
Richard	Hipp	Speaks	Out	on		
SQLite	

	
Marianne	Winslett	and	Vanessa	Braganholo	

Richard Hipp

http://www.hwaci.com/drh/index.html

Welcome to ACM SIGMOD Record Series of interviews with distinguished members of the database community. I'm
Marianne Winslett, and today we are at the 2017 SIGMOD and PODS Conference in Chicago. I have here with me,
Richard Hipp, who won the 2017 SIGMOD Systems Award and the 2005 Google O'Reilly Open Source Award for
SQLite. Richard has his own consulting firm, Hwaci, and his Ph.D. is from Duke University.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 39

So, Richard, welcome!

Thank you for having me here.

It's a pleasure. Can you take off your glasses for a
moment and show off what you have there?

Oh, you mean, this?

This black eye! It must have been a real battle to win
that SIGMOD Systems Award!

Oh, no, this is nothing. You should see the other guy.
No, no! There was no fight or anything. This is actually
a farming accident.

A farming accident?

I went to visit my parents last week. I was helping dad
put up some new fencing on the farm, and I was cutting
through the fence, and when I cut the last wire the whole
thing sprung up, and a piece of wire hit me right there
above the eye. By the grace of God, it missed my eyeball
and didn't put an eye out. But I'm fine; everything is fine
now. But this just goes to show that programmers
should stick to programming computers and should not
try to grow their own food. Leave farming to
professionals!

All right, that's probably easy advice to swallow for our
audience.

So, SQLite is the most widely deployed database engine
in the world! Take that Oracle! SQLite is in just about
every modern phone, PC browser, car, you name it, it
might even be the single most widely deployed software
component of any type! My first question: How did you
happen to write such an insanely popular piece of
software?

It was entirely by accident. I was working as a
consultant doing some really interesting problems, and
I wrote a product for my client and it had to pull the data
off of Informix. And that worked great. Except for
sometimes, the Informix server would go down for
reasons that were out of my control, and then I'd pop-up
a dialog box that says, “Can't access the database.” And,
of course, it was not my fault but I got the support call
because it was my software painting the dialog box.
So, I thought, well, why can't I have a database that just
reads directly off the disc? And I looked around and
there were none available. I thought, “oh, I'll just write
my own, how hard can that be?” Well, it turns out to be
harder than you might think at first, but I didn't know

that at the time. But we got it out there and I just put it
out as open source. And before long, I started getting
these phone calls from the big tech companies of the
day, like Motorola and AOL, and, “Hey, can you
support this?”, and “Sure!” And it's like, wow, you can
make money by supporting open source software? Who
knew?
So, I built a small team and we've been doing that for
about 10 or 12 years now. So, it was an accidental
database, I didn't intend to take over the world.

The accidental database… You know you're in big
company with that? Because Mike Stonebraker, when
he first got started he had the exact same thought, he
said, "How hard can this be?" They say that knowledge
is power, but I think often ignorance is power.

Right. If I'd known how hard it would be I probably
never would've have written it.

So, why is it so popular?

You know, I don't really know. I mean, I can guess.
Well, one, it's really easy to use. I mean it comes as a
single file source code, and so people just plop the single
file of source down into their application and recompile,
and they have a complete SQL stack.
The database is one file on disc. So, it's really easy to
email to colleagues. It's fast. It's really easy to use. It's
small, got a small footprint. That's why it's real popular
on cell phones and things, because especially in the
early days they were really interested in saving every
byte of memory they could.

How small is it?

Compiled for size, it's less than a half megabyte.

Ooh, and how many lines of code, vaguely?

I think it's about 120,000 source lines of code; 200,000
if it includes the comments, all in one big file. We don't
edit that one big file, okay, we actually have a bunch of
little files that we developed and then there's a build
process that stacks them all together.
But that makes it very easy to deploy because it's just
one file that you drop in the middle of your application.
And so, if you go look at popular applications like
Chromium or Firefox or these open source things, you
will find sqlite3.c in the tree which just gets linked in
with the rest of their product and then they've got a
complete stack. They don't have any external
dependencies, and it just works.

40 SIGMOD Record, June 2019 (Vol. 48, No. 2)

What were the main technical challenges you faced in
creating SQLite?

Well, a technical challenge is apart from the fact that I
didn't know what I was doing? Well, so, SQLite doesn't
have a server, you know, it's just a library. And so, you
make a call into the library and then it returns, and
there's not a thread or a process hanging around behind
to take care of all the housekeeping details normally
associated with a relational database, like concurrency
control, rolling up LSM trees, or feeding the write-
ahead log back into the database. These are all normally
taken care of by some background thread. We don't have
a background thread. So, we have to handle all of that
in the foreground without causing unnecessary latency
on the library calls. And we just don't have something
persistent there to remember the state of things. And it
causes you to have to think about the design of the
engine very differently from when you're working on a
client-server install.

Most developers are using SQLite as just a key-value
store. Should we be trying to convince them to take more
advantage of SQL?

I think so. I think that's the whole point. Well, I see so
many developers that think that SQL is just the wire
protocol for talking to the database engine. They don't
really grasp that the whole concept of the declarative
language, it's gonna do lots of really cool things for
them. Once people get that, it makes a huge difference
to them, they become so much more productive.
But, you think about it, the whole programming world
has become so complicated. I mean, when I started in
this business all these decades ago, my first computer
had 4k of RAM, total. And that included the video
RAM. And so, I could know everything that was
happening in my computer, but that's no longer possible.
And now we get people and we're trying to teach them
how to program in four years? And there's just so much
to learn and so much has to be left out, and I think that
the whole declarative idea is being completely omitted.

And people come out and, you know, it's easy to kind of
think about things in a key-value store, that's a very
familiar concept. But nobody's ever really taught the
value of a declarative language and how much work that
can really save. How many thousands of lines of code in
your application you can save by specifying the join in
SQL, rather than pulling all the information in and doing
the join in your application, which is what we see a lot
of people doing in actual applications. Yeah.
So, yeah, I think that about 90 percent of the use of
SQLite is a key-value type thing. But that other 10
percent, people are really using it to the max, they're
really putting these complex queries in there. And I see
some of those queries sometimes and I think, wow, is
my database computing this, that's amazing! But that's
the way it's intended to be used.

If you had the ability to redesign SQLite from scratch,
what would you change?

Mostly just piddly details. I mean, because SQLite is
used in so many millions of applications, we cannot fix
mistakes that I've made in the interface. So, for
example, the database file format uses Big Endian
numbers. And now all the processors are Little Endian.
And so, we could save a few cycles here and there if the
database stored everything as Little Endian.
And there are a few quirks in the language… If you say
“integer primary key” that means one thing, but if you
say “integer” and then put “primary key” into column
name it works slightly differently and it's just wrong.
But we can't change that now because there's a lot of
databases out there that do make use of that distinction
and that would break compatibility. And we're all about
preserving compatibility to the hundreds of billions of
instances that are out there already.
So, yeah, we could do a few tweaks like that to improve
the performance, but I'm really kind of happy with the
overall design and how it worked out. I wish I could
claim that I had this brilliant insight and foresight and
was able to predict that that's the way it was gonna work
out (it was dumb luck). But it worked out well in the
end.

You say that SQLite has aviation grade testing. What
does that mean?

So, we follow a design process that's inspired by DO-
178B, which is a Spec followed by the FAA, actually I
think it's been superseded now with DO-178C, but I'm
told it's not much different. And it's a Spec that the FAA
requires for safety-critical systems, safety-critical
software systems in the aircraft. It's a very detailed
design Spec about the processes you do in developing
the software. And the key point is that you have to test

Wouldn't	it	be	great	if	SQL	or	
something	like	that	were	
extended	in	a	way	that	you	
could	have	relations,	you	

could	have	graphs,	you	could	
have	arrays,	you	could	have	
JSON,	and	it	all	worked	
together	seamlessly?	

SIGMOD Record, June 2019 (Vol. 48, No. 2) 41

it to 100 percent modified condition/decision coverage
(100% MC/DC). Which, basically, means you have to
test the machine level such that every branch instruction
has been taken and falls through at least once. It's an
incredible amount of testing.
This started because years ago I had this idea that, oh,
I'll come up with this test suite and then I'll sell it to
people and make money. That didn't really play out. But
what we found is when we did this and spent a year
developing all these tests and, of course, tons of time
since then maintaining them, is that the number of bugs
just dropped dramatically. And it will amaze you how
many bugs pop up when your software is deployed on
two billion cell phones. And, yeah, I used to think that I
could write bug-free software and it got put on cell
phones and then, no…
But once we got that and got this aviation grade testing
in place, the number of bugs just dropped to a trickle.
Now we still do have bugs but the aviation grade testing
allows us to move fast, which is important because in
this business you either move fast or you're disrupted.
So, we're able to make major changes to the structure of
the code that we deliver and be confident that we're not
breaking things because we had these intense tests.
Probably half the time we spend is actually writing new
tests, we're constantly writing new tests. And over the
17-year history, we have amassed a huge suite of tests
which we run constantly.
Other database engines don't do this; don't have this
level of testing. But they're still high quality, I mean, I
noticed in particular, PostgreSQL is a very high-quality
database engine, they don't have many bugs. I went to
the PostgreSQL and ask them “how do you prevent the
bugs”? We talked about this for a while. What I came
away with was they've got a very elaborate peer review
process, and if they've got code that has worked for 10
years they just don't mess with it, leave it alone, it
works. Whereas we change our code fearlessly, and we
have a much smaller team and we don't have the peer
review process. So, that's the basic difference. People
hear aviation grade testing, that means it must be bug-
free. Not really. It's low bug, but there are bugs. The key
benefit is that it allows us to move fast and aggressively
and make big changes to the code without fear of
breaking things.

Now, why do you want to make big changes to the code
if you've already written something that clearly is
working for almost everybody?

Well, because, you know, you can always make
improvements to the query planner. The query planner
is an AI, and so there's no perfect solution. And so, no
matter what we do there's gonna be somebody come
along and find some query that it comes up with a bad

plan for. And then a lot of times we have to make pretty
radical changes to the query planner in order to come up
with a good query plan for some bizarre bit of SQL. Of
course, the first question we always ask is, why did you
want to do this? Who would ever issue such a query?
And it's often machine-generated queries.

So, it occurs to me that one factor in your success is the
fact that only 10 percent of the billions of installations
are doing the SQL queries. Because if all those key-
value store people were actually making full use of the
abilities of the SQL language, heaven knows what kinds
of strange queries they'd be asking…

Well, I'd suppose but, no, 10 percent of a billion is still
a lot!

It is.

And the people who are doing the elaborate queries are
companies that use it really heavily. Customers! I wish
I could name them for you.

That's fine. We don't wanna know, we don't wanna
know. So, if commercial database engines don't undergo
nearly that amount of testing, why do you work so hard
at testing an open source product that you give away for
free?

Well, that's a good question. You know, the intense
testing allows us to keep a really small team. The
product is free, and so, we make all our money from
support. And we’ve been following of the open source
world and people are saying “you can't make money
selling support.” And they're basically right, you can't
make a lot of money. So, a typical start-up would be 30
to 50 guys in an office building in San Francisco. And
you cannot make enough money selling support to
support that operation. But we only have three
developers, including me. And we're a distributed
company, we don't have office space, everybody works
from home. We keep our overhead really low. And we
only have three people. And so, with only three people
this high level of testing allows us to produce a quality
product without having a lot of eyeballs on it.

Wait, it almost suggests that a giant company could also
get by with three people on some major product. If they
did mega testing.

It	was	an	accidental	
database,	I	didn't	intend	to	

take	over	the	world.	

42 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Possibly so. You know, the DO-178B Spec is very
detailed. And what I've seen is a lot of companies trying
to implement it and they get very legalistic about it.
And, I mean, it's a really great thing if you do it well,
but if you don't implement it carefully it can just become
bureaucratic overhead. And then it actually multiplies
the number of people rather than reducing them.

Okay. Got it.

It's a tricky thing; it's a knife edge there.

People use SQLite in some places where you really don't
want a hacker to be able to get at the data. So, beyond
aviation grade testing, are there other considerations
you give to the security?

Yes, we do. Well, so the MC/DC testing is great for
verifying that sensible queries that normal programmers
would write actually work and give the correct answer.
But to prevent attacks we use fuzz testing. And there are
a number of great products out there that do this for us.

I think a lot of our audience might not know what fuzz
testing is.

Fuzz testing is when you take a library or a product and
you start pounding it with just seemingly random inputs
and trying to get it to break. You're not trying to see if it
gets the right or wrong answer, you just wanna break it,
you wanna get a segmentation fault error or something
like that. And that's an opportunity to break into the
system.
And so, there are some researchers at Google, and what
they've done is they have these fuzz testers where they
start with a random input. But they also instrument the
source code, or the object code. And they monitor the
path through the object code that that test case took and
it finds new behaviors, it learns from that. When it finds
a new path it says, “oh, I'm gonna keep changing that
mutation” and it finds new paths to the codes. It's a very
powerful thing. It's only been out for two to three years.
And it will find an amazing number of the bugs, even in
very well tested software.
So, an example of this is they took a jpeg library and
they started it with an empty file and started fuzzing it.
And the fuzzer actually discovered valid .jpeg files.
That's the power of the system. So, we feed these sorts
of things into SQLite. Because it's a library, it's very
easy to do this and we can give it thousands and
thousands of queries per second, fuzzing them, trying to
find bugs.

1 Editor’s note: His name is Michal Zalewski.

And when we first started doing that we did find a dozen
or two dozen ways of crashing it. But since then, and we
continue to test, we've fixed those and we haven't had
any more problems.
So, SQLite can be safely used as, for example, a file
format transferring data from across the internet. And
you can receive a SQLite file from an untrusted source
and bring it up and be confident that it's not going to –

Be a trojan horse…

Exactly.

So, what's the name of the Google tool for fuzz testing?

The first one was American Fuzzy Lop. And then the
following one to that was OSS-Fuzz.

(Laughs) I laughed because the first name American
Fuzzy Lop definitely sounds like the name of a kind of
funny rabbit.

That's where he got the name. I won't try to pronounce
the developer's name, it's Michael1 and he's Polish. I will
totally mispronounce his name so I won't try to
pronounce it. But he wrote it and he picked that name
because of the pun.

So, vaguely, how long would it take, when you've made
some changes to your source, to run through your entire
set of tests? Just vaguely.

Well, on one platform, because we run it on multiple
platforms.

No, just one.

If it's a fast work station we can, running on multiple
cores, we can do a complete set of tests in about 12
hours. But then we also run on multiple platforms,
including some slow ones, like phones and that sort of
thing. Some antique hardware, like ancient Mac Books
that are still using Power PC processors, so we can test
that it runs on Big Endian as well as the Low Endian.
And so, it normally takes us about three or four days to
do a complete test. But we can do full coverage testing,
the 100 percent MC/DC testing in about three minutes.
And so, after any change, we always do that. But then
we have these long soak tests that do a lot of additional
testing, and that's what takes a large amount of time.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 43

Why did you choose the license for SQLite to be public
domain rather than BSD or MIT?

Well, of course, technically, public domain is not a
license, but the absence of one. Actually, SQLite
Version 1 in 2000 used GDBM2 as the storage engine.
And that's a key-value storage thing. And it's GPL, and
so SQLite Version 1 was GPL, it had to be because it
was linking against the GPL library.
But GDBM is only key-value, I can't do range queries
with it. Then I said, “I'm gonna write my own B-tree
layer”. And so, I wrote my own and at that point it
became all my code and I thought, well, what license
shall I do? And I thought, well, you know, BSD, MIT.
And I thought, well, what's the point, why not just say it
is public domain? And so, I put it out there as public
domain. People can do whatever they want, I have
disavowed all copywrite to it.

And that was cool and that worked great. What I later
learned is that the ability to put something in the public
domain is kind of unique to countries that follow British
common law. Other countries don't allow people to
disavow their rights to the code. And so, it's a problem
in that sense.
But it's to tradition and we've stuck with it. It's worked
well and people understand it, and it makes people
confident that they can use it their products and not have
to worry about legal repercussions. Some companies
still do worry about that because, I mean, anybody can
grab some piece of code from somebody and put it out
in the internet and say, oh, this public domain, you
know.
So, another way that we do make money is we actually
sell licenses for it. Actually, it's not a license, it's a
warranty of title. It's an official document that says we
do have the right to place this in the public domain and
we will accept legal responsibility if anybody comes
forward and accuses you of stealing it. And companies
send us money for this piece of paper. And that's what
we use to fund the development.

2 https://www.gnu.org.ua/software/gdbm/gdbm.html

Okay. Anything to keep those lawyers satisfied. And if
you were starting again today, would you still go the
public domain route?

It's hard to say. I mean, it's fun to be unique in that, but
practically speaking the two-clause BSD license or MIT
license, accomplishes the same thing, and doesn't run
into the problems that are in non-British common law
jurisdictions. So, that would probably be a better choice.

After they graduate, most computer science grad
students go to the university, or a big company or a
start-up. So, what led you to be a consultant instead?

Oh, that's a long story. Because I've temperamentally ill-
suited for working in the –

Corporate life?

Yeah. I don't play well with others.

Oh! The small team is just a matter of preference!

It is. I really like working for myself. And one reason
we haven't grown to a big team is that there's no way in
the world that I could manage a big team. And the
people I have working for me are great and we get along
well, and I think trying to manage 30 to 50 people would
really be a disaster for me. I really enjoy working for
myself.
Back in 1992, when I took my Ph.D., there were 500
applicants for any tenure track position. And I decided
“I'm not gonna get in that rat race.” And so, I started the
consulting thing and it's worked out really well. I get to
set my own hours, you know because when you work
for yourself you can work any 80 hours of the week you
want, work from home, work in projects that I wanna
work on. And it's really worked out well. It's been a
dream job. All of us on the team have really enjoyed
working on SQLite.

Yeah, it sounds like if you graduated in a year when it
was a seller's market, buyer's market, I'm not sure which
direction, you might've taken a completely different
path!

Well, I may have. But I guess it's providential that it
worked out as well as it did.

Yeah! For everybody.

I	would	love	to	see	people	spend	
more	time	researching	

query	languages	as	opposed	
to	storage	engines	

44 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Yeah. I'm very happy.

But for someone who's graduating today, what
considerations do you think should make them choose a
consulting path?

Well, you get to choose your own destiny. You don't
have to deal with the big company or the big university
bureaucracy and the politics that comes with that.
Maybe I'm sort of an urban prepper you might think of,
in the sense that I wanna live off grid. Not really! Not
really! It's just that I wanna do my own thing. No, I
actually enjoy very much having the conveniences of
modern city life. I don't wanna go off grid. But the
concept is similar in that I want to decide for myself
what I'm working on. I want the freedom to move
around from lots of different customers.
You know, one really great thing about working in this
is I've had the opportunity to visit so many different
businesses and see the really different cultures there are
in all these different places all over the world. And I
can't really explain it unless you've experienced it, but
you go to one company and see how they operate and
how many people interact, and you go to a different
company and have a totally different culture there. And
then you step back and look and that culture kind of
comes out in their products, and you can see it after
you've visited their engineering facilities.

Interesting.

It's very interesting. And I don't know of any way of
describing that other than just say go there and see for
yourself and then you'll understand.

So, even inside the banks in Charlotte where you live,
all those big banks, can you see the difference in culture
in the products that come out of these giant banks?

A little bit. I don't have a whole lot of insight into the
banks there in Charlotte. I'm thinking of like visiting,
well, companies that you know well like Facebook and
Google and Apple.

Oh, computer companies?

Yes. Motorola, AOL, these sorts of things. I get
opportunities to go and visit and talk, and give talks
there, and meet with the people and see their
environment. And it's really exciting to be able to see all
of these differences, coming in, not have to be a part of
that company, but get a glimpse into their culture and
see how they're all very different. You'd think that a

3https://fossil-scm.org/home/doc/trunk/www/index.wiki

bunch of companies all in the Bay Area would be very
similar, but they're not, they're really very different. And
when you travel to other countries and do this, it gets
really, really different.

Yes, definitely. So, you don't see an evolution toward a
single culture at computer companies? There's no
convergence, it sounds like. If anything, it's divergence.

No, everybody pretty much copied Google's idea of
giving the people free food, okay. That was a big win,
apparently, and everybody copied that. So, there are
some ideas that get around. And so, maybe you're right,
maybe there was a lot more diversity a decade ago than
there is today. But still, even today you can see a big
difference in the different companies.

Cool. Among all your past accomplishments, do you
have a favorite piece of work other than SQLite?

I'm kind of proud of the version control system that we
wrote specifically for SQLite called Fossil3. So, SQLite
started out using CVS because back then that's what
everybody used. But CVS is great if you had to use what
came before CVS, you know. Some people bad mouth
CVS, I know that those people never had to use what
came before. But it has its limitations, and so we wanted
to go with something better, and the other options
weren't really making it for me. So, I wrote my own and
called it Fossil.
And it's interesting in that Fossil stores all of its data in
an SQLite database, and SQLite is controlled by Fossil,
so we have this recursion here – if something breaks the
whole project sort of collapses. It's a house of cards. But
it works really well and it's been really flattering that
thousands of other people have picked it up and started
using it. So, it's a distributed version control system like
Git. Nowhere near as many users, orders of magnitude
fewer. But those who do use it are really enthusiastic
about it.
And it keeps me in touch with the application
development side of things. Because if you're
developing just the database engine for so long, you get
heads down and you don't see what's happening. But I
can go out and work on Fossil and it's helping so many
people, and then I also get to work on an actual
application that uses SQLite and understand the pain of

SQL	is	the	language	that	
everybody	loves	to	hate.	

SIGMOD Record, June 2019 (Vol. 48, No. 2) 45

the users who have to deal with the interfaces that I
design. And that's very good.

Eating your own dog food.

Yes. We're very much into dog food in SQLite.

If you magically had enough extra time to do one
additional thing at work that you're not doing now, what
would it be?

Oh, I've got a long list. But my #1 thing right now I think
would be a new version control system which the
working name is Fit, it's a combination of Fossil with
Git. Uses the Fossil user interface but it uses the low-
level file format of Git. So that then you can work with
Fossil's interface but push and pull to legacy Git users.
And I think that would be huge.

Why? What's better about the Fossil interface?

Well, it's not the perfect interface, but all the users say
“oh, the Fossil interface is great, it's so wonderful, I hate
having to use Git.” But then they're compelled to use Git
because everybody else in the world is and they wanna
collaborate. So, I think that by merging these two
producing Fit, Fossil plus Git, that would be a really big
win for a lot of people.

Sounds like it.

It sounds like a lot of work, too.

Maybe… Do you have any words of advice for fledgling
or mid-career database people?

I would love to see people spend more time researching
query languages as opposed to storage engines. I mean,

storage engines are a very important thing, we need to
work on that, but it's like query languages are ignored.

Do you mean like changing SQL or do you mean like…

Enhancing SQL. SQL is the language that everybody
loves to hate. And of course, I guess, everybody in the
database world has at one point or another tried to come
up with a better SQL. I know I've tried multiple times
myself with indifferent results.
But the relational model is great and it'll represent
anything, but there're some problems that just work out
better with like a graph model or an array, or something
like that, or JSON. Wouldn't it be great if SQL or
something like that were extended in a way that you
could have relations, you could have graphs, you could
have arrays, you could have JSON, and it all worked
together seamlessly? And that would be really, really
amazing.

If you could change one thing about yourself as a
computer scientist what would it be?

Well, I think we'd all like to be smarter, right? The
ability to communicate better. I don't know. I've had
such a blessed career, truly. I mean, I fell into this, I
didn't plan to be a database guy, that was never in my
career plans it just happened, but it's been an enormous
amount of fun. And if I were to design it I'd mess it up.
So, I'm just gonna go with what we've got.

Sounds good. Thank you very much for talking with us
today.

Thank you for your time.

46 SIGMOD Record, June 2019 (Vol. 48, No. 2)

