not support time
biasing. R-TBS (Section 4) maintains a bounded reservoir as
in B-RS while supporting time-biased sampling as in B-TBS.

3. TARGETED-SIZE TBS
We now describe the T-TBS scheme, which improves upon

the simple Bernoulli sampling scheme B-TBS by ensuring
the inclusion property in (1) while providing probabilistic
guarantees on the sample size. We write Bk = |Bk| for k ≥ 1,
and assume that the batch sizes {Bk}k≥1 are independent
and identically distributed (i.i.d.) as a random variable B,
with common mean b = E[B] <∞.
The Algorithm: The idea behind the algorithm is to

downsample to remove older items, as in B-TBS, but to also
downsample the incoming batches at a rate q such that n
becomes the “equilibrium” sample size, while also ensuring
that (1) holds. Setting p = e−λ∆ as before, a simple calcu-
lation shows that, for any q ∈ (0, 1], Pr[x ∈ Sk] = qpk−i =

qe−λ(tk−ti), and (1) follows immediately.
To choose q, suppose that |Sk−1| = n and we are about to
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process batch Bk. The expected number of items that will
be removed is (1−p)n and the expected number of accepted
items is qb. For n to be an equilibrium point, we equate these
terms and solve for q to obtain q = n(1 − p)/b. Note that,
even if we always accept all items in an arriving batch (i.e.,
q = 1) but the resulting expected inflow b is less than the
expected outflow n(1 − p), the sample will consistently fall
below n, and so we require that b ≥ n(1− p).

ALGORITHM 1: Targeted-size TBS (T-TBS)

1 p = e−λ∆: decay factor
2 n: target sample size
3 b: assumed mean batch size such that b ≥ n(1− p)
4 Initialize: S ← ∅; q ← n(1− p)/b
5 for k ← 1, 2, . . . do
6 m← Binomial(|S|, p) //simulate |S| trials
7 S ← Sample(S,m) //retain m random elements
8 l← Binomial(|Bk|, q) //simulate |Bk| trials
9 B′k ← Sample(Bk, l) //downsample new batch

10 S ← S ∪ {B′k} //add new items to sample

11 output S

The resulting sampling scheme is given as Algorithm 1; it
precisely controls inclusion probabilities in accordance with
(1) while constantly pushing the sample size toward the
target value n. Conceptually, at each time tk, T-TBS first
downsamples the current sample by independently flipping a
coin for each item with retention probability p. T-TBS then
downsamples the arriving batch Bk via independent coin
flips; an item in Bk is inserted into the sample with proba-
bility q. For efficiency, the algorithm exploits the fact that for
j independent trials, each having success probability r, the
total number of successes has a binomial distribution with
parameters j and r. Thus, in lines 6 and 8, the algorithm
simulates the coin tosses by directly generating the num-
ber of successes m or l—which can be done using standard
algorithms [13]—and then retaining m or l randomly cho-
sen items. So the function Binomial(j, r) returns a random
sample from the binomial distribution with j independent
trials and success probability r per trial, and the function
Sample(A,m) returns a uniform random sample, without
replacement, containing min(m, |A|) elements of the set A;
note that Sample(A,m) returns an empty sample if A = ∅,
m = 0, or both.

Sample-Size Properties: Theorem 1 below precisely de-
scribes the sample size behavior of T-TBS, which directly
impacts memory requirements, efficiency of memory usage,
and ML model retraining time; see [12] for a statement and
proof of this result in the setting of general decay functions.
(The proof exploits the fact that {|Sk|}k≥0 is a Markov
chain.) Denote by Ck = |Sk| the sample size at time tk
and by b̄ ≥ 1 the maximum possible batch size, so that
Pr[B ≤ b̄] = 1. Also set σ2 = bq(1 + p− q)/(1− p2) ∈ (0,∞)
and write p = e−λ∆ as before. Write “i.o.” to denote that an
event occurs “infinitely often”, i.e., for infinitely many values
of k, and write “w.p.1” for “with probability 1”.

Assertions (i)–(iii) of Theorem 1 deal with the distribution
of the sample size after a large number of batches have been
processed. Specifically, by (i) and (ii), the expected sample
size E[Ck] approximately equals the target size n and the
variance of Ck approximately equals the finite constant σ2,
which depends on b, p, and q; note that the convergence of
E[Ck] to n happens exponentially fast. By (iii), the prob-

ability that the sample size deviates from n by more than
100ε% is exponentially small when k or n is large, provided
that the batch sizes are bounded.

Whereas Assertions (i)–(iii) describe average behavior over
many sampling runs, Assertions (iv) and (v) concern the be-
havior of the successive sample sizes during an individual
sampling run. By (iv), any sample size can be attained with
positive probability, so one potential type of bad behavior
might occur if, with positive probability, the sample size is
unstable in that it drifts off to +∞ over time. By (v), if
the batch sizes are bounded, then such unstable behavior is
ruled out: with probability 1, the sample-size process is sta-
ble in that every possible sample-size value occurs infinitely
often, with finite expected time between visits. Moreover,
the average sample size—averaged over times t1, t2, . . . , tk—
converges to n with probability 1 as k becomes large. On the
negative side, it follows that, for a given sampling run, the
sample size will repeatedly—though infrequently, since the
expected sample size at any time point is finite—become
arbitrarily large, even if the average behavior is good. This
result shows that, even in the most stable case, the sample-
size control provided by T-TBS is incomplete, and thus moti-
vates the more complex R-TBS algorithm given in the next
section. This sample-size fragility is amplified when batch
sizes fluctuate in a non-predicable way, as often happens in
practice, and T-TBS can break down; see Section 6.

Theorem 1. If {Bk}k≥1 are i.i.d. with mean b <∞, then

(i) E[Ck] = n(1− pk) ↑ n as k →∞;

(ii) Var[Ck]→ σ2 as k →∞;

(iii) if b̄ <∞, then (a) Pr[Ck ≥ (1 + ε)n] ≤ e−O(kn2ε2) for

all ε, k > 0 and (b) Pr[Ck ≤ (1 − ε)n] ≤ e−O(kn2) for
any ε ∈ (0, 1) and sufficiently large k;

(iv) ∀m ≥ 0, ∃k ≥ 0 such that Pr[Ck ≥ m] > 0;

(v) if b̄ < ∞, then (a) Pr[Ck = m i.o.] = 1 for all m ≥
0, (b) the expected times between successive visits to
state m are uniformly bounded for any m ≥ 0, and (c)

limk→∞(1/k)
∑k
i=0 Ci = n w.p.1.

Despite the fluctuations in sample size, T-TBS is of inter-
est because, when the mean batch size is known and constant
over time, and when some sample overflows are tolerable, T-
TBS is relatively simple to implement and parallelize, and is
very fast (see Section 6). For example, if the data comes from
periodic polling of a set of robust sensors, the data arrival
rate will be known a priori and will be relatively constant,
except for the occasional sensor failure, and hence T-TBS
might be appropriate.

4. RESERVOIR-BASED TBS
Our new reservoir-based time-biased sampling algorithm

(R-TBS) combines the best features of T-TBS and B-RS,
controlling the decay rate while ensuring that the sample
never overflows. Importantly, unlike T-TBS, the R-TBS al-
gorithm can handle any sequence of batch sizes. The proofs
of all the theorems in this section can be found in [12].

4.1 Item Weights and Latent Samples
To precisely control the sample size in the presence of de-

cay, we essentially need to handle samples having “fractional
size”. We do this via “item weights” and “latent samples”.
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Item weights: In R-TBS, the weight of an item of age
α is given by f(α) = e−λα; note that a newly arrived item
has a weight of f(0) = 1. As discussed later, R-TBS ensures
that the probability that an item appears in the sample is
proportional to its weight. All items arriving at the same
time have the same weight, so that the total weight of all
items seen up through time tk is Wk =

∑k
i=1 |Bi|f(αi,k).

ALGORITHM 2: Generating a sample from a latent sample

1 L = (A, π,C): latent sample

2 U ← Uniform()
3 if U ≤ frac(C) then S ← A ∪ π else S ← A

4 return S

Latent samples: The other key concept for R-TBS is
the notion of a latent sample, which formalizes the idea of a
sample of fractional size. Formally, given a set U of items,
a latent sample of U with sample weight C is a triple L =
(A, π,C), where A ⊆ U is a set of bCc full items and π ⊆ U
is a (possibly empty) set containing at most one partial item;
π is nonempty if and only if C > bCc.

a b c d

partial item

a b ca b c a b c d

Figure 1: Latent sample L (sample weight C = 3.6) and possible
realized samples

We randomly generate a sample S from L by sampling
as described in Algorithm 2, where frac(x) = x − bxc; e.g.,
see Figure 1. In the pseudocode, the function Uniform()
generates a random number uniformly distributed on [0, 1].
Each full item is included with probability 1 and the partial
item is included with probability frac(C), and it is easy to
show that E[|S|] = C. By allowing at most one partial item,
we minimize the latent sample’s footprint: |A ∪ π| ≤ bCc+
1. Importantly, if the weight C of a latent sample L is an
integer, then L contains no partial item, and the sample S
generated from L via Algorithm 2 is unique and contains
exactly C items.

Downsampling: Besides extracting an actual sample from
a latent sample, another key operation on latent samples
is downsampling (Algorithm 3). For θ ∈ [0, 1], the goal of
downsampling L = (A, π,C) is to obtain an new latent sam-
ple L′ = (A′, π′, θC) such that, if we generate S and S′ from
C and C′ via Algorithm 2, we have

Pr[x ∈ S′] = θPr[x ∈ S] (2)

for all x ∈ S. Thus all of the the appearance probabilities, as
well as the sample weight (and hence expected sample size),
are scaled down by a factor of θ. R-TBS uses downsampling
to remove sample items that either decay or are overwritten
by arriving items, and also to initially filter the items in an
arriving batch.

In the pseudocode, the subroutine Swap1(A, π) moves a
randomly selected item from A to π and moves the current
item in π (if any) to A. Similarly, Move1(A, π) moves a
randomly selected item from A to π, replacing the current
item in π (if any).

ALGORITHM 3: Downsampling

1 L = (A, π,C): input latent sample
2 θ: scaling factor with θ ∈ [0, 1]

3 if C = 0 then return L′ = (∅, ∅, 0) //sample is empty

4 U ← Uniform(); C′ = θC

5 if bC′c = 0 then //no full items retained
6 if U > frac(C)/C then
7 (A′, π′)← Swap1(A, π)

8 A′ ← ∅
9 else if 0 < bC′c = bCc then //no items deleted

10 if U >
(
1− θ frac(C)

)
/
(
1− frac(C′)

)
then

11 (A′, π′)← Swap1(A, π)

12 else //items deleted: 0 < bC′c < bCc
13 if U ≤ θ frac(C) then
14 A′ ← Sample(A, bC′c)
15 (A′, π′)← Swap1(A′, π)

16 else
17 A′ ← Sample(A, bC′c+ 1)

18 (A′, π′)← Move1(A′, π)

19 if C′ = bC′c then //no fractional item

20 π′ ← ∅
21 return L′ = (A′, π′, C′)

a b c

b c a a b ca c b

Figure 2: Downsampling example: C = 2.4→ C′ = 2.1

To gain some intuition for why the algorithm works, con-
sider a special case (the if-statement in line 9): the goal is
to form a latent sample L′ = (A′, π′, θC) from a latent sam-
ple L = (A, π,C), where L and L′ have the same number
of full items and each has one partial item; e.g., C = 2.4
and C′ = 2.1. In this case, the partial item x∗ ∈ π either
becomes full by being swapped into A′ or remains as the
partial item for L′. The symmetric treatment of the items
in A ensures that appearance probabilities are scaled down
uniformly. Denoting by β the probability of not swapping,
we have P [x∗ ∈ S′] = β · frac(C′) + (1− ρ) · 1. On the other
hand, (2) implies that P [x∗ ∈ S′] = θ frac(C). Equating
these expressions shows that β must equal the formula on
the right side of the inequality on line 10; see Figure 2. The
other possible downsampling scenarios are described in [12].

Theorem 2. For θ ∈ [0, 1], let L′ = (A′, π′, θC) be the
latent sample produced from a latent sample L = (A, π,C)
via Algorithm 3, and let S′ and S be samples produced from
L′ and L via Algorithm 2. Then Pr[x ∈ S′] = θPr[x ∈ S]
for all x ∈ A ∪ π.

The union operator: We also need to take the union of
disjoint latent samples while preserving the inclusion prob-
abilities for each. Two latent samples L1 = (A1, π1, C1) and
L2 = (A2, π2, C2) are disjoint if (A1 ∪ π1) ∩ (A2 ∪ π2) = ∅.
The pseudocode for the union operation is given as Algo-
rithm 4. The idea is to add all full items to the combined la-
tent sample. If there are partials items in L1 and L2, then we
transform them to either a single partial item, a full item, or
a full plus partial item, depending on the values of frac(C1)
and frac(C2). Such transformations are done in a manner
that preserves the appearance probabilities. We obtain the
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union of multiple latent samples by iterating Algorithm 4;
for latent samples L1, . . . , Lk, we denote the resulting latent
sample by

⋃k
j=1 Lj .

ALGORITHM 4: Union

1 L1 = (A1, π1, C1): fractional sample of size C1

2 L2 = (A2, π2, C2): fractional sample of size C2

3 C ← C1 + C2

4 U ← Uniform()
5 if frac(C1) + frac(C2) < 1 then
6 A← A1 ∪ A2

7 if U ≤ frac(C1)/
(
frac(C1) + frac(C2)

)
then π ← π1 else

π ← π2

8 else if frac(C1) + frac(C2) = 1 then
9 π ← ∅

10 if U ≤ frac(C1) then A← A1 ∪ A2 ∪ π1 else
A← A1 ∪ A2 ∪ π2

11 else //frac(C1) + frac(C2) > 1
12 if U ≤

(
1− frac(C1)

) / [(
1− frac(C1)

)
+

(
1− frac(C2)

)]
then

13 π = π1

14 A← A1 ∪ A2 ∪ π2

15 else
16 π = π2

17 A← A1 ∪ A2 ∪ π1

18 return L=(A,π, C)

Theorem 3. Let L1 = (A1, π1, C1) and L2 = (A2, π2, C2),
be disjoint latent samples, and let L = (A, π,C) be the latent
sample produced from L1 and L2 by Algorithm 4. Let S1,
S2, and S be random samples generated from L1, and L2,
and L via Algorithm 2. Then (i) C = C1 + C2 = E[S],
(ii) ∀x ∈ L1, Pr[x ∈ S] = Pr[x ∈ S1], and (iii) ∀x ∈ L2,
Pr[x ∈ S] = Pr[x ∈ S2].

4.2 The R-TBS Algorithm
The algorithm: R-TBS is given as Algorithm 5. The al-

gorithm generates a sequence of latent samples {Lk}k≥1 and
from these generates a sequence of actual samples {Sk}k≥1

that are returned to the user. In the algorithm, the func-
tions Getsample, Downsample, and Union execute the
operations described in Algorithms 2, 3, and 4.

The goal of the algorithm is to ensure that

Pr[x ∈ Sk] = ρkf(αi,k) (3)

for all k ≥ 1, i ≤ k, and x ∈ Bi, where f(α) = e−λα

and {ρk}k≥1 are the successive values of the variable ρ dur-
ing a run of the algorithm. Clearly, (3) immediately im-
plies (1). We choose ρk to make the sample size as large
as possible without exceeding n. Indeed, we show in The-
orem 4 below that Ck = ρkWk for all k, and therefore
set ρk = min(1, n/Wk), so that Ck = min(Wk, n). Thus
if Wk < n, then the sample weight is at its maximum possi-
ble value Wk, leading to the maximum possible sample size
of bWkc or dWke. If Wk ≥ n, then the sample weight, and
hence the sample size, is capped at n.

R-TBS functions similarly to classic reservoir sampling.
When a new batch of items arrives, all of the items are ac-
cepted if the cumulative set of (weighted) items plus the
batch items fit in the reservoir of size n (ρ = 1 in line 9). If
the total item weight exceeds n just before the batch arrives,
then a random subset of old items is removed from the sam-
ple via downsampling (ρ/ρ′ < 1 in line 8, over and above
decay θ) and a random subset of the arriving items, also
filtered via downsampling (ρ < 1 in line 9), take their place

ALGORITHM 5: Reservoir-based TBS (R-TBS)

1 θ = e−λ∆: decay factor
2 n: maximum sample size

3 Initialize: W ← 0; A← ∅; π ← ∅; C ← 0; ρ← 1
4 for k ← 1, 2, . . . do
5 W ← θW + |Bk| //update total weight

6 ρ′ ← ρ
7 ρ← min(1, n/W ) //update ρ

8 (A, π,C)← Downsample
(
(A, π,C), (ρ/ρ′)θ

)
//decay old items

9 L0 ← Downsample
(
(Bk, ∅, |Bk|), ρ

)
//take in new items

10 L← Union
(
L0, (A, π,C)

)
//combine old and new items

11 S ← Getsample(L)
12 output S

(line 10). The algorithm also correctly handles the interme-
diate case where all cumulative items fit, but inserting all
arriving items would cause the reservoir to overflow; in this
case, only some of the new items overwrite sample items.
Algorithm properties: Theorem 4(i) below asserts that

R-TBS satisfies (3) and hence (1), thereby maintaining the
correct inclusion probabilities. Theorem 4(ii) implies that
the sample size and stability are maximized, as formalized
in Theorem 5 below. Finally, the assertion in Theorem 4(iii)
ensures that the inclusion probabilities for a given item are
nonincreasing over time. This is crucial, since otherwise we
might have to recover an item that was previously deleted
from the sample, which is impossible.

Theorem 4. Let {Lk = (Ak, πk, Ck)}k≥1 and {Sk}k≥1 be
a sequence of latent samples and samples, respectively, pro-
duced by Algorithm 5 and define ρk = min(1, n/Wk). Then
(i) Pr[x ∈ Sk] = ρkf(αi,k) for all 1 ≤ i ≤ k and x ∈ Bi, (ii)
Ck = ρkWk for all k, and (iii) ρkf(αi,k) ≤ ρk−1f(αi,k−1)
for all 1 ≤ i < k.

A sample Sk is unsaturated if Ck < n and saturated if
Ck = |Sk| = n; note that Wk < n if and only if Sk is unsat-
urated. Theorem 5 asserts that, among all sampling schemes
with exponential time biasing, R-TBS both maximizes the
expected sample size in unsaturated scenarios and minimizes
sample-size variability. Thus R-TBS tends to yield more ac-
curate ML results (via more training data) and greater sta-
bility in both result quality and retraining costs.

Theorem 5. Let H be any sampling algorithm for expo-
nential decay that satisfies (1) and denote by Sk and SHk
the samples produced at (arbitrary) time tk by R-TBS and
H. Then (i) if Wk < n, then E[|SHk |] ≤ E[|Sk|], and (ii) if
E[|SHk |] = E[|Sk|], then Var[|SHk |] ≥ Var[|Sk|].

Indeed, (1) implies that, for any ti ≤ tk and x ∈ Bi,
the inclusion probability Pr[x ∈ SHk ] must be of the form
rHk f(αi,k) for some function rHk independent of i. Taking i =
k, we see that rHk ≤ 1. For R-TBS with Ck < n, Theorem 4
implies that rHk = ρk = Ck/Wk = 1, so that Pr[x ∈ SHk ] ≤
Pr[x ∈ Sk], proving (i). To prove (ii), observe that, over all
possible sample-size distributions having mean value equal
to Ck = E[|Sk|], the variance is minimized by concentrating
all of the probability mass onto bCkc and dCke, and this is
precisely the sample-size distribution attained by R-TBS.

5. DISTRIBUTED TBS ALGORITHMS
We now describe the distributed implementation of T-

TBS and R-TBS, denoted as D-T-TBS and D-R-TBS.
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Overview of D-T-TBS: The D-T-TBS implementation
is very similar to the simple distributed Bernoulli time-biased
sampling algorithm in [15]. It is embarrassingly parallel, re-
quiring no coordination. At each time point tk, each worker
in the cluster subsamples its partition of the sample with
probability p, subsamples its partition of Bk with probabil-
ity q, and then takes a union of the resulting data sets.

Overview of D-R-TBS: This algorithm, unlike D-T-
TBS, maintains a bounded sample, and hence is not embar-
rassingly parallel. D-R-TBS first needs to aggregate the local
partition sizes for the incoming batch Bk to compute the to-
tal batch size |Bk| and calculate the new total weight Wk.
Then, based on |Bk|, Wk, and the current sample weight Ck,
D-R-TBS computes the downsample rate for the items in the
reservoir, as well as the downsample rate for the items in Bk.
After that, D-R-TBS chooses the items in the reservoir to
delete through a Downsample operation, selects items in
Bk (also via Downsample), inserts the selected items into
the reservoir (via Union), and finally generates the sample
(via Getsample). The expensive operations Downsample,
Union, and Getsample are all performed in a distributed
manner. They each require the master to coordinate among
the workers. Getsample and Union operations are rela-
tively straightforward. The most challenging part of D-R-
TBS lies in choosing items to delete from the reservoir and
selecting new items to insert; we introduce two alternative
approaches in Section 5.2. The implementation details for
D-T-TBS are mostly subsumed by those for D-R-TBS, so
we focus on the latter.

5.1 Distributed Data Structures
There are two important data structures in D-R-TBS: the

incoming batch and the reservoir. Conceptually, we view an
incoming batch Bk as an array of slots numbered from 1
through |Bk|, and the reservoir L as an array of slots num-
bered from 1 through bCkc containing full items plus a spe-
cial slot for the partial item. For both data structures, data
items need to be distributed into partitions due to the large
data volumes. Therefore, the slot number of an item, s, maps
to a pair (ps, rs), where ps is the partition ID and rs is the
position inside the partition.

Incoming batches usually come from a distributed stream-
ing system, such as Spark Streaming; the actual data struc-
ture is specific to the streaming system (e.g. an incoming
batch is stored as an RDD in Spark Streaming). As a result,
the partitioning strategy of the incoming batch is opaque to
D-R-TBS. Unlike the incoming batch, which is read-only and
discarded at the end of each time period, the reservoir data
structure must be continually updated. An effective strategy
for storing and operating on the reservoir is thus crucial for
good performance. We now explore alternative approaches
to implementing the reservoir.
Distributed in-memory key-value store: One natural

approach implements the reservoir using an off-the-shelf dis-
tributed in-memory key-value (KV) store, such as Redis [3]
or Memcached [2]. Each item in the reservoir is stored as a
KV pair, with the slot number as the key and the item as
the value. The partial item has a special slot number such
as -1. Inserts and deletes to the reservoir naturally translate
into put and delete operations to the KV store.

There are three major limitations to this approach. First,
the hash-based or range-based data-partitioning scheme used
by a distributed KV store yields reservoir partitions that do
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Figure 3: Retrieving insert items

not correlate with the partitions of incoming batch. When
items from a given partition of an incoming batch are in-
serted into the reservoir, the inserts touch many (if not all)
partitions of the reservoir, incurring heavy network I/O. Sec-
ond, KV stores incur unnecessary concurrency-control over-
head. For each batch, D-R-TBS already carefully coordi-
nates the deletes and inserts so that no two delete or insert
operations access the same slots in the reservoir and there is
no danger of write-write or read-write conflicts. Finally, the
KV store approach requires an explicit slot number for each
item. As a result, D-R-TBS needs to take extra care to make
sure that after deletes and inserts of reservoir items, the slot
numbers are still unique and contiguous, e.g. by recycling
the slot numbers of deleted items for new inserts. The bur-
den of keeping track of delete and insert slot numbers falls
on the master node.
Co-partitioned reservoir: An alternative approach im-

plements a distributed in-memory data structure for the
reservoir so as to ensure that the reservoir partitions co-
incide with the partitions from incoming batches. This can
be achieved in spite of the unknown partitioning scheme of
the streaming system. Specifically, the reservoir is initially
empty, and all items in the reservoir are from the incoming
batches. Therefore, if an item from a given partition of an
incoming batch is always inserted into the corresponding“lo-
cal” reservoir partition and deletes are also handled locally,
then the co-partition and co-location of the reservoir and in-
coming batch partitions is automatic. For our experiments,
we implemented the co-partitioned reservoir in Spark using
the in-place updating technique for RDDs in [15]; see [12].

Note that, with co-partitioned reservoir, the mapping be-
tween a specific full item and its current slot number may
change over time due to insertions and deletions. This does
not cause any statistical issues, because the set-based R-TBS
algorithm is oblivious to specific slot numbers.

5.2 Choosing Items to Delete and Insert
To bound the sample size, D-R-TBS must carefully co-

ordinate workers when choosing the items to delete from,
and insert into, the reservoir. It must also ensure the sta-
tistical correctness of random number generation and ran-
dom permutation operations in the distributed environment.
We consider two possible approaches, focusing on the co-
partitioned reservoir; see [12] for the KV store version.
Centralized decisions: In the most straightforward ap-

proach, the master makes centralized decisions. For inserts,

74 SIGMOD Record, March 2019 (Vol. 48, No. 1)



the master generates the slot numbers of the incoming items
Bk at time tk that need to be inserted into the reservoir.
Suppose that Bk comprises m ≥ 1 partitions. Each gener-
ated slot number s ∈ {1, 2, . . . , |Bk|} is mapped to an item
location indicated by (ps, rs). Denote by Q the set of item
locations, i.e., the set of (ps, rs) pairs. In order to perform
the inserts, D-R-TBS needs to first retrieve the actual items
based on the item locations. This can be achieved with a
join-like operation between Q and Bk, with the (ps, rs) pair
matching the actual location of an item inside Bk. To opti-
mize this operation, we make Q a distributed data structure
and use a customized partitioner to ensure that all pairs
(ps, rs) with ps = j are co-located with partition j of Bk
for j = 1, 2, . . . ,m. Then a co-partitioned and co-located
join can be carried out between Q and Bk, as illustrated
in Figure 3(a) for m = 3. The resulting set of retrieved in-
sert items, denoted as S, is also co-partitioned with Bk as
a by-product. After that, the actual inserts are carried out
depending on the reservoir representation (KV store or co-
partitioned reservoir). For the co-partitioned reservoir, we
simply use a join-like operation on S and the reservoir L
to add the corresponding insert items to the co-located par-
tition of L. Similarly, for deletes, the master generates slot
numbers of the reservoir items to be deleted, then deletes are
executed based on the reservoir representation. For the co-
partitioned reservoir, we again use a customized partitioner
for the set of (ps, rs) pairs that represent the slot numbers,
denoted as R, such that deletes are co-located with the cor-
responding L partitions. Then a join-like operation onR and
L performs the actual delete operations on the reservoir.

Distributed decisions: The above approach requires the
master to generate large quantities of slot numbers, so we
now explore an alternative approach that offloads the slot
number generation to the workers while still ensuring the
statistical correctness of the computation. This approach has
the master choose only the number of deletes and inserts per
worker according to an appropriate multivariate hypergeo-
metric distribution. For deletes, each worker chooses ran-
dom victims from its local partition of the reservoir based
on the number of deletes given by the master. For inserts,
the worker randomly and uniformly selects items from its
local partition of the incoming batch Bk given the number
of inserts. Figure 3(b) depicts how the insert items are re-
trieved under this decentralized approach. We use the tech-
nique in [11] for parallel pseudo-random number generation.

The foregoing distributed decision making approach works
only when the co-partitioned reservoir is used. This is be-
cause the KV store approach requires a target reservoir slot
number for each insert item from the incoming batch, and
the target slot numbers have to be generated in such a way
as to ensure that, after the deletes and inserts, all of the slot
numbers are still unique and contiguous in the new reser-
voir. This requires a lot of coordination among the workers,
which inhibits truly distributed decision making.

6. EXPERIMENTS
We briefly highlight some of our experimental results; see

[12] for details and additional experiments. We implemented
R-TBS and T-TBS on Spark. Data was streamed in from
HDFS using Spark Streaming’s microbatches. All perfor-
mance experiments were conducted on a cluster of 9 Pro-
Liant DL160 G6 servers interconnected by 1 Gbit Ethernet.
Decay occurs according to a time scale such that the batch-

arrival interval is ∆ = 1 in the decay formulas.
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Figure 4: Sample size behavior of T-TBS and R-TBS

Sample size Behavior: Figures 4 shows sample size
behavior of T-TBS and R-TBS under a variety of batch-size
regimes. In Figure 4(a), the (deterministic) batch size is ini-
tially fixed and the algorithm is tuned to a target sample size
of 1000, with a decay rate of λ = 0.05. At k = 200, the batch
size starts to increase: Bk+1 = φBk, where φ = 1.002. This
leads to an overflowing sample for T-TBS, whereas R-TBS
maintains a constant sample size. Even in a stable batch-
size regime with batch sizes either constant (Figure 4(b);
Bk ≡ 100 with λ = 0.1) or fluctuating (Figure 4(c); Bk uni-
form on [0, 200]), R-TBS can maintain a bounded sample
size, whereas the sample size under T-TBS fluctuates per
Theorem 1; as in Theorem 5, the R-TBS unsaturated sam-
ple size is always larger than than for T-TBS. For φ = 0.8, so
that the batch sizes start to shrink at k = 200, Figure 4(d)
shows that R-TBS is more robust to sample underflows.
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Figure 5: Per-batch distributed runtime comparison

Runtime performance: Figure 5 shows the average run-
time per batch for five different implementations of dis-
tributed TBS algorithms. Each batch contains 10 million
items. The first four are D-R-TBS implementations with
different design choices: whether to use centralized or dis-
tributed decisions in choosing items to insert and delete
(abbreviated as “Cent” and “Dist”, respectively), whether
to implement the reservoir using a key-value store or a co-
partitioned reservoir scheme (abbreviated as“KV”and“CP”),
and whether to subsample the incoming batch using the
standard repartition join or using a copartitioned join (ab-
breviated as “RJ” and “CJ”) under the centralized decision
scheme. As can be seen, the best implementation is almost
an order of magnitude faster than the worst. Since D-T-TBS
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is embarrassingly parallelizable, it is much faster than the
best D-R-TBS implementation (see rightmost bar). But, as
discussed in Section 3, T-TBS only works under very strong
restrictions on the data arrival process, and can suffer from
occasional memory overflows.

We have also conducted scalability experiments and eval-
uated the impact of the decay factor as well as batch-size
skew on the runtime performance; see [12]. With 8 workers,
our implementation of R-TBS can handle 100 million items
arriving approximately every 16 seconds.

Application to ML models: We first compare the per-
formance of R-TBS, simple sliding windows (SW), and uni-
form sampling (Unif) when applied to a kNN classifier that
predicts a class for each item in an incoming batch and then
updates the sample. We use 100 classes, and the data gen-
eration process operates in one of two “modes”. In the “nor-
mal” mode, the frequency of items from any of the first 50
classes is five times higher than that of items in any of the
second 50 classes. In the “abnormal” mode, the frequencies
are five times lower. The sample size for both R-TBS and
Unif is 1000, and SW contains the last 1000 items; thus all
methods use the same amount of data for retraining.

Figure 6 shows the misclassification rates for the three
sampling methods under a periodic pattern of 10 normal
batches alternating with 10 abnormal batches, denoted as
P(10, 10). When the data distribution first becomes abnor-
mal at t = 10, the misclassification rates under all sampling
schemes increase sharply. R-TBS and SW adapt to the new
mode, with SW adapting slightly faster. (Unif never adapts
at all.) After the first mode change, however, R-TBS “re-
members” both normal and abnormal values, and thereby
becomes much more robust to subsequent mode changes,
whereas SW continues to overreact with wild fluctuations.

Table 1 displays both the accuracy and robustness of Unif,
SW, and R-TBS (using several values of λ) over 30 runs. Ac-
curacy is measured in terms of the average misclassification
rate, and robustness is measured as the average 10% ex-
pected shortfall (ES) , i.e., the average value of the worst
10% of cases [14, p. 70]. Results are shown for a set of tem-
poral patterns that include several periodic patterns and a
“single event” comprising one normal-abnormal-normal cy-
cle. As can be seen, R-TBS and SW have similar accuracies,
and Unif is always the worst by a large margin. R-TBS is
always best in terms of robustness and SW is always the
worst, with ES values 1.5 to 2.5 times higher than for R-
TBS. Unif also does poorly in terms of robustness, except
for the single event, since the data remains in normal mode
after the abnormal period and time biasing becomes unim-
portant. Overall, R-TBS provides superior accuracy and ro-
bustness, and this performance edge is fairly stable across a
wide range of λ values.
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Figure 6: Misclassification
rate (percent) for kNN:
n=1000, P(10, 10)

Figure 7: Mean square error
for linear regression: n=1600,
P(16, 16)

Table 1: Accuracy and robustness of kNN performance
Single Event P(10,10) P(20,10) P(30,10)

λ Miss% ES Miss% ES Miss% ES Miss% ES

0.05 17.1 16.8 16.1 22.1 15.3 24.4 15.1 25.9

0.07 16.5 17.3 15.3 21.3 14.9 24.0 14.4 25.2

0.10 15.7 18.5 15.1 22.1 14.7 24.9 14.7 26.9

SW 19.2 42.1 17.1 41.7 16.1 39.8 15.9 38.3

Unif 21.3 18.3 25.4 34.8 19.6 35.7 19.0 35.8

Figure 7 shows similar results for an experiment involving
a regression model. Interestingly, the parameters were such
that the R-TBS sample was never full, whereas SW and Unif
were always full. This shows that a smaller sample with good
ratios of old and new data can provide better prediction per-
formance than a larger but temporally unbalanced sample.

7. CONCLUSION & FUTURE WORK
Our experiments with ML models and graph analytics [15],

indicate the usefulness of periodic retraining over time-biased
samples to help ML algorithms robustly deal with evolving
data streams without requiring algorithmic re-engineering.

In ongoing work [12], we have extended our R-TBS and T-
TBS sampling schemes to arbitrary decay functions. Theory
and algorithms are more complex in this setting because,
unlike the exponential case, decay factors now vary by age,
so item ages must be tracked. R-TBS then satisfies (1) only
approximately, with an error that can be made arbitrarily
small by increasing the sample footprint. There is also a well
defined trade-off between sample footprint and sample-size
stability and saturation. Interesting future directions are to
apply our ideas to other types of streaming analytics, and to
develop end-to-end solutions via drift-detection techniques.
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Technical Perspective: Succinct Range Filters
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Data structures that filter data for point or range
queries are prevalent across all data-driven applica-
tions, from analytics to transactions, and modern
machine learning applications. The primary objec-
tive is simple: find whether one or more data items
exist in the database. Yet, this simple task is ex-
ceptionally hard to perform efficiently, and surpris-
ingly critical for the overall properties of the data-
intensive applications that rely on filtering.

This is a hard problem as there are numerous crit-
ical parameters and trade-offs. Many parameters
come from the workload, e.g., the exact percent-
age of point queries versus updates, percentage of
empty-result queries, etc. Other parameters come
from the underlying hardware; e.g., filters typically
reside in memory but, with exponentially increas-
ing data sizes, we need to be mindful of the filter
size and the memory hierarchy. Overall, there are
complex trade-offs to navigate: memory, read, and
write amplification. For example, a data structure
cannot be efficient for both point and range queries
while also supporting efficient writes. Yet, numer-
ous applications need to expose both read patterns.

A prototypical application of filters is LSM-tree
storage engines. An LSM-tree stores data in the or-
der they arrive in immutable files and periodically
sort-merges them into larger files. This way, it be-
haves in between a log and a sorted array, providing
a good balance of read and write performance de-
pending on the exact tuning (file size, buffer size,
etc.). LSM-tree storage engines are used as the
backbone of most distributed key-value stores and
applications range from social media, web-applications,
e-shopping, IoT, etc. Due to their multi-level archi-
tecture enforcing a global temporal order, LSM-tree
engines rely heavily on in-memory filters.

In ACM SIGMOD 2018, Succinct Range Filters
(SuRF) was introduced as a new succinct filter that
can handle point queries, range queries, and approx-
imate counts efficiently [1]. SuRF is based on a trie-
like structure termed Fast Succinct Trie. The trie-

based design allows building a structure that can
support performant range queries and point queries.

The authors of SuRF make the following critical
and insightful observation which brings everything
together and allows SuRF to balance the various
hardware and workload trade-offs. For a given set
of queries, the upper levels of the trie incur many
more accesses than the lower levels. For this rea-
son, the SuRF design utilizes a dense, performance-
optimized encoding scheme for the top of the trie
and a sparse, memory-optimized encoding scheme
for the bottom. This results in a data structure
that is both fast and memory efficient. The upper
levels, which are comprised of few nodes but in-
cur many accesses, encode keys under the LOUDS-
Dense scheme, sacrificing space efficiency for fast
lookups. The lower levels, which contain the major-
ity of nodes but have a sparse access pattern rela-
tive to high levels are encoded with LOUDS-Sparse,
sacrificing fast lookups for space efficiency.

Compared to state-of-the-art bloom filter based
solutions (e.g., prefix bloom filters) SuRF provides
a general solution, i.e., it can support any range
query as well as efficient point queries. Compared to
state-of-the-art tree or trie based solutions SuRF of-
fers similar or better performance at a much smaller
memory footprint. The SuRF paper shows end-
to-end impact by integrating SuRF in RocksDB,
the most mature LSM-tree based storage engine,
and demonstrating strong results (e.g., up to 5x)
in time-series applications for both point and range
queries. SuRF can be applied broadly to any appli-
cation that needs a succinct filter such as monitor-
ing, privacy/security, graph analytics, etc. Finally,
the core spirit of the design of SuRF exemplifies el-
egant research taste in pursuing hybrid, hardware-
and workload-conscious designs.
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ABSTRACT
We present the Succinct Range Filter (SuRF), a fast and compact
data structure for approximate membership tests. Unlike traditional
Bloom filters, SuRF supports both single-key lookups and common
range queries. SuRF is based on a new data structure called the Fast
Succinct Trie (FST) that matches the point and range query perfor-
mance of state-of-the-art order-preserving indexes, while consum-
ing only 10 bits per trie node. The false positive rates in SuRF
for both point and range queries are tunable to satisfy different
application needs. We evaluate SuRF in RocksDB as a replace-
ment for its Bloom filters to reduce I/O by filtering requests before
they access on-disk data structures. Our experiments on a 100 GB
dataset show that replacing RocksDB’s Bloom filters with SuRFs
speeds up open-seek (without upper-bound) and closed-seek (with
upper-bound) queries by up to 1.5× and 5× with a modest cost on
the worst-case (all-missing) point query throughput due to slightly
higher false positive rate.

1. INTRODUCTION
Write-optimized log-structured merge (LSM) trees [30] are pop-

ular low-level storage engines for general-purpose databases that
provide fast writes [1, 34] and ingest-abundant DBMSs such as
time-series databases [4, 32]. One of their main challenges for
fast query processing is that items could reside in immutable files
(SSTables) from all levels [3, 25]. Item retrieval in an LSM
tree-based design may therefore incur multiple expensive disk
I/Os [30, 34]. This challenge calls for in-memory data structures
that can help locate query items. Bloom filters are a good match for
this task [32, 34] because they are small enough to reside in mem-
ory, and they have only “one-sided” errors—if the key is present,
then the Bloom filter returns true; if the key is absent, then the filter
will likely return false, but might incur a false positive.

Although Bloom filters are useful for single-key lookups (“Is
key 42 in the SSTable?”), they cannot handle range queries (“Are
there keys between 42 and 1000 in the SSTable?”). With only
Bloom filters, an LSM tree-based storage engine must read addi-
tional table blocks from disk for range queries. Alternatively, one
could maintain an auxiliary index, such as a B+Tree, to support
such range queries. The I/O cost of range queries is high enough

©ACM 2019 This is a minor revision of the paper enti-
tled “SuRF: Practical Range Query Filtering with Fast Suc-
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Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

that LSM tree-based designs often use prefix Bloom filters to op-
timize certain fixed-prefix queries (e.g., “where email starts with
com.foo@”) [2, 20, 32], despite their inflexibility for more general
range queries. The designers of RocksDB [2] have expressed a de-
sire to have a more flexible data structure for this purpose [19]. A
handful of approximate data structures, including the prefix Bloom
filter, exist that accelerate specific categories of range queries, but
none is general purpose.

This paper presents the Succinct Range Filter (SuRF), a fast
and compact filter that provides exact-match filtering and range fil-
tering. Like Bloom filters, SuRF guarantees one-sided errors for
point and range membership tests. SuRF can trade between false
positive rate and memory consumption, and this trade-off is tunable
for point and range queries semi-independently. SuRF is built upon
a new space-efficient (succinct) data structure called the Fast Suc-
cinct Trie (FST). It performs comparably to or better than state-of-
the-art uncompressed index structures (e.g., B+tree [14], ART [26])
for both integer and string workloads. FST consumes only 10 bits
per trie node, which is close to the information-theoretic lower
bound.

The key insight in SuRF is to transform the FST into an approx-
imate (range) membership filter by removing levels of the trie and
replacing them with some number of suffix bits. The number of
such bits (either from the key itself or from a hash of the key—
as we discuss later in the paper) trades space for decreased false
positives.

We evaluate SuRF via micro-benchmarks and as a Bloom fil-
ter replacement in RocksDB. Our experiments on a 100 GB time-
series dataset show that replacing the Bloom filters with SuRFs of
the same filter size reduces I/O. This speeds up open-range queries
(without upper-bound) by 1.5× and closed-range queries (with
upper-bound) by up to 5× compared to the original implementa-
tion. For point queries, the worst-case workload is when none of
the query keys exist in the dataset. In this case, RocksDB is up
to 40% slower using SuRFs instead of Bloom filters because they
have higher (0.2% vs. 0.1%) false positive rates. One can eliminate
this performance gap by increasing the size of SuRFs by a few bits
per key.

This paper makes three primary contributions. First, we de-
scribe in Section 2 our FST data structure whose space consump-
tion is close to the minimum number of bits required by informa-
tion theory yet has performance equivalent to uncompressed order-
preserving indexes. Second, in Section 3 we describe how to use
the FST to build SuRF, an approximate membership test that sup-
ports both single-key and range queries. Finally, we replace the
Bloom filters with size-matching SuRFs in RocksDB and show
that it improves range query performance with a modest cost on
the worst-case point query throughput due to a slightly higher false
positive rate.
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Figure 1: An example ordinal tree encoded using LOUDS

2. FAST SUCCINCT TRIES
The core data structure in SuRF is the FST. It is a space-efficient,

static trie that answers point and range queries. FST is 4–15× faster
than earlier succinct tries using other tree representations [12, 13,
23, 24, 27, 28, 33], achieving performance comparable to or better
than the state-of-the-art pointer-based indexes.

FST’s design is based on the observation that the upper levels of
a trie comprise few nodes but incur many accesses. The lower lev-
els comprise the majority of nodes, but are relatively “colder”. We
therefore encode the upper levels using a fast bitmap-based encod-
ing scheme (LOUDS-Dense) in which a child node search requires
only one array lookup, choosing performance over space. We en-
code the lower levels using the space-efficient LOUDS-Sparse
scheme, so that the overall size of the encoded trie is bounded.

For the rest of the section, we assume that the trie maps the keys
to fixed-length values. We also assume that the trie has a fanout of
256 (i.e., one byte per level).

2.1 Background
A tree representation is “succinct” if the space taken by the repre-

sentation is close to the information-theoretic lower bound, which
is the minimum number of bits needed to distinguish any object in
a class. A class of size n requires at least log2 n bits to encode
each object. A trie of degree k is a rooted tree where each node
can have at most k children with unique labels selected from set
{0, 1, . . . , k − 1}. The information-theoretic lower bound of a trie
of degree k is approximately n(k log2 k − (k − 1) log2(k − 1))
bits [13].

Jacobson [24] pioneered research on succinct tree representa-
tions and introduced the Level-Ordered Unary Degree Sequence
(LOUDS) to encode an ordinal tree (i.e., a rooted tree where each
node can have an arbitrary number of children in order). LOUDS
traverses the nodes in a breadth-first order and encodes each node’s
degree using the unary code. For example, node 3 in Fig. 1 has
three children and is thus encoded as ‘1110’. Navigating a tree
encoded with LOUDS uses the rank & select primitives. Given
a bit vector, rank1(i) counts the number of 1’s up to position i
(rank0(i) counts 0’s), while select1(i) returns the position of the
i-th 1 (select0(i) selects 0’s). Modern rank & select implementa-
tions [22, 29, 36, 40] achieve constant time by using look-up tables
(LUTs) to store a sampling of precomputed results so that they only
need to count between the samples.

2.2 LOUDS-Dense
LOUDS-Dense encodes each trie node using three bitmaps of

size 256 (because the node fanout is 256) and a byte-sequence for
the values as shown in the top half of Fig. 2. The encoding follows
level-order (i.e., breadth-first order).

There are three ways to define “close” [9]. Suppose the information-
theoretic lower bound is L bits. A representation that uses L+O(1),
L+o(L), and O(L) bits is called implicit, succinct, and compact, respec-
tively. All are considered succinct, in general.
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Figure 2: LOUDS-DS Encoded Trie – “$” represents the character whose
ASCII number is 0xFF. It is used to indicate the situation where a prefix
string leading to a node is also a valid key.

The first bitmap (D-Labels) records the branching labels for each
node. Specifically, the i-th bit in the bitmap, where 0 ≤ i≤ 255,
indicates whether the node has a branch with label i. For example,
the root node in Fig. 2 has three outgoing branches labeled f, s, and
t. The D-Labels bitmap sets the 102nd (f), 115th (s) and 116th (t)
bits and clears the rest.

The second bitmap (D-HasChild) indicates whether a branch
points to a sub-trie or terminates (i.e., points to the value or the
branch does not exist). Taking the root node in Fig. 2 as an ex-
ample, the f and the t branches continue with sub-tries while the
s branch terminates with a value. In this case, the D-HasChild
bitmap only sets the 102nd (f) and 116th (t) bits for the node.

The third bitmap (D-IsPrefixKey) includes only one bit per node.
The bit indicates whether the prefix that leads to the node is also a
valid key. For example, in Fig. 2, the first node at level 1 has f as its
prefix. Meanwhile, ‘f’ is also a key stored in the trie. To denote
this situation, the D-IsPrefixKey bit for this child node must be set.

The final byte-sequence (D-Values) stores the fixed-length values
(e.g., pointers) mapped by the keys. The values are concatenated in
level order: same as the three bitmaps.

Tree navigation uses array lookups and rank & select opera-
tions. We denote rank1/select1 over bit sequence bs on position
pos to be rank1/select1(bs, pos). Let pos be the current bit po-
sition in D-Labels. To traverse down the trie, given pos where
D-HasChild[pos] = 1, D-ChildNodePos(pos) = 256 ×rank1(D-
HasChild, pos) computes the bit position of the first child node. To
move up the trie, D-ParentNodePos(pos) = select1(D-HasChild,
bpos/256c) computes the bit position of the parent node. To access
values, given pos where D-HasChild[pos] = 0, D-ValuePos(pos)
= rank1(D-Labels, pos) - rank1(D-HasChild, pos) + rank1(D-
IsPrefixKey, bpos/256c)-1 gives the lookup position.

2.3 LOUDS-Sparse
As shown in the lower half of Fig. 2, LOUDS-Sparse encodes a

trie node using four byte or bit-sequences. The encoded nodes are
then concatenated in level-order.

The first byte-sequence (S-Labels) records all the branching la-
bels for each trie node. As an example, the first non-value node at
level 2 in Fig. 2 has three branches. S-Labels includes their labels
r, s, and t in order. We denote the case where the prefix leading
to a node is also a valid key using the special byte 0xFF at the
beginning of the node (this case is handled by D-IsPrefixKey in
LOUDS-Dense). For example, in Fig. 2, the first non-value node
at level 3 has ‘fas’ as its incoming prefix. Since ‘fas’ itself is
also a stored key, the node adds 0xFF to S-Labels as the first byte.
Because the special byte always appears at the beginning of a node,
it can be distinguished from the real 0xFF label.

The second bit-sequence (S-HasChild) includes one bit for each
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byte in S-Labels to indicate whether a child branch continues (i.e.,
points to a sub-trie) or terminates (i.e., points to a value). Taking
the rightmost node at level 2 in Fig. 2 as an example, because the
branch labeled i points to a sub-trie, the corresponding bit in S-
HasChild is set. The branch labeled y, on the other hand, points to
a value. Its S-HasChild bit is cleared.

The third bit-sequence (S-LOUDS) also includes one bit for each
byte in S-Labels. S-LOUDS denotes node boundaries: if a label
is the first in a node, its S-LOUDS bit is set. Otherwise, the bit is
cleared. For example, in Fig. 2, the first non-value node at level 2
has three branches and is encoded as 100 in S-LOUDS.

The final byte-sequence (S-Values) is organized the same way as
D-Values in LOUDS-Dense.

Tree navigation on LOUDS-Sparse is as follows: to move down
the trie, S-ChildNodePos(pos) = select1(S-LOUDS, rank1(S-
HasChild, pos) + 1); to move up, S-ParentNodePos(pos) =
select1(S-HasChild, rank1(S-LOUDS, pos) - 1); to access a value,
S-ValuePos (pos) = pos - rank1(S-HasChild, pos).

2.4 LOUDS-DS and Operations
LOUDS-DS is a hybrid trie in which the upper levels are encoded

with LOUDS-Dense and the lower levels with LOUDS-Sparse.
The dividing point between the upper and lower levels is tunable to
trade performance and space. FST keeps the number of upper levels
small in favor of the space efficiency provided by LOUDS-Sparse.
We use a size ratio 1 : R between LOUDS-Dense and LOUDS-
Sparse to determine the dividing point among levels. Reducing
R leads to more LOUDS-Dense levels, favoring performance over
space. We use R=64 as the default.

LOUDS-DS supports three basic operations efficiently:
• ExactKeySearch(key): Return the value of key if key exists (or

NULL otherwise).
• LowerBound(key): Return an iterator pointing to the key-value

pair (k, v) where k is the smallest in lexicographical order satis-
fying k ≥ key.
• MoveToNext(iter): Move the iterator to the next key.

A point query on LOUDS-DS works by first searching the
LOUDS-Dense levels. If the search does not terminate, it continues
into the LOUDS-Sparse levels. The high-level searching steps at
each level are similar regardless of the encoding mechanism: First,
search the current node’s range in the label sequence for the tar-
get key byte. If the key byte does not exist, terminate and return
NULL. Otherwise, check the corresponding bit in the HasChild bit-
sequence. If the bit is 1 (i.e., the branch points to a child node),
compute the child node’s starting position in the label sequence
and continue to the next level. Otherwise, return the corresponding
value in the value sequence. We precompute two aggregate values
based on the LOUDS-Dense levels: the node count and the number
of HasChild bits set. Using these two values, LOUDS-Sparse can
operate as if the entire trie is encoded with LOUDS-Sparse.

Range queries use a high-level algorithm similar to the point
query implementation. When performing LowerBound, instead of
doing an exact search in the label sequence, the algorithm searches
for the smallest label ≥ the target label. When moving to the next
key, the cursor starts at the current leaf label position and moves
forward. If another valid label l is found within the node, the algo-
rithm finds the left-most leaf key in the subtree rooted at l. If the
cursor hits node boundary instead, the algorithm moves the cursor
up to the corresponding position in the parent node.

We include per-level cursors in the iterator to minimize the
relatively expensive “move-to-parent” and “move-to-child” calls,
which require rank & select operations. These cursors record a
trace from root to leaf (i.e., the per-level positions in the label
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Figure 3: An example of deriving SuRF variations from a full trie.

sequence) for the current key. Because of the level-order layout
of LOUDS-DS, each level-cursor only moves sequentially without
skipping items. With this property, range queries in LOUDS-DS
are implemented efficiently. Each level-cursor is initialized once
through a “move-to-child” call from its upper-level cursor. After
that, range query operations at this level only involve cursor move-
ment, which is cache-friendly and fast. Section 4 shows that range
queries in FST are even faster than pointer-based tries.

LOUDS-DS can be built using one scan over a key-value list.

2.5 Space Analysis
Given an n-node trie, LOUDS-Sparse uses 8n bits for S-Labels,

n bits for S-HasChild and n bits for S-LOUDS, a total of 10n bits
(plus auxiliary bits for rank & select). Referring to Section 2.1,
the information-theoretic lower bound (Z) is approximately 9.44n
bits. Although the space taken by LOUDS-Sparse is close to the
information-theoretic bound, technically, LOUDS-Sparse can only
be categorized as compact rather than succinct in a finer classifi-
cation scheme because LOUDS-Sparse takes O(Z) space (despite
the small multiplier) instead of Z + o(Z).

LOUDS-Dense’s size is restricted by the ratio R to ensure
that it does not affect the overall space-efficiency of LOUDS-DS.
Notably, LOUDS-Dense does not always take more space than
LOUDS-Sparse: if a node’s fanout is larger than 51, it takes fewer
bits to encode the node using the former instead of the latter. Since
such nodes are common in a trie’s upper levels, adding LOUDS-
Dense on top of LOUDS-Sparse often improves space-efficiency.

3. SUCCINCT RANGE FILTERS
In building SuRF using FST, our goal was to balance a low false

positive rate with the memory required by the filter. The key idea
is to use a truncated trie; that is, to remove lower levels of the trie
and replace them with suffix bits extracted from the key (either the
key itself or a hash of the key). We introduce four variations of
SuRF. We describe their properties and how they guarantee one-
sided errors. The current SuRF design is static, requiring a full
rebuild to insert new keys.

3.1 Basic SuRF
FST is a trie-based index structure that stores complete keys. As

a filter, FST is 100% accurate; the downside, however, is that the
full structure can be big. In many applications, filters must fit in
memory to guard access to a data structure stored on slower storage.
These applications cannot afford the space for complete keys, and
thus must trade accuracy for space.

The basic version of SuRF (SuRF-Base) stores the minimum-
length key prefixes such that it can uniquely identify each key.
Specifically, SuRF-Base only stores an additional byte for each
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key beyond the shared prefixes. Fig. 3 shows an example. In-
stead of storing the full keys (‘SIGAI’, ‘SIGMOD’, ‘SIGOPS’),
SuRF-Base truncates the full trie by including only the shared pre-
fix (‘SIG’) and one more byte for each key (‘C’, ‘M’, ‘O’).

Pruning the trie in this way affects both filter space and accuracy.
Unlike Bloom filters where the keys are hashed, the trie shape of
SuRF-Base depends on the distribution of the stored keys. Hence,
there is no theoretical upper-bound of the size of SuRF-Base. Em-
pirically, however, SuRF-Base uses only 10 bits per key (BPK) for
64-bit random integers and 14 BPK for emails, as shown in Sec-
tion 4.2. The intuition is that the trie built by SuRF-Base usually
has an average fanout F > 2: there are less than twice as many
nodes as keys. Because FST (LOUDS-Sparse to be precise) uses
10 bits to encode a trie node, the size of SuRF-Base is less than 20
BPK for F > 2.

Filter accuracy is measured by the false positive rate (FPR), de-
fined as FP

FP+TN
, where FP is the number of false positives and

TN is the number of true negatives. A false positive in SuRF-
Base occurs when the prefix of the non-existent query key coin-
cides with a stored key prefix. For example, in Fig. 3, querying
key ‘SIGMETRICS’ will cause a false positive in SuRF-Base. FPR
in SuRF-Base depends on the distributions of the stored and query
keys. Our results in Section 4.2 show that SuRF-Base incurs a 4%
FPR for integer keys and a 25% FPR for email keys. To improve
FPR, we include two forms of key suffixes described below to allow
SuRF to better distinguish between the stored key prefixes.

3.2 SuRF with Hashed Key Suffixes
As shown in Fig. 3, SuRF with hashed key suffixes (SuRF-Hash)

adds a few hash bits per key to SuRF-Base to reduce its FPR. LetH
be the hash function. For each key K, SuRF-Hash stores the n (n
is fixed) least-significant bits ofH(K) in FST’s value array (which
is empty in SuRF-Base). When a key (K′) lookup reaches a leaf
node, SuRF-Hash extracts the n least-significant bits ofH(K′) and
performs an equality check against the stored hash bits associated
with the leaf node. Using n hash bits per key guarantees that the
point query FPR of SuRF-Hash is less than 2−n (the partial hash
collision probability). Even if the point query FPR of SuRF-Base
is 100%, just 7 hash bits per key in SuRF-Hash provide a 1

27
' 1%

point query FPR. Experiments in Section 4.2.1 show that SuRF-
Hash requires only 2–4 hash bits to reach 1% FPR.

The extra bits in SuRF-Hash do not help range queries because
they do not provide ordering information on keys.

3.3 SuRF with Real Key Suffixes
Instead of hash bits, SuRF with real key suffixes (SuRF-Real)

stores the n key bits immediately following the stored prefix of a
key. Fig. 3 shows an example when n = 8. SuRF-Real includes
the next character for each key (‘I’, ‘O’, ‘P’) to improve the dis-
tinguishability of the keys: for example, querying ‘SIGMETRICS’

no longer causes a false positive. Unlike in SuRF-Hash, both point
and range queries benefit from the real suffix bits to reduce false
positives. For point queries, the real suffix bits are used the same
way as the hashed suffix bits. For range queries (e.g., move to the
next key > K), when reaching a leaf node, SuRF-Real compares
the stored suffix bits s to key bits ks of the query key at the corre-
sponding position. If ks ≤ s, the iterator points to the current key;
otherwise, it advances to the next key in the trie.

Although SuRF-Real improves FPR for both point and range
queries, the trade-off is that using real keys for suffix bits cannot
provide as good FPR as using hashed bits because the distribution
correlation between the stored keys and the query keys weakens the
distinguishability of the real suffix bits.

3.4 Operations
We summarize how to implement SuRF’s basic operations using

FST. The key is to guarantee one-sided error (no false negatives).

build(keyList): Construct the filter given a list of keys.

result = lookup(k): Perform a point query on k. Returns true if k
may exist (could be false positive); false guarantees non-existence.
This operation first searches for k in the FST. If the search termi-
nates without reaching a leaf, return false. If the search reaches a
leaf, return true in SuRF-Base. In other SuRF variants, fetch the
stored key suffix ks of the leaf node and perform an equality check
against the suffix bits extracted from k according to the suffix type
as described in Sections 3.2 and 3.3.

iter, fp_flag = moveToNext(k): Return an iterator pointing to the
smallest key that is ≥ k. The iterator supports retrieving the next
and previous keys in the filter. This operation performs a Lower-
Bound search on the FST to reach a leaf node. If an approximation
occurs in the search (i.e., a key-byte at certain level does not ex-
ist in the trie and it has to move to the next valid label), then the
function sets the fp_flag to false and returns the current iterator.
Otherwise, the prefix of k matches that of a stored key (k′) in the
trie. SuRF-Base and SuRF-Hash do not have auxiliary suffix bits
that can determine the order between k and k′; they have to set the
fp_flag to true and return the iterator pointing to k′. SuRF-Real
includes the real suffix bits k′r for k′ to further compare to the cor-
responding real suffix bits kr for k. If k′r>kr , fp_flag = false and
return the current iterator; If k′r = kr , fp_flag = true and return the
current iterator; If k′r<kr , fp_flag = false and return the advanced
iterator (iter++).

4. FST & SuRF MICROBENCHMARKS
In this section, we first evaluate SuRF and its underlying FST

data structure using in-memory microbenchmarks to provide a
comprehensive understanding of the filter’s strengths and weak-
nesses. We use the Yahoo! Cloud Serving Benchmark (YCSB)
[17] workloads C and E to generate point and range queries.
We test two representative key types: 64-bit random integers
generated by YCSB and email addresses (host reversed, e.g.,
“com.domain@foo”) drawn from a real-world dataset (average
length = 22 bytes, max length = 129 bytes). The machine on which
we run the experiments has two Intel Xeon E5-2680v2 CPUs @
2.80 GHz, 4×32 GB RAM. The experiments run on a single thread.
We omit error bars because the variance is small.

4.1 FST Evaluation
We compare FST to three state-of-the-art pointer-based indexes:
• B+tree: This is the most common index structure used in

database systems. We use the fast STX B+tree [14] with node
size set to 512 bytes for best in-memory performance. We tested
only with fixed-length keys (i.e., 64-bit integers).
• ART: The Adaptive Radix Tree (ART) is a state-of-the-art index

structure designed for in-memory databases [26]. ART adap-
tively chooses from four different node layouts based on branch-
ing density to achieve better cache performance and space-
efficiency.
• C-ART: We obtain a compact version of ART by constructing a

plain ART instance and converting it to a static version [38].
We begin each experiment by bulk-loading a sorted key list into

the index. The list contains 50M entries for the integer keys and
25M entries for the email keys. We report the average throughput of
10M point or range queries on the index. The YCSB default range
queries are short: most queries scan 50–100 items, and the access
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Figure 4: FST vs. Pointer-based Indexes

patterns follow a Zipf distribution. The average query latency here
refers to the reciprocal of throughput because our microbenchmark
executes queries serially in a single thread. For all index types,
the reported memory number excludes the space taken by the value
pointers.

ART, C-ART, and FST store only unique key prefixes in this ex-
periment as described in Section 3.1. Fig. 4 shows the compari-
son results. Each subfigure plots the locations of the four (three for
email keys) indexes in the performance-space (latency vs. memory)
map. We observe that FST is among the fastest choices in all cases
while consuming less space. To better understand this trade-off, we
define a cost function C = P rS, where P represents performance
(latency), and S represents space (memory). The exponent r indi-
cates the relative importance between P and S. r > 1 means that
the application is performance critical, and 0 < r < 1 suggests
otherwise. We define an “indifference curve” as a set of points in
the performance-space map that have the same cost. We draw the
equi-cost curves in Fig. 4 using cost function C = PS (r = 1),
assuming a balanced performance-space trade-off. We observe that
FST has the lowest cost (i.e., is most efficient) in all cases. In order
for the second place (C-ART) to have the same cost as FST in the
first subfigure, for example, r needs to be 6.7 in the cost function,
indicating an extreme preference for performance.

We also compared FST against other succinct trie alternatives
(i.e., tx-trie [10] and the path-decomposed trie (PDT) [23]). Our
results showed that FST is 6–15× faster than tx-trie, 4–8× faster
than PDT, and is also smaller than both. Detailed evaluation is
included in the original SIGMOD paper [39].

4.2 SuRF Evaluation
The three most important metrics with which to evaluate SuRF

are false positive rate (FPR), performance, and space. The datasets
are 100M 64-bit random integer keys and 25M email keys. In the
experiments, we first construct the filter under test using half of the
dataset selected at random. We then execute 10M point or range
queries on the filter. The querying keys (K) are drawn from the
entire dataset according to YCSB workload C so that roughly 50%
of the queries return false. We tested two query access patterns:
uniform and Zipf distribution. We show only the Zipf distribu-
tion results because the observations from both patterns are similar.
For 64-bit random integer keys, the range query is [K + 237, K
+ 238] where 46% of the queries return true. For email keys, the
range query is [K, K(with last byte ++)] (e.g., [org.acm@sigmod,
org.acm@sigmoe]) where 52% of the queries return true. We use
the Bloom filter implementation from RocksDB.

4.2.1 False Positive Rate
Fig. 5 shows the false positive rate (FPR) comparison between

SuRF variants and the Bloom filter by varying the size of the filters.
The Bloom filter only appears in point queries. Note that SuRF-
Base consumes 14 (instead of 10) bits per key for the email key

10 11 12 13 14 15 16 17 18
Bits per Key

0

1

2

3

4

5

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
) SuRF-Base Bloom Filter

SuRF-Hash
SuRF-Real

(a) Point Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0

5

10

15

20

25

30

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
) SuRF-Base Bloom Filter

SuRF-Hash
SuRF-Real

(b) Point Query, Email

10 11 12 13 14 15 16 17 18
Bits per Key

0

1

2

3

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

SuRF-Base

SuRF-Hash
SuRF-Real

(c) Range Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0

10

20

30

40

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

SuRF-Base

SuRF-Hash
SuRF-Real

(d) Range Query, Email

Figure 5: False positive rate comparison between SuRF variants and the
Bloom filter (lower is better)

workloads. This is because email keys share longer prefixes, which
increases the number of internal nodes in SuRF.

For point queries, the Bloom filter has lower FPR than the same-
sized SuRF variants in most cases, although SuRF-Hash catches
up quickly as the number of bits per key increases because every
hash bit added cuts the FPR by half. Real suffix bits in SuRF-
Real are generally less effective than hash bits for point queries.
For range queries, only SuRF-Real benefits from increasing filter
size because the hash suffixes in SuRF-Hash do not provide order-
ing information. The shape of the SuRF-Real curves in the email
key workloads (i.e., the latter 4 suffix bits are more effective in
recognizing false positives than the earlier 4) is because of ASCII
encoding of characters.

We also observe that SuRF variants have higher FPRs for the
email key workloads. This is because the email keys in the data set
are very similar (i.e., the key distribution is dense). Two email keys
often differ by the last byte, or one may be a prefix of the other. If
one of the keys is represented in the filter and the other key is not,
querying the missing key on SuRF-Base is likely to produce false
positives. The high FPR for SuRF-Base is significantly lowered by
adding suffix bits, as shown in the figures.

4.2.2 Performance
Fig. 6 shows the throughput comparison. The SuRF variants op-

erate at a speed comparable to the Bloom filter for the 64-bit integer
key workloads, thanks to the LOUDS-DS design and other perfor-
mance optimizations such as vectorized label search and memory
prefetching. For email keys, the SuRF variants are slower than the
Bloom filter because of the overhead of searching/traversing the
long prefixes in the trie. The Bloom filter’s throughput decreases
as the number of bits per key gets larger because larger Bloom fil-
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Figure 6: Performance comparison between SuRF variants and the Bloom
filter (higher is better)

ters require more hash probes. The throughput of the SuRF variants
does not suffer from increasing the number of suffix bits because as
long as the suffix length is less than 64 bits, checking with the suffix
bits only involves one memory access and one integer comparison.
The (slight) performance drop in the figures when adding the first
suffix bit (i.e., from 10 to 11 for integer keys, and from 14 to 15 for
email keys) demonstrates the overhead of the extra memory access
to fetch the suffix bits. Range queries in SuRF are slower than point
queries because every query needs to walk down to the bottom of
the trie (no early exit).

Some high-level takeaways from the experiments: (1) SuRF can
perform range filtering while the Bloom filter cannot; (2) If the
target application only needs point query filtering with moderate
FPR requirements, the Bloom filter is usually a better choice than
SuRF; (3) For point queries, SuRF-Hash can provide similar the-
oretical guarantees on FPR as the Bloom filter, while the FPR for
SuRF-Real depends on the key distribution.

5. EXAMPLE APPLICATION: ROCKSDB
We integrated SuRF with RocksDB as a replacement for its

Bloom filter. Incoming writes go into the RocksDB’s MemTable
and are appended to a log file for persistence. When the MemTable
is full (e.g., exceeds 4 MB), the engine sorts it and then converts
it to an SSTable that becomes part of level 0. An SSTable con-
tains sorted key-value pairs and is divided into fixed-length blocks
matching the smallest disk access units. To locate blocks, RocksDB
stores the “restarting point” (a string that is ≥ the last key in the
current block and < the first key in the next block) for each block
as an index. When the size of a level hits a threshold, RocksDB
selects an SSTable at this level and merges it into the next-level
SSTables that have overlapping key ranges. This process is called
compaction. Except for level 0, all SSTables at the same level have
disjoint key ranges. In other words, the keys are globally sorted for
each level ≥ 1. This property ensures that an entry lookup reads at
most one SSTable per level for levels ≥ 1.

We modified RocksDB’s point (Get) and range (Seek, Next)
query implementations to use SuRF. For Get(key), SuRF is used
exactly like the Bloom filter. Specifically, RocksDB searches level
by level. At each level, RocksDB locates the candidate SSTable(s)
and block(s) (level 0 may have multiple candidates) via the block
indexes in the table cache. For each candidate SSTable, if a filter is
available, RocksDB queries the filter first and fetches the SSTable
block only if the filter result is positive. If the filter result is neg-

ative, the candidate SSTable is skipped and the unnecessary I/O is
saved.

For Seek(lk, hk), if hk (high key) is not specified, we call it an
Open Seek. Otherwise, we call it a Closed Seek. To implement
Seek(lk, hk), RocksDB first collects the candidate SSTables from
all levels by searching for lk (low key) in the block indexes.

Absent SuRFs, RocksDB examines each candidate SSTable and
fetches the block containing the smallest key that is≥ lk. RocksDB
then compares the candidate keys and finds the global smallest key
K ≥ lk. For an Open Seek, the query succeeds and returns the iter-
ators (at least one per level). For a Closed Seek, however, RocksDB
performs an extra check against the hk: if K ≤ hk, the query suc-
ceeds; otherwise the query returns an invalid iterator.

With SuRFs, however, instead of fetching the actual blocks,
RocksDB can obtain the candidate key for each SSTable by per-
forming a moveToNext(lk) query on its SuRF to avoid the one I/O
per SSTable. If the query succeeds (i.e., Open Seek or K ≤ hk),
RocksDB fetches exactly one block from the selected SSTable that
contains the global minimum K. If the query fails (i.e., K > hk),
no I/O is involved. Because SuRF’s moveToNext query returns
only a key prefix Kp, three additional checks are required to guar-
antee correctness. First, if the moveToNext query sets the false
positive flag, RocksDB must fetch the complete key K from the
SSTable block to determine whether K ≥ lk. If not set, RocksDB
fetches the next key after K. Second, if Kp is a prefix of hk, the
complete key K is also needed to verify K ≤ hk. If not, the cur-
rent SSTable is skipped. Third, multiple key prefixes could tie for
the smallest. In this case, RocksDB must fetch their corresponding
complete keys from the SSTable blocks to find the globally small-
est. Despite the three potential additional checks, using SuRF in
RocksDB reduces the average I/Os per Seek(lk, hk) query.

To illustrate how SuRFs benefit range queries, suppose a
RocksDB instance has three levels (LN , LN−1, LN−2) of SSTa-
bles on disk. LN has an SSTable block containing keys 2000, 2011,
2020 with 2000 as the block index; LN−1 has an SSTable block
containing keys 2012, 2014, 2029 with 2012 as the block index;
and LN−2 has an SSTable block containing keys 2008, 2021, 2023
with 2008 as the block index. Consider the range query [2013,
2019]. Using only block indexes, RocksDB has to read all three
blocks from disk to verify whether there are keys between 2013
and 2019. Using SuRFs eliminates the blocks in LN and LN−2 be-
cause the filters for those SSTables will return false to query [2013,
2019] with high probability. The number of I/Os is likely to drop
from three to one.

Next(hk) is similar to Seek(lk, hk), but the iterator at each level
is already initialized. RocksDB must only increment the iterator
pointing to the current key, and then repeat the “find the global
smallest” algorithm as in Seek.

6. SYSTEM EVALUATION
Time-series databases often use RocksDB or similar LSM-

tree designs for the storage engine. Examples are InfluxDB [4],
QuasarDB[6], LittleTable [32] and Cassandra-based systems [5,
25]. We thus create a synthetic RocksDB benchmark to model a
time-series dataset generated from distributed sensors and use this
for end-to-end performance measurements. We simulated 2K sen-
sors to record events. The key for each event is a 128-bit value
comprised of a 64-bit timestamp followed by a 64-bit sensor ID.
The associated value in the record is 1 KB long. The occurrence of
each event detected by each sensor follows a Poisson distribution
with an expected frequency of one every 0.2 seconds. Each sensor
operates for 10K seconds and records ∼50K events. The starting
timestamp for each sensor is randomly generated within the first
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Figure 7: RocksDB point query and Open-Seek query evaluation under dif-
ferent filter configurations
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Figure 8: RocksDB Closed-Seek query evaluation under different filter con-
figurations and range sizes

0.2 seconds. The total size of the raw records is approximately
100 GB.

Our testing framework supports the following queries:
• Point Query: Given a timestamp and a sensor ID, return the

record if there is an event.
• Open-Seek Query: Given a starting timestamp, return an itera-

tor pointing to the earliest event after that time.
• Closed-Seek Query: Given a time range, determine whether any

events happened during that time period. If yes, return an iterator
pointing to the earliest event in the range.
Our test machine has an Intel Core i7-6770HQ CPU, 32 GB

RAM, and an Intel 540s 480 GB SSD. We use Snappy (RocksDB’s
default) for data compression. The resulting RocksDB instance
has four levels (including Level 0) and uses 52 GB of disk
space. We configured RocksDB according Facebook’s recommen-
dations [7, 20].

We create four instances of RocksDB with different filter op-
tions: no filter, Bloom filter, SuRF-Hash, and SuRF-Real. We con-
figure each filter to use an equal amount of memory. Bloom filters
use 14 bits per key. The equivalent-sized SuRF-Hash and SuRF-
Real include a 4-bit suffix per key. We first warm the cache with
1M uniformly-distributed point queries to existing keys so that ev-
ery SSTable is touched ∼ 1000 times and the block indexes and
filters are cached. After the warm-up, both RocksDB’s block cache
and the OS page cache are full. We then execute 50K application
queries, recording the end-to-end throughput and I/O counts. We
compute the DBMS’s throughput by dividing query counts by exe-
cution time, while I/O counts are read from system statistics before
and after the execution. The query keys (for range queries, the start-
ing keys) are randomly generated. The reported numbers are the av-
erage of three runs. Even though RocksDB supports prefix Bloom
filters, we exclude them in our evaluation because they do not offer
benefits over Bloom filters in this scenario: (1) range queries using
arbitrary integers do not have pre-determined key prefixes, which
makes it hard to generate such prefixes, and (2) even if key prefixes
could be determined, prefix Bloom filters always return false posi-
tives for point lookups on absent keys sharing the same prefix with
any present key, incurring high false positive rates.

Fig. 7 (left two figures) shows the result for point queries. Be-
cause the query keys are randomly generated, almost all queries

Block cache size = 1 GB; OS page cache ≤ 3 GB. Enabled
pin_l0_filter_and_index_blocks_in_cache and
cache_index_and_filter_blocks.

return false. The query performance is dominated by the I/O count:
they are inversely proportional. Excluding Level 0, each point
query is expected to access three SSTables, one from each level
(Level 1, 2, 3). Without filters, point queries incur approximately
1.5 I/Os per operation according to Fig. 7, which means that the
entire Level 1 and approximately half of Level 2 are likely cached.
This agrees with the typical RocksDB application setting where the
last two levels are not cached in memory [19].

Using filters in point queries reduces I/O because they prevent
unnecessary block retrieval. Using SuRF-Hash or SuRF-Real is
slower than using the Bloom filter because the 4-bit suffix does not
reduce false positives as low as the Bloom filter configuration (refer
to Section 4.2.1). SuRF-Real provides similar benefit to SuRF-
Hash because the key distribution is sparse.

The main benefit of using SuRF is speeding range queries. Fig. 7
(right two figures) shows that using SuRF-Real can speed up Open-
Seek queries by 50%. SuRF-Real cannot improve further because
an Open-Seek query requires reading at least one SSTable block
as described in Section 5, and that SSTable block read is likely to
occur at the last level where the data blocks are not available in
cache. In fact, the I/O figure (rightmost) shows that using SuRF-
Real reduces the number of I/Os per operation to 1.023, which is
close to the maximum I/O reduction for Open-Seeks.

Fig. 8 shows the throughput and I/O count for Closed-Seek
queries. On the x-axis, we control the percent of queries with empty
results by varying the range size. The Poisson distribution of events
from all sensors has an expected frequency of one per λ = 105 ns.
For an interval with length R, the probability that the range con-
tains no event is given by e−R/λ. Therefore, for a target percentage
(P ) of Closed-Seek queries with empty results, we set range size to
λ ln( 1

P
). For example, for 50%, the range size is 69310 ns.

Similar to the Open-Seek query results, the Bloom filter does
not help range queries and is equivalent to having no filter. Us-
ing SuRF-Real, however, speeds up the query by 5× when 99%
of the queries return empty. Again, I/O count dominates perfor-
mance. Without a range filter, every query must fetch candidate
SSTable blocks from each level to determine whether there are keys
in the range. Using the SuRF variants, however, avoids many of
the unnecessary I/Os; RocksDB performs a read to the SSTable
block containing that minimum key only when the minimum key
returned by the filters at each level falls into the querying range.
Using SuRF-Real is more effective than SuRF-Hash in this case
because the real suffix bits help reduce false positives at the range
boundaries.

To continue scanning after Seek, the DBMS calls Next and ad-
vances the iterator. We do not observe performance improvements
for Next when using SuRF because the relevant SSTable blocks are
already loaded in memory. Hence, SuRF mostly helps short range
queries. As the range gets larger, the filtering benefit is amortized.

As a final remark, we evaluated RocksDB in a setting where the
memory vs. storage budget is generous. The DBMS will benefit
more from SuRF under tighter constraints and/or a larger dataset.

7. RELATED WORK
The Bloom filter [15] and its major variants [16, 21, 31] are

compact data structures designed for fast approximate membership
tests. They are widely used in storage systems, especially LSM
trees as described in the introduction, to reduce expensive disk I/O.
Similar applications can be found in distributed systems to reduce
network I/O [8, 35, 37]. The downside for Bloom filters, how-
ever, is that they cannot handle range queries because their hash-
ing does not preserve key order. In practice, people use prefix
Bloom filters to help answer range-emptiness queries. For example,
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RocksDB [2], LevelDB [3], and LittleTable [32] store pre-defined
key prefixes in Bloom filters so that they can identify an empty-
result query if they do not find a matching prefix in the filters. Com-
pared to SuRFs, this approach, however, has worse filtering ability
and less flexibility. It also requires additional space to support both
point and range queries.

Adaptive Range Filter (ARF) [11] was introduced as part of
Project Siberia in Hekaton [18] to guard cold data. An ARF is
a simple encoded binary tree that covers the entire key space.
ARF differs from SuRF in that it targets different applications and
scalability goals. First, ARF behaves more like a cache than a
general-purpose filter. It requires knowledge about prior queries for
training. SuRF, on the other hand, assumes nothing about work-
loads. In addition, ARF’s binary tree design makes it difficult to
accommodate variable-length string keys because a split key that
evenly divides a parent node’s key space is not well defined in the
variable-length string key space. In contrast, SuRF natively sup-
ports variable-length string keys with its trie design. Finally, ARF
performs a linear scan over the entire level when traversing down
the tree. Linear lookup complexity prevents ARF from scaling.
SuRF avoids linear scans by navigating its internal tree structure
with rank & select operations.

8. CONCLUSION
This paper introduces the SuRF filter structure, which supports

approximate membership tests for single keys and ranges. SuRF
is built upon a new succinct data structure, called the Fast Suc-
cinct Trie (FST), that requires only 10 bits per node to encode the
trie. FST is engineered to have performance equivalent to state-
of-the-art pointer-based indexes. SuRF is memory efficient, and
its space/false positive rates can be tuned by choosing different
amounts of suffix bits to include. Replacing the Bloom filters
with SuRFs of the same size in RocksDB substantially reduced
I/O and improved throughput for range queries with a modest cost
on the worst-case point query throughput. We believe, therefore,
that SuRF is a promising technique for optimizing future storage
systems, and more. SuRF’s source code is publicly available at
https://github.com/efficient/SuRF.
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